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Motivated by phenomenological models of hidden local symmetries and the ideas of dimensional decon-
struction and gauge/gravity duality, we consider the model of an ‘‘open moose.’’ Such a model has a large
numberK of hidden gauge groups as well as a global chiral symmetry. In the continuum limitK→` the model
becomes a 411 dimensional theory of a gauge field propagating in a dilaton background and an external
space-time metric with two boundaries. We show that the model reproduces several well known phenomeno-
logical and theoretical aspects of low-energy hadron dynamics, such as vector meson dominance. We derive the
general formulas for the mass spectrum, the decay constants of the pion and vector mesons, and the couplings
between mesons. We then consider two simple realizations, one with a flat metric and another with a ‘‘cosh’’
metric interpolating between two anti–de Sitter~AdS! boundaries. For the pion form factor, the single pole
r-meson dominance is exact in the latter case and approximate in the former case. We discover that an
AdS/conformal field theory-like prescription emerges in the computation of current-current correlators. We
speculate on the role of the model in the theory dual to QCD.
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I. INTRODUCTION

Vector mesons@r(770), v(782), etc.# play a significant
role in hadronic physics. Their interactions, though not c
strained by low-energy theorems, apparently follow t
broad pattern of vector meson dominance~VMD ! @1#. There
have been numerous efforts to incorporate vector mes
into field-theoretical frameworks. Historically, the Yan
Mills theory was discovered in an early attempt to treat thr
meson @2#. More recently, interesting schemes based
‘‘hidden local symmetries’’~HLS! were developed by Band
et al. @3–5#. In the original model@3#, the r meson is the
boson of a spontaneously broken gauge group. The m
has been extended to two hidden gauge groups@4#; then it
also incorporates the lowest axial vector mesona1(1260).
With suitable parameters, these models can be quite suc
ful phenomenologically, although they cannot be system
cally derived from QCD~except in the limit of very lightr,
if such a limit could be reached@6#!.

In this paper we explore theories with very large, a
even infinite numberK of hidden local symmetries. Our mo
tivation is twofold. First and most straightforwardly, the
are excited states in the vector and axial vector chan
@r(1450),a1(1640),r(1700), etc.@7##, which must become
narrow resonances in the limit of large number of colorsNc .
It is tempting to treat them as gauge bosons of additio
broken gauge groups.1

The second motivation comes from recent theoretical
velopments. Many strongly coupled gauge theories are fo
to have a dual description in terms of theories with gravity

1To our knowledge, the earliest attempt to interpret the tower or,
r8, etc. as a ‘‘chain structure’’ was made in Ref.@8#.
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higher dimensions@9–12#. It was suggested that the strin
theory dual to large-Nc QCD must have strings propagatin
in five dimensions, in which the fifth dimension has th
physical meaning of the energy scale@13#. In the framework
of field theory, the fifth dimension can be ‘‘deconstructed’’
models with a large number of gauge fields@14,15#.

We discovered that the continuum limitK→` can lead to
results that qualitatively, and in many cases even quan
tively, agree with phenomenology. Most remarkably, the v
tor meson dominance, which in the HLS theories require
tuning of parameters, becomes a natural consequence o
K→` limit. Another advantage of the limitK→` is the
possibility of matching to the asymptotic behavior of th
current-current correlator known from perturbative QCD.

As anticipated, a natural interpretation of this limit is
discretization, or deconstruction, of a 5-dimensional gau
theory. Further, to our amusement, in the calculation
current-current correlators we found a relation very similar
the one employed in the anti–de Sitter~AdS!/conformal field
theory correspondence: the current-current correlator in
theory is expressed in terms of the variations of the class
5D action with respect to the boundary values of the b
gauge fields on the 4D boundaries.

We limit our discussion to the isospin-1 sector of QCD.
is straightforward to extend the discussion to the isospi
sector (h, v, and f 1 mesons!. The detailed treatment of th
U(1)A problem, chiral anomaly, Wess-Zumino-Witten term
and baryons is deferred to future work.

The paper is organized as follows. In Sec. II we descr
the open moose model. In Sec. III we compute differe
physical observables: the vector meson mass spectrum
decay constants of the pion and the vector mesons, the
pling between the vector mesons and the pions, and the
electromagnetic form factor. We also check the validity
©2004 The American Physical Society20-1
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Weinberg’s spectral sum rules, and discover that the li
K→` automatically leads to exact VMD for the pion form
factor.

In Sec. IV we take the limit of infinite number of th
hidden groupsK→`. We show that the theory can be u
derstood as a 5D Yang-Mills theory in an external metric a
dilaton background. We establish an AdS/CFT-type presc
tion for calculating the current-current correlators. We co
sider two concrete realizations of the open moose in Sec
We find that a ‘‘cosh’’ background metric interpolating b
tween two AdS boundaries leads to correct asymptotic
havior of the current-current correlator. This allows us
establish a relationship between hadron parameters suc
f p , mr , and the QCD parameterNc . In Sec. VI we show
that the instanton, which is a quasiparticle in 411 dimen-
sions, becomes a Skyrmion upon reduction to 4D, and t
describes the baryon. Section VII contains concluding
marks.

II. THE OPEN MOOSE

The model under consideration is described by the follo
ing Lagrangian2

L5 (
k51

K11

f k
2TruDmSku22 (

k51

K
1

2
Tr~Fmn

k !2. ~2.1!

The covariant derivatives are defined as

DmS15]mS11 iS1~gAm!1, ~2.2a!

DmSk5]mSk2 i ~gAm!k21Sk1 iSk~gAm!k,
~2.2b!

DmSK115]mSK112 i ~gAm!KSK11. ~2.2c!

A shorthand notation is used for the product of the gau
field Am5Am

a ta/2 and its coupling constant:gkAm
k

[(gAm)k. If we assumeAm
0 5Am

K1150, then Eqs.~2.2a! and
~2.2c! become special cases of Eq.~2.2b! for k51 and k
5K11.

The model containsK11 nonlinear sigma model field
SkPSU(2) @or, in general, SU(Nf)], interacting viaK ‘‘hid-
den’’ gauge bosonsAm

k . The model has a chiral SU(2
3SU(2) symmetry and an SU(2)K local symmetry:

S1→LS1U1
†~x!,

Sk→Uk21~x!SkUk
†~x!,

k52,3, . . . , ~2.3!

SK11→UK~x!SKR†.

In particular, the product

2We are using the usual 311 Minkowski metric hmn

5diag(1,21,21,21), but write all indices as lower indices fo
simplicity, unless it could lead to a confusion.
06502
it

d
-

-
V.

e-

as

s
-

-

e

S5S1S2
•••SK11 ~2.4!

is the pion field, which can be seen from its transformat
properties,

S→LSR†. ~2.5!

