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Motivated by phenomenological models of hidden local symmetries and the ideas of dimensional decon-
struction and gauge/gravity duality, we consider the model of an “open moose.” Such a model has a large
numberK of hidden gauge groups as well as a global chiral symmetry. In the continuunKlimit the model
becomes a 41 dimensional theory of a gauge field propagating in a dilaton background and an external
space-time metric with two boundaries. We show that the model reproduces several well known phenomeno-
logical and theoretical aspects of low-energy hadron dynamics, such as vector meson dominance. We derive the
general formulas for the mass spectrum, the decay constants of the pion and vector mesons, and the couplings
between mesons. We then consider two simple realizations, one with a flat metric and another with a “cosh”
metric interpolating between two anti—de Sitt&dS) boundaries. For the pion form factor, the single pole
p-meson dominance is exact in the latter case and approximate in the former case. We discover that an
AdS/conformal field theory-like prescription emerges in the computation of current-current correlators. We
speculate on the role of the model in the theory dual to QCD.
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I. INTRODUCTION higher dimension$9-12]. It was suggested that the string
theory dual to largeN, QCD must have strings propagating
Vector meson$ p(770), w(782), etc] play a significant in five dimensions, in which the fifth dimension has the
role in hadronic physics. Their interactions, though not conphysical meaning of the energy scéles]. In the framework
strained by low-energy theorems, apparently follow theof field theory, the fifth dimension can be “deconstructed” in
broad pattern of vector meson dominafe®ID) [1]. There  models with a large number of gauge fie[ds,15.
have been numerous efforts to incorporate vector mesons \We discovered that the continuum linkit— can lead to
into field-theoretical frameworks. Historically, the Yang- results that qualitatively, and in many cases even gquantita-
Mills theory was discovered in an early attempt to treatghe tively, agree with phenomenology. Most remarkably, the vec-
meson[2]. More recently, interesting schemes based ortor meson dominance, which in the HLS theories required a
“hidden local symmetries(HLS) were developed by Bando tuning of parameters, becomes a natural consequence of the
et al. [3-5]. In the original mode[3], the p meson is the K-—o limit. Another advantage of the limiK—« is the
boson of a spontaneously broken gauge group. The modebssibility of matching to the asymptotic behavior of the
has been extended to two hidden gauge grddfisthen it current-current correlator known from perturbative QCD.
also incorporates the lowest axial vector mesqgi1260). As anticipated, a natural interpretation of this limit is a
With suitable parameters, these models can be quite succesfiscretization, or deconstruction, of a 5-dimensional gauge
ful phenomenologically, although they cannot be systematitheory. Further, to our amusement, in the calculation of
cally derived from QCD(except in the limit of very lighp, current-current correlators we found a relation very similar to
if such a limit could be reachdd]). the one employed in the anti—de Sitt&dS)/conformal field
In this paper we explore theories with very large, andtheory correspondence: the current-current correlator in 4D
even infinite numbekK of hidden local symmetries. Our mo- theory is expressed in terms of the variations of the classical
tivation is twofold. First and most straightforwardly, there 5D action with respect to the boundary values of the bulk
are excited states in the vector and axial vector channelgauge fields on the 4D boundaries.
[ p(1450),a,(1640),p(1700), etc[7]], which must become We limit our discussion to the isospin-1 sector of QCD. It
narrow resonances in the limit of large number of coldgs is straightforward to extend the discussion to the isospin-0
It is tempting to treat them as gauge bosons of additionasector (7, @, andf; mesong The detailed treatment of the
broken gauge groups. U(1)a problem, chiral anomaly, Wess-Zumino-Witten term,
The second motivation comes from recent theoretical deand baryons is deferred to future work.
velopments. Many strongly coupled gauge theories are found The paper is organized as follows. In Sec. Il we describe
to have a dual description in terms of theories with gravity inthe open moose model. In Sec. Ill we compute different
physical observables: the vector meson mass spectrum, the
decay constants of the pion and the vector mesons, the cou-
1To our knowledge, the earliest attempt to interpret the tower, of pling between the vector mesons and the pions, and the pion
p’, etc. as a “chain structure” was made in RES]. electromagnetic form factor. We also check the validity of
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Weinberg's spectral sum rules, and discover that the limit |_| K—0: =
K— o automatically leads to exact VMD for the pion form-
factor.

In Sec. IV we take the limit of infinite number of the O K_1.
hidden groupK—«~. We show that the theory can be un-
derstood as a 5D Yang-Mills theory in an external metric and
dilaton background. We establish an AdS/CFT-type prescrip- |
tion for calculating the current-current correlators. We con- '
sider two concrete realizations of the open moose in Sec. V
We find that a “cosh” background metric interpolating be-
tween two AdS boundaries leads to correct asymptotic be- (gA)"  (gA)? (947 (gA)™
havior of the current-current correlator. This allows us to SU®*| - O 220 i EIHO v OEKHISU(Z)R
establish a relationship between hadron parameters such as
f., m,, and the QCD parameté¥.. In Sec. VI we show FIG. 1. Graphic representation of the Lagrangiarl). The ex-
that the instanton, which is a quasiparticle ir-# dimen- amples of lowK corresponding to previously considered theories
sions, becomes a Skyrmion upon reduction to 4D, and thu@re also showrk =0 represents Weinberg’s nonlinear sigma model

describes the baryon. Section VII contains concluding refor pions;K=1 represents a hidden symmetry Lagrangian describ-
marks. ing 7 and p; andK=2 represents a description af, p, anda;

[3.4].
Il. THE OPEN MOOSE
S=3132...3K+ (2.4
The model under consideration is described by the follow-
ing Lagrangiah is the pion field, which can be seen from its transformation
K+1 K properties,
1
_ 2 kj2_ = k \2
L kgl f27r|D 34 kgl STHFL)% (20 s _LSR' 25
The covariant derivatives are defined as The parameters enterin@.1) are K+1 decay constants
, f, and K gauge couplingg,. We shall assume they are
1_ 1 1 1 k k
D,27=0,X +iX(gAL)", (228 jnvariant under a reflection with respect to the middle of the
chain
K 5 sk_i k—1x k. ivk k ,
D,2"=0d,2 —i(gA,) Iskyis, (9A)" 220
' fki=fki2-k,  Ok=Ok+1-k> (2.6)
D, 3K =9, 3K 1—j(gA KSR, (2.209

which ensures parity is a symmetry in the the@zyl).

