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(2+ 1)-dimensional noncommutative CP'~! model
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We investigate possible extensions of theH(R)-dimensional CP ! model to noncommutative space. Up
to the leading nontrivial order of il we prove that the model restricted to the left fundamental representation
of the gauge group is renormalizable and does not have dangerous infrared divergences. In contrast, if the basic
field ¢ transforms in accord with the adjoint representation, infrared singularities are present in the two-point
function of the auxiliary gauge field and also in the leading correction to the self-energy efftakel. These
infrared divergences may produce nonintegrable singularities leading at higher orders to a breakdown of the
1/N expansion. Gauge invariance of the renormalization procedure is also discussed.
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I. INTRODUCTION Proceeding with the aforementioned investigations here
we will study the noncommutative P! model. In this

One of the main characteristics of field theories defined inmodel local gauge invariance is attained through a composite
noncommutative space is the infrared-ultravioltR-UV) field that, at least classically, is not dynamical. This simpli-
mixing, which, even in models without massless partiC'eS;fying aspect makes the model a good candidate for the in-
leads to the appearance of infrared divergences and, as\@stigation of general properties of gauge fields in noncom-
consequence, to the breakdown of the perturbative scheme {jytative space. The introduction of a gauge symmetry in
many renormalizable modelesee Ref.[1] for recent re-  poncommutative space produces a very rich structure in the

views).
sense that, even for thd(1) gauge group, there are three
The presence of infrared divergences in ordinary field (1) gauge group

; : . z%lternative ways in which the basic matter field could trans-
theory signals that one may be expanding around a point % rm

nonanalyticity of the exact solution. It may indicate the ex- . L
istence of nonperturbative effects that cannot be reached by a we bggln our study by can|der|ng here the puré“CJP
odel, i.e., without fermionic matter fields. As it happens

power series expansion on the perturbative coupling. In such, hi | O(N ) h i
a case, two possible approaches are envisaged. One mayW)u its real O(N) symmetric counterpart, the nonlinear

resummation to rearrange the perturbative series to get a betdma model is perturbatively renormalizable only in two-
ter behaved expansion. A difficulty in this method is thedimensions for the commutative version of the model. How-
identification of a parameter to control different orders of the€Ver, it is 1N expandable in both two and three space-time
new series. Another possible procedure is to enlarge théimensiong10,11. Dynamical generation of gauge degrees
theory with new interactions, which, hopefully, will cancel of freedom and confinement are interesting aspects of the
the IR divergences leading to a new expansion without thd/N-expansion of the two-dimensional modgl0]. When
singularities mentioned. For noncommutative theories bottgoupled to fermions either minimally or in a supersymmetric
methods have been considered in the literafidref]. In fact,  fashion the quanta of the basic fiefdare liberated and exact
it has been argued that resummation may be efficiently conS matrices are foung12].
trolled by the Wilsonian renormalization group, in the man- The three-dimensional model also possesses some inter-
ner of Polchinski9]. On the other hand, it has been shownesting properties. Its W expansion presents phases in which
that there exists a special class of theories, namely supersyrihe basic fields are either massive or massjéd§ In par-
metric models, which are natural candidates to be consisteticular, if a Chern-Simons term is add¢ti3—15 one finds
in noncommutative space, at least as far as renormalization igdiative corrections to the topological mass at the next-to-
concerned. This has been proven to be correct for the noreading order of M [13]. In this study we will work in the
commutative versions of the four-dimensional Wess-Zuminaunbroken phasgmassive ¢) of the (2+1)-dimensional
model [4,5] and the three-dimensional nonlinear sigmamodel.
model[6] to all orders and also, at least up to one-loop order, In the noncommutative CP'* model, because of the un-
for some supersymmetric gauge modéls$]. However, non-  derlying noncommutativity, we may consider the basic field
commutative theories are so subtle and unusual that detaileab belonging alternatively to a fundamentefft or right) or
investigations even in nonsupersymmetric theories are still ito the adjoint representation of the gauge group. We present
order. a detailed discussion of the renormalization of the model in
the fundamental representation up to the next-to-leading or-
der of 1N. The model turns out to be renormalizable but the