The parameters entering~2.1! are K11 decay constants
f k and K gauge couplingsgk . We shall assume they ar
invariant under a reflection with respect to the middle of t
chain,

f k5 f K122k , gk5gK112k , ~2.6!

which ensures parity is a symmetry in the theory~2.1!.
In the caseK50 the model reduces to the chiral Lagran

ian. ForK51 it is the version of the hidden local symmet
realized in the limit of very lightr ’s @6#. The model with
K52 and a particular choice of parametersf 1

25 f 3
252 f 2

2,
g15g2 has been considered in Ref.@4#. Graphically, the
model can be represented by a ‘‘theory-space’’ diagr
shown in Fig. 1. Since this diagram is the usual ‘‘moo
diagram’’ cut open, we shall call the model~2.1! the ‘‘open
moose’’ theory.

Note that~2.1! is not the most general Lagrangian sat
fying all the symmetries and limited to lowest derivatives.
fact, terms of the following type are not forbidden:

u]m~SkSk11!2 i ~gAm!k21~SkSk11!

1 i ~SkSk11!~gAm!k11u2, ~2.7!

as well as analogous expressions containing products
more than two consecutiveS ’s. In order to restrict the La-
grangian to the form~2.1! an additional condition of neares
neighbor locality in thek space should be imposed. It is th
condition that enables us later to interpret this theory a
dimensionally deconstructed 5D gauge theory in the lim
K→`.

FIG. 1. Graphic representation of the Lagrangian~2.1!. The ex-
amples of lowK corresponding to previously considered theor
are also shown.K50 represents Weinberg’s nonlinear sigma mod
for pions;K51 represents a hidden symmetry Lagrangian desc
ing p and r; and K52 represents a description ofp, r, anda1

@3,4#.
0-2



rv
m
m

ve

at

ct
l

ia

ul
th

e

e

nal

lle
a-

ons.

the

at-
few
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III. PHYSICAL OBSERVABLES

In this section we derive expressions for physical obse
ables, such as pion and vector meson decay constants,
spectrum, and pion-vector couplings in terms of the para
eters of the moosef k andgk .

A. Pion decay constantf p

For computations, the following gauge is the most con
nient,

Sk5expH iP
f

2 f k
2J , where P5pa

ta

2
, ~3.1!

wheref is a function of allf k , which we shall specify in a
moment@in Eq. ~3.4!#. The advantage of this gauge is th
the pion fieldP does not mix with other fields:

Lmix5 (
k51

K11

f Tr ]mP@~gAm!k2~gAm!k21#50. ~3.2!

The value off is fixed by requiring that the kinetic term
for pa is canonically normalized:

L p25 (
k51

K11
f 2

4 f k
2

Tr~]mP!25 (
k51

K11
f 2

4 f k
2

1

2
~]mpa!2.

~3.3!

Therefore

4

f 2
5 (

k51

K11
1

f k
2

. ~3.4!

To determinef p we use Noether’s theorem to constru
the axial currentAm . Let us consider an infinitesimal axia
SU~2! transformation. It acts only onS1 and SK11 at the
ends of the moose:

S1→US1 and SK11→SK11U,

where

U5exp~ iaata/2!. ~3.5!

If the parametera depends on coordinates, the Lagrang
changes bydL5A m

a ]maa. On the other hand from~2.1! one
finds

dL p25 f Tr~]mP!ta~]maa!5 f ]mpa~]maa!, ~3.6!

which meansAm5 f ]mpa, i.e., f p5 f . Equation ~3.4! be-
comes

4

f p
2

5 (
k51

K11
1

f k
2

. ~3.7!

It is a simple exercise to verify that forK50,1,2 this
general formula is in agreement with corresponding res
in these theories. It is also perhaps useful to observe
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sending f k→` on one of the links effectively sets gaug
fields on the ends of this link equal to each other@(gA)k

5(gA)k11#, effectively eliminating this link and reducingK
by one. The formula~3.7! obviously reflects this reduction—
the corresponding term 1/f k

2 drops out.

B. Vector meson mass spectrummn

In our gauge, the vacuum isSk51 for all k. Expanding to
second order inAm

k , we find the terms that determine th
masses of the vector mesons:

L A25 (
k51

K11

f k
2Tr@~gAm!k212~gAm!k#2

[ (
k51
k851

K

~M2!kk8Tr Am
k Am

k8 . ~3.8!

The mass matrix can be diagonalized by using an orthogo
matrix bn

k satisfying

(
k51
k851

K

~M2!kk8bm
k bn

k85mn
2dmn ; bTb5bbT51. ~3.9!

In terms of new vector fieldsam
n defined as

Am
k 5(

n
bn

kam
n or am

n 5(
k

bn
kAm

k , ~3.10!

the mass term~3.8! is diagonal.
Using Eq.~3.8! and the orthogonality ofbn

k , we can write
the equation determiningbn

k andmn as

f k11
2 @~gbn!k112~gbn!k#2 f k

2@~gbn!k2~gbn!k21#

52
mn

2bn
k

gk
. ~3.11!

This is essentially a discretized version of a Sturm-Liouvi
problem. We shall write the corresponding differential equ
tion in Sec. IV when we consider the continuum limitK
→`. We shall also use the discrete equation~3.11! in Sec.
III D.

Without solving Eq.~3.11!, we can conclude right away
that there is a tower of eigenvaluesmn , n51,2, . . . ,K, cor-
responding to the masses of vector and axial vector mes
The lowestn51 andn52 states correspond to ther anda1
mesons. Moreover, states with opposite parity alternate in
spectrum:

n51,3, . . . ~r,r8, . . . !: bn
k51bn

K112k ,

n52,4, . . . ~a1 ,a18 , . . . !: bn
k52bn

K112k , ~3.12!

Odd n states correspond to vector mesons and evenn to
axial vector mesons. In the real world, the trend of altern
ing parity can be seen in the hadronic spectrum for the
first vector and axial vector states.
0-3
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C. Vector meson–pion-pion coupling gnpp

Let us compute the coupling ofnth vector meson to a
pion pair,gnpp . Expanding the Lagrangian inA andp, iso-
lating App terms, and using Eq.~3.10!, we find

LApp5 i (
k51

K11 f p
2

4 f k
2

Tr@]mP,P#@~gAm!k211~gAm!k#

5 i (
n51

K

(
k51

K11 f p
2

4 f k
2 @~gbn!k211~gbn!k#Tr@]mP,P#am

n .

~3.13!

Recall that we use the matrix notation wherea5aata/2 and
P5p2ta/2. If we normalizegnpp so that the relevant cou
pling is

Lapp52gappeabc]mpapbam
c , a5r,r8, . . .

~3.14!

then

gnpp5 (
k51

K11 f p
2

4 f k
2

1

2
@~gbn!k211~gbn!k#. ~3.15!

Note that thisnpp coupling vanishes for axial mesonsn
52,4, . . . , asrequired by parity, because their ‘‘wave fun
tions’’ bk

n are odd underk→K112k @Eq. ~3.12!#.

D. Vector meson decay constantsgnV and gnA

We define the decay constants for the vector and a
vector mesons via the matrix elements of the vector and a
vector currents between the vacuum and the one-me
states,

^0uV m
a ~0!uan

b~p,e!&5gnVdabem , ~3.16a!

^0uA m
a ~0!uan

b~p,e!&5gnAdabem . ~3.16b!