A shorthand notation is used for the product of the gauge In the cas&K=0 the model reduces to the chiral Lagrang-
field A,=A27%2 and its coupling constant:g,A ian. ForK=1 it is the version of the hidden local symmetry
: 1z

E(gAﬂ){‘L. If vCe assumer’ = AK*1=0 then Eqs(2.29 and realized in the limit of very lightp's [6]. The model with

(2.29 become special cases of E@.2h for k=1 andk ~ K=2 and a particular choice of parameters= f5=2f3,
—K+1. g1=0, has been considered in Rd#]. Graphically, the

The model contain& +1 nonlinear sigma model fields M0del can be represented by a “theory-space” diagram

> ke SU(2) [or, in general, SUY)], interacting viak “hid- s_hown in Fig. 1. Since this diagram is the usual “moose
den” gauge bosonsA';. The model has a chiral SU(2) diagram” cut open, we shall call the mod@.1) the “open

: moose” theory.
X : . . .
SU(2) symmetry and an SU(2Jocal symmetry Note that(2.1) is not the most general Lagrangian satis-

soLstul(x), fying all the symmetries_and limited to Iowest_ derivatives. In
fact, terms of the following type are not forbidden:

Ko U1 (0 2RU (%),
k=23, ..., (2.3

|aﬂ(zkzk+l)_i(gAM)kfl(Ekszrl)
+i(2k2k+l)(gAﬂ)k+l|2, (27)
SKHLLU(X)ZKRT,
as well as analogous expressions containing products of
In particular, the product more than two consecutiVE’s. In order to restrict the La-
grangian to the fornf2.1) an additional condition of nearest
neighbor locality in thek space should be imposed. It is this
We are using the usual 3L Minkowski metric 7,,  condition that enables us later to interpret this theory as a
=diag(1~1,—1,—1), but write all indices as lower indices for dimensionally deconstructed 5D gauge theory in the limit
simplicity, unless it could lead to a confusion. K—o0,
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ll. PHYSICAL OBSERVABLES sendingf,— on one of the links effectively sets gauge
In this section we derive expressions for physical observcheIdS on the ends of this link equal to each othegA)

- k+l . . . . . . .
ables, such as pion and vector meson decay constants, megségA) ], effectively eliminating this link and reducirig

spectrum, and pion-vector couplings in terms of the param{hy one. The fo(;_mul?&?)%)zjnously r(:flects this reduction—
eters of the moosé, andg, . e corresponding term fi/ drops out.

A. Pion decay constant B. Vector meson mass spectrunm,,

K .
For computations, the following gauge is the most conve- In our gauge, tt]e vacu_umE =1forallk Expandl_ng to
nient, second order irA’,, we find the terms that determine the

#l
k_ —
Sf=exp ill—
2f2

masses of the vector mesons:
wheref is a function of allf,, which we shall specify in a K
moment[in Eq. (3.4)]. The advantage of this gauge is that = (M?),,Tr AKAK (3.9
the pion fieldIl does not mix with other fields: k=1 [

a

;
,  Where sza?, (3.2

K+1

L= 2, FTL(QA) = (9A) )

K1
K+1

Lon= > £Tra,I[(gA,)*—(gA,)* 11=0. (3.2 The mass matrix can be diagonalized by using an orthogonal
e} M 1 1 : :

matrix bﬁ satisfying

The value off is fixed by requiring that the kinetic term K ,
for 72 is canonically normalized: kZl (M?),bX b =m28,,.; bTb=bb"=1. (3.9
K+1 2 K+1 2 1 k'=1
_ - 2__ = a\ 2
L oq2= k; 4fETr(‘9HH) N kzl 4f2 z(ﬂﬂw )" In terms of new vector fieldg), defined as
(3.3
k _ k n n_ k pk
Therefore AM_; bka! or alf ; bkAX,  (3.10
4 "1 the mass tern(3.8) is diagonal.
2 = gl 2 3.4 Using Eq.(3.8) and the orthogonality dfX , we can write
K the equation determiningﬁ andm, as
To determinef . we use Noether’s theorem to construct 2 K+ 1 K g2 K K—1
the axial current4,, . Let us consider an infinitesimal axial Fier 2L (9b)™ "= (gbn) "] = Fil (90n) " (gby)™ ]
SU(2) transformation. It acts only o&* and 3X*! at the m2bK
ends of the moose: =-— g iy (3.10)
k

31Uzt and IKTIL3KALY, . . . . . o
- - This is essentially a discretized version of a Sturm-Liouville

where problem. We shall write the corresponding differential equa-
tion in Sec. IV when we consider the continuum linkit
U=expia?7?/2). (3.5  —o. We shall also use the discrete equati@ril) in Sec.
) ~D.
If the parameter adepends on coordinates, the Lagrangian \wjithout solving Eq.(3.11), we can conclude right away
changes bypL=A},d,a® On the other hand fror2.1) one  that there is a tower of eigenvalugs,, n=1,2, ... K, cor-
finds responding to the masses of vector and axial vector mesons.
The lowesth=1 andn=2 states correspond to tiheanda;
OL z2=FTr(d,11)7%(0,a*)=19,7%(,a%), (3.6  mesons. Moreover, states with opposite parity alternate in the
which meansA,=fd,7% ie., f,=f. Equation(3.4) be- spectrum:

comes n=13,... (p,p',...): bk=+pKt17k

K=
4 Kt k K+1-k
f_2: gl (3.7 n=24,... (ap,a;,...): by=—b; , (3.12

| P

Odd n states correspond to vector mesons and evém
It is a simple exercise to verify that fd=0,1,2 this axial vector mesons. In the real world, the trend of alternat-
general formula is in agreement with corresponding resulting parity can be seen in the hadronic spectrum for the few
in these theories. It is also perhaps useful to observe thdirst vector and axial vector states.
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C. Vector meson-pion-pion coupling g

Let us compute the coupling ofth vector meson to a
pion pair,g,,,. EXpanding the Lagrangian iy and, iso-
lating A7 # terms, and using Eq3.10, we find

K+1 2

£A7T7T [ 2

Tr[ﬁ ILITIL(gA) H+ (gAL ]

K + 2
=i —[(gby) 1+ (gby) I T 9,11, 1] ) .
Inzl g‘l 4f§[(g ) T+ (gby) 1T 0,11, e,

(3.13

Recall that we use the matrix notation where o®7%/2 and
I1=m273/2. If we normalizeg,,, so that the relevant cou-

pling is

abca e b c

[’aﬂ'ﬂ' ~Oann€ A, a:p,p',
(3.19
then
K+1 2 1
Oner= 2, 5 51(9b)< 1+ (gby) ). (3.19
k=1 f

Note that thisn7# coupling vanishes for axial mesoms
=24, ..., agequired by parity, because their “wave func-
tions” bn are odd undek—K+1—k [Eq. (3.12].

