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Point-to-point description of the bubble wall dynamics in two-vacuum scalar field models
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We develop a new approach to the Lagrangian description of the bubble wall dynamics in the nonlinear
Klein-Gordon equation with a two-vacuum potential of general form having a small vacuum energy difference.
The approach is based on an ordinary differential equation governing the motion of an arbitrary point of the
wall in the second approximation in the vacuum energy difference and inverse bubble radius. The equation is
model independent: the concrete shape of the potential affects the constants involved only. We give a detailed
derivation of this equation and present the full scheme of our method. As examples, we find some wall
solutions for thef3-f4 andf4-f6 potentials and compare them with solutions obtained by the direct numeri-
cal integration of the nonlinear Klein-Gordon equation.
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I. INTRODUCTION

There are many physical systems, the evolution of wh
is determined by effective potentials with two or more d
ferent minima. Under certain conditions in such syste
first-order phase transitions are possible, which proc
through bubble nucleation and subsequent expansion o
percritical bubbles of a new phase inside the old one. T
two main mechanisms of spontaneous nucleation are c
monly known. In particle physics and some cosmologi
models the bubbles come into being by quantum tunne
through a potential barrier separating different minima of
effective potential@1#. In condensed matter the dynamics
the order parameter field is usually governed by a nonlin
evolution equation of diffusion type. The bubble nucleati
is caused there by thermal fluctuations@2#. Recently, yet an-
other mechanism of nucleation has been proposed@3#. It
works in nonlinear wave systems and is based on param
resonance phenomenon and modulational instability of fa
vacuum oscillations.

In any case, let us suppose that a new-phase bubble
already formed. Qualitatively, the subsequent stage of its
pansion is almost the same for different physical systems
the present paper we investigate the dynamics of the bu
expansion in the simplest classical field model,

f tt2Df1U8~f!50. ~1!

HereU(f) is a potential depending on a real scalar fieldf
and having the shape depicted in Fig. 1. Such potentials
on great significance in the context of the currently discus
single-field models of open inflation@4#. In particle physics
effective potentials can acquire this form if quantum corr
tions are accounted for@1#. The nonlinear Klein-Gordon
equation~1! with potentials having several different minim
also appears in condensed matter physics~e.g., when de-
scribing nonlinear modes in anharmonic crystals@5#, spin
0556-2821/2004/69~6!/065018~9!/$22.50 69 0650
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waves in 3He @6#! and in nonlinear optics~double sine-
Gordon~sG! model of self-induced transparency@6#!.

Many exact solutions of Eq.~1! for various potentials are
presently known, both in one- and multidimensional cas
However, most solutions obtained in multidimensions p
sess neither finite energy nor proper spatial symmetry
can be frequently treated as interacting plane solitary wa
~see, e.g., Ref.@7#!. In the rotationally symmetric case of ou
interest only a few exact time-dependent bubblelike soluti
have been found for potentials of some specific types@8#.

In the present work we are concerned with approxim
solutions of Eq.~1!. Consider a field configuration, the en
ergy of which is concentrated in a transitional layer, a wa
separating two regions with different vacuum states. Supp
the wall’s thickness is much less than a characteristic siz
the configuration, say, its radius. In this case the evolution
the configuration reduces mainly to the motion of the w
and can be analyzed by asymptotic methods. For thef4 and
sG type potentials having one degenerate vacuum this p
lem has been considered by many authors~see, e.g., Refs
@9–16#!. Clearly, in such models the rotationally symmetr
topological defects~i.e., circular strings, cylindrical and

FIG. 1. Typical shape of the potentials considered. The vacu
energy differenceDU is assumed to be small compared with t
barrier height.
©2004 The American Physical Society18-1
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spherical domain walls! can only collapse, just due to th
surface tension: ‘‘It is like a soap bubble, but with no rest
ing overpressure inside it’’@13#. The dynamics of the col-
lapse can be easily investigated in the thin-wall approxim
tion using Nambu’s action@17#. Potentials we are dealin
with have at least one local minimum~false vacuum!, say, at
f5f1, and the global minimum~true vacuum! atf5f2, so
that DU5U(f1)2U(f2).0 ~see Fig. 1!. In such models
the rotationally symmetric field configurations usua
evolve from nuclei arising in the local first-order phase tra
sitionsf1→f2. If the nucleus radiusR exceeds some criti
cal value Rc , a nucleus will expand without limit in the
shape of a new phase bubble. In this processDU plays the
role of the difference of pressures in and outside the bub