Here uan
b(p,e)& is a single-particle state of thenth vector

boson (a15r, a25a1, etc.! with isospinb and polarization
e. Both gnV and gnA have the dimension of@mass2]. gnV
50 for axial vector mesons (n even! andgnA50 for vector
mesons (n odd!.

It is convenient to computegnV by looking at the vector
current-current correlator̂Vm(x)Vn(0)&. The residues at the
poles are easily related tognV . The correlator can be ob
tained by gauging the corresponding SU(2)V transformation
and differentiating the action with respect to the gauge fi
Bm :

^V m
a ~x!V n

b~0!&[ i ^0uT~V m
a ~x!V n

b~0!!u0&

52
d2Wvac@Bm#

dBm
a ~x!dBn

b~y!
, ~3.17!
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al
al
on

d

whereWvac@Bm# is the vacuum energy functional in the pre
ence of the external fieldB. The SU(2)V transformation only
affects the twoS links at the ends of the chain according
Eq. ~2.3!:

S1→US1 and SK11→SK11U†, ~3.18!

and therefore the terms containing the gauge fieldBm are
only from k51 andk5K11:

LB5 f 1
2Tru]mS12 iBmS11 iS1~gAm!1u2

1 f K11
2 Tru]mSK112 i ~gAm!KSK111 iSK11Bmu2.

~3.19!

Keeping only terms bilinear in the fields we find~the term
PB is absent due to parity!:

L A2,AB,B25 f 1
2~Bm

a !22Bm
a f 1

2@~gAm
a !11~gAm

a !K#1L A21L F2.
~3.20!

Extremizing the action with respect toA at fixedB and then
taking the second derivative with respect toB we find~this is
also equivalent to taking the Gaussian integral overA and
then differentiating the logarithm of this integral!

^V m
a ~x!V n

b~y!&

52 f 1
2hmndxyd

ab

2 f 1
4^@~gAm

a !11~gAm
a !K#~x!@~gAn

b!11~gAn
b!K#~y!&,

~3.21!

where thê AA& is the propagator ofA, i.e., the inverse of the
quadratic form found inL A21L F2. Diagonalizing this ex-
pression using Eq.~3.10! and performing a Fourier transfor
mation with respect to the four-dimensional coordinatex, we
find

^V m
a ~q!V n

b~2q!&

52 f 1
2hmndab2 (

n51

K gnV
2

2q21mn
2
dabS hmn2

qmqn

mn
2 D ,

~3.22!

where the decay constantsgnV are determined to be

gnV5 f 1
2@~gbn!11~gbn!K#. ~3.23!

Note thatgnV50 for axial mesons for whichbn
152bn

K .
One can also use Eq.~3.11! together with Eq.~3.23! to

write a different representation forgnV :

gnV5 f 1
2@~gbn!11~gbn!K#5mn

2(
k51

K bn
k

gk
. ~3.24!
0-4
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It is perhaps easier to look at this equation as a discret
version of integration by parts as we shall do in Sec. IV.3

The calculation of the decay constants of the axial vec
mesonsgnA is completely analogous. We introduce an au
iliary gauge fieldB̃ coupled to the axial currentA:

LB̃5 f 1
2Tru]mS12 iB̃mS11 iS1~gAm!1u2

1 f K11
2 Tru]mSK112 i ~gAm!KSK112 iSK11B̃mu2.

~3.25!

In addition to theAB̃ mixing andB̃2 contact terms there is
now also the mixing with pion fieldPB̃. Differentiating the
logarithm of the partition function twice, we obtain

^A m
a ~q!A n

b~2q!&52 f 1
2hmndab2 (

n51

K gnA
2

2q21mn
2
dab

3S hmn2
qmqn

mn
2 D 2 f p

2 qmqn

q2
dab,

~3.26!

where

gnA5 f 1
2@~gbn!12~gbn!K#. ~3.27!

Note that, as expected,gnA50 for vector mesons for which
bn

15bn
K .

E. Spectral sum rules

Weinberg@17# has derived two sum rules for the weighte
integrals of the difference of spectral functions of the vec
and axial vector current correlators,^VV& and ^AA&. We
shall now verify that both sum rules hold by using transv
sality of the current-current correlators.

From Eq.~3.24! it is easy to show that thêVV& correlator
is transverse. Transversality requires that the contact ter
Eq. ~3.22! is related to the pole terms through the followin
sum rule:

3Equations~4.10! or ~3.24! can be also understood in the follow
ing way ~the reader might recognize the discussion given in R
@16,1#!. One should realize that because of the mixing ofB with A
the actual photon is not the fieldB, but a linear combination ofB
and allA that leaves vacuumSk51 invariant. This is similar to the
mixing of the standard model hypercharge boson and weak iso
vector boson to produce the photon. The corresponding linear c
bination of theA fields has a ‘‘wave function’’ proportional to 1/gk

~eachAk enters with weight 1/gk). The mixing of the actual photon
is now entirely through derivative terms in the expansion ofLF2.
The corresponding coefficients are given by the overlap of the p
ton ‘‘wave function’’ 1/g and thenth vector meson ‘‘wave func-
tion’’ bn . The factormn

2 is from the derivatives evaluated using th
equation of motion for thenth meson.
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2 f 1
25 (

n51

K gnV
2

mn
2

. ~3.28!

This can be checked by using Eq.~3.24! and orthogonality of
bn

k . We indeed find

(
n51

K gnV
2

mn
2

5 (
n51

K

(
k51

K

f 1
2@~gbn!11~gbn!K#

bn
k

gk
52 f 1

2 .

~3.29!

By using Eq.~3.28! one can rewrite the correlator in a man
festly transverse form,

^V m
a ~q!V n

b~2q!&5PV~2q2!dab~2q2hmn1qmqn!;

where

PV~Q2!5 (
n51

K gnV
2

mn
2~Q21mn

2!
, Q252q2. ~3.30!

The transversality of thêAA& correlator~3.26! amounts
to the following sum rule:

2 f 1
22 f p

2 5 (
n51

K gnA
2

mn
2

. ~3.31!

By comparing Eqs.~3.28! and ~3.31! we conclude that

(
n51

K S gnV
2

mn
2

2
gnA

2

mn
2 D 5 f p

2 , ~3.32!

which is one of Weinberg’s sum rules.4 This sum rule holds
for any K. Note that, forK→` both sums~3.28! and~3.31!
must diverge, sincef k must become infinite at the ends of th
moose@to ensure convergence in Eq.~3.7!#. However, their
difference is finite.

The second Weinberg sum rule

(
n51

K

~gnV
2 2gnA

2 !50 ~3.33!

also holds. It is easy to prove by using the definitions~3.23!
and ~3.27! and the orthogonality ofbn

k :

(
n51

K

~gnV
2 2gnA

2 !54 f 1
2(

n51

K

~gbn!1~gbn!K5~2 f 1g1!2d1K ,

~3.34!

which vanishes for allK.1. In the caseK51, there is only
one meson–r, and no axial mesons at all.