D. Vector meson decay constantg,,y and g,

We define the decay constants for the vector and axial

PHYSICAL REVIEW D69, 065020 (2004

whereW,,{ B, ] is the vacuum energy functional in the pres-
ence of the external fielB. The SU(2), transformation only
affects the twa> links at the ends of the chain according to
Eq. (2.3):

31-U3t and SKTlL3KFIyT (3.18

and therefore the terms containing the gauge fi¢|dare
only fromk=1 andk=K+1:

Lg=11Tr|a,51—iB, S +iS(gA,)Y?
+15. 4 Tra, S8 1—i(gA KSR L4 isKT1B |2,

(3.19

Keeping only terms bilinear in the fields we firfthe term
I1B is absent due to parity

L p2 g g2=1(B3)2=BAFI(GAD + (A + L po+ L2,

(3.20

Extremizing the action with respect foat fixedB and then
taking the second derivative with respecBave find (this is
also equivalent to taking the Gaussian integral o&eand
then differentiating the logarithm of this integral

(Va)VE(y))
=2f%7,,8,y0%"
— QAL+ (gAD IO (GAD + (g A 1(y)),
(3.2

vector mesons via the matrix elements of the vector and axial
vector currents between the vacuum and the one-mesqphere the/AA) is the propagator oA, i.e., the inverse of the

states,

(0[V2(0)|ap(p,€)) = gny ™€, (3.163

(0lA5(0)]ap(p,€))=gnad™€,.  (3.16D
Here |aﬁ(p,e)> is a single-particle state of theth vector
boson @;=p, a,=a;, etc) with isospinb and polarization
€. Both g,y and g, have the dimension dimasg]. g,
=0 for axial vector mesonsn(even andg,,=0 for vector
mesons (1 odd).

It is convenient to computg, by looking at the vector
current-current correlatgi),(x)V,(0)). The residues at the
poles are easily related tg,,. The correlator can be ob-
tained by gauging the corresponding SU¢2jansformation

quadratic form found inC a2+ £ g2. Diagonalizing this ex-
pression using Eq:3.10 and performing a Fourier transfor-
mation with respect to the four-dimensional coordingtere
find

Va(@Vi-q))

K

4.9
¥ sab -
2 -

(3.22

:Zfinﬂv‘sab_ Inv

where the decay constarggy are determined to be

gnv=Fi[(gby)*+ (gby)X]. (3.23

and differentiating the action with respect to the gauge field

B .

.
(Va(x)V2(0))=i(0|T(V3(x)12(0))[0)

2
__ S WadBu] Bb“] , (3.17
8B,(x) 9B(y)

Note thatg,,,=0 for axial mesons for which®=—b¥ .
One can also use E@3.11) together with Eq.(3.23 to

write a different representation fay;,:

K

Z (3.24

k
gnv=Ff2[(gby)*+ (gby)*]=m g—“.
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It is perhaps easier to look at this equation as a discretized K 9
version of integration by parts as we shall do in Sec® IV. 2f2=" L;/ (3.29
The calculation of the decay constants of the axial vector n=1 my

mesonsy,,» IS completely analogous. We introduce an aux-

lliary gauge fieldB coupled to the axial current: This can be checked by using E8.24) and orthogonality of

bX. We indeed find

K 92y K K bk
E e E E f2 b 1+ b K —n:2f2
+12,1Tr]9, 3K 1i(gA,)KSKF 1Sk 1B |2, =1 mp (@B g, =20
e ’ g (3.29

(3.29
By using Eq.(3.28 one can rewrite the correlator in a mani-
festly transverse form,

5="f2Tr0, 3 —iB, S +i3 (gAY

In addition to theAB mixing andB? contact terms there is
now glso the mixing _vyith pion _fieIdIIB. Differentia_ting the <VZ(Q)V5(_Q)>:Hv(_q2)5ab(—q277w+ a,9,);
logarithm of the partition function twice, we obtain

where
« gn K 2
A
(A% AY—q))=2f3p,,00- > —=— o 102 = Jnv .
' ' =1 - =2, 5 =—-g? (33
% _ 94, —_¢2 q:“q”(gab, The transversality of théA.4) correlator(3.26) amounts
- 2 T q? to the following sum rule:
(3.26 K g2
2f2- 2= =2 (3.31)
where n=1 m;
By comparing Eqs(3.28 and(3.31) we conclude that
Gna=F21(gbn) "~ (gby)¥]. (32p Y ComPAng =
K 2 2
. 9w Gna| o
Note that, as expected,,=0 for vector mesons for which — =7 (3.32
n=11m mp

bi=bE.
which is one of Weinberg’s sum rulésThis sum rule holds

E. Spectral sum rules for any K. Note that, forK — both sumg3.28 and(3.31)

. . . must diverge, sincé, must become infinite at the ends of the
Weinberg[17] has derived two sum rules for the weighted moose[to ensure convergence in E@.7)]. However, their

mtegral_s of the difference of spectral functions of the VeCtordifference is finite.
and axial vector current correlatoré))) and (AA). We The second Weinberg sum rule
shall now verify that both sum rules hold by using transver-
sality of the current-current correlators. K

From Eq.(3.29) it is easy to show that th@V)) correlator > (g2,—92,)=0 (3.33
is transverse. Transversality requires that the contact term in n=1
Eq. (3.22 is related to the pole terms through the following

sum rule: also holds. It is easy to prove by using the definitiéB23

and(3.27) and the orthogonality o :

K K
_ 3Equations(4.10 or (3.24 can be also understood in the follow- > (92— 920 =42 (gby)X(gb,)<=(2f,91)%61k,
ing way (the reader might recognize the discussion given in Refs. n=1 n=1

[16,1]). One should realize that because of the mixin@aofith A (3.39
the actual photon is not the fiel, but a linear combination oB ) ) )

and allA that leaves vacuui*= 1 invariant. This is similar to the ~Which vanishes for aK>1. In the cas& =1, there is only
mixing of the standard model hypercharge boson and weak isospiin€ mesong, and no axial mesons at all.