The first attempt to describe the bubble expansion
model ~1! with a two-vacuum potential has been made
Voloshin et al. @18#. These authors have found an appro
mate expression for the total energy of a bubble and con
ered, as an example, the potentialU5U0(f)1c1f1c3f3

with U0(f)5(f22h2)2 and small constantsc1 , c3. An ar-
bitrary perturbed sG potential,U52 sin2(f/2)1W(f), has
been considered by Maslov in Ref.@19#. Having applied the
perturbation theory based on the inverse scattering tr
form, the author derived, in particular, an equation for t
radiusR(t) of the kinklike bubble in the first order in 1/R
andDU;W. The equation forR(t) in a dissipative version
of Eq. ~1! has been recently obtained by Rotstein and N
omnyashchy@20#, who studied in the first-order approxima
tion the wall motion for the potentialU5U0(f)1c1f with
a symmetric double-well leading partU0(f) and smallc1.

In the present paper we investigate bubble wall dynam
in the second-order approximation. Moreover, we consi
potentials of a general form for which the smallness ofDU is
only required. In particular, we make no special assumpti
of the symmetry properties of the leading part ofU(f).

The paper is organized as follows. Section II is who
devoted to the detailed derivation of the equation for
bubble ‘‘radius’’R(t) that has been recently proposed in R
@21#. We give a key idea of our analysis and reduce Eq.~1! to
the system of the first-order differential equations for
‘‘phase’’ of the bubble wall. Then we apply the generaliz
Krylov-Bogoliubov method and derive, to second order
1/R andDU, the equation of motion of an arbitrary pointr
5R(t) lying on the wall. In Sec. III we consider static solu
tions of the obtained equation describing the structure of
critical bubbles. As examples,f3-f4 and f4-f6 potentials
are examined there. In Sec. IV the dynamics of the bub
expansion is considered. We find the integral of motion
the equation obtained and give the general scheme of
approach. A comparison with results of the direct numeri
integration of Eq.~1! is also presented. Some remarks on
validity domain of the approach can be found in Sec. V.

II. DERIVATION OF THE BASIC EQUATION

A. Suggestions and the key idea

Let us consider a bubble of a large radiusR evolved from
an initial large radius nucleus,
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f~r ,0!5 f ~r !, f t~r ,0!5g~r !, ~2!

with f andg being appropriate smooth functions. Inside su
a bubble the field is practically equal to the true vacuu
valuef2, while outside it the field equalsf1. The transition
f1→f2 occurs in a thin layer of a thicknessl !R.

To investigate the bubble dynamics we construct a sub
tution f(r ,t)5w(u), whereu(r ,t) is a ‘‘phase.’’ Obviously,
there is some freedom of the choice of the dependencew(u).
At the same time this dependence should reflect adequa
the expected shape of the solution.

To choosew(u) in the proper way let us take first a po
tential U0(f) with DU50. Consider, for simplicity, a one
dimensional case, i.e., a plane domain wall moving along
x axis. The functionw(u) then obeys the equation

wuu5U08~w!, ~3!

whereu5(x2X02vt)(12v2)21/2. This equation describe
the shape of the wall moving with a constant velocityv in
the positive direction of thex axis. It can be integrated, a
least through a quadrature, with the boundary conditio
w(u52`)5f2 , w(u51`)5f1.

Consider now the two-vacuum potentialU(f) depicted in
Fig. 1. When the wall goes through a fixed spatial point,
field passes from statef1 to statef2, losing the energyDU.
At this point the phaseu changes from1` at t52` to
2` at t51`. To describe the transition in terms ofw(u)
we add to the left-hand side of Eq.~3!, as the simplest pos
sibility, an effective friction term that compensates for t
contribution appearing in the right-hand side due toDU.
Namely, we require the functionw(u) to satisfy the equation

wuu1gwu5U8~w! ~4!

with the boundary conditions

w~u52`!5f2 , w~u51`!5f1 , ~5!

whereg is a positive constant to be found. This is a key id
of our analysis.

Physically, Eq.~4! describes the motion with friction of a
mechanical particle in the potential2U(w). The particle
starts atw5f2 whenu52` and stops due to the friction a
w5f1 whenu51`. Mathematically, this equation and th
imposed boundary conditions~5! are an eigenvalue problem
determining uniquelyw(u) and the effective friction coeffi-
cient g. As it follows from ~4!,

g5DU/E
2`

`

wu
2du, ~6!

so thatg is small for smallDU. For some potentials the
problem ~4! and ~5! has exact analytical solutions~see ex-
amples in Sec. III!. Otherwise, it can be easily solved by
simple perturbation technique or numerically. In so doing
is useful to take into account the asymptotic behavior
w(u) given by
8-2
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w~u!u→6`;f1,26e7k6(u2u6)

1
U-~f1,2!

2k6~3k67g!
e72k6(u2u6)6 . . . , ~7!

whereu6 are some constants,

k656
g

2
1S g2

4
1U9~f1,2! D 1/2

. ~8!

