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Point-to-point description of the bubble wall dynamics in two-vacuum scalar field models
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We develop a new approach to the Lagrangian description of the bubble wall dynamics in the nonlinear
Klein-Gordon equation with a two-vacuum potential of general form having a small vacuum energy difference.
The approach is based on an ordinary differential equation governing the motion of an arbitrary point of the
wall in the second approximation in the vacuum energy difference and inverse bubble radius. The equation is
model independent: the concrete shape of the potential affects the constants involved only. We give a detailed
derivation of this equation and present the full scheme of our method. As examples, we find some wall
solutions for thep3-¢* and ¢*-¢® potentials and compare them with solutions obtained by the direct numeri-
cal integration of the nonlinear Klein-Gordon equation.
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I. INTRODUCTION waves in *He [6]) and in nonlinear opticgdouble sine-
Gordon(sG model of self-induced transparenf).

There are many physical systems, the evolution of which  Many exact solutions of Eq1) for various potentials are
is determined by effective potentials with two or more dif- presently known, both in one- and multidimensional cases.
ferent minima. Under certain conditions in such systemsHowever, most solutions obtained in multidimensions pos-
first-order phase transitions are possible, which proceedess neither finite energy nor proper spatial symmetry and
through bubble nucleation and subsequent expansion of sgan be frequently treated as interacting plane solitary waves
percritical bubbles of a new phase inside the old one. Thesee, e.g., Ref7]). In the rotationally symmetric case of our
two main mechanisms of spontaneous nucleation are coninterest only a few exact time-dependent bubblelike solutions
monly known. In particle physics and some cosmologicalhave been found for potentials of some specific tyj@s
models the bubbles come into being by quantum tunneling In the present work we are concerned with approximate
through a potential barrier separating different minima of arsolutions of Eq.(1). Consider a field configuration, the en-
effective potentia[1]. In condensed matter the dynamics of ergy of which is concentrated in a transitional layer, a wall,
the order parameter field is usually governed by a nonlineageparating two regions with different vacuum states. Suppose
evolution equation of diffusion type. The bubble nucleationthe wall’s thickness is much less than a characteristic size of
is caused there by thermal fluctuatidiag. Recently, yet an-  the configuration, say, its radius. In this case the evolution of
other mechanism of nucleation has been propdSddIt  the configuration reduces mainly to the motion of the wall
works in nonlinear wave systems and is based on parametrignd can be analyzed by asymptotic methods. Fowtthand
resonance phenomenon and modulational instability of falseG type potentials having one degenerate vacuum this prob-
vacuum oscillations. lem has been considered by many auth@ee, e.g., Refs.

In any case, let us suppose that a new-phase bubble hgg-16)). Clearly, in such models the rotationally symmetric

already formed. Qualitatively, the subsequent stage of its exopological defects(i.e., circular strings, cylindrical and
pansion is almost the same for different physical systems. In

the present paper we investigate the dynamics of the bubble )
expansion in the simplest classical field model,

u—Ap+U'(¢)=0. )

HereU(¢) is a potential depending on a real scalar figld
and having the shape depicted in Fig. 1. Such potentials take
on great significance in the context of the currently discussed
single-field models of open inflatior]. In particle physics : '

effective potentials can acquire this form if quantum correc- s ¢ ¢

tions are accounted fofl]. The nonlinear Klein-Gordon ' :

equation(1) with potentials having several different minima  FIG. 1. Typical shape of the potentials considered. The vacuum
also appears in condensed matter phys&g., when de- energy differenceAU is assumed to be small compared with the
scribing nonlinear modes in anharmonic crystgd$, spin  barrier height.
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spherical domain waljscan only collapse, just due to the d(r,0="1(r), &(r,00=9(r), 2
surface tension: “It is like a soap bubble, but with no restor-

ing overpressure inside itf13]. The dynamics of the col- with f andg being appropriate smooth functions. Inside such
lapse can be easily investigated in the thin-wall approximaa bubble the field is practically equal to the true vacuum
tion using Nambu’s actioi17]. Potentials we are dealing value ¢,, while outside it the field equaks,. The transition
with have at least one local minimu¢false vacuun say, at é1— ¢, occurs in a thin layer of a thicknessR.

