PHYSICAL REVIEW D 69, 065015 (2004

Casimir force on a piston
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We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional
L X b rectangular box, divided by a movable partitigsiston) into two compartments of dimensioas<b and
(L—a)xh. We compute the Casimir force on the piston in the limit«o. Regardless of the value afb, the
piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are
derived fora<b anda>b.
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[. INTRODUCTION tribution to the vacuum energy from the region outside the
box, which, in principle, also depends on its dimensions.

In 1948 Casimir predicted a remarkable macroscopidThis problem was discussed recently[i8], but the solu-
quantum effect: two conducting and neutral parallel plategion proposed there is incompletésecond, its finiteness is
should attract each other due to the disturbance of than artifact of the AR scheme: more than just regularizing
vacuum of the electromagnetic field caused by their presendategrals or sums, it also does a certain amount of renormal-
[1] (for a general review on the Casimir effect, see R2}). ization by automatically subtracting power-law divergences
Inspired by that result, a few years later Casimir suggestedn this respect, AR is similar to dimensional regularization
that the zero-point pressure of the electromagnetic field14]). This is precisely what happens here. If one regularizes
might yield the stresses postulated by Poindarerder to  the sum over modes in E¢l) with a smooth cutoff function
explain the stability of the electrofi3]. Boyer, however, and performs the sum using the Abel-Plana formula, one
showed that the Casimir force for a conducting sphericabbtains(see Appendix B
tsf?:llelgczfg)nu.lswem], thus invalidating Casimir's model for Eocuof( @)= Cy(A)ab+ Co(A)(a+b) + Egan(arb),

Boyer’s result brought attention to the fact that the attrac- @
tive or repulsive character of the Casimir force depends oRvith Cl(A)~A3 and CZ(A)~A2 asA—». (We have dis-
the geometry of the configuration. This has been investigategarded terms that vanish in that limit.
in detail for fields(scalar or electromagneficonfined in a The difference betweeB ¢ o andEg ag Would be harm-
d-dimensional rectangular bd¥%—11]. Let us consider, for |ess if the first two terms on the right-hand sigkes) of Eq.
instance, a massless scalar field subject to Dirichlet boundang) could be absorbed into counterterms. Let us forget for a
conditions at the walls of the two-dimensional boxx®  moment the problem of neglecting the exterior modes, and
<a, Osys=b. The vacuum energy is formally given by ( examine this question. The first term has the foggab,

=c=1) wheree, is the energy density of the vacuum in the absence
of the box. It can be cancelled by a “cosmological constant”

1 jm\? [km\? counterterm, a constant added to the Hamiltonian density in

Eo(a,b)= 2 j;l Djks  Ojk= a + o order to make the vacuum energy in free space equal to zero.

1) The problem lies in the second term: being proportional to
the perimeter of the box, it may be interpretedgart of) the
One can perform the summation using analytic regularizatioself-energy of its walls. Such a tercannotbe eliminated by
(AR); the result is(see Appendix A a renormalization of the parameters of the thefi$,14.
(This problem also occurs in the parallel plates configuration.
P In that case, however, it can be ignored if one is interested
' only in the force between the plates, for their self-energies do
not depend on the distance between them. In the present
where Z, is an Epstein zeta functiofil2]. An analysis of case, the dismissal of the self-energy of the box walls could
Eqg. (2) shows that the sign of the Casimir tensidn be justified if perimeter-preserving deformations are the only
=—0JEgar/JA (Where A=ab is the area of the boxde-  ones allowed.
pends on the ratid/a: it is positive if 1<b/a<2.74 and In this work we shall examine a slightly different system
negative ifb/a>2.74[2]. in which both problems can be ignored. Instead of the box
There are, however, at least two reasons for which oneiscussed above, we shall consider a box of dimensions
should be suspicious of the use of K@) as the basis for xb divided by a movable partition, or piston, into two com-
such an analysis. First, it does not take into account the corpartments,A and B, of dimensionsaxb and (L—a)Xb,
respectively(see Fig. 1 If one is interested—as we are—in
computing the Casimir forcen the pistonthen the contri-
*Electronic address: rmoritz@if.ufrj.br bution to the vacuum energy from the region outside the box