It should be stressed that postulating Eq.~4! we add no dis-
sipation to the system~1!, but define the dependencew(u)
only.

Of course, from~4! and ~5! it follows that f1,w(u)
,f2 (uuu,`). Thus, usingw(u) so defined one cannot de
scribe, e.g., the vacuum oscillations aroundf2 arising be-
hind the moving wall under specific initial conditions. I
such eventsw(u) will describe correctly the region of th
wall only, which is quite sufficient for our purposes.

It is of interest that Eq.~4! was applied long before fo
description of travelling waves in chemical and biologic
reaction-diffusion systems@22#. In particular, it appears in
the theory of flame propagation@23# wherew has a sense o
normalized temperature or concentration. In this connec
the existence and uniqueness theorem for solution of p
lem ~4! and ~5! has been proved in Ref.@24#.

Suppose problem~4! and ~5! is solved. Assuming the ro
tational symmetry we substitutef5w(u) into ~1! and use
~4! to eliminatedU/df. The result can be written as th
system

kr1pt1
wuu

wu
~k22p221!5gS 12

n21

r
kD , ~9!

u r5k, ~10!

u t52p, ~11!

where n is the number of spatial dimensions, and we
1/r 5g/r. Note thatr can be treated as an additional depe
dent variable satisfying the equationsr r5g andr t50. We
assume thatr*1. As we will see below the latter implies th
bubble’s radius is greater than or of the order of the criti
one. The velocity of the wall is defined in the ordinary w
asv5p/k.

B. The asymptotic expansion procedure

Recall that we consider potentials with smallDU, so that
g in Eq. ~9! is also small. We make use of this fact to co
struct asymptotic expansions.

With g50 the system~9!–~11! has the exact solutionk
5(12v2)21/2, p5v(12v2)21/2, u5(r 2R02vt)(1
2v2)21/2, wherev andR0 are constants. When 0,g!1 the
quantitiesk, p, and, of course,r are considered to be slow
functions ofr, t, compared with the phaseu. It is assumed
that fast variations ofk andp are small, of the order ofg. To
separate the slow motions from the fast ones we apply
generalized Krylov-Bogoliubov method@25#. The essence is
that the slowly varying parts ofk and p are treated as new
06501
l
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variables. We will seek the corresponding transformation
the form

k5 k̄1(
i 51

`

g iKi~ k̄,p̄,r̄,u!, ~12!

p5 p̄1(
i 51

`

g i Pi~ k̄,p̄,r̄,u!, ~13!

provided that

k̄r5(
i 51

`

g iAi~ k̄,p̄,r̄ !, ~14!

k̄t5(
i 51

`

g iBi~ k̄,p̄,r̄ !, ~15!

p̄r5(
i 51

`

g iCi~ k̄,p̄,r̄ !, ~16!

p̄t5(
i 51

`

g iDi~ k̄,p̄,r̄ !. ~17!

Thus, k̄, p̄, and r̄5r5gr are new, slow variables, whileu
is the fast variable.

Differentiating Eqs.~12! and~13! and making use of Eqs
~10!–~17!, one finds

kr5(
i 51

`

g i (
j 50

i

~Ai 2 jK j k̄1Ci 2 jK j p̄1d i 2 j
1 K j r̄1Ki 2 jK j u!,

~18!

kt5(
i 51

`

g i (
j 50

i

~Bi 2 jK j k̄1Di 2 jK j p̄2Pi 2 jK j u!, ~19!

pr5(
i 51

`

g i (
j 50

i

~Ai 2 j Pj k̄1Ci 2 j Pj p̄1d i 2 j
1 Pj r̄1Ki 2 j Pj u!,

~20!

pt5(
i 51

`

g i (
j 50

i

~Bi 2 j Pj k̄1Di 2 j Pj p̄2Pi 2 j Pj u!. ~21!

In Eqs. ~18!–~21! we setK05 k̄, P05 p̄, A05B05C05D0

50, the indicesk̄, p̄, r̄, u mean hereinafter the derivative
with respect to the corresponding variables, andd j

i is the
Kroneker symbol.