¢= ¢1, and the global minimurtirue vacuumat ¢ = 5, so To investigate the bubble dynamics we construct a substi-
that AU=U(¢;) —U(¢,)>0 (see Fig. 1 In such models tution ¢(r,t)= ¢(6), whered(r,t) is a “phase.” Obviously,
the rotationally Symmetric field Configurations Usua”y there is some freedom of the choice of the depend%@él
evolve from nuclei arising in the local first-order phase tran-at the same time this dependence should reflect adequately
sitions ¢1— ¢». If the nucleus radiuRk exceeds some criti- the expected shape of the solution.

cal value R., a nucleus will expanq without limit in the To choosep( ) in the proper way let us take first a po-
shape of a new phase bubble. In this procgs plays the  tential U,(¢) with AU=0. Consider, for simplicity, a one-
role of the difference of pressures in and outside the bUbbl%imensiongﬂ case, i.e.,a p|ane domain wall moving a|0ng the

The first attempt to describe the bubble expansion irk axis. The functionp(6) then obeys the equation
model (1) with a two-vacuum potential has been made by

Voloshin et al. [18]. These authors have found an approxi- ©o=Ul(0), 3
mate expression for the total energy of a bubble and consid-

ered, as an ex%mplg,zthe potentiik=Uo(¢) +Cyp+ C3¢° where 6= (x—Xy—vt)(1—v?) "2 This equation describes
with Uo(#) = (4"~ #%)” and small constants,, Cs. An ar-  he shape of the wall moving with a constant veloaityn
bitrary perturbed sG potential) =2 sirf(¢/2) + W(¢), has e positive direction of thex axis. It can be integrated, at
been considered by Maslov in R¢19]. Having applied the  |gagt through a quadrature, with the boundary conditions
perturbation theory based on the inverse scattering tran 5(0=—0)=d,, (0=+%)=d;.

form, the author derived, in particular, an equation for the” " ~,sider now the two-vacuum potentia( ) depicted in
radiusR(t) of the kinklike bubble in the first order in B/ Fig. 1. When the wall goes through a fixed spatial point, the

andAU~W. The equation foR(t)_ ina dissipativ_e version  fald passes from staig, to states,, losing the energ\U.
of Eg. (1) has been recently obtained by Rotstein and Nepat this point the phas@ changes from+ o at t=— to

o'mnyashch)[zo],.who studied in the first-order appro>.<ima— —w att=-+%. To describe the transition in terms of 6)

tion the wall motion for the potentid) =Uq(¢) +c1¢ With e aqd to the left-hand side of E¢B), as the simplest pos-

a symmetric double-well leading pady(¢) and smallcy. gjpijity an effective friction term that compensates for the
In the present paper we investigate bubble wall dynamicg.hiribution appearing in the right-hand side dueAt.

in the_second-order approximatio_n. Moreover, we CO_nSidef\lamely, we require the function(6) to satisfy the equation
potentials of a general form for which the smallnesabf is

only required. In particular, we make no special assumptions —1y
of the symmetry properties of the leading partlbfe). oot veo=U'(e) @
The paper is organized as follows. Section Il is Whonywith the boundary conditions

devoted to the detailed derivation of the equation for the
bubble “radius”R(t) that has been recently proposed in Ref.
[21]. We give a key idea of our analysis and reduce Ejto

the system of the first-order differential equations for awhere is a positive constant to be found. This is a kev idea
“phase” of the bubble wall. Then we apply the generalized 4 P ' y

: . .—of our analysis.
Krylov-Bogoliubov method and derive, to second order in X . . . -
1/R andAU, the equation of motion of an arbitrary point Physically, Eq.(4) describes the motion with friction of a