.

in
-

o-

4Weinberg’s sum rules@17# involve the spectral functions
rV(m2)[(m2/p)Im PV(2m22 i0), wherePV is defined viâ VV&
in Eq. ~3.30!. A similar equation definesrA . The sum rules state
that ~i! *@rV(m2)2rA(m2)#m22dm25 f p

2 ; ~ii ! *@rV(m2)
2rA(m2)#dm250. In our theory, according to Eq.~3.30!, rV,A

5(ngnV,A
2 d(2m21mn

2).
0-5
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F. Pion form factor and VMD

The pion form factor~defined to be the isovector part o
the electromagnetic form factor!,

^pa~p8!uV m
c ~0!upb~p!&5GVpp~q!eabc~p1p8!m ~3.35!

can be found isolating terms linear inB in the Lagrangian
~3.19!. There are two contributions to the form factor—th
direct interaction, given by the termBp]p in the Lagrangian
and the interaction mediated by vector mesons given by
AB mixing terms and the couplingsAp]p. One finds

GVpp~q!5
f p

2

4 f 1
2

1(
n

gnVgnpp

Q21mn
2

. ~3.36!

Using the expressions~3.24! and ~3.15! for gnV and gnpp

and the orthogonality of the matrixbn
k , the sum rule related

to the total charge of pion can be verified,

GVpp~0!5
f p

2

4 f 1
2

1(
n

gnVgnpp

mn
2

51. ~3.37!

If we understand VMD as the statement thatGVpp(q) is
saturated by a sum over resonances~i.e., dominance by the
whole tower of mesons!, then in our model VMD is valid
when the contribution of the direct interaction is negligib
f p

2 /4f 1
2!1. Thus VMD is a natural consequence of theK

→` limit @due to Eq. ~3.7!#. A stronger statement tha
GVpp(q) is saturated by a singler pole is not, in general
valid ~see, however, Sec. V B!.

IV. K\` AND CONTINUUM LIMIT

In the preceding section we derived formulas that
valid for an arbitraryK. Now we wish to consider the limi
K→`. In this limit the expressions that we found can
simplified, provided thatf k and gk are sufficiently smooth
functions of k. In this case we can consider replacing t
discrete variablek by a continuum variable that we shall ca
u:

u5S k2
K

2 Da, ~4.1!

Here a plays the role of the ‘‘lattice spacing.’’ If the limit
K→` is performed in the following way,

K→` and a→0, Ka[2u0 fixed, ~4.2!

thenu becomes a continuum replacement fork. If f k andgk
are smooth functions ofk, we can also replace them by fun
tions of u,

a fk
25 f 2XS k2

K

2 DaC5 f 2~u!, ~4.3a!

agk
25g2XS k2

K

2 DaC5g2~u!. ~4.3b!
06502
e
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For the resonance ‘‘wave functions’’bn
k that vary smoothly

we can write

1

Aa
bn

k5b~u!, ~4.4!

so that orthogonality of the matrixbn
k translates into ortho-

normality of the functionsbn(u),

E
2u0

u0
dubn~u!bn8~u!5dnn8 . ~4.5!

The wave functions of sufficiently high resonances withn
;K cannot be expected to be smooth, so they must
treated discretely. We shall always be interested in a fin
number of lowest resonances, whileK→`.

A. Physical observables

Let us now write continuum limits for the main formula
we have derived in the preceding section. From Eq.~3.7!,

4

f p
2

5E
2u0

1u0 du

f 2~u!
. ~4.6!

From Eq.~3.11!,

g„f 2~gbn!8…852mn
2bn . ~4.7!

with Dirichlet boundary conditionsbn(6u0)50 ~since we
setAm

0 5Am
K1150).

From Eq.~3.15!,

gnpp5
f p

2

4 E
2u0

1u0 du

f 2~u!
g~u!bn~u!. ~4.8!

From Eq.~3.23!, using the fact that (gb)05(gbn)K1150,

gnV52@ f 2~u!„g~u!b~u!…8#2u0

1u0. ~4.9!

By using Eq. ~4.7!, we find the continuum limit of Eq.
~3.24!:

gnV52@ f 2~u!„g~u!b~u!…8#2u0

1u05mn
2E

2u0

1u0
du

bn~u!

g~u!
.

~4.10!

Analogously, Eq.~3.27! becomes

gnA5@ f 2~u!„g~u!b~u!…8#u1u0
1@ f 2~u!„g~u!b~u!…8#u2u0

.

~4.11!

It is very interesting that the physical observables we cal
lated are all well behaved in the continuum limitK→`,a
→0 ~provided the corresponding integrals overu converge!.
For reference, the equations for other vertex couplings
presented in Appendix A.
0-6
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B. dÄ4¿1 and dimensional deconstruction

Our long-moose theory withK@1 can be also considere
as a discretized~or deconstructed! five-dimensional con-
tinuum gauge theory in curved spacetime.5 The variableu
plays the role of the fifth, deconstructed, dimension. T
smoothly varying fieldsS ’s can be interpreted as the lin
variables along the fifth dimensionu[x5,

Sk'11 iaA5~u!, ~4.12!

For this equation and for remainder of Sec. IV we shall ma
a temporary switch of notations, absorbing the gauge c
pling constantsg into the fieldsA: gA→A. Then the action
~2.1! can be written in the 5D notations as

S52TrE dud4xS 2 f 2~u!F5m
2 1

1

2g2~u!
Fmn

2 D . ~4.13!

We now compare this action to the action of a gauge fi
in a background of curved spacetime and a dilaton field
the following, ugu denotes the determinant of the metric te
sor. The action is taken in the form:

S52
1

2g0
2

TrE d5xAugue22fF m̂n̂F m̂n̂, ~4.14!

wherem̂,n̂ are 5D Lorentz indices. The coupling to the dil
ton field is written so that the effective gauge coupling isg
5g0ef. In our simple model we consider the metric and t
dilaton as classical background fields with no dynamics
their own. Taking the dilaton field to be dependent only
the fifth coordinateu, f5f(u), and the metric to be of the
warped form,

ds252du21e2w(u)hmndxmdxn, ~4.15!

the action~4.14! can be expanded as

S52
1

2g0
2

TrE d5x~22e2w22fF5m
2 1e22fFmn

2 !. ~4.16!

Equation~4.16! coincides with Eq.~4.13! if one makes the
following identification:

f 2~u!5
1

g0
2

e2w22f, ~4.17a!

g2~u!5g0
2e2f. ~4.17b!

Notice that the warp factore2w is equal tof 2(u)g2(u), i.e.,

ds252du21 f 2g2hmndxmdxn. ~4.18!

It is also easy to see that the wave equation for the sp
mesons~4.7! is one of the Yang-Mills/Maxwell equations fo

5Deconstruction of gauge theories in curved space was consid
in Refs.@18–20#.
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the 5D~massive! gauge field in the curved background. N
tice also that the pion field~2.4! is now the Wilson line
stretching between the two boundaries,

S~x!5P expS i E duA5~u,x! D . ~4.19!

C. AdSÕCFT connection

We now show that correlators of conserved currents in
theory can be computed by using a prescription essent
identical to the AdS/CFT one. Namely, the generating fu
tional for the correlation functions of the currents is equal
the action of a solution to the classical field equations, w
the sources serving as the boundary values for the clas
fields.