Now we substitute expansions~12!, ~13!, ~18!, and ~21!
into Eq. ~9! and equate coefficients of the correspondi
powers ofg. In zeroth order this immediately gives

k̄22 p̄251. ~22!

In the next orders we arrive at the equation

~]/]u12wuu /wu!yi5Ai1Di1hi ~ i 51,2, . . .!,
~23!
8-3
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where, by definition,

yi~ k̄,p̄,r̄,u!5
1

2 (
j 50

i

~Pi 2 j Pj2Ki 2 jK j !, ~24!

hi~ k̄,p̄,r̄,u!5(
j 51

i 21

~Ai 2 jK j k̄1Bi 2 j Pj k̄1Ci 2 jK j p̄

1Di 2 j Pj p̄!

1Ki 21 r̄1~n21!Ki 21 / r̄2d i
1 . ~25!

Note that in Eq.~25! the summation is up to and includin
j 5 i 21, so thathi involves the quantities determined fro
the lower-order equations. Thus we have

y15 p̄P12 k̄K1 , ~26!

h15~n21!k̄/ r̄21, ~27!

y25 p̄P22 k̄K21~P1
22K1

2!/2, ~28!

h25A1K1 k̄1B1P1 k̄1C1K1 p̄1D1P1 p̄1K1 r̄

1~n21!K1 / r̄, . . . ~29!

Consider Eq. ~23!. The corresponding homogeneo
equation has the solutionwu

22 . This function grows expo-
nentially whenuuu→`. We require that a solution of Eq
~23! does not contain the exponentially growing terms. Su
solution is

yi5
1

wu
2E

2`

u

~Ai1Di1hi !wu
2du ~30!

provided that the orthogonality condition

E
2`

`

~Ai1Di1hi !wu
2du50 ~31!

is fulfilled.
The expansions~12!–~17! must be supplemented wit

compatibility conditions. The first one follows from Eq
~10! and~11! and readskt1pr50. Substituting here the ex
pressions~19! and ~20! we arrive at the equation

~ p̄Ki2 k̄Pi !u5Bi1Ci1qi ~ i 51,2, . . .!, ~32!

where the quantities

qi~ k̄,p̄,r̄,u!

5(
j 51

i 21

~Ai 2 j Pj k̄1Bi 2 jK j k̄1Ci 2 j Pj p̄1Di 2 jK j p̄

1d i 2 j
1 Pj r̄1Ki 2 j Pj u2Pi 2 jK j u! ~33!

are determined from the lower-order equations. Thus,
06501
h

~ p̄K12 k̄P1!u5B11C1 , ~34!

~ p̄K22 k̄P2!u5B21C21A1P1 k̄1B1K1 k̄1C1P1 p̄

1D1K1 p̄1P1 r̄1K1P1 u2P1K1 u , . . .

~35!

The next two compatibility conditions,k̄rt5 k̄tr and p̄rt

5 p̄tr , place restrictions on the functionsAi , Bi , Ci andDi
in Eqs.~14!–~17!. In view of the constraint~22! we can take
into account only one of the two conditions, e.g., the fi
one. This gives

(
j 51

i 21

~Ai 2 j k̄Bj1Ai 2 j p̄D j2Bi 2 j k̄Aj2Bi 2 j p̄Cj !5Bi 21 r̄

~ i 52,3, . . .!. ~36!

On the other hand, differentiation of Eq.~22! with the use of
Eqs.~14!–~17! leads to the relations

k̄Ai5 p̄Ci , k̄Bi5 p̄Di . ~37!

Hence, introducing the functions

x i~ k̄,p̄,r̄ !5Ai1Di , c i~ k̄,p̄,r̄ !5Bi1Ci , ~38!

we can write

Ai5 p̄~ k̄c i2 p̄x i !, Bi52 p̄~ p̄c i2 k̄x i !,

Ci5 k̄~ k̄c i2 p̄x i !, Di52 k̄~ p̄c i2 k̄x i !.
~39!

Substituting these expressions into Eq.~36! and using~22!
we obtain

(
j 51

i 21

@ k̄~c i 2 j p̄x j2c i 2 jx j p̄!1 p̄~c i 2 j k̄x j2c i 2 jx j k̄!

1c i 2 jc j2x i 2 jx j #

5 k̄x i 21 r̄2 p̄c i 21 r̄ ~ i 52,3, . . .!. ~40!

Note that, in view of~31!,

x i52E
2`

`

hiwu
2duY E

2`

`

wu
2du. ~41!

At given x i the condition~40! can be treated as a system
differential constraints for the functionsc i . It can be re-
solved, in particular, by the choicec i5( k̄/ p̄)x i .