=R(t) lying on the wall. In Sec. Ill we consider static solu- mechanical particle in the potentiat U(p). The particle

tions of the obtained equation describing the structure of thétirts alp= ¢2XVhen f=— and_ stops d_ue to th? friction at
critical bubbles. As examplesi®-¢* and ¢-¢° potentials o= ¢, When §= +. Mathematically, this equation and the

are examined there. In Sec. IV the dynamics of the bubblémpose.d'bound.ary conditior{$) are an ei.genv.aIL'Je problem
expansion is considered. We find the integral of motion Ofd_etermlnlng_ uniquelyy(6) and the effective friction coeffi-
the equation obtained and give the general scheme of Olﬁ]em 7. As it follows from (4),

approach. A comparison with results of the direct numerical .

integration of Eq(1) is also presented. Some remarks on the y:AU/I <P§d 0, (6)
validity domain of the approach can be found in Sec. V. —o

¢(0:_w):¢2! ¢(0:+OO):¢1! (5)

so thaty is small for smallAU. For some potentials the
Il. DERIVATION OF THE BASIC EQUATION problem(4) and (5) has exact analytical solutior{see ex-
amples in Sec. I)l Otherwise, it can be easily solved by a
simple perturbation technique or numerically. In so doing, it
Let us consider a bubble of a large radRigvolved from is useful to take into account the asymptotic behavior of
an initial large radius nucleus, ¢(6) given by

A. Suggestions and the key idea
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QD( 0)0~>jc>c~ ¢1,2i e:Kt(e_ 01)

MeIZKi(eiei)i ey (7)
2k (3K )

where .. are some constants,

Y

K+:i_
- 2

')’2 1/2
+ Z“‘U"((ﬁl,z)) . ®

It should be stressed that postulating E4). we add no dis-
sipation to the systenl), but define the dependenc« 6)
only.

Of course, from(4) and (5) it follows that ¢;<¢(6)
<@, (]8]<*). Thus, usingp(6) so defined one cannot de-
scribe, e.g., the vacuum oscillations aroug arising be-
hind the moving wall under specific initial conditions. In
such eventsp( ) will describe correctly the region of the
wall only, which is quite sufficient for our purposes.

It is of interest that Eq(4) was applied long before for

description of travelling waves in chemical and biological

reaction-diffusion systemg22]. In particular, it appears in
the theory of flame propagatiq23] wheree has a sense of
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variables. We will seek the corresponding transformation in
the form

oo

k=k+ 2 ¥'Ki(k,p,p.0), (12
p=p+2, YPi(kp.p,0), (13

provided that

E=Z YAKp.p), (14)

oo

k= ;l ¥Bi(k,p.p), (15)

E=El ¥'Ci(k,p.p), (16)

oo

normalized temperature or concentration. In this connection pt:izl ¥'Di(Kk,p,p). (17)
the existence and uniqueness theorem for solution of prob-

lem (4) and (5) has been proved in Ref24].

Suppose problert¥) and (5) is solved. Assuming the ro-
tational symmetry we substitutp= ¢(6) into (1) and use
(4) to eliminatedU/d¢. The result can be written as the
system

Thus,k, p, andp=p=yr are new, slow variables, whilé
is the fast variable.

Differentiating Eqs(12) and(13) and making use of Egs.
(10—(17), one finds

2 E (A K+ Cio Ko+ 81 K+ KiiKj ),

K+ pet @(kz p2—1)= 7(1——k) ) 2
g (18
0, =k, (10 o i
b b an =21 yi,Zo (Bi—iKjk+Di_iK;p—Pi_iK; 0, (19
where n is the number of spatial dimensions, and we set * i

1/r = y/p. Note thatp can be treated as an additional depen- p,= 2 y E (APt CiojPipt 8 P+ Ki—iPj o),

dent variable satisfying the equatiops=y and p;=0. We

i-iTip

assume thgd=1. As we will see below the latter implies the (20
bubble’s radius is greater than or of the order of the critical o i

one. The velocity of the wall is defined in the ordinary way = 2 ¥ 2 (Bi_PjictDi_jP;3—Pi_ P} ). (21)
asv=p/k.

B. The asymptotic expansion procedure

Recall that we consider potentials with small, so that

v in Eq. (9) is also small. We make use of this fact to con-

struct asymptotic expansions.

