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Casimir force on a piston

R. M. Cavalcanti*
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We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional
L3b rectangular box, divided by a movable partition~piston! into two compartments of dimensionsa3b and
(L2a)3b. We compute the Casimir force on the piston in the limitL→`. Regardless of the value ofa/b, the
piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are
derived fora!b anda@b.
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I. INTRODUCTION

In 1948 Casimir predicted a remarkable macrosco
quantum effect: two conducting and neutral parallel pla
should attract each other due to the disturbance of
vacuum of the electromagnetic field caused by their prese
@1# ~for a general review on the Casimir effect, see Ref.@2#!.
Inspired by that result, a few years later Casimir sugges
that the zero-point pressure of the electromagnetic fi
might yield the stresses postulated by Poincare´ in order to
explain the stability of the electron@3#. Boyer, however,
showed that the Casimir force for a conducting spher
shell is repulsive@4#, thus invalidating Casimir’s model fo
the electron.

Boyer’s result brought attention to the fact that the attr
tive or repulsive character of the Casimir force depends
the geometry of the configuration. This has been investiga
in detail for fields~scalar or electromagnetic! confined in a
d-dimensional rectangular box@5–11#. Let us consider, for
instance, a massless scalar field subject to Dirichlet boun
conditions at the walls of the two-dimensional box 0<x
<a, 0<y<b. The vacuum energy is formally given by (\
5c51)

E0~a,b!5
1

2
(

j ,k51

`

v jk , v jk5AS j p

a
D 2

1S kp

b
D 2

.

~1!

One can perform the summation using analytic regulariza
~AR!; the result is~see Appendix A!

E0,AR~a,b!52
ab

32p
Z2~a,b;3!1

p

48S 1

a
1

1

bD , ~2!

where Z2 is an Epstein zeta function@12#. An analysis of
Eq. ~2! shows that the sign of the Casimir tensionT
52]E0,AR/]A ~where A5ab is the area of the box! de-
pends on the ratiob/a: it is positive if 1<b/a,2.74 and
negative ifb/a.2.74 @2#.

There are, however, at least two reasons for which
should be suspicious of the use of Eq.~2! as the basis for
such an analysis. First, it does not take into account the c
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tribution to the vacuum energy from the region outside
box, which, in principle, also depends on its dimensio
~This problem was discussed recently in@13#, but the solu-
tion proposed there is incomplete.! Second, its finiteness is
an artifact of the AR scheme: more than just regulariz
integrals or sums, it also does a certain amount of renorm
ization by automatically subtracting power-law divergenc
~in this respect, AR is similar to dimensional regularizati
@14#!. This is precisely what happens here. If one regulari
the sum over modes in Eq.~1! with a smooth cutoff function
and performs the sum using the Abel-Plana formula, o
obtains~see Appendix B!

E0,cutoff~a,b!5C1~L!ab1C2~L!~a1b!1E0,AR~a,b!,
~3!

with C1(L);L3 andC2(L);L2 asL→`. ~We have dis-
carded terms that vanish in that limit.!

The difference betweenE0,cutoff andE0,AR would be harm-
less if the first two terms on the right-hand side~rhs! of Eq.
~3! could be absorbed into counterterms. Let us forget fo
moment the problem of neglecting the exterior modes, a
examine this question. The first term has the forme0ab,
wheree0 is the energy density of the vacuum in the absen
of the box. It can be cancelled by a ‘‘cosmological consta
counterterm, a constant added to the Hamiltonian densit
order to make the vacuum energy in free space equal to z
The problem lies in the second term: being proportional
the perimeter of the box, it may be interpreted as~part of! the
self-energy of its walls. Such a termcannotbe eliminated by
a renormalization of the parameters of the theory@15,16#.
~This problem also occurs in the parallel plates configurati
In that case, however, it can be ignored if one is interes
only in the force between the plates, for their self-energies
not depend on the distance between them. In the pre
case, the dismissal of the self-energy of the box walls co
be justified if perimeter-preserving deformations are the o
ones allowed.!