vector boson to produce the photon. The corresponding linear com-

bination of theA fields has a “wave function” proportional to §}

(eachA, enters with weight 1,). The mixing of the actual photon ~ “Weinberg’s sum rules[17] involve the spectral functions
is now entirely through derivative terms in the expansionCef. pv(?)=(u?l m)Im I1y(— u?—i0), wherelly is defined via/ V)
The corresponding coefficients are given by the overlap of the phoin Eg. (3.30. A similar equation definep,. The sum rules state
ton “wave function” 1/g and thenth vector meson “wave func- that (i) [[py(u?) —pa(e?) e 2du?=12; (i) [[py(u?)
tion” b,. The factormﬁ is from the derivatives evaluated using the —pa(x?)]du?=0. In our theory, according to Eq3.30, PV.A
equation of motion for theth meson. =300y A0(— u2+mj).
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F. Pion form factor and VMD For the resonance “wave functiong¥ that vary smoothly

The pion form factor(defined to be the isovector part of W€ can write
the electromagnetic form factor
1
! ! —_— k:
(7*(p1VL(0)|7°(p)) = Gyrr(a) e (p+p"), (339 N 49

can be found isolating terms linear Biin the Lagrangian

(3.19. There are two contributions to the form factor—the

direct interaction, given by the terBvrdr in the Lagrangian

and the interaction mediated by vector mesons given by the "

AB mixing terms and the couplingsmdm. One finds j ° dub,(u)b,, (U)= 8y . (4.5)
—uo

so that orthogonality of the matrilaﬁ translates into ortho-
normality of the functiong,(u),

2

Gumnl(@)=—5+2 gn:gmz- (3.36  The wave functions of sufficiently high resonances with

4t o QT ~K cannot be expected to be smooth, so they must be
treated discretely. We shall always be interested in a finite
number of lowest resonances, whi{e—x.

Using the expression&3.24) and (3.195 for g,y and g, x
and the orthogonality of the matrbx, the sum rule related

to the total charge of pion can be verified, )
A. Physical observables

f2 Inv9nmar Let us now write continuum limits for the main formulas
Gvrr(0)= PJF; Tzl- (3.39  we have derived in the preceding section. From &),
1 n
If we understand VMD as the statement tt@y...(q) is iszo du ) (4.6)
saturated by a sum over resonan@es., dominance by the ffT ~up f2(u)

whole tower of mesons then in our model VMD is valid
when the contribution of the direct interaction is negligible, From Eq.(3.1D),
f2/4f2<1. Thus VMD is a natural consequence of te

—oo limit [due to Eq.(3.7)]. A stronger statement that 9(f2(gby)") = —mib,,. 4.7
Gv.~(Q) is saturated by a singlg pole is not, in general,
valid (see, however, Sec. V)B with Dirichlet boundary condition®,(*uy)=0 (since we
setA)=A"1=0).
IV. K— e AND CONTINUUM LIMIT From Eq.(3.19,
In the preceding section we derived formulas that are 2 (+uy du
valid for an arbitraryK. Now we wish to consider the limit g””:Zf 2 )g(U)bn(U)- (4.9
o (U

K—o. In this limit the expressions that we found can be
simplified, provided thaf, and g, are sufficiently smooth

functions ofk. In this case we can consider replacing the
discrete variabld by a continuum variable that we shall call

From Eq.(3.23, using the fact thatgb)®=(gb,)¥*1=0,

u gnv=—[F2(W)(g(W)b(u)) 12°. 4.9
_ K By using Eq.(4.7), we find the continuum limit of Eq.
Here a plays the role of the “lattice spacing.” If the limit — , [*tUo  by(u)
K— is performed in the following way, gnv=—[f?(u)(g(u)b(u)) ]ug:m“J—uo au g(u) -
(4.10

K—o and a—0, Ka=2u, fixed, (4.2
Analogously, Eq(3.27) becomes
thenu becomes a continuum replacement koif f, andg gously, Eq(3.27
fi\(r)issrgfgth functions & we can also replace them by func- gnA=[f2(u)(g(u)b(u))’]I+uo+[f2(u)(g(u)b(u))’]|,uo.

(4.11)

a): f2(u), (4.3a It is very interesting that the physical observables we calcu-
lated are all well behaved in the continuum linkit—,a

—0 (provided the corresponding integrals oweconverge.

For reference, the equations for other vertex couplings are

presented in Appendix A.

K
2_¢2[[_
af2=f ((k >

a)=g2(u). (4.3b

N| X

agi=92((k——
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B. d=4+1 and dimensional deconstruction the 5D (massive gauge field in the curved background. No-

Our long-moose theory with>1 can be also considered tice als_o that the pion field2.4) is now the Wilson line
as a discretizedor deconstructadfive-dimensional con- Stretching between the two boundaries,
tinuum gauge theory in curved spacetif@he variableu
plays the role of the fifth, deconstructed, dimension. The z(x)zpexdif duAS(u,x)). (4.19
smoothly varying fields¥'s can be interpreted as the link
variables along the fifth dimensian=x>,
C. ADS/CFT connection

We now show that correlators of conserved currents in our

For this equation and for remainder of Sec. IV we shall makéheory can be computed by using a prescription essentially
a temporary switch of notations, absorbing the gauge coudentical to the AdS/CFT one. Namely, the generating func-
pling constantsy into the fieldsA: gA—A. Then the action tional for the correlation functions of the currents is equal to

Sk~1+iaAg(u), (4.12

(2.1) can be written in the 5D notations as the action of a solution to the classical field equations, with
the sources serving as the boundary values for the classical
1 fields.
S= —Trf dUd4X( —f2(u)Fg,+ MF,ZW . (413 Recall our calculation of the current-current correlators in

Sec. llI D. Instead of the vector fiel,, and~BM let us intro-

We now compare this action to the action of a gauge fieldiuce two separate fields, andAY , corresponding to gaug-
in a background of curved spacetime and a dilaton field. Iring the SU(2) and SU(2}) global symmetries of the theory.
the following, |g| denotes the determinant of the metric ten- The appearance of these fields modify the first and last terms
sor. The action is taken in the form: in the moose,

L=11Trg, S —iALS HIS AL+

1 .
S:——Trf d®x/|gle 2%F ;s F#, (4.14
295 o g + R Tr g, SN ANS K L S KA TAR2,

whereu, v are 5D Lorentz indices. The coupling to the dila- (4.20

ton field is written so that the effective gauge couplin@is | this section we also absorb the coupligginto the field
=goe”. In our simple model we consider the metric and thea. Remember that there are no dynamical fields associated
dilaton as classical background fields with no dynamics ofyith the ends of the moode=0 andK + 1. We can treat the
their own. Taking the dilaton field to be dependent only ongnds of the moose more equally with the other points by
the fifth coordinatel, ¢= ¢(u), and the metric to be of the thinking that the values of the fieldk at the ends of the
warped form, moose, ak=0 andK+1, are fixed at given values:

— 2 2 v
ds’=—du?+eWy  dx*dx’, (4.15 AS—AL and AKTIZAR 4.21)
the action(4.14) can be expanded as

If the field AX is smooth, we can translate this into the con-
tinuum limit by setting boundary conditions on the continu-

1 ,
S=— 5T J dox(— 262" 20FZ +e 20F2 ) (416  ous 5D fieldA,(u):
90
A (—ug)=A; and A,(+ug)=A%. (4.22
Equation(4.16 coincides with Eq(4.13 if one makes the
following identification: At tree level, the generating functional is thus equal to
1 L R = iSd[ACl]
P2(u)= — 226, 4173 Z[A, AL ]=eRel (4.23
Y

WhereAfLI is the solution to the classical field equation that
gz(u)=g§e2¢. (4.17H satisfies the boundary conditio4.22). This formula is of
the same form as the formula for AAS/CFT correspondence:
Notice that the warp factoe?" is equal tof2(u)g?(u), i.e., the sources for the boundary thediy our caseA’ %) serve
as the boundary values for the bulk field. In particular, in
ds?=—du?+f2g?y,, dx“dx". (4.18  order to compute the correlation functions for the conserved
currents £,=3(V,+A4,) or R,=3(V,—A,) one just

It is also easy to see that the wave equation for the spin-heeds to differentiate the classical action with respect to the
mesong4.7) is one of the Yang-Mills/Maxwell equations for ¢orresponding boundary values, e.g.,

(4.249

5 Sel AS)]
SDeconstruction of gauge theories in curved space was considered (L (X)L,(y)= -
in Refs.[18-20. oA, (X)6A,(Y)
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FIG. 2. A few first wave func-
tions in the flat background.

The fact that we have arrived at an AdS/CFT-like formula f2=2f2, (5.2)
(4.23 makes one wonder if the hidden local symmetry mod-
els for thep anda; vector meson$3—5] are(very coarsely  The spectrum and wave functions of the spin-1 mesons are
discretized versions of a 5D theory dual to QCD. This couldgiven by Eq.(4.7), which becomes
explain why these models enjoy certain phenomenologicaﬁJ
success, and why in thK=2 model[4] one is driven to mz2
choose the parameters so that it becomes a moose theory br+ 2—”2bn:0, b,(+1)=0. (5.3
(i.e., nearest neighbor logal

A difference from the usual AdS/CFT correspondence is
that there aretwo boundaries in the open moose theory. This means
However, if so desired, one can reformulate the 5D theory
(4.14 and (4.19 in the spatial region &u<ug (which is . [mn
one-half of the original-uy<u<ug) at the price of having bn(u)=sm(7(u+1)
two gauge fields obeying a matching condition et 0. (5.9
Then the spacetime will have only one boundaryatug.

; mp=—%—n; n=12,...,

The few first wave functions are plotted in Fig. 2.

V. EXACTLY SOLVABLE EXAMPLES AND From Eq.(4.9), forn=1,3, ...,
PHENOMENOLOGY
2
So far, our discussion has been general and valid for any _fw gl 2 1
: . : i Ohen=—"—>—-=—0—; n=13,.... (5.5
choice off, andgy. In this section we shall consider two T f2n won

concrete realizations of the open-moose theory. Our goal is

to illustrate the general formulas, and to compare the resultgonsider thep meson,n=1. The ratio Ofmi to ggmffr is
with the phenomenology of vector mesons. The two eX-yimensionless and is equal to

amples are chosen because they are exactly solvable: the

spectrum of the vector mesons and the coupling constants m2 4
can be found in the closed form. The first example is also the _r 7T_~3_04_ (5.6)
simplest possible model, but it has a significant physical giwffr 32

drawback that we point out at the end. We think nevertheless
that it is a useful reference point for comparison and forThe couplingg, ., can be found from the width of the,
understanding the robustness/sensitivity of the results towhich decays predominantly to two pionsI’,

wards the change of the background paramet¢y and  =g2  m v3/(48x), wherev,, is the velocity of the final-
g(u). state pions. Using’,~150 MeV, we find the ratid5.6) to
be around 1.9 in Nature. For comparison, the
A. Example I: Flat background Kawarabayashi-Suzuki-Riazuddin-FayyazuddkSRP re-

Consider a moose with parametdgsandg, independent lation 21,22 corresponds to this ratio being equal to 2, and
of k. In the continuum limitK>1 the corresponding func- the value in Georgi's vector limifi.e., K=1 moose theory

tions are therefore constant, is 4 [6]. Therefore, our model would underpredic} from
experimentaim, andf ..
f(uy=f, gu)=g, |u[<up=1. (5.1) The decay constantg,, andg,, are given by Eqs4.10

and(4.11) and are equal to
Let us now apply general formulas from Sec. IV A to deter- (4.13 q

mine the properties of this theory in terms of the parameters 411

f andg. From (4.6) gnV,Azmﬁgaﬁ:Trfzgn. (5.7)

8Such a theory can be easily solved even for filitdout we shall In Eq. (5.7) gnv,a refers tog,y for oddn’s andg, for even

only considerK>1. n's. Forn=1, we findg,,= \/Efwmp. We can now predict
"The choice ofu, does not affect the results; it is equivalent to the rate of the electromagnetic deca§—e*e”, using
rescalingf andg. I'(p°—e’e”)=3ma’g’,m,° and the experimental values
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for f, andm,. We findI'(p°—e*e”)~5.0 keV, which is
somewhat smaller than the measured value 6@31 keV

[7].
It is also interesting to consider the contribution of ihe
meson to pion form factor aj=0 [Eq. (3.37)],

0;1“""""" .

J1vO1x7 8 FIG. 3. A few first wave functions in the “cosh” background.
>, - ,~08lL (5.9
mj T

below). Otherwise, we have no reason to prefer this back-
0%. ground over any other that has two Aﬁﬁoundarie@.