With y=0 the system9)—(11) has the exact solutiok
=(1-0v)"12  p=v(1-0v?"Y  4=(r—Ry—uvt)(1
—v?)~ Y2 wherev andR, are constants. When0y<1 the
guantitiesk, p, and, of coursep are considered to be slow
functions ofr, t, compared with the phas# It is assumed
that fast variations ok andp are small, of the order of. To
separate the slow motions from the fast ones we apply th
generalized Krylov-Bogoliubov methd@5]. The essence is
that the slowly varying parts df andp are treated as new

In Egs.(18)—(21) we setKo—k Po—p, Ag=By=Cy=Dy
=0, the indicex, p, p, # mean hereinafter the derivatives
with respect to the corresponding variables, a?}\ois the
Kroneker symbol.

Now we substitute expansiorf42), (13), (18), and(21)
into Eq. (9) and equate coefficients of the corresponding

powers ofy. In zeroth order this immediately gives
K2—p2=1. (22)

In the next orders we arrive at the equation
e

(6’/&0+2(p59/g09)y,=A,+D,+h| (|:1,2, .. .),
(23)
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where, by definition,

1 i
Vilkipp.6)=5 2 (PijP=Ki-K)), (24
o i—1
ha(k,lo,pﬁ):g1 (Ai-Kjict BijPjict Ci Ky
+Di-jPjp)
+Ki_,+(n=1Ki_1/p—8. (25

Note that in Eq.(25) the summation is up to and including

j=i—1, so thath; involves the quantities determined from

the lower-order equations. Thus we have

yl:HPl_?K:b (26)
hy=(n—1)kip—1, (27)
y2=pPy— kK, +(PZ-K2)/2, (28)

h2:A1K1?+ B]_P]_?‘F C]_K]_H‘i‘ D1P13+ K]_;

+(n—1)K,/p, ... (29)

Consider Eg.(23). The corresponding homogeneous

equation has the solutioqa;z. This function grows expo-
nentially when|6|—~. We require that a solution of Eq.

PHYSICAL REVIEW D 69, 065018 (2004

(PK1—KP1)y=B;+Cy, (34)
(PKa—kP2) g=By+ Co+AsP1it Bi Ky i+ C1Py
+ D]_Klg_l— Pl;‘l' Klpl 0 PlKl @+ -
(35)

The next two compatibility conditions,,=k;, and p,
=py, place restrictions on the functiods, B;, C; andD;
in Egs.(14)—(17). In view of the constrain22) we can take
into account only one of the two conditions, e.g., the first
one. This gives

i-1
121 (A-jxBj+A_;pDj—Bi_jiA;—Bi_;pC))=Bi_1,

(i=2,3,...). (36)

On the other hand, differentiation of E@2) with the use of
Eqgs.(14)—(17) leads to the relations

(23) does not contain the exponentially growing terms. Such

solution is
16 5
Yi=— | (Ai+Di+h)eydo (30)
Py’ ==
provided that the orthogonality condition
f (Ai+D;+h)¢5d9=0 (31

is fulfilled.

The expansiong12)—(17) must be supplemented with
compatibility conditions. The first one follows from Egs.
(10) and(11) and read;+ p,=0. Substituting here the ex-
pressiong19) and (20) we arrive at the equation

(PKi—kP)y=Bi+Ci+q; (i=12,...), (32
where the quantities
qi(k,p.p.6)
i—1
+8 P+ KiZ P = PiiKj ) (33

are determined from the lower-order equations. Thus,

kA, =pC;, kB;=pD;. (37)
Hence, introducing the functions
xi(k.p.p)=A+D;i, i(kp.p)=B+Ci, (39
we can write
A=p(kgi—pxi), Bi=—p(ps—kxi),
Ci=k(k¢—pxi), Di=—k(ps—kxi).
(39

Substituting these expressions into E86) and using(22)
we obtain

i1
J.Zl k(Wi X — Yo iXip) + P X — i i XG0

i~ xi-jxjl
=kxi—1,—P¥i-1, (i=23,...). (40)
Note that, in view of(31),
I P
Xi— J‘,ﬁ h,(padﬁ/ f, (padﬁ (41)

At given yx; the condition(40) can be treated as a system of
differential constraints for the functiong,. It can be re-

solved, in particular, by the choiog = (k/p)x; .