Recall our calculation of the current-current correlators
Sec. III D. Instead of the vector fieldBm andB̃m let us intro-
duce two separate fieldsAm

L andAm
R , corresponding to gaug

ing the SU(2)L and SU(2)R global symmetries of the theory
The appearance of these fields modify the first and last te
in the moose,

L5 f 1
2Tru]mS12 iAm

L S11 iS1Am
1 u21•••

1 f K11
2 Tru]mSK112 iAm

KSK111 iSK11Am
Ru2.

~4.20!

In this section we also absorb the couplinggk into the field
A. Remember that there are no dynamical fields associ
with the ends of the moosek50 andK11. We can treat the
ends of the moose more equally with the other points
thinking that the values of the fieldAk at the ends of the
moose, atk50 andK11, are fixed at given values:

Am
0 5Am

L and Am
K115Am

R . ~4.21!

If the field Ak is smooth, we can translate this into the co
tinuum limit by setting boundary conditions on the contin
ous 5D fieldAm(u):

Am~2u0!5Am
L and Am~1u0!5Am

R . ~4.22!

At tree level, the generating functional is thus equal to

Z@Am
L ,Am

R#5eiScl[Am
cl] ~4.23!

whereAm
cl is the solution to the classical field equation th

satisfies the boundary conditions~4.22!. This formula is of
the same form as the formula for AdS/CFT corresponden
the sources for the boundary theory~in our caseAm

L,R) serve
as the boundary values for the bulk field. In particular,
order to compute the correlation functions for the conser
currents Lm5 1

2 (Vm1Am) or Rm5 1
2 (Vm2Am) one just

needs to differentiate the classical action with respect to
corresponding boundary values, e.g.,

^Lm~x!Ln~y!&5
d2Scl@Am

cl#

dAm
L ~x!dAn

L~y!
. ~4.24!ed
0-7
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FIG. 2. A few first wave func-
tions in the flat background.
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The fact that we have arrived at an AdS/CFT-like formu
~4.23! makes one wonder if the hidden local symmetry mo
els for ther anda1 vector mesons@3–5# are~very coarsely!
discretized versions of a 5D theory dual to QCD. This co
explain why these models enjoy certain phenomenolog
success, and why in theK52 model @4# one is driven to
choose the parameters so that it becomes a moose th
~i.e., nearest neighbor local!.

A difference from the usual AdS/CFT correspondence
that there aretwo boundaries in the open moose theo
However, if so desired, one can reformulate the 5D the
~4.14! and ~4.15! in the spatial region 0,u,u0 ~which is
one-half of the original2u0,u,u0) at the price of having
two gauge fields obeying a matching condition atu50.
Then the spacetime will have only one boundary atu5u0.

V. EXACTLY SOLVABLE EXAMPLES AND
PHENOMENOLOGY

So far, our discussion has been general and valid for
choice of f k and gk . In this section we shall consider tw
concrete realizations of the open-moose theory. Our goa
to illustrate the general formulas, and to compare the res
with the phenomenology of vector mesons. The two
amples are chosen because they are exactly solvable
spectrum of the vector mesons and the coupling const
can be found in the closed form. The first example is also
simplest possible model, but it has a significant physi
drawback that we point out at the end. We think neverthe
that it is a useful reference point for comparison and
understanding the robustness/sensitivity of the results
wards the change of the background parametersf (u) and
g(u).

A. Example I: Flat background

Consider a moose with parametersf k andgk independent
of k.6 In the continuum limitK@1 the corresponding func
tions are therefore constant,7

f ~u!5 f , g~u!5g, uuu,u051. ~5.1!

Let us now apply general formulas from Sec. IV A to det
mine the properties of this theory in terms of the parame
f andg. From ~4.6!

6Such a theory can be easily solved even for finiteK, but we shall
only considerK@1.

7The choice ofu0 does not affect the results; it is equivalent
rescalingf andg.
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f p
2 52 f 2. ~5.2!

The spectrum and wave functions of the spin-1 mesons
given by Eq.~4.7!, which becomes

bn91
mn

2

f 2g2
bn50, bn~61!50. ~5.3!

This means

bn~u!5sinS pn

2
~u11! D ; mn5

p f g

2
n; n51,2, . . . ,

~5.4!

The few first wave functions are plotted in Fig. 2.
From Eq.~4.8!, for n51,3, . . . ,

gnpp5
f p

2

p

g

f 2

1

n
5

2

p
g

1

n
; n51,3, . . . . ~5.5!

Consider ther meson,n51. The ratio ofmr
2 to grpp

2 f p
2 is

dimensionless and is equal to

m1
2

g1pp
2 f p

2
5

p4

32
'3.04. ~5.6!

The couplinggrpp can be found from the width of ther,
which decays predominantly to two pions:Gr

5grpp
2 mrvp

3 /(48p), wherevp is the velocity of the final-
state pions. UsingGr'150 MeV, we find the ratio~5.6! to
be around 1.9 in Nature. For comparison, t
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin~KSRF! re-
lation @21,22# corresponds to this ratio being equal to 2, a
the value in Georgi’s vector limit~i.e., K51 moose theory!
is 4 @6#. Therefore, our model would underpredictGr from
experimentalmr and f p .

The decay constantsgnV andgnA are given by Eqs.~4.10!
and ~4.11! and are equal to

gnV,A5mn
2 4

p

1

g

1

n
5p f 2gn. ~5.7!

In Eq. ~5.7! gnV,A refers tognV for oddn’s andgnA for even
n’s. For n51, we findgrV5A2 f pmr . We can now predict
the rate of the electromagnetic decayr0→e1e2, using
G(r0→e1e2)5 4

3 pa2grV
2 mr

23 and the experimental value
0-8
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QCD AND DIMENSIONAL DECONSTRUCTION PHYSICAL REVIEW D69, 065020 ~2004!
for f p and mr . We find G(r0→e1e2)'5.0 keV, which is
somewhat smaller than the measured value 6.8560.11 keV
@7#.

It is also interesting to consider the contribution of ther
meson to pion form factor atq50 @Eq. ~3.37!#,

g1Vg1pp

m1
2

5
8

p2
'0.81. ~5.8!

Thus the singler-meson dominance holds to within 20%
The VMD is, however, exact if all vector mesons are
cluded in the limitK→`. Indeed the direct pion-photon in
teraction in Eq.~3.36! vanishes:f p

2 /4f 1
25a fp

2 /4f 25a/2→0.8

The drawback of this model is that it fails to satisfy th
asymptotic condition onPV(Q2) that follows from QCD:
PV(Q2);Nclog(Q2) whenQ2→`. Instead,PV(Q2) in this
model vanishes as 1/AQ2 when Q2→`. Indeed, according
to Eq. ~3.30!, with values ofgnV andmn found in Eqs.~5.7!
and ~5.4!,

PV~Q2!5 (
n51,3, . . .

gnV
2

mn
2~Q21mn

2!
5

2 f

gQ
tanhS Q

f gD . ~5.9!