Thus the singlep-meson dominance holds to within 2 . :
Applying Eq. (4.6), one finds

The VMD is, however, exact if all vector mesons are in-
cluded in the limitK —oc. Indeed the direct pion-photon in-

teraction in Eq(3.36) vanishesf2/4f2=af?/4f?=a/2—0.8 2 _2A7 -
The drawback of this model is that it fails to satisfy the e (5.13
asymptotic condition ol (Q?) that follows from QCD: >
I1,(Q?) ~N.og(Q? whenQ?—. InsteadI1,(Q?) in this : .
model vanishes as {Q? when Q?>—«. Indeed, according The wave equation for the vector mesons is
to Eqg.(3.30, with values ofg,,y andm, found in Eqs.(5.7) 5
m
and(5.4), (cosffuby)’ =~ by, (5.14)
2
9nv 2f Q
2\ — s = <
Tv(Q% nzlzg,___ mﬁ(Q2+ mﬁ) than)—( fg)” (5.9 which implies the following spectrum:
We shall now consider an exactly solvable model that will mﬁ=n(n+ 1A%, n=1.2, ... (5.15

satisfy the conditiod1(Q?)~log Q? at largeQ?.
In particular,m;=2A% andm; =6A%=3m?. Takingm, as
an input, this predictsmal=1335 MeV, which is not far

This model is given by from the observed 123040 MeV. However, the masses of
o 510 higher excitations grow faster with than in the real world.
g(u)=gs=const, (5.109 The 5D eigenfunctions of the vector mesons are

A 1
f(u)= —coshu. (5.10h _ Pitanhu) [ 2n+1

According to Eqs(4.17), this corresponds to a constant di-
laton background and the following background metric, ~ where Pl are the associated Legendre functions. The first
few wave functions ar¢see Fig. 3

B. Example IlI: “cosh” background

ds?=—du?+ A2costfuz,,dx“dx". (5.11)

3 1
The two boundaries are locatedwst . Near the bound- by(u)= £ , (5.173
aries the metric becomes asymptotically Ad8ccording to 2 costtu
the AdS/CFT philosophy has the physical meaning of the
energy scale; larga’s correspond to short distances. There- J15 sinhu
fore one can expect that the current correlators has the con- bo(u)=— , (5.17b
formal form at short distance, i.e., §— o, 2 cosku
HV(QZ)r HA(QZ)NIOQ(QZ)- (5-12 1 21 1 5
by(u)=—=\/% -2].
The main reason for choosing the backgro@fd.0 is that 2 V' 2 coslfu | 2 cosRu

coshu is the simplest function interpolating between” and (5.179
e', and that the mass spectrum can be found exdstg
In order to establish Eq5.12, we compute the decay
constants of vector mesons from E¢4.10 and (4.11),

8This can be verified also by summing the contributions from all
vector mesons i113.37). Each contribution is proportional to %Curiously, (5.11) coincides with the 5D part of the induced met-
and=,_;3 . 1n%=m?8. ric on a probe D7 brane in A% S° [23].
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2

A n 1
Onv.a=V20(n+1)(2n+1) - (5.18 gnm=—%g5 ﬁldel—szﬁ(é), (5.24)

The correlation function for the vector current is found from

Eq. (3.30, which vanishes for alh# 1. This is due to the orthogonality

of Legendre functions and the fact thafl— &?= P}(g).
2 on+1 Thereforep meson dominance is exact for the pion form
(5.19  factor: Gy,,(q)=(Q*+m?)~*. Forn=1 one finds

y(Q?*)= 2
v g2 fodd Q%+n(n+1)A2

At large Q%> A2, the sum can be replaced by an integral, 2 _ .2 _g_%_ 8_7"2_ m_ﬁ 5.2
which is logarithmically divergen® One thus finds for large Girn=Gprr =3 TN, 3f2" (5.29
Q° ’
The KSREF ratio in this model is equal to 3. This means that
My(Q?)=— iln(QZ), Q%> A2, (5.20 the p width is underpredicted by a factor of about 2/3. How-
2 ever, it is still interesting to computé, for arbitraryN, in
the chiral limit,
The asymptotic behavior dfl ,(Q?) is the same. Thus the
current correlators have the correct asymptotics at |Qge a
Moreover, they obey Weinberg’s sum rules, as proven in Sec. Fp=6N m,. (5.26
Il E. The constraints imposed by tf@?— behavior and ¢
Weinberg’s sum rules on the massas and decay constants
Jnv,a are quite nontrivial24]. It is remarkable that the open-
moose construction generates examples that automatical
satisfy these constraints.

5

The rate of the electromagnetic decaf—e*e™ in this
Wodel,

One can match the asymtoti¢s 20 with the result found a®Ng

from QCD, L(p*—e’e)=——m,, (5.27)
s N¢ 2 is equal to 6.5 keV aN.=3, which is rather close to the
Q9= 24772|n(Q ), (5.2 observed 6.850.11 keV. Interestingly, the prediction from
QCD sum rules[25] is close but different in this case:
whereN, is the number of colors, to obtain I(p®—ee ) /T (p'—ee ) ose3.
The phenomenology of tha; meson in this model is
1 N, discussed in Appendix C. The excitations witkr 2 have an
g_éz EYICE (5.22 unrealistic mass spectrum in our model, so we shall not dis-

cuss their phenomenology.

By using this relationship betweeagy and N, together with
m,= J2A, we can now express all quantities in the model VI. INSTANTON ~ BARYON
via a single massn, and the number of colomd.. A short
summary is given in Appendix B. For example, fbr we
find from Eq.(5.13

The baryon appears in the framework of chiral
Lagrangians as a solitonic object: a Skyrmif26]. One
wonders: what is the corresponding object in 5D that can
N describe the baryon? An obvious candidate is the instanton,
=—° m?. (5.23  Which can be “lifted” to become a quasiparticle in 5D. Here

2472 P we show that the instanton appears from the point of view of
4D as a Skyrmion. We are interested only in topological

For N.=3 Eq.(5.23 predictsf,= 87 MeV, rather close to aspects, and defer the question of stability of such a solution
the experimental value of 93 MeV. Interestingly, B§.23  to future work*

2
™

coincides with the one obtained from QCD sum rules. On an intuitive level, to see the relation between the in-
The large N. scaling in (5.23 also matchesm,~1,f.  stanton and the Skyrmion, one can consider as an example
~N.. the well-known instanton solution in the singular gadge

Another distinct feature of the model is that the pion formthe flat background metnic
factor is dominated by a single pole. Indeed, the coupling
nwa is found by substituting Eq5.16) into Eq. (4.8),
Ut is interesting to note in this regard that the issue of stability of
the Skyrmion in models with a», p, and a; mesons has been

Owe perform a trivial regularization in Eq5.20), subtracting a  studied[27—30. It was determined that vector mesons not only
constant equal to (t‘ljé)log(KA)2 for K>1. Of course, the equation stabilize the Skyrmion, but also noticeably improve agreement with
is only valid for Q< (KA)?2. phenomenology.
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X,
T2 zM 2\ (6.1
X“(X+p%)