C. The second-order approximation

In principle, the above procedure permits us to find the
expansion$12)—(17) in any order iny. Here we will obtain
the first- and the second-order terms of the expansions.

Sinceh; does not depend o# [see Eq.(27)], from (41)
one finds
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x1=—h;=1-(n—1)k/p. (42)

This implies thaty; =0, i.e.,kK;=pP; [see Eqs(30) and
(26)]. With this relation Eq.(34) becomesK; ,=—pi;.
Thus, we obtain

Ki=—p(&t16), Pi=—k(&1+¢16), (43
Wheregl(?,E;) is an arbitrary function.
Now let us calculatdn,, x,, andy,. The formulas(29),
(39), (43 result in
h,=—-M—Na4, (44)

where

- — — n-1
M(K,p,p)=¢1&1+ x1(Ké1 T Péri) +E( &1, 751) :
(45

. _ _ n—1
N(k,p.p>=¢i+xl(kwla+pm+5( Y+ Twl).
(46)

Expression46) can be simplified with the help of E§40).
Indeed, when =2 Eq.(40) reads

Xl(Elle"'E'/’lD —piixit ¥i- XiZKXlﬁ_E/fl;-

(47)
Making use of Eqs(47) and(42) we finally obtain
Ne1-20 N n(n_; D, (48)
p p
Substitution of the expressidd4) into (41) gives
X2=M+ (N, (49

where we introduce the mean value of the phase

<0>=f:0<p§d0/ f:gogda. (50)

With (44) and (49) the formula(30) becomes

—ﬁfﬁ (6)— 6) @28 (51
y2 (P‘zg _DO (PH .

We next calculatg,, K,, andP,. Formula(33) with (39)
and(43) results in

d2=—Q— S0, (52

where

Q(k,p,p)=Erx1+ Yn(Kéyp+périd +KEr,, (53

PHYSICAL REVIEW D 69, 065018 (2004

S(k,p.p) = h1x1+ ’ﬂl(?‘ﬂla"'alﬂlf) +?¢1;-
(54)
The integration of Eq(35) then gives
PKo—kPy= &+ ’//29+f q.de, (59

Wheregz(?,a;) is an arbitrary function. On the other hand,
from Eqgs.(28) and(43) it follows that

— — 1
sz—pP2=§(§1+ P10)°=y,, (56)

wherey, is given by Eq.(51). From (55) and (56) we im-
mediately find

1. — — _ —
Ko=5kéf—péot (kéryn—piha+pQ) 6
1 2 ¢ 2_ 1
+ 5 (kg +pS)6°—kys, (57)
1—, — — — =
Po=5P&—kéz+ (Pérda—kyo+kQ) 6

(py3+kS) 62— pys,.

N| -

+

We give this result for completeness sake only and do not
use it below. Equationg7) become necessary when consid-

ering the bubble wall dynamics in the third approximation

and up. In the next subsection we will obtain the equation
describing the dynamics of the wall in the second approxi-
mation.

D. The basic equation

Let us define, in accordance with Eq40) and (11), the
velocity field and the averaged velocity field, respectively, as

v=p/k, v=pl/k. (58)
In view of (22), it follows that
k=(1-v®)"12  p=v(1-v}) 2 (59)
Then we have
" 2 3
v=£ Zii;ijgﬁ;z =0 y(1-0?)(PK1 — kPy)

+92(1— 0?3 K1 (pK;—kP1) —k(pK,—kPy)]
+0(9), (60)

whereK,, P;, andpK,—kP, are determined by Eq$43)
and (55).