We shall now consider an exactly solvable model that w
satisfy the conditionP(Q2); logQ2 at largeQ2.

B. Example II: ‘‘cosh’’ background

This model is given by

g~u!5g55const, ~5.10a!

f ~u!5
L

g5
coshu. ~5.10b!

According to Eqs.~4.17!, this corresponds to a constant d
laton background and the following background metric,

ds252du21L2cosh2uhmndxmdxn. ~5.11!

The two boundaries are located atu56`. Near the bound-
aries the metric becomes asymptotically AdS5. According to
the AdS/CFT philosophy,u has the physical meaning of th
energy scale; largeu’s correspond to short distances. Ther
fore one can expect that the current correlators has the
formal form at short distance, i.e., asQ2→`,

PV~Q2!, PA~Q2!; log~Q2!. ~5.12!

The main reason for choosing the background~5.10! is that
coshu is the simplest function interpolating betweene2u and
eu, and that the mass spectrum can be found exactly~see

8This can be verified also by summing the contributions from
vector mesons in~3.37!. Each contribution is proportional to 1/n2

and(n51,3, . . .1/n25p2/8.
06502
l

-
n-

below!. Otherwise, we have no reason to prefer this ba
ground over any other that has two AdS5 boundaries.9

Applying Eq. ~4.6!, one finds

f p
2 5

2L2

g5
2

. ~5.13!

The wave equation for the vector mesons is

~cosh2ubn8!852
mn

2

L2
bn , ~5.14!

which implies the following spectrum:

mn
25n~n11!L2, n51,2, . . . ~5.15!

In particular,mr
252L2 andma1

2 56L253mr
2 . Takingmr as

an input, this predictsma1
51335 MeV, which is not far

from the observed 1230640 MeV. However, the masses o
higher excitations grow faster withn than in the real world.
The 5D eigenfunctions of the vector mesons are

bn~u!52cn

Pn
1~ tanhu!

coshu
, cn5A 2n11

2n~n11!
, ~5.16!

where Pn
1 are the associated Legendre functions. The fi

few wave functions are~see Fig. 3!:

b1~u!5
A3

2

1

cosh2u
, ~5.17a!

b2~u!5
A15

2

sinhu

cosh3u
, ~5.17b!

b3~u!52
1

2
A21

2

1

cosh2u
S 5

2 cosh2u
22D .

~5.17c!

In order to establish Eq.~5.12!, we compute the decay
constants of vector mesons from Eqs.~4.10! and ~4.11!,

ll
9Curiously,~5.11! coincides with the 5D part of the induced me

ric on a probe D7 brane in AdS53S5 @23#.

FIG. 3. A few first wave functions in the ‘‘cosh’’ background
0-9
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D. T. SON AND M. A. STEPHANOV PHYSICAL REVIEW D69, 065020 ~2004!
gnV,A5A2n~n11!~2n11!
L2

g5
. ~5.18!

The correlation function for the vector current is found fro
Eq. ~3.30!,

PV~Q2!5
2L2

g5
2 (

nodd

2n11

Q21n~n11!L2
. ~5.19!

At large Q2@L2, the sum can be replaced by an integr
which is logarithmically divergent.10 One thus finds for large
Q2

PV~Q2!52
1

g5
2

ln~Q2!, Q2@L2. ~5.20!

The asymptotic behavior ofPA(Q2) is the same. Thus the
current correlators have the correct asymptotics at largeQ2.
Moreover, they obey Weinberg’s sum rules, as proven in S
III E. The constraints imposed by theQ2→` behavior and
Weinberg’s sum rules on the massesmn and decay constant
gnV,A are quite nontrivial@24#. It is remarkable that the open
moose construction generates examples that automati
satisfy these constraints.

One can match the asymtotics~5.20! with the result found
from QCD,

PV~Q2!52
Nc

24p2
ln~Q2!, ~5.21!

whereNc is the number of colors, to obtain

1

g5
2

5
Nc

24p2
. ~5.22!

By using this relationship betweeng5 andNc together with
mr5A2L, we can now express all quantities in the mod
via a single massmr and the number of colorsNc . A short
summary is given in Appendix B. For example, forf p we
find from Eq.~5.13!

f p
2 5

Nc

24p2
mr

2 . ~5.23!

For Nc53 Eq. ~5.23! predictsf p5 87 MeV, rather close to
the experimental value of 93 MeV. Interestingly, Eq.~5.23!
coincides with the one obtained from QCD sum rules@25#.
The large Nc scaling in ~5.23! also matches:mr;1,f p

;ANc.
Another distinct feature of the model is that the pion fo

factor is dominated by a singler pole. Indeed, the coupling
npp is found by substituting Eq.~5.16! into Eq. ~4.8!,

10We perform a trivial regularization in Eq.~5.20!, subtracting a
constant equal to (1/g5

2)log(KL)2 for K@1. Of course, the equation
is only valid for Q2!(KL)2.
06502
,
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gnpp52
cn

2
g5E

21

1

djA12j2Pn
1~j!, ~5.24!

which vanishes for allnÞ1. This is due to the orthogonality
of Legendre functions and the fact thatA12j25P1

1(j).
Thereforer meson dominance is exact for the pion for
factor: GVpp(q)5(Q21mr

2)21. For n51 one finds

g1pp
2 [grpp

2 5
g5

2

3
5

8p2

Nc
5

mr
2

3 f p
2

. ~5.25!

The KSRF ratio in this model is equal to 3. This means t
ther width is underpredicted by a factor of about 2/3. How
ever, it is still interesting to computeGr for arbitraryNc , in
the chiral limit,

Gr5
p

6Nc
mr . ~5.26!

The rate of the electromagnetic decayr0→e1e2 in this
model,

G~r0→e1e2!5
a2Nc

6p
mr , ~5.27!

is equal to 6.5 keV atNc53, which is rather close to the
observed 6.8560.11 keV. Interestingly, the prediction from
QCD sum rules@25# is close but different in this case
G(r0→e1e2)s.r./G(r0→e1e2)cosh5e/3.

The phenomenology of thea1 meson in this model is
discussed in Appendix C. The excitations withn.2 have an
unrealistic mass spectrum in our model, so we shall not
cuss their phenomenology.

VI. INSTANTON È BARYON

The baryon appears in the framework of chir
Lagrangians as a solitonic object: a Skyrmion@26#. One
wonders: what is the corresponding object in 5D that c
describe the baryon? An obvious candidate is the instan
which can be ‘‘lifted’’ to become a quasiparticle in 5D. He
we show that the instanton appears from the point of view
4D as a Skyrmion. We are interested only in topologic
aspects, and defer the question of stability of such a solu
to future work.11

On an intuitive level, to see the relation between the
stanton and the Skyrmion, one can consider as an exam
the well-known instanton solution in the singular gauge~in
the flat background metric!:

11It is interesting to note in this regard that the issue of stability
the Skyrmion in models with av, r, and a1 mesons has been
studied @27–30#. It was determined that vector mesons not on
stabilize the Skyrmion, but also noticeably improve agreement w
phenomenology.
0-10
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QCD AND DIMENSIONAL DECONSTRUCTION PHYSICAL REVIEW D69, 065020 ~2004!
Am5
tah̄mn

a xn

x2~x21r2!
. ~6.1!