In this work we shall examine a slightly different syste
in which both problems can be ignored. Instead of the b
discussed above, we shall consider a box of dimensionL
3b divided by a movable partition, or piston, into two com
partments,A and B, of dimensionsa3b and (L2a)3b,
respectively~see Fig. 1!. If one is interested—as we are—i
computing the Casimir forceon the piston, then the contri-
bution to the vacuum energy from the region outside the b
©2004 The American Physical Society15-1
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can be ignored, as it is not affected by the position of
piston. In addition, as will be shown below, the diverge
terms in the Casimir energy are naturally eliminated wh
one computes the force on the piston. We shall compute
force in the limitL→` and show that it pulls the piston t
the nearest end of the box regardless of the value of the
a/b. We shall also derive asymptotic expressions for
force for a!b anda@b.

II. CASIMIR FORCE

The total energy of the vacuum for the system descri
in the previous paragraph~and depicted in Fig. 1! can be
written as the sum of three terms:

E05E0
A1E0

B1E0
out. ~4!

Using the cutoff regularization discussed in Appendix B, t
first two terms are given byE0

A5E0,cutoff(a,b) and E0
B

5E0,cutoff(L2a,b) @see Eq.~3!#, so Eq.~4! becomes

E05E0,AR~a,b!1E0,AR~L2a,b!1C1~L!Lb

1C2~L!~L12b!1E0
out. ~5!

The Casimir force on the piston is given by2]E0 /]a. Since
the last three terms on the rhs of Eq.~5! do not depend on the
position of the piston, we obtain the following result for th
Casimir force on it:

F52
]

]a
@E0,AR~a,b!1E0,AR~L2a,b!#. ~6!

As anticipated, although the total vacuum energy conta
divergent terms and a term (E0

out) that one does not know
how to compute, the Casimir force on the piston is finite a
can be computed exactly.

The result one obtains for the force inserting~2! into Eq.
~6! is not very illuminating, so, before we actually compu
F, let us derive an alternative expression forE0,AR(a,b). In
order to do that, it is convenient to define the auxiliary fun
tion

S~m,a;s!ªp2s/2GS s

2D (
n52`

` F S m

p D 2

1S n

aD 2G2s/2

@Re~s!.1#. ~7!

FIG. 1. Two-dimensionalL3b rectangular box. A movable par
tition ~a piston! divides it into two compartments,A and B, of di-
mensionsa3b and (L2a)3b, respectively. We shall assume th
a,b!L→`.
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Its analytic continuation to the complexs plane~with simple
poles ats51,21,23, . . . ) isgiven by @7#

S~m,a;s!5
am12s

p (12s)/2FGS s21

2 D14(
n51

`
K (12s)/2~2nma!

~nma!(12s)/2 G ,

~8!

whereKn(z) is the modified Bessel function. Equations~7!
and ~8! allow us to reexpress the Epstein zeta function t
appears in Eq.~2! as @17#

Z2~a,b;3!5 (
j ,k52`

`

8 ~ j 2a21k2b2!23/2

5 (
j 52`

`

8 (
k52`

`

~ j 2a21k2b2!23/2

1 (
k52`

`

8 ~k2b2!23/2

5
2p3/2

G~3/2! (
j 51

`

S~p ja,1/b;3!1
2z~3!

b3

5
2p2

3a2b
1

16p

ab2 (
j ,k51

`
k

j
K1S 2p jk

a

bD1
2z~3!

b3
.

~9!

Inserting this result into Eq.~2! yields

E0,AR~a,b!5
p

48b
2

z~3!a

16pb2
2

1

2b (
j ,k51

`
k

j
K1S 2p jk

a

bD .

~10!

Inserting Eq. ~10! and the corresponding expression f
E0,AR(L2a,b) into Eq. ~6! and taking the limitL→` we
obtain the following expression for the Casimir force on t
piston:

lim
L→`

F5
p

b2 (
j ,k51

`

k2K18S 2p jk
a

bD , ~11!

whereK18(x)5dK1(x)/dx. SinceK1(x) is a monotonic de-
creasing function ofx, it follows from Eq.~11! thatF,0 for
all ~positive! values ofa/b; in other words, the piston is
attracted to the nearest end of the cavity.