Now let us calculate the total derivative of Differentia-
tion of Eq.(60) with the use of EqS10)—(17), (39), and(59)
gives
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o(r,t) o(0) This is the basic equation of our approach. It has the unified
""""""""""""""""""""""""""""""" form for any two-vacuum modelél) with small AU: the
concrete shape df () affects the constantg, (6), andé,
only. Recall that these constants are determined by ®gs.
(50), and(65), in accordance with the solution of the eigen-
Qoo YT N value problem(4) and (5) which is assumed to be known.
R® r 8, @ ] The initial conditions for Eq(66) follow from (2) and read

e

FIG. 2. A point-to-point description of a wall in terms of the g

phase variable. f(R(0))= ¢y, R(0)=— (_

f, (67)

)r—R(O)

— T 2 T2\312 e — —
vt oo =vitove = y (10 Dalp(rict Yaid) The first and the second terms in the right-hand side of
(£ — — N £ — —y_ Eq. (66) are of first order iny~AU and 1R<1v. They have
TGt Y1ph)] TPt 1, 0) — (81F 41 ) the same form as those obtained in R¢1D,20. The first
><(3v_)(1— P} +0(¥%), (61) term is the accelerating force caused by the energy releasing
in the course of the phase transition. The second term of the
where opposite sign describes the action of the surface tension force
o o tending to collapse the bubble. The balance of these two
vitov,=(1—-0v?)¥(yx1+¥2x2) +O(»%). (62  forces gives the value of the effective critical radius of the

. ~ bubble,
Note that the functiong,, ,, andq, do not appear in this
approximation. Next we insert the formuled?) and(49) for n-1
x1 and y,, and express in terms ofv as Re= y (68)
v=0+y(1—0?)(&+ ¢10)+O(»?) (63 thus measured for a mean point of the bubble wall where
0o=(0).

[see Eq.(60)]. Using the formulag45), (46), and (48) one

can see that the terms involvirg and, cancel out. As a ot second-order terms and is positive. With the factey

result, the right-hand side of E(61) is significantly simpli-  _ 5 it qescribes, in particular, the increasing of the slope of

fied. Replacing by yr we arrive at the equation the wall in the course of the bubble expansion.

The valueg,, and hence,, can be treated as a Lagrang-

ian label of a pointR on the wall. Thus, Eq(66) gives the
n—1 complete point-to-point description of both the motion of the

= y(1-0v?)%?— T(l—v2)+((6)— 6)(1—v?)? wall as a whole and its structure.

The expression in the square brackets of ) consists
vitou,

nn—1) Ill. STATIC SOLUTION: THE STRUCTURE

I’—Z OF THE CRITICAL BUBBLE WALL

n—1
X[ Y (1=v?) =2y ——(1-v?) %+
The static solution will be immediately derived from Eq.
(66) if we just set thereR=0, R=0. The result can be
Thus, in the second approximation gnand 1f <y, we  written as

have reduced the systef®—(11) for the phased to the

(64)

equation of the hydrodynamic type, which, however, still in- R R

volves# explicitly. The last step is as follows. Defif{t) as R 1- R

a coordinate of a point on the wall where the figldakes a (6)— o=y 1 © ¢ ' (69)
value ¢, and, with the knowrp(6), defined, as a phase of R\? R n

this point, i.e., R_c - 2R_c + 1

¢R.D=do=e(8) ($1=¢o=¢) ©9 where we used the definitioi®8) of the critical radiusk; .
(see Fig. 2 Setting r=R(t), v(Rt)=R, do/dt=R, 6 This equation gives the dependenég(R) valid for R

g f 4 finall inM21 =R.. Knowing the solution{¢(6),y} of the eigenvalue
f=const, from(64) we finally obtain[21] problem(4) and(5), we thus obtain the structure of the wall

of the critical bubble as follows:

¢c(r):{[¢(0)]0:00(R)}R:r . (70

R=y(1-R?)¥*- %(1— R?)+((6)— 60)| ¥*(1~R*)*?

_ (66) Let us consider two examples. The first one is i#feg*

(n—1) (1- R2)12
2 theory,

n—1 -, N
_ZYT(].—R )+R—
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3.5

(a)

31

25+

0 45

(b)

30

FIG. 3. The wall profiles of the critical spherical€ 3) bubbles
obtained by our metho¢dashed linesand by the numerical inte-

gration of Eq.(1) (solid lineg. The calculations were performed for

the potential€71) (upper paneland(75) (lower panel with differ-

PHYSICAL REVIEW D 69, 065018 (2004

$o=(2e) M1+ (1-4)V4"2,

0* =(0)— (4/3) "¢, 2. (78)
The critical radius and the profile of the wall result from Egs.
(68) and (70) in the same way. The comparison graphs are
shown in Fig. 8b). We thus conclude that our description of
the critical bubble wall is in a good agreement with the re-
sults of the direct numerical integration of Eq).