In this solution we shall think oA, as a four-vector with
coordinatesw running through 1, 2, 3, and(®e., x, y, z, and

u) andx?=x?+u?. Note that the metric signature for these 4
coordinates is Euclidean-(,—,—,—) [see(4.18]. The so-
lution we wish to use to describe a baryon is static, Ag.,
=0, and there is no dependencetoiio see the behavior of

the pion field we need to look &5 [see(4.19]:

7T X

)(2(X2—+pz). (6.2

We see that at every fixadthe solution is a hedgehog, thus

PHYSICAL REVIEW D69, 065020 (2004

By using the identity
Ouvh — 0
e rPTIE , Fy,=d, K™,
Ou Ouvhp 2i
K" =4¢ Tr| A,0\A,— gAyAxAp ,
(6.7)

one can rewrite the topological char¢®4) as

1
3272

u=+ug_
u=-uy

1
3y K05 3y K05
fd xK™) 32772fd XK=+ ugs

(6.9

Q:

since atu=—uy A;=0, andK®=0. By using Eq(6.6) one
transforms this expression to

having the same topology as the Skyrmion made of the pion

field.

We shall now show that for an arbitrary background met-
ric the topological charge of the instanton is equal to the

o ﬁ dExe T (27 19,3)(3 7 19,3) (2 10 3)].
(6.9

baryon charge of the pion-field Skyrmion. Our discussion is

very similar to that of Refs[31,32. The 5D Yang-Mills
theory possesses a conserved topological current,

1
e*MITIFRF G

3272

\/@j 5b=

(6.3

Here e*"**7 is defined so that its elements atel. For
simplicity we assume thajs is a constant and absorb it into

the gauge field, and drop the hat in the 5D Lorentz indices i,

subsequent formulas. The boundaries are assumed to be
= +oo, That this current is conservedn(\/@j “)=0, can

be shown by using the Bianchi identi,F,,;=0. The
topological charge of a static solution is

1
Q=f ducpx\/@ng:Qf dudxe® ™M TrF , F), .
(6.4)

The numerical coefficient in Eq6.3) was chosen so that the
static instanton has unit total charge.

Now consider a field configuration where the pion field,
given by the Wilson line along the coordinate(4.19 has a
nontrivial winding, andA,, goes to 0 at the boundaries. To
compute the topological charge of this configuration, it is
convenient to perform a gauge transformation to/sgt 0.
Explicitly,

—1 -1
A,—UA, U 1+iUg, U1,

U(u,x)=Pexy{—iJ’u du’A5(u’,x)). (6.5
—up

According to (4.19, U(+Uug,x)=2"1(x). Thus while A,
remains 0 at the left boundary= —ug, it becomes nonzero
at the right boundary:

A=iX"193, u—+uy, i=1,23. (6.6)

It is now obvious that the topological charge becomes the
winding number of the pion field. Therefore, the instanton
becomes a Skyrmion, and corresponds to the physical
baryon.

VII. CONCLUSIONS AND DISCUSSION

We considered a theory of an “open moose” given by
grangian(2.1) illustrated in Fig. 1. This model describes a
ultiplet of massless Goldstone bosons and a tower of vector
and axial vector mesons. We developed a formalism for cal-
culating the mass spectrum and the coupling constants in this
theory for arbitrary parameters of the mooggandg,, and
determine their values in the continuum limit, when the num-
ber of hidden symmetry grougs tends to infinity. We ap-
plied this formalism to two exactly solvable realizations of
the model and found that the physics of the lowest modes
match quite well with the phenomenology of the p, and

a, mesons.

We also find that the open-moose theory naturally incor-
porates the phenomenon of vector meson dominance. For
example, the pion form factor is saturated by poles from a
tower of vector mesons. Moreover, since couplings between
mesons are given by overlap integrals, the couplings of
highly excitedp’s to the pion are suppressed by the oscilla-
tions of their wave functions in the fifth dimension. This
means that the pion form factor should be well approximated
by the sum of contributions from a few lowegts. In the
second example we considergte “cosh” background the
situation is brought to an extreme: the pion form factor is
saturated by a single pojemeson dominance. We verified
that both Weinberg's spectral sum rules are automatically
obeyed, in a nontrivial way, in any open-moose theory.

One of our original motivations was to include the excited
vector mesons beyond the lowest. With respect to that
goal, we achieved only limited success, at least within the
two exactly solvable models we considered. On the one
hand, we do find that vector and axial vector mesons alter-

La

065020-11



D. T. SON AND M. A. STEPHANOV PHYSICAL REVIEW D69, 065020 (2004

nate in the spectrum, as it seems to be the case in QCD, at 5. oape a —a
least for a few excited states. On the other hand, in both our f dxe*MIALFS - (7.9
simple models, the mass of arth statem, is O(n) at large
n, which seems to be in contradiction with the real world, _ _ o _
and with the theoretical prejudice that,= O(\/n). Further whereA, is the 5D vector field _descrlbmg isoscalars. This
study of different backgrounds might provide a model thatterm breaks the U(1)symmetry in the desired way. In par-
reproduces desired features of excited mesons and help uficular, it is not invariant under U(J)transformations on the
derstand constraints that phenomenology and QCD theorend® boundary(although it is invariant under local transforma-
impose on functiong(u) andg(u). Alternatively, it is also  tions in the bulk of 5D. It is easy to see thqt it also provides
possible that the excited vector mesons have “stringy” na-m — 2y and other anomalous processes in QCD. The coef-
ture and cannot, in principle, be incorporated into our field-ficient of the term(7.1) can be fixed by matching to QCD
theoretical schem® chiral anomaly, and is therefore proportionaNg. The term

The success that the model enjoys in describing the lowt7.1) also couples thes meson field to the baryon current,
est states can be attributed to an apparent property of lowroviding a hard-core repulsion between baryons, and pre-
energy QCD: at intermediate distances correlation function¥enting the baryon/instanton from shrinking to zero sthés
are reasonab|y well saturated by a Sing|e p0|e_ In the “Cosh’EﬁeCt is the origin of the stabilization of the Skyrmion ob-
model the excited mesons ensure the correct behavior of tHerved in Ref[27]). It would be also interesting to see how
(averagedl spectral densities, thus playing the role of thethe open-moose theory realizes Di Vecchia—Veneziano—
continuum. This explains why some results of QCD sumWitten Lagrangiar{34] and the corresponding phenomenol-
rules are well reproduced. ogy. Other avenues for future study are the incorporation of