C. The second-order approximation

In principle, the above procedure permits us to find t
expansions~12!–~17! in any order ing. Here we will obtain
the first- and the second-order terms of the expansions.

Sinceh1 does not depend onu @see Eq.~27!#, from ~41!
one finds
8-4
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x152h1512~n21!k̄/ r̄. ~42!

This implies thaty150, i.e., k̄K15 p̄P1 @see Eqs.~30! and
~26!#. With this relation Eq.~34! becomesK1 u52 p̄c1.
Thus, we obtain

K152 p̄~j11c1u!, P152 k̄~j11c1u!, ~43!

wherej1( k̄,p̄,r̄) is an arbitrary function.
Now let us calculateh2 , x2, andy2. The formulas~29!,

~39!, ~43! result in

h252M2Nu, ~44!

where

M ~ k̄,p̄,r̄ !5c1j11x1~ k̄j1 p̄1 p̄j1 k̄!1 p̄S j1 r̄1
n21

r̄
j1D ,

~45!

N~ k̄,p̄,r̄ !5c1
21x1~ k̄c1 p̄1 p̄c1 k̄!1 p̄S c1 r̄1

n21

r̄
c1D .

~46!

Expression~46! can be simplified with the help of Eq.~40!.
Indeed, wheni 52 Eq. ~40! reads

x1~ k̄c1 p̄1 p̄c1 k̄!2 p̄c1x1 k̄1c1
22x1

25 k̄x1 r̄2 p̄c1 r̄ .
~47!

Making use of Eqs.~47! and ~42! we finally obtain

N5122
n21

r̄
k̄1

n~n21!

r̄2
k̄2. ~48!

Substitution of the expression~44! into ~41! gives

x25M1^u&N, ~49!

where we introduce the mean value of the phase

^u&5E
2`

`

uwu
2duY E

2`

`

wu
2du. ~50!

With ~44! and ~49! the formula~30! becomes

y25
N

wu
2E

2`

u

~^u&2u!wu
2du. ~51!

We next calculateq2 , K2, andP2. Formula~33! with ~39!
and ~43! results in

q252Q2Su, ~52!

where

Q~ k̄,p̄,r̄ !5j1x11c1~ k̄j1 p̄1 p̄j1 k̄!1 k̄j1 r̄ , ~53!
06501
S~ k̄,p̄,r̄ !5c1x11c1~ k̄c1 p̄1 p̄c1 k̄!1 k̄c1 r̄ .
~54!

The integration of Eq.~35! then gives

p̄K22 k̄P25j21c2u1E q2du, ~55!

wherej2( k̄,p̄,r̄) is an arbitrary function. On the other han
from Eqs.~28! and ~43! it follows that

k̄K22 p̄P25
1

2
~j11c1u!22y2 , ~56!

wherey2 is given by Eq.~51!. From ~55! and ~56! we im-
mediately find

K25
1

2
k̄j1

22 p̄j21~ k̄j1c12 p̄c21 p̄Q!u

1
1

2
~ k̄c1

21 p̄S!u22 k̄y2 , ~57!

P25
1

2
p̄j1

22 k̄j21~ p̄j1c12 k̄c21 k̄Q!u

1
1

2
~ p̄c1

21 k̄S!u22 p̄y2 .

We give this result for completeness sake only and do
use it below. Equations~57! become necessary when consi
ering the bubble wall dynamics in the third approximati
and up. In the next subsection we will obtain the equat
describing the dynamics of the wall in the second appro
mation.

D. The basic equation

Let us define, in accordance with Eqs.~10! and ~11!, the
velocity field and the averaged velocity field, respectively,

v5p/k, v̄5 p̄/ k̄. ~58!

In view of ~22!, it follows that

k̄5~12 v̄2!21/2, p̄5 v̄~12 v̄2!21/2. ~59!

Then we have

v5
p̄1gP11g2P21O~g3!

k̄1gK11g2K21O~g3!
5 v̄2g~12 v̄2!~ p̄K12 k̄P1!

1g2~12 v̄2!3/2@K1~ p̄K12 k̄P1!2 k̄~ p̄K22 k̄P2!#

1O~g3!, ~60!

whereK1 , P1, and p̄K22 k̄P2 are determined by Eqs.~43!
and ~55!.