IV. INTEGRAL OF MOTION AND GENERAL SCHEME
OF THE APPROACH

Consider now time-dependent solutions. At first, let us try
to find an integral of motion of Eq66). The standard pro-

cedure is as follows. Assuming?=F(R), from Eq. (66)
one obtains the first-order differential equation F(R). Its
solution involves an arbitrary constant, sBywhich is the
required integral of motion. In this way we find

R(l—RZ)l’z—u+(6)R

ent values ot. It is seen the larger the bubble radius the better our

solutions approximate the true ones.

U(g)= %dﬂ— %¢3+ s <o<g<§). (70)

The solution of the eigenvalue problei@ and(5) is

¢(0)=dof{1+exd ga(e/VH 60— 61} 71, (72
y=(8e) Y 3(1—4e)Y?—1] (73

(see, e.g., Ref.23]), where
bo=(2e) [1+(1—48)Y3, 6*=(0). (74

Using (73) we first obtainR; by Eq. (68). Then we take
0o(R) from Eq.(69) and insertd= 6y(r) into (72), in accor-
dance with the formuld70). The resulting profiles for sev-
eral values ok are presented in Fig.(8.

The second example is thi-4° theory,

1 1 P 3
U(p)= §¢2_Z¢’4+€¢6 <0<8<E>. (75)

In this case the solution of the eigenvalue problgihand
(5) reads

0(0)= po{1+exd ¢5(4e/3) 26— %)]} 2,

y=(32) ¥4 2(1-4e)"2-1],

(76)

(77

where

E=—y(1+y5)R(1_R2)1/2_u7(5) no(d), (79
where
n 2(n—1)
U(8)= 55| 1 et e(d)], (80
o(8)= 1—4(;1) ey 1/2, 5=(6)— 6y
(81)

Note that the expressiof79) is, in fact, the total energy of
the bubble. Indeed, in the first approximation

E~—yR"+n(1-R?)YR"-1, (82
It is seen that the first term on the right-hand side of B§)
is the volume energy of the-dimensional bubble, while the
second term is its surface energy.

From Eg. (799 we immediately obtain the velocity
squared of a point on the wall having the “coordinat®”

Eu_(8)+ y(1+yd)u. (§)R®)?
RIE+ y(1+ y8)R"(]

R2=1 (83

The solution of this equation is expressed through a quadra-
ture. In one-dimensional case it can be evaluated in explicit
form. Indeed, fom=1 we have

1x1
U:(5):m, o=1, (84)
so that the integration yields
R(1)=R(0)+{[1+ y*(1+ yd)X(t+10)*]"?
~[1=R¥(0)] "3/{»(1+yd)}, (85)
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FIG. 5. The expansion dynamics of the initially perturbed criti-

. cal bubble for theg*-¢® potential (75). In calculations we chose
_ R(0) 86 £=0.185,n=23 (spherical symmetjy Solid lines represent the nu-
B _p2 12" (86) merical solutions of Eq(1) att;=0, t,=45, t3=90, t,=135, t5
Y(1+y5)[1-R(0)] . =90, L= .
=180. Dashed lines denote the corresponding solutions obtained
rom Eq. (66) taken without the second-order terms. Short dashed

. f
Now we can describe the general scheme of our approacnnes result from the solutions of E¢66) if the second-order terms

to

Suppose we need to solve the initial problén First of all, 4.6 accounted for.
we should find the solutiof(6),y} of the eigenvalue prob-
lem (4) and(5). Then we fix a point on the wall by the choice V. CONCLUDING REMARKS

of a value¢, (see Fig. 2 The initial coordinateR(0) and

the velocityR(0) of the point are found from the formulas
(67). The functione () determines the values ¢8) and 6,
by Eqgs.(50) and(65), respectively. Knowing=( 6) — 6, we
then calculate the values af. () anda(6) by the formulas
(80) and (81), and thus obtain the valug of the integral of
motion (79). The trajectory of the point considered is foun
by the integration of Eq(83). The described scheme is pre-