It is easy to obtain an asymptotic expression forF valid
for a@b: sinceK1(x);Ap/2x exp(2x) for largex, one may
retain only the term withj 5k51 in Eq.~11!, thus obtaining

F;2
p

2
~ab3!21/2expS 2

2pa

b D ~a@b!. ~12!

This result has the same form as the asymptotic expres
of the Casimir force between two plates inone dimensionin
the case of a scalar field with massm5p/b @7#. This fact has
a simple physical interpretation: whena@b the system be-
comes quasi-one-dimensional, with the field acquiring an
5-2
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fective mass equal to the energy gapD5p/b due to the
confinement in the transverse direction.

In order to obtain an approximation toF valid for a!b,
we note thatE0,AR(a,b)5E0,AR(b,a), so that we can replac
Eq. ~10! by

E0,AR~a,b!5
p

48a
2

z~3!b

16pa2
2

1

2a (
j ,k51

`
k

j
K1S 2p jk

b

aD .

~13!

If, on the other hand, we still expressE0,AR(L2a,b) in Eq.
~6! according to Eq.~10!, we obtain an alternative expressio
for the force on the piston~in the limit L→`):

F52
z~3!b

8pa3
1

p

48a2
2

z~3!

16pb2
1

pb

a3 (
j ,k51

`

k2K0S 2p jk
b

aD .

~14!

The last term in Eq.~14! is exponentially suppressed whe
a!b, so in this case we have

F;2
z~3!b

8pa3
1

p

48a2
2

z~3!

16pb2
~a!b!. ~15!

If one divides both sides of Eq.~15! by b, the first term on its
rhs correctly reproduces the Casimir tension between
infinite parallel lines a distancea apart @7#. The other two
terms are subdominant fora!b, and yield finite size correc
tions to that result.

III. CONCLUSION

We argued in this work that the knowledge of the vacu
energyinside a rectangular cavity is not enough for one
calculate the Casimir force on its faces. Two ingredients
missing in such a calculation: the knowledge of the con
bution to the vacuum energy from the region outside
cavity, and the proper handling of divergent terms in t
regularized expression of the vacuum energy. We then c
sidered a slightly different type of cavity, namely, a recta
gular box divided by a piston into two rectangular compa
ments. In this case, if one is interested only in the Casi
force on the piston, those ingredientscan be neglected. In
addition, the force-on-the-piston problem has two attract
features:~i! it is a simple generalization of the single-cavi
problem, for which results are already available in the lite
ture @5–11#, and~ii ! from the experimental point of view, i
is simpler to construct a cavity with a piston than a variab
size rectangular cavity. Results for the electromagnetic fi
in a three-dimensional rectangular cavity with a piston w
be presented elsewhere.
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APPENDIX A

Let us evaluate the divergent sum over modes in Eq.~1!
using analytic regularization. We start with the function

E~a,b;s!ª
p

2 (
j ,k51

` F S j

aD 2

1S k

bD 2G2s/2

, ~A1!

which is defined for Re(s).2. As we shall see, its analyti
continuation to the complexs plane is well defined ats
521, so we can define the analytically regularized Casim
energy asE0,AR(a,b)5E(a,b;21).

In order to obtain the analytic continuation ofE(a,b;s) it
is convenient to rewrite Eq.~A1! as @17#

E~a,b;s!5
p

8 (
j 52`

`

8 (
k52`

`

8 F S j

aD 2

1S k

bD 2G2s/2

5
p

8 H (
j ,k52`

`

8 F S j

aD 2

1S k

bD 2G2s/2

2 (
j 52`

`

8 S u j u
a D 2s

2 (
k52`

`

8 S uku
b D 2sJ

5
p

8
Z2S 1

a
,
1

b
;sD2

p

4
z~s!~as1bs!, ~A2!

where Zp(a1 , . . . ,ap ;s) and z(s) denote the Epstein an
Riemann zeta functions, respectively. Applying the reflect
formulas@7#

GS s

2Dp2s/2z~s!5GS 12s

2 Dp (s21)/2z~12s!, ~A3!

a1•••apGS s

2Dp2s/2Zp~a1 , . . . ,ap ;s!