We hope that the study of the open moose theories wilfinite quark masses, extension to three flavors and realization
deepen our understanding of QCD at the fundamental levepf the Wess-Zumino-Witten topological terfwhich does re-
One intriguing fact discovered in these theories is the simiguire a 5th dimensiofi35)).
larity to the AdS/CFT correspondence. The procedure of cal-
culating current-current correlators is essentially equivalent
to the well-known AdS/CFT prescription: the correlators are
given by the variational derivatives of the classical 5D action  The authors thank S. R. Beane, G. Gabadadze, W-Y. Ke-
of the dual theory with respect to the sources living on theyng, and especially T. Imbo and M. Strassler for discussions.
4D boundary. There is overwhelming evidence that e The authors also wish to acknowledge the review talk by R.
=4 supersymmetric Yang-Mills theory is described by alL. Jaffe at theQCD and String Theoryvorkshop at the In-
string theory. Perhaps, an open moose theory is a low-energititute for Nuclear Theory in Seattle, which provided much
limit of the string theory dual to QCE’ In this regard, the  of the motivation for this work. M.A.S. acknowledges the
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Among the questions left for further study is the detailed
phenomenology of isoscalar mesong (, f,, etc). These
mesons are described by an additional 5D Abelian gauge
field, which should be introduced into the acti@h14. Most For reference, we provide here some additional formulas
of our results should generalize straightforwardly to thisfor interaction vertices in the continuum limit of an arbitrary
case. However,.therg is an important new issue that the isgypen-moose model. Let us defigemn, Gmmmn. Omnps and
scalar sector brings into the theory. The global L(ym- Umnpq SO that the Lagrangian contains
metry must be explicitly broken, e.gy, should not be mass-
less. It is very encouraging that the 5D formulation of the
theory provides a very natural mechanism for this. It is the L= = Qumne®°m(a}) (a])®
topological 5D Chern-Simons term of the form

APPENDIX A: INTERACTION VERTICES

b de_b_d
~Oramne €T T (a,T)C(ag)e

1o ) ) . _gmnpeab(:(alﬁ:)a(ag)ba’u(ag)c
It is possible to reproduce the behavior,=O(y/n) by a suit-
able choice of background, even an exactly solvable one. But we 1
did not find such models viable in other respects. - ngnquabcfade(a;?)b(“Z)C(“Z)d(ag)e’ (A1)
13From this point of view, meson interactions in strongly coupled
gauge theories with fundamental quar3,33 deserve further
studies. then
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fr
G o= | AUL(GD (b~ (gb) (gB0)]. (A28 )
ay P
f2 1 du
9rmmn= — gJ %bmbni (A2b) T
FIG. 4. Diagrams contributing ta;— my.
gmnp=f dugbnbabp, (A20) (also gpwzmi/gpv). There is a An=1 rule” for pion
emission:
gmnpq:J du92bmbnbpbq1 (A2d) 97mn=0, |m—n|¢l, (B7)
i i i 6n(n+2)
Dlrept coupl_lngs tq e_xternal cu'rrents are suppressed in the Gy 1= M, (N+1) \/ . (B9
continuum limit (this includes, in particular, vector-meson (2n+1)(2n+3)N;

dominance by a whole tower of mesgns
A simple qualitative interpretation of these couplings ex-There is also a “triangle rule” for triple resonance vertex:

ists in terms of the overlaps of the wave functions in the )

space, which reflects the property of locality of the theory Imnp=0 if m+1>n+p+2

(2.1)) or (4.14. It is straightforward for the last two, or n+1>p+m+2

resonance-resonance, couplingd2c) and (A2d). These

terms come from the seconi? , termin(2.1). For the pion-

resonance coupling®2a), (A2b) and(4.8), one should bear e  the amplitude vanishes if a triangleven a degenerate

in mind that the strength of the coupling is proportional to ong with sides m+1), (n+1), and p+1) does not exist.
f2(u), and think of the pion wave function as being propor-

tional to 1£2 [looking at(3.1)]. The u derivatives in(A2a)
are necessary to account for the fact that, although the pion

or p+1>m+n+2, (B9)

APPENDIX C: a; MESON IN THE “COSH”

. . - . . . BACKGROUND
wave function is even im— —u, the pion itself is a pseu-
doscalar. Let us discuss the phenomenology of the lowest axial vec-
tor mesonthen=2 excitation in the open moosd-rom Eq.
APPENDIX B: SUMMARY OF RESULTS (5.195, the mass of thea; meson in the “cosh” model is
FOR THE “COSH” MODEL My, = \/§mp. Thea, decays intg 7 with the coupling(B8),
Instead of expressing the results in terms of the param- 6
eters of the model\ andgs, we will usem, andN;. The gﬂpalzzwmp\/5N (CY
relations are ¢
22 By using the formuld4]
mP:\/EAv gé: N. ' (Bl) gz 2
c mpa p
T(a—pm)=——p,| 1+ —2 ], (C2)
4ar P 3m2
n(n+1) b
m,=m, > (B2) .
we find
m N 47
—_ P ]C - ~
fe=5- N5 (B3) I'(a;—pm)= 9\/§Ncmp 210 MeV. (C3)
mi \/n(n+ 1)(2n+1) Experimentally, the total width o&, is 250 to 600 MeV, of
InvAT 1 3 Ne, (B4 which about 60% comes from,— pr [7].
The a; decay constant in our model is
The p-meson dominance of the pion form factor is described N
b m
y Uaa=02a=5_\/ 5 ~0.26 GeV. (C4)
Onre=0, n#1, (B5)
A lattice measurement of this constant yie{@sour normal-
227 ization) 0.21+0.02 Ge\f [36], while an analysis of hadronic
O177=Ypmn=""T7—" (B6) 7 decays gives 0.1770.014 GeV [37]. The agreement is
\/N—c fair, but not exceptionally good.
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The decaya;— 7y occurs through two Feynman dia- It can be checked that the two terms cancel each other
grams with intermediatgp andp’ (the n=3 excitation. Its  exactly, so the amplitude vanishes. On the other hand, the
amplitude is proportional t¢see Fig. 4 partial width of this decay is quoted to be 64046 keV[7].

The simplestK =2 hidden local symmetry model also suf-
fers from the same problem; in Rd#] this was cured by

U,101y  Ops0ay  Impa,dpv Gmpra,9prv adding higher-derivative terms to the action. It would be in-
> > = >—+ 5 . (CH teresting to see if this rate can be made nonzero by adding
m m3 m, m, more terms to the actiofd.14).
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