So, we have reduced the problem of solving the nonlinear
Klein-Gordon equatioril) to the eigenvalue proble@) and
(5) and to the equatioii66) governing the motion of each
point of the wall. The solution of the eigenvalue problem can
be easily obtained numerically or even analytically. Equation
d (66) is integrated through the quadrature. The resulting for-

mula (87) describes the dynamics of the bubble expansion.
sented in Fig. 4. Our approach is applicable to the potentials with small en-

Of course, this procedure should be performed for eacrﬁgg?; ?F'gz%niﬁyf v and is valid for the bubbles of large
point of the wall. As a result, we will have a family of tra- It shoJId E)e ZOIéd however, that E66), being a conse-
jectories parametrized by, i.e., R=R(t,6p). This implies ’ ’ ' 9

~ L : . quence of Eq(64), has some features that are typical for the
?belltegois g?\geRr,]t?D.yHence, the transition to the Eulerian vari hydrodynamic description. Thus our numerical experiments

have shown that some initial states can give rise to the inter-
section of the trajectorieR(t, 8y) of the different points of

¢(r,t)={[<,o(0)]9:00(R,t)}R:,. 87 the wall. This implies that at some moment the hydrody-

namic singularity arises and the wall breaks, acquiring a

In Fig. 5 the dynamics of the bubble expansion in thetriple-valued profile. In this case the moment of the breaking

¢*-¢® theory (75) is presented. As an initial state, a per- limits natura[ly the validity of our approach in time. It can be
turbed critical bubble was chosen. One can compare the waihown that in the one-dimensional cdsee Eq.(85)] the
profile curves obtained by the direct numerical integration ofufficient condition for the absence of the breaking of the
Eq. (1) with the curves obtained from formul87) with the ~ central part of the wall is given by

use of the solution of Eq66) with and without the second-

order terms. It is seen that taking into account just first two loAU ~1 88)
terms on the right-hand side of E6) leads to the correct y(Ap)2

description of the motion for the mean poifR) only, i.e.,

for 6,=(6), while the addition of the second-order terms whereA ¢=¢,— ¢, andl is the initial value of the wall’'s
results in the wall profile, which is in good agreement withthicknessl. It means that if the wall is gently sloping no
the numerical solution of Eq1). points of the wall lying in the regionR) — R| <1/2 will have
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finite time to become equal in the coordinate. We examinedral part of the wall will be small and slowly varying, since
the condition(88) in many numerical experiments. It turned the velocities of all points in both solutions level off in tend-
out that it works not only for plane walls, but for cylindrical ing to unity (see Fig. 5.
and spherical walls as well. In summary, we have presented a point-to-point descrip-
Note that the fulfillment of the conditio88) does not  tjon of bubble wall dynamics consisting of the solution of the
exclude the breaking at the *tails” of the wall, wher¢  equation of motion for each point of the wall and subsequent
approaches; ,. Moreover, in formally solving Eq66) this  reconstruction of the wall profile. As examples, we have
breaking always arises, independently of the condit®®),  found the wall profiles of critical bubbles for ths®-¢* and
before the possible breaking of the central part of the wall¢4_¢6 potentials. Also, we have considered the expansion
For sufficiently smally the tail breaking takes place very far dynamics of a perturbed critical bubble. The results have
from the wall and becomes practically invisible, as in Fig. 5.tyrned out to be in good agreement with numerical solutions

Itis easy to see, however, that the tail breaking is phySICaII)bf the Starting nonlinear Klein-Gordon equation'
meaningless, because it arises beyond the validity domain of

our approach. Indeed, in the tail regiopg 6) — 6y|= 1 (see

Fig. 2), so that the second-order terms in E8f) become of ACKNOWLEDGMENTS

the first order, and, hence, this equation is no longer valid.
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