*Electronic address: asano@fma.if.usp.br existence of planar and nonplanar graphs with distinct UV
"Electronic address: mgomes@fma.if.usp.br behaviors unveils some interesting features. In particular,
*Electronic address: alexgr@fma.if.usp.br some graphs in the commutative case, as a consequence of
SElectronic address: ajsilva@fma.if.usp.br charge conjugation, do not contribute. However, these graphs
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in the noncommutative setting where charge conjugation no B1(X)* do(x) = lim e(i/2)(~)’“’(ﬁ/ay")(d/<9x”)d)l(y)d)z(x)

longer holdg[16], produce non-null results. Despite this, at yox

least up to the leading nontrivial order ofNL/ the model 2
turns out to be renormalizable and free of dangerous infrared

divergence$17]. where the constant and antisymmetric matly,, gives a

In contradistinction to the left fundamental representationmeasure of the noncommutativity strength. To avoid possible
the adjoint representation, already at leading order, presentitarity and/or causality problenm22] we will set®4;=0
infrared singularities. The implications of these singularities(see also Ref.23]).
are twofold. On one hand, the divergences that occur in the As the Moyal-ordered product is noncommutative, we
gauge sector suggest the existence of strong long-rangdall investigate three possible representations for the matter
forces. In addition, in thep field self-energy corrections field.
there are also quadratic infrared divergences, which at higher (1) Left representation:
order will destroy the M expansion. It could be argued that,

similarly to noncommutative QED[18], this behavior may (M), * g, ()
be ameliorated by the inclusion of fermionic fields. This will + ot —in
be the subject of a subsequent paper where we will discuss o —er(e '), 4

the dynamical generation of a Chern-Simons term. The _ . .
elimination of the(dangerousIR-UV mixing in a supersym- whereA is the gauge transformation function and
metric extension of the model will be also investigated. 2

This work is organized as follows. In Sec. Il the possible (eiA)*El+iA+ —A*A+ -, (5
representations for the noncommutativeNCP model are 2
presented. In Sec. Il we investigate the leading contributions

to the case in which the basic field belongs to the left funda- (2) Right representation:

mental representation and examine in detail both the UV and o x(e 1) (6)
IR divergences up to the next-to-leading order dfl.1Di- *

mensional regularization is used and we prove that the model ot (e, * of )
is free from dangerous divergencé®., nonrenormalizable * '

or nonintegrable IR divergences are abgelnt Sec. IV we (3) Adjoint representation:

analyze the behavior of the Green functions when the basic

fields belong to the adjoint representation. In this situation p— (e, xpx (e M), | (8)
we verify explicitly the presence of IR-UV mixing, which

jeopardizes the consistency of the model. In Sec. V we ol (e, *x ot (e ), . 9
present some concluding remarks. In the Appendix we dis-

cuss some additional properties of the model. To keep the action unchanged under these transforma-

tions, the usual derivatives are replaced by covariant deriva-

Il. THE NONCOMMUTATIVE CP N~ MODEL tives defined as

The commutative C¥" ! model is specified by the La- D.e=d,¢+iA, *¢, leftrepresentation, (10
grangian density

D,e=d,0—i@*A,, rightrepresentation, (12
N
L£=(D,¢) D*o—mPp o+ cpT(p—a>, (1) D,e=d,0+iA,xp—ig*A,, adjoint representation.
(12)
where ¢;, i=1,... N, are complex scalar fieldd), ¢ In all three above representations, the gauge field transforms

=(d,*iA,)¢ is the covariant derivative af, andA, isan  as
auxiliary gauge fieldclassically it is just a convenient nota- , , , ,
. L Jpmn _ A= () x A (e, +ild, (™), Ix(e7), .

tion for the composite field g/N)(¢'d,¢)]; N is the (13
Lagrange multiplier field enforcing the constraint’e