ab w1
Eoar(a,b)=— Ezz(a,b;3)+ T 5+

b
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Its analytic continuation to the complesplane(with simple
poles ats=1,—1,—3,...) isgiven by[7]
b A B 1—-s *©
. am s—1 K(1-s2(2nma)
a L—a S(m,a;s)= a(1-9)12 F( 2 )+4nzl (nma)(lfs)lz !
FIG. 1. Two-dimensional X b rectangular box. A movable par- ®
tition (a piston divides it into two compartment#y andB, of di-  whereK ,(z) is the modified Bessel function. Equatio(®
mensionsax b and (L—a)Xb, respectively. We shall assume that and (8) allow us to reexpress the Epstein zeta function that
a,b<L—o0, appears in Eq(2) as[17]
can be ignored, as it is not affected by the position of the S B
piston. In addition, as will be shown below, the divergent Z2(a,b;3)= Z_m (j?a®+k?b?) =32
terms in the Casimir energy are naturally eliminated when b
one computes the force on the piston. We shall compute this * *
force in the limitL—o and show that it pulls the piston to = > X (jZal+k%?) 32
the nearest end of the box regardless of the value of the ratio j=me k=
a/b. We shall also derive asymptotic expressions for the w0
force fora<b anda>b. + > (kZp?)~32
k= —o
Il. CASIMIR FORCE o 32 % 20(3)
. =——— > S(mja,1lb;3)+
The total energy of the vacuum for the system described I'(3/2) =1 b3
in the previous paragraptand depicted in Fig. )lcan be
written as the sum of three terms: 2m% 16w « k ( a\l 24(3)
= +— Kyl 2wk = | + ——.
A B —out 3a’h  ab? i1 ] b b®
Eo=Ey+Eg+Eg". (4)
€)
Using the cutoff regularization discussed in Appendix B, the . . . .
first wo terms are given byEA=Egaofab) and EZ Inserting this result into Eq2) yields
=Ep cutor(L —a,b) [see Eq.(3)], so Eq.(4) becomes  (3a 1 &k a
Eoar(a,b)= 2% a2 2p E .—K1(27Tjk5).
Eo=Egar(a,b) + Egar(L—a,b)+ Cy(A)Lb 480 16mb? 2D ji=1 ] 0

+Co(A)(L+2b)+EJ" (5)
Inserting Eq.(10) and the corresponding expression for
The Casimir force on the piston is given byE,/da. Since  Eoar(L —a,b) into Eq. (6) and taking the limitL —o we
the last three terms on the rhs of E§) do not depend on the obtain the following expression for the Casimir force on the
position of the piston, we obtain the following result for the PISton:
Casimir force on it:
a

5 (1D

a lim |:=b—7T2 > szi( 2mjk
e k=1
F=——3[Eoar(a,b)+Egar(L—a,b)]. 6) ] |

whereK 7 (x) =dK(x)/dx. SinceK(x) is a monotonic de-
As anticipated, although the total vacuum energy containgreasing function of, it follows from Eq.(11) thatF <0 for
divergent terms and a ternE§") that one does not know all (positive values ofa/b; in other words, the piston is
how to compute, the Casimir force on the piston is finite ancattracted to the nearest end of the cavity.
can be computed exactly. It is easy to obtain an asymptotic expression Fovalid
The result one obtains for the force insertif®y into Eq.  for a>b: sinceK;(x)~ ym/2x exp(—x) for largex, one may
(6) is not very illuminating, so, before we actually compute retain only the term wit)=k=1 in Eq.(11), thus obtaining
F, let us derive an alternative expression Eyar(a,b). In

qrder to do that, it is convenient to define the auxiliary func- Fe— z(ab3)‘1’2exr{ cne (a>b). (12)
tion 2 b
s\ 2 m\2 /n\2]-s2 This result_ hgs the same form as the as_ymp'gotic e_xp_ression
S(m,a;s) ::77—5/21“(—) 2 {(— +| = of the Casimir force between two platesdne dimensiofin
2/n== [\ 7 a the case of a scalar field with mass= 7/b [7]. This fact has
a simple physical interpretation: whex®b the system be-
[Re(s)>1]. (7) comes quasi-one-dimensional, with the field acquiring an ef-
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fective mass equal to the energy gap=w/b due to the APPENDIX A
confinement in the transverse direction.

In order to obtain an approximation o valid for a<b,
we note tha€g ar(a,b) =Eg ar(b,a), so that we can replace

Let us evaluate the divergent sum over modes in (E&p.
using analytic regularization. We start with the function

Eqg. (10) by a i\2 (k|22
. gabis)=5 2 |3 +5H . (A
c oo T (3)b 1 s kK ) _kb k=1
oA A gg  doma? 22 ] PTE)

which is defined for Ref)>2. As we shall see, its analytic
continuation to the comples plane is well defined at
=—1, so we can define the analytically regularized Casimir
energy assg ar(a,b)==£&(a,b;—1).

In order to obtain the analytic continuation &fa,b;s) it
is convenient to rewrite EqAl) as[17]

13

If, on the other hand, we still expre&s Ar(L—a,b) in Eq.
(6) according to Eq(10), we obtain an alternative expression
for the force on the pistofin the limit L —):

{(3)b {3 wh & ( , b) a * 2 K252
=— + - +— k?Ko| 2mjk =|. g == S ARTER I
8ma® 482 16mb? ad j,k2=1 o\ =M% a dabis)=g ,-:E_m k:z_w a +(b> }
(14
T * , J 2 k ARV
The last term in Eq(14) is exponentially suppressed when ) j szoc a + b
a<b, so in this case we have '
Cse (W (I
{3)b 7w £(3) i~ \a ke \ b
~— + - (a<b). (15 !
8ma® 482 16mb?
T 11 T
=§ZZ —,B;s)—zg(s)(as+bs), (A2)
If one divides both sides of EQL5) by b, the first term on its a
rhs correctly reproduces the Casimir tension between two ] .
infinite parallel lines a distanca apart[7]. The other two WheréZy(as, ... a,:s) and {(s) denote the Epstein and

Riemann zeta functions, respectively. Applying the reflection

terms are subdominant far<b, and yield finite size correc-
formulas[7]

tions to that result.