5GS p2s

2 Dp (s2p)/2Zp~1/a1 , . . . ,1/ap ;p2s! ~A4!

to Eq. ~A2! and takings521 we obtain Eq.~2!.

APPENDIX B

In this appendix we derive Eq.~3! using the Abel-Plana
summation formula@18#,

(
n50

`

F~n!5
1

2
F~0!1E

0

`

F~ t !dt

1 i lim
«→01

E
0

`F~«1 i t !2F~«2 i t !

e2pt21
dt. ~B1!

F(z) is an analytic function in the right half-plane, going
zero sufficiently fast asuzu→`, uarg(z)u,p/2.

In order to apply the Abel-Plana formula to the series~1!,
we have to introduce a smooth cutoff functionDL(z,w):
5-3
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E0,cutoff~a,b!5
p

2 (
j ,k51

` S j 2

a2
1

k2

b2D 1/2

DLS j

a
,
k

bD
5:

p

2 (
j 51

`

Sj . ~B2!

The functionDL(z,w) must satisfy the following conditions
in the region Re(z),Re(w)>0: ~i! it is analytic in both vari-
ables;~ii ! it is real for z and w real; ~iii ! it vanishes suffi-
ciently fast for uzu,uwu→` ~so that the regularized series
absolutely convergent!; ~iv! it is symmetric, i.e.,DL(z,w)
5DL(w,z), and ~v! limL→`DL(z,w)51. An example of
such a function is given byDL(z,w)5dL(z)dL(w), with
dL(z)5@11(z11)2/L2#22.

Applying formula ~B1! to the seriesSj in ~B2!, we can
rewrite each of them as a sum of three terms, namely,

Sj
(1)52

j

2a
DLS j

a
,0D , ~B3!

Sj
(2)5E

0

`

duS j 2

a2
1

u2

b2D 1/2

DLS j

a
,
u

bD , ~B4!

Sj
(3)5 i lim

«→01

E
0

` du

e2pu21
F S j 2

a2
2

u2

b2
1 i« D 1/2

3DLS j

a
,
«1 iu

b D2c.c.G . ~B5!

Applying ~B1! to ( jSj
(1) yields

(
j 51

`

Sj
(1)5E

0

`

dvF2
v

2a
DLS v

a
,0D G

1
1

aE0

` vdv

e2pv21
FDLS iv

a
,0D1c.c.G . ~B6!

Changing the variable of integration in the first integral tot
5v/a and taking the limitL→` in the second one, we
obtain

(
j 51

`

Sj
(1)52

a

2E0

`

dttDL~ t,0!1
1

24a
. ~B7!
ep

06501
Similarly, application of Eq.~B1! to ( jSj
(2) yields

(
j 51

`

Sj
(2)52

b

2E0

`

dttDL~0,t !1abE
0

`

duE
0

`

dv~u21v2!1/2

3DL~u,v !1I L~a,b!, ~B8!

where

I L~a,b!5 iab lim
«→01

E
0

`

duE
0

` dv

e2pav21
@~u22v21 i«!1/2

3DL~«1 iv,u!2c.c.#. ~B9!

Taking the limitL→` in the integral above we obtain

lim
L→`

I L~a,b!522abE
0

`

duE
u

` dv

e2pav21
~v22u2!1/2

522abE
0

` dv

e2pav21
E

0

v
du~v22u2!1/2

52
pab

2 E
0

` v2dv

e2pav21
52

z~3!b

8p2a2
. ~B10!

Finally, let us take the limitL→` in Eq. ~B5!. Changing the
variable of integrationu to t5au/ jb, we obtain

lim
L→`

Sj
(3)52

2 j 2b

a2 E
1

` dt

e2p jbt/a21
~ t221!1/2

52
2 j 2b

a2 (
k51

` E
1

`

dt~ t221!1/2e22pk jbt/a

52
1

pa (
k51

`
j

k
K1S 2pk j

b

aD . ~B11!

Collecting all pieces together we obtain Eq.~3!, with
E0,AR(a,b) in the form given by Eq.~13! and

C1~L!5
p

2E0

`

duE
0

`

dv~u21v2!1/2DL~u,v !, ~B12!

C2~L!52pE
0

`

dttDL~ t,0!. ~B13!
ev.
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