In this solution we shall think ofAm as a four-vector with
coordinatesm running through 1, 2, 3, and 5~i.e.,x, y, z, and
u) andx25x21u2. Note that the metric signature for these
coordinates is Euclidean (2,2,2,2) @see~4.18!#. The so-
lution we wish to use to describe a baryon is static, i.e.,A0
50, and there is no dependence ont. To see the behavior o
the pion field we need to look atA5 @see~4.19!#:

A55
t•x

x2~x21r2!
. ~6.2!

We see that at every fixedu the solution is a hedgehog, thu
having the same topology as the Skyrmion made of the p
field.

We shall now show that for an arbitrary background m
ric the topological charge of the instanton is equal to
baryon charge of the pion-field Skyrmion. Our discussion
very similar to that of Refs.@31,32#. The 5D Yang-Mills
theory possesses a conserved topological current,

Augu j 5D
m̂ 5

1

32p2
em̂n̂l̂r̂ŝTr F n̂ l̂F r̂ŝ . ~6.3!

Here em̂n̂l̂r̂ŝ is defined so that its elements are61. For
simplicity we assume thatg5 is a constant and absorb it int
the gauge field, and drop the hat in the 5D Lorentz indice
subsequent formulas. The boundaries are assumed tou
56`. That this current is conserved,]m(Augu j m)50, can
be shown by using the Bianchi identityD [mFnl]50. The
topological charge of a static solution is

Q5E dud3xAugu j 5D
0 5

1

32p2E dud3xe0mnlrTr FmnFlr .

~6.4!

The numerical coefficient in Eq.~6.3! was chosen so that th
static instanton has unit total charge.

Now consider a field configuration where the pion fie
given by the Wilson line along theu coordinate~4.19! has a
nontrivial winding, andAm goes to 0 at the boundaries. T
compute the topological charge of this configuration, it
convenient to perform a gauge transformation to setA550.
Explicitly,

Am→UAmU211 iU ]mU21,

U~u,x!5P expS 2 i E
2u0

u

du8A5~u8,x! D . ~6.5!

According to ~4.19!, U(1u0 ,x)5S21(x). Thus while Ai
remains 0 at the left boundaryu52u0, it becomes nonzero
at the right boundary:

Ai5 iS21] iS, u→1u0 , i 51,2,3. ~6.6!
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By using the identity

e0mnlrTr FmnFlr5]mK0m,

K0m54e0mnlrTrS An]lAr2
2i

3
AnAlArD ,

~6.7!

one can rewrite the topological charge~6.4! as

Q5
1

32p2E d3xK05uu52u0

u51u05
1

32p2E d3xK05uu51u0
,

~6.8!

since atu52u0 Ai50, andK0550. By using Eq.~6.6! one
transforms this expression to

Q5
i

24p2E d3xe i jkTr@~S21] iS!~S21] jS!~S21]kS!#.

~6.9!

It is now obvious that the topological charge becomes
winding number of the pion field. Therefore, the instant
becomes a Skyrmion, and corresponds to the phys
baryon.

VII. CONCLUSIONS AND DISCUSSION

We considered a theory of an ‘‘open moose’’ given
Lagrangian~2.1! illustrated in Fig. 1. This model describes
multiplet of massless Goldstone bosons and a tower of ve
and axial vector mesons. We developed a formalism for c
culating the mass spectrum and the coupling constants in
theory for arbitrary parameters of the moose,f k andgk , and
determine their values in the continuum limit, when the nu
ber of hidden symmetry groupsK tends to infinity. We ap-
plied this formalism to two exactly solvable realizations
the model and found that the physics of the lowest mo
match quite well with the phenomenology of thep, r, and
a1 mesons.

We also find that the open-moose theory naturally inc
porates the phenomenon of vector meson dominance.
example, the pion form factor is saturated by poles from
tower of vector mesons. Moreover, since couplings betw
mesons are given by overlap integrals, the couplings
highly excitedr ’s to the pion are suppressed by the oscil
tions of their wave functions in the fifth dimension. Th
means that the pion form factor should be well approxima
by the sum of contributions from a few lowestr ’s. In the
second example we considered~the ‘‘cosh’’ background! the
situation is brought to an extreme: the pion form factor
saturated by a single poler-meson dominance. We verifie
that both Weinberg’s spectral sum rules are automatic
obeyed, in a nontrivial way, in any open-moose theory.

One of our original motivations was to include the excit
vector mesons beyond the lowesta1. With respect to that
goal, we achieved only limited success, at least within
two exactly solvable models we considered. On the o
hand, we do find that vector and axial vector mesons al
0-11
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nate in the spectrum, as it seems to be the case in QCD
least for a few excited states. On the other hand, in both
simple models, the mass of ann-th statemn is O(n) at large
n, which seems to be in contradiction with the real wor
and with the theoretical prejudice thatmn5O(An). Further
study of different backgrounds might provide a model th
reproduces desired features of excited mesons and help
derstand constraints that phenomenology and QCD theor
impose on functionsf (u) andg(u). Alternatively, it is also
possible that the excited vector mesons have ‘‘stringy’’ n
ture and cannot, in principle, be incorporated into our fie
theoretical scheme.12

The success that the model enjoys in describing the l
est states can be attributed to an apparent property of
energy QCD: at intermediate distances correlation functi
are reasonably well saturated by a single pole. In the ‘‘co
model the excited mesons ensure the correct behavior o
~averaged! spectral densities, thus playing the role of t
continuum. This explains why some results of QCD su
rules are well reproduced.

We hope that the study of the open moose theories
deepen our understanding of QCD at the fundamental le
One intriguing fact discovered in these theories is the si
larity to the AdS/CFT correspondence. The procedure of
culating current-current correlators is essentially equiva
to the well-known AdS/CFT prescription: the correlators a
given by the variational derivatives of the classical 5D act
of the dual theory with respect to the sources living on
4D boundary. There is overwhelming evidence that theN
54 supersymmetric Yang-Mills theory is described by
string theory. Perhaps, an open moose theory is a low-en
limit of the string theory dual to QCD.13 In this regard, the
result we found in the ‘‘cosh’’ model,

g5
2;

1

Nc
,

is reassuring in view of a general expectation that such a
theory should have a coupling proportional to 1/Nc in the ’t
Hooft limit.

Among the questions left for further study is the detail
phenomenology of isoscalar mesons (h, v, f 1, etc.!. These
mesons are described by an additional 5D Abelian ga
field, which should be introduced into the action~4.14!. Most
of our results should generalize straightforwardly to t
case. However, there is an important new issue that the
scalar sector brings into the theory. The global U(1)A sym-
metry must be explicitly broken, e.g.,h should not be mass
less. It is very encouraging that the 5D formulation of t
theory provides a very natural mechanism for this. It is
topological 5D Chern-Simons term of the form

12It is possible to reproduce the behaviormn5O(An) by a suit-
able choice of background, even an exactly solvable one. But
did not find such models viable in other respects.