1_
IIl. CONCLUSION F(;) 72y (s)= F(TS> m V2 (1-s), (A3)

We argued in this work that the knowledge of the vacuum

energyinside a rectangular cavity is not enough for one to S| _o» _
calculate the Casimir force on its faces. Two ingredients are @1 -@pl'| 5|7 “Zp(as, ... 8p;S)
missing in such a calculation: the knowledge of the contri-

bution to the vacuum energy from the region outside the p—s

=T

—p)12 .
cavity, and the proper handling of divergent terms in the 2 )”(S PZy(1lay, ... 1a,;p—s) (A4)

regularized expression of the vacuum energy. We then con-

sidered a slightly different type of cavity, namely, a rectan-to Eq. (A2) and takings= —1 we obtain Eq(2).
gular box divided by a piston into two rectangular compart-
ments. In this case, if one is interested only in the Casimir
force on the piston, those ingrediertan be neglected. In
addition, the force-on-the-piston problem has two attractive In this appendix we derive Ed3) using the Abel-Plana
features(i) it is a simple generalization of the single-cavity summation formuld 18],

problem, for which results are already available in the litera-

APPENDIX B

ture [5—11], and(ii) from the experimental point of view, it * 1 o
is simpler to construct a cavity with a piston than a variable- E F(n)=sF(0)+ f F(t)dt
. . " n=0 2 0
size rectangular cavity. Results for the electromagnetic field
in a three-dimensional rectangular cavity with a piston will o “F(e+it)—F(e—it)
be presented elsewhere. +i lim dt. (B1)
e—0"t 0 ez’”—l
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Similarly, application of Eq(B1) to =;S{?) yields

- =TS [E K T (LK
O,Cutoﬂ(av )_ 2 =t a_2 b2 A a'b )
) E s? :——f dttDA(Ot)+abf duf dv(u?+v?)1?
”2 ®2
2 = XDA(U,U)+|A(a,b), (88)

The functionD , (z,w) must satisfy the following conditions where

in the region Ref),Re(w)=0: (i) it is analytic in both vari-

ables;(ii) it is real for z and w real; (iii) it vanishes suffi- . . o dv 5 o 1
ciently fast for|z|,|w|— (so that the regularized series is 'a(@b)=iab lim fo dufo m[(u —vitie)

absolutely convergent(iv) it is symmetric, i.e.,D,(z,w) e—0"

=D,(w,2), and (v) limy_...D(z,w)=1. An example of XD, (e+iv,u)—c.cl. (B9)
such a function is given by ,(z,w)=d,(z)d,(w), with

dr(2)=[1+(z+1))/A?]"2 Taking the limitA— < in the integral above we obtain

Applying formula (B1) to the seriesS; in (B2), we can

H o) oo dv
rewrite each of them as a sum of three terms, namely, lim 1 \(a,b)= —2abf duf (02— u2) 12
. Ao 0 u eZﬂ'av_ 1
i J

S' " 2a

5504| 3:0/ (B3)

® dv v
=—2abf z—f du(v?—u?)*?
" 0o e"™—1Jo

N P
2— —_— —_— — —
Sl —fo dU 2+b2 DA

ol (B4) ab (= v 3)b
a a’b -z j vy _ O )
2 Jo -1 g’
s du .2 u2 1/2 ) ) ) ) )
s®=i lim f S ~ tie Finally, let us take the limit\ —<° in Eq. (B5). Changing the
! . 0t90 e2™_111g2 p? variable of integratioru to t=au/jb, we obtain
. . -2
] e+ @) 2 bjw dt 2 4\12
DA(51 b )—C.C.l. (BY) A“ansj PR ezm'bt/a_l(t Ly
i (1) i 2 -
Applying (B1) to %;S;™ yields _ 2j“b D J dt(2— 1)1 2nkibua
" a2 k=1J1
v v
3, = [ “ao| - 22D, 20 b
= ° =—%2 K1<27-rkj—) (B1D)
1(> wvdo iv
+5Jo 2™ Dl 70 Fcc. (B6)  Collecting all pieces together we obtain E€B), with

Eo ar(a,b) in the form given by Eq(13) and
Changing the variable of integration in the first integrat to

=ypl/a and taking the limitA—c in the second one, we Cl(A)=zfmdufwdv(uhruz)l’zDA(u,v), (B12)
obtain 2J)o 0
> s(l):—grdttb (t o>+i (B7) C (A)=—7rfocdttD (t,0) (B13)
= 2o ALl 2da" 2 o AlLY).
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