Now let us calculate the total derivative ofv. Differentia-
tion of Eq.~60! with the use of Eqs.~10!–~17!, ~39!, and~59!
gives
8-5



in

f

fied

n-
.

of

sing
the

orce
two
he

ere

of

g-

he

q.

ll

e

EUGENE M. MASLOV AND ARKADI G. SHAGALOV PHYSICAL REVIEW D 69, 065018 ~2004!
v t1vv r5 v̄ t1 v̄ v̄ r2g2~12 v̄2!3/2$x1@ p̄~j1 k̄1c1 k̄u!

1 k̄~j1 p̄1c1 p̄u!#1 p̄~j1 r̄1c1 r̄u !2~j11c1u!

3~3v̄x12c1!%1O~g3!, ~61!

where

v̄ t1 v̄ v̄ r5~12 v̄2!3/2~gx11g2x2!1O~g3!. ~62!

Note that the functionsj2 , c2, andq2 do not appear in this
approximation. Next we insert the formulas~42! and~49! for
x1 andx2, and expressv̄ in terms ofv as

v̄5v1g~12v2!~j11c1u!1O~g2! ~63!

@see Eq.~60!#. Using the formulas~45!, ~46!, and ~48! one
can see that the terms involvingj1 andc1 cancel out. As a
result, the right-hand side of Eq.~61! is significantly simpli-
fied. Replacingr̄ by gr we arrive at the equation

v t1vv r

5g~12v2!3/22
n21

r
~12v2!1~^u&2u!~12v2!1/2

3Fg2~12v2!22g
n21

r
~12v2!1/21

n~n21!

r 2 G .

~64!

Thus, in the second approximation ing and 1/r &g, we
have reduced the system~9!–~11! for the phaseu to the
equation of the hydrodynamic type, which, however, still
volvesu explicitly. The last step is as follows. DefineR(t) as
a coordinate of a point on the wall where the fieldf takes a
valuef0, and, with the knownw(u), defineu0 as a phase o
this point, i.e.,

f„R~ t !,t…5f05w~u0! ~f1,f0,f2! ~65!

~see Fig. 2!. Setting r 5R(t), v(R,t)5Ṙ, dv/dt5R̈, u
5u05const, from~64! we finally obtain@21#

R̈5g~12Ṙ2!3/22
n21

R
~12Ṙ2!1~^u&2u0!Fg2~12Ṙ2!3/2

22g
n21

R
~12Ṙ2!1

n~n21!

R2
~12Ṙ2!1/2G . ~66!

FIG. 2. A point-to-point description of a wall in terms of th
phase variableu.
06501
-

This is the basic equation of our approach. It has the uni
form for any two-vacuum models~1! with small DU: the
concrete shape ofU(f) affects the constantsg, ^u&, andu0
only. Recall that these constants are determined by Eqs.~6!,
~50!, and~65!, in accordance with the solution of the eige
value problem~4! and ~5! which is assumed to be known
The initial conditions for Eq.~66! follow from ~2! and read

f „R~0!…5f0 , Ṙ~0!52S g

f r
D

r 5R(0)

. ~67!

The first and the second terms in the right-hand side
Eq. ~66! are of first order ing;DU and 1/R&g. They have
the same form as those obtained in Refs.@19,20#. The first
term is the accelerating force caused by the energy relea
in the course of the phase transition. The second term of
opposite sign describes the action of the surface tension f
tending to collapse the bubble. The balance of these
forces gives the value of the effective critical radius of t
bubble,

Rc5
n21

g
, ~68!

thus measured for a mean point of the bubble wall wh
u05^u&.

The expression in the square brackets of Eq.~66! consists
of second-order terms and is positive. With the factor^u&
2u0 it describes, in particular, the increasing of the slope
the wall in the course of the bubble expansion.

The valuef0, and henceu0, can be treated as a Lagran
ian label of a pointR on the wall. Thus, Eq.~66! gives the
complete point-to-point description of both the motion of t
wall as a whole and its structure.

III. STATIC SOLUTION: THE STRUCTURE
OF THE CRITICAL BUBBLE WALL

The static solution will be immediately derived from E
~66! if we just set thereṘ50, R̈50. The result can be
written as

^u&2u05g21

R

Rc
S 12

R

Rc
D

S R

Rc
D 2

22
R

Rc

1
n

n21

, ~69!

where we used the definition~68! of the critical radiusRc .
This equation gives the dependenceu0(R) valid for R
*Rc . Knowing the solution$w(u),g% of the eigenvalue
problem~4! and~5!, we thus obtain the structure of the wa
of the critical bubble as follows:

fc~r !5$@w~u!#u5u0(R)%R5r . ~70!