13From this point of view, meson interactions in strongly coupl
gauge theories with fundamental quarks@23,33# deserve further
studies.
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E d5xem̂n̂l̂r̂ŝAm̂F n̂ l̂
a

F r̂ŝ
a , ~7.1!

whereAm̂ is the 5D vector field describing isoscalars. Th
term breaks the U(1)A symmetry in the desired way. In pa
ticular, it is not invariant under U(1)A transformations on the
4D boundary~although it is invariant under local transforma
tions in the bulk of 5D!. It is easy to see that it also provide
p0→2g and other anomalous processes in QCD. The co
ficient of the term~7.1! can be fixed by matching to QCD
chiral anomaly, and is therefore proportional toNc . The term
~7.1! also couples thev meson field to the baryon curren
providing a hard-core repulsion between baryons, and p
venting the baryon/instanton from shrinking to zero size~this
effect is the origin of the stabilization of the Skyrmion o
served in Ref.@27#!. It would be also interesting to see ho
the open-moose theory realizes Di Vecchia–Venezian
Witten Lagrangian@34# and the corresponding phenomeno
ogy. Other avenues for future study are the incorporation
finite quark masses, extension to three flavors and realiza
of the Wess-Zumino-Witten topological term~which does re-
quire a 5th dimension@35#!.

ACKNOWLEDGMENTS

The authors thank S. R. Beane, G. Gabadadze, W-Y.
ung, and especially T. Imbo and M. Strassler for discussio
The authors also wish to acknowledge the review talk by
L. Jaffe at theQCD and String Theoryworkshop at the In-
stitute for Nuclear Theory in Seattle, which provided mu
of the motivation for this work. M.A.S. acknowledges th
hospitality of the Institute for Nuclear Theory, University o
Washington, where part of this work has been done,
thanks RIKEN BNL Center and U.S. Department of Ener
~DE-AC02-98CH10886! for providing facilities essential for
the completion of this work. D.T.S. is supported, in part,
DOE Grant No. DOE-ER-41132 and the Alfred P. Slo
Foundation. M.A.S. is supported, in part, by a DOE O
grant and by the Alfred P. Sloan Foundation.

APPENDIX A: INTERACTION VERTICES

For reference, we provide here some additional formu
for interaction vertices in the continuum limit of an arbitra
open-moose model. Let us definegpmn , gppmn , gmnp, and
gmnpq so that the Lagrangian contains

L5•••2gpmne
abcpa~am

m!b~am
n !c

2gppmne
abceadepbpd~am

m!c~an
n!e

2gmnpe
abc~am

m!a~an
n!b]m~an

p!c

2
1

4
gmnpqe

abceade~am
m!b~an

n!c~am
p !d~an

q!e, ~A1!

then

e
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gpmn5
f p

4 E du@~gbm!~gbn!82~gbm!8~gbn!#, ~A2a!

gppmn52
f p

2

8 E du

f 2~u!
bmbn , ~A2b!

gmnp5E dugbmbnbp , ~A2c!

gmnpq5E dug2bmbnbpbq , ~A2d!

Direct couplings to external currents are suppressed in
continuum limit ~this includes, in particular, vector-meso
dominance by a whole tower of mesons!.

A simple qualitative interpretation of these couplings e
ists in terms of the overlaps of the wave functions in theu
space, which reflects the property of locality of the theo
~2.1! or ~4.14!. It is straightforward for the last two
resonance-resonance, couplings~A2c! and ~A2d!. These
terms come from the second,Fmn

2 term in~2.1!. For the pion-
resonance couplings~A2a!, ~A2b! and~4.8!, one should bear
in mind that the strength of the coupling is proportional
f 2(u), and think of the pion wave function as being propo
tional to 1/f 2 @looking at ~3.1!#. The u derivatives in~A2a!
are necessary to account for the fact that, although the
wave function is even inu→2u, the pion itself is a pseu
doscalar.

APPENDIX B: SUMMARY OF RESULTS
FOR THE ‘‘COSH’’ MODEL

Instead of expressing the results in terms of the par
eters of the modelL and g5, we will usemr and Nc . The
relations are

mr5A2L, g5
25

24p2

Nc
, ~B1!

mn5mrAn~n11!

2
, ~B2!

f p5
mr

2p
ANc

6
, ~B3!

gnV,A5
mr

2

4p
An~n11!~2n11!

3
Nc, ~B4!

Ther-meson dominance of the pion form factor is describ
by

gnpp50, nÞ1, ~B5!

g1pp[grpp5
2A2p

ANc

~B6!
06502
e

-

y

-

on

-

d

~also grpp5mr
2/grV). There is a ‘‘Dn51 rule’’ for pion

emission:

gpmn50, um2nuÞ1, ~B7!

gpnn115mrp~n11!A 6n~n12!

~2n11!~2n13!Nc
. ~B8!

There is also a ‘‘triangle rule’’ for triple resonance vertex:

gmnp50 if m11.n1p12

or n11.p1m12

or p11.m1n12, ~B9!

i.e., the amplitude vanishes if a triangle~even a degenerat
one! with sides (m11), (n11), and (p11) does not exist.

APPENDIX C: a1 MESON IN THE ‘‘COSH’’
BACKGROUND

Let us discuss the phenomenology of the lowest axial v
tor meson~then52 excitation in the open moose!. From Eq.
~5.15!, the mass of thea1 meson in the ‘‘cosh’’ model is
ma1

5A3mr . Thea1 decays intorp with the coupling~B8!,

gpra1
52pmrA 6

5Nc
. ~C1!

By using the formula@4#

G~a1→rp!5
gpra1

2

4p
prS 11

pr
2

3mr
2D , ~C2!

we find

G~a1→rp!5
4p

9A3
Ncmr'210 MeV. ~C3!

Experimentally, the total width ofa1 is 250 to 600 MeV, of
which about 60% comes froma1→rp @7#.

The a1 decay constant in our model is

ga1A[g2A5
mr

2

2p
A5Nc

2
'0.26 GeV2. ~C4!

A lattice measurement of this constant yields~in our normal-
ization! 0.2160.02 GeV2 @36#, while an analysis of hadronic
t decays gives 0.17760.014 GeV2 @37#. The agreement is
fair, but not exceptionally good.

FIG. 4. Diagrams contributing toa1→pg.
0-13
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The decaya1→pg occurs through two Feynman dia
grams with intermediater andr8 ~the n53 excitation!. Its
amplitude is proportional to~see Fig. 4!

gp12g1V

m1
2

1
gp32g3V

m3
2

[
gpra1

grV

mr
2

1
gpr8a1

gr8V

mr8
2 . ~C5!
da

ys

ys

. B

, H

ev

06502
It can be checked that the two terms cancel each o
exactly, so the amplitude vanishes. On the other hand,
partial width of this decay is quoted to be 6406246 keV@7#.
The simplestK52 hidden local symmetry model also su
fers from the same problem; in Ref.@4# this was cured by
adding higher-derivative terms to the action. It would be
teresting to see if this rate can be made nonzero by ad
more terms to the action~4.14!.
ys.
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