Let us consider two examples. The first one is thef3-f4

theory,
8-6
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U~f!5
1

2
f22

1

3
f31

«

4
f4 S 0,«,

2

9D . ~71!

The solution of the eigenvalue problem~4! and ~5! is

w~u!5f2$11exp@f2~«/2!1/2~u2u* !#%21, ~72!

g5~8«!21/2@3~124«!1/221# ~73!

~see, e.g., Ref.@23#!, where

f25~2«!21@11~124«!1/2#, u* 5^u&. ~74!

Using ~73! we first obtainRc by Eq. ~68!. Then we take
u0(R) from Eq.~69! and insertu5u0(r ) into ~72!, in accor-
dance with the formula~70!. The resulting profiles for sev
eral values of« are presented in Fig. 3~a!.

The second example is thef4-f6 theory,

U~f!5
1

2
f22

1

4
f41

«

6
f6 S 0,«,

3

16D . ~75!

In this case the solution of the eigenvalue problem~4! and
~5! reads

w~u!5f2$11exp@f2
2~4«/3!1/2~u2u* !#%21/2, ~76!

g5~3«!21/2@2~124«!1/221#, ~77!

where

FIG. 3. The wall profiles of the critical spherical (n53) bubbles
obtained by our method~dashed lines! and by the numerical inte
gration of Eq.~1! ~solid lines!. The calculations were performed fo
the potentials~71! ~upper panel! and~75! ~lower panel! with differ-
ent values of«. It is seen the larger the bubble radius the better
solutions approximate the true ones.
06501
f25~2«!21/2@11~124«!1/2#1/2,

u* 5^u&2~4«/3!21/2f2
22 . ~78!

The critical radius and the profile of the wall result from Eq
~68! and ~70! in the same way. The comparison graphs a
shown in Fig. 3~b!. We thus conclude that our description
the critical bubble wall is in a good agreement with the
sults of the direct numerical integration of Eq.~1!.

IV. INTEGRAL OF MOTION AND GENERAL SCHEME
OF THE APPROACH

Consider now time-dependent solutions. At first, let us
to find an integral of motion of Eq.~66!. The standard pro-
cedure is as follows. AssumingṘ25F(R), from Eq. ~66!
one obtains the first-order differential equation forF(R). Its
solution involves an arbitrary constant, sayE, which is the
required integral of motion. In this way we find

E52g~11gd!
R~12Ṙ2!1/22u1~d!

R~12Ṙ2!1/22u2~d!
Rns(d), ~79!

where

u6~d!5
n

2g~11gd! F11
2~n21!

n
gd6s~d!G , ~80!

s~d!5F12
4~n21!

n2
g2d2G 1/2

, d5^u&2u0 .

~81!

Note that the expression~79! is, in fact, the total energy o
the bubble. Indeed, in the first approximation

E'2gRn1n~12Ṙ2!21/2Rn21. ~82!

It is seen that the first term on the right-hand side of Eq.~82!
is the volume energy of then-dimensional bubble, while the
second term is its surface energy.

From Eq. ~79! we immediately obtain the velocity
squared of a point on the wall having the ‘‘coordinate’’d,

Ṙ2512H Eu2~d!1g~11gd!u1~d!Rns(d)

R@E1g~11gd!Rns(d)#
J 2

. ~83!

The solution of this equation is expressed through a qua
ture. In one-dimensional case it can be evaluated in exp
form. Indeed, forn51 we have

u6~d!5
161

2g~11gd!
, s51, ~84!

so that the integration yields

R~ t !5R~0!1$@11g2~11gd!2~ t1t0!2#1/2

2@12Ṙ2~0!#21/2%/$g~11gd!%, ~85!

r
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where

t05
Ṙ~0!

g~11gd!@12Ṙ2~0!#1/2
. ~86!

Now we can describe the general scheme of our appro
Suppose we need to solve the initial problem~2!. First of all,
we should find the solution$w(u),g% of the eigenvalue prob
lem ~4! and~5!. Then we fix a point on the wall by the choic
of a valuef0 ~see Fig. 2!. The initial coordinateR(0) and
the velocityṘ(0) of the point are found from the formula
~67!. The functionw(u) determines the values of^u& andu0
by Eqs.~50! and~65!, respectively. Knowingd5^u&2u0 we
then calculate the values ofu6(d) ands(d) by the formulas
~80! and ~81!, and thus obtain the valueE of the integral of
motion ~79!. The trajectory of the point considered is foun
by the integration of Eq.~83!. The described scheme is pr
sented in Fig. 4.

Of course, this procedure should be performed for e
point of the wall. As a result, we will have a family of tra
jectories parametrized byu0, i.e., R5R(t,u0). This implies
that u05u0(R,t). Hence, the transition to the Eulerian va
ables is given by

f~r ,t !5$@w~u!#u5u0(R,t)%R5r . ~87!

In Fig. 5 the dynamics of the bubble expansion in t
f4-f6 theory ~75! is presented. As an initial state, a pe
turbed critical bubble was chosen. One can compare the
profile curves obtained by the direct numerical integration
Eq. ~1! with the curves obtained from formula~87! with the
use of the solution of Eq.~66! with and without the second
order terms. It is seen that taking into account just first t
terms on the right-hand side of Eq.~66! leads to the correc
description of the motion for the mean point^R& only, i.e.,
for u05^u&, while the addition of the second-order term
results in the wall profile, which is in good agreement w
the numerical solution of Eq.~1!.

FIG. 4. The procedure of finding the trajectory familyR(t,u0).
06501
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V. CONCLUDING REMARKS

So, we have reduced the problem of solving the nonlin
Klein-Gordon equation~1! to the eigenvalue problem~4! and
~5! and to the equation~66! governing the motion of each
point of the wall. The solution of the eigenvalue problem c
be easily obtained numerically or even analytically. Equat
~66! is integrated through the quadrature. The resulting f
mula ~87! describes the dynamics of the bubble expansi
Our approach is applicable to the potentials with small
ergy differenceDU;g and is valid for the bubbles of larg
radii ^R&*Rc;g21.

It should be noted, however, that Eq.~66!, being a conse-
quence of Eq.~64!, has some features that are typical for t
hydrodynamic description. Thus our numerical experime
have shown that some initial states can give rise to the in
section of the trajectoriesR(t,u0) of the different points of
the wall. This implies that at some moment the hydrod
namic singularity arises and the wall breaks, acquiring
triple-valued profile. In this case the moment of the break
limits naturally the validity of our approach in time. It can b
shown that in the one-dimensional case@see Eq.~85!# the
sufficient condition for the absence of the breaking of t
central part of the wall is given by

l 0DU

g~Df!2
*1, ~88!

whereDf5f22f1 and l 0 is the initial value of the wall’s
thicknessl. It means that if the wall is gently sloping n
points of the wall lying in the regionu^R&2Ru, l /2 will have

FIG. 5. The expansion dynamics of the initially perturbed cr
cal bubble for thef4-f6 potential ~75!. In calculations we chose
«50.185,n53 ~spherical symmetry!. Solid lines represent the nu
merical solutions of Eq.~1! at t150, t2545, t3590, t45135, t5

5180. Dashed lines denote the corresponding solutions obta
from Eq. ~66! taken without the second-order terms. Short dash
lines result from the solutions of Eq.~66! if the second-order terms
are accounted for.
8-8
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finite time to become equal in the coordinate. We examin
the condition~88! in many numerical experiments. It turne
out that it works not only for plane walls, but for cylindrica
and spherical walls as well.

Note that the fulfillment of the condition~88! does not
exclude the breaking at the ‘‘tails’’ of the wall, wheref
approachesf1,2. Moreover, in formally solving Eq.~66! this
breaking always arises, independently of the condition~88!,
before the possible breaking of the central part of the w
For sufficiently smallg the tail breaking takes place very fa
from the wall and becomes practically invisible, as in Fig.
It is easy to see, however, that the tail breaking is physic
meaningless, because it arises beyond the validity doma
our approach. Indeed, in the tail regionsgu^u&2u0u*1 ~see
Fig. 2!, so that the second-order terms in Eq.~66! become of
the first order, and, hence, this equation is no longer va
Therefore, the validity of the approach in time is limite
solely by central breaking that can arise only if the condit
~88! is violated. If the condition~88! is fulfilled, the differ-
ence between the exact and approximate solution at the
y

l,
a

a-
e,

s

n
ro

o-

ys
-

06501
d

l.

.
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n-

tral part of the wall will be small and slowly varying, sinc
the velocities of all points in both solutions level off in ten
ing to unity ~see Fig. 5!.

In summary, we have presented a point-to-point desc
tion of bubble wall dynamics consisting of the solution of t
equation of motion for each point of the wall and subsequ
reconstruction of the wall profile. As examples, we ha
found the wall profiles of critical bubbles for thef3-f4 and
f4-f6 potentials. Also, we have considered the expans
dynamics of a perturbed critical bubble. The results ha
turned out to be in good agreement with numerical solutio
of the starting nonlinear Klein-Gordon equation.
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