=N/g. Because of this constraint, the presence of the mass For sake of simplicity, we shall restrict our analysis to the
term is classically not relevant. At the quantum levelwill left and adjoint representations, as the analysis for right and
be identified with the physical mass for the quanta of ¢he left representations are very similar. In the left representation
field insofar as one enforces a zero vacuum expectation valube part of the Lagrangian containing the auxiliary fiald

for the \ field. The discussion of this fact is entirely analo- must be written either as

gous to the one in th®(N) nonlinear sigma model and will

not be pursued heff@&]. The noncommutative versions of the x| oMo N 14
model are obtained by replacing the ordinary pointwise prod- ¢re 6 (14
uct by the Moyal producf19,20, which is associative and

satisfieq 21] if X does not change or
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FIG. 1. Interaction vertices associated to the Lagrangiai. a b

The propagators for thé,, N, and ¢ fields are represented by ) o )
wavy, dashed, and continuous lines, respectively. For the complex FIG. 2. Diagrams contributing to the proper functions of the
field, charge flows in the opposite direction to the one indicated. andA, fields.

N noncommutativity are present only for graphs with more
A* ( e ol— —) (15  than two vertices. This fact depends crucially on our choice
9 of \ field as belonging to the adjoint representation, which
fixes the sign of the phase in E{RL). In particular, the
leading 1N contribution for the mixed propagatof\A ) is
e same as in commutative situation and therefore vanishes,
ue to Lorentz covariance.
Contrary to theO(N) nonlinear sigma model, we will
N demonstrate that it is possible to construct a renormalizable
ap™* p+bere’— —), (16 model without nonintegrable IR-UV mixing. Actually, we
g have the following.

wherea andb are free parameters. In what follows, no mat- (& X field propagatora, (p) = — 1/F,(p) where[see Fig.
ter what representation for the field is adopted, we always 2(a)]
assume thax belongs to the adjoint representation. As shall

if A changes according to the adjoint representation.

If ¢ belongs to the adjoint representation, theralso
belongs to this representation and the constraint part of th
Lagrangian should be of the form

N*

be clear in the next section, a great advantage of this assign- d3k 1 1
ment is the independence of theand A, fields in the fun- Fx(p)=Nf . . . 5
damental representatidat the leading order of ). With (2m)° (k+p)*=m* k“"—m
this choice, the noncommutative action for the"CP model .
in the left representation reads - IN ( 1 4_m 1 ) 22)
N gV-p?| 7 \-p?
L=(D, @) *DFo—m?e™ o+ \*| o* o'~ 9 @

and the expression at the right corresponds to the large
As we will do shortly, to complete this Lagrangian we shall SPacelikep behavior ofF)(p); as shown in the Appendix,

add to it a gauge-fixing and Faddeev-Popov terms. for the analysis of the renormalization of the theory only the
leading 14/ — p? is relevant. It should be remarked also that
lIl. THE NONCOMMUTATIVE cP  N—1 MODEL the above propagator does not have poles and therefore does
IN THE LEFT REPRESENTATION not have a particle content.

(b) Gauge field two-point proper functidirig. 2(b)]:
For the left fundamental representation our graphical no-

tation prescribes the following Feynman rules: 3

Fo. :Nf
A,(p) 19 P
P)=F——F= 18
T optomiio X{ (2k+p),(2k+p), Zg,w]
for the ¢ propagator and [(k+p)?—m?|(k®—m?) k2—m?|’
ikAp (23

iAY@d, o' —d,00") vertex — —i(2k+p),e”

(19 which turns out to be finite if a gauge invariant regularization

A A 00" vertex < 2ig, e 1" k2cog p/Ap,) is adopted. Indeed, using dimensional regularization, we ob-
124 v ’ t .
20 ain
Noo' vertex — ie K\P (21) N PPy
F,uv(p)_ - 8_ Ouv— 2 p F(p)a (24)
for the vertices(see Fig. 1, wherea/\bz%a”b”G)W. Ex- m p

cept for some graphs containing the quadrilinear vef2ex,
in the left representation, new features associated with theshere
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@ &6‘; FIG. 3. Graphical identities for the ¢P!
+ | =
b

0 model.

o dx[mz—pzx(l—x)]l’z' d(y)=0; in a noncommutative theory th_ey occur only for

planar (subgraphs. Some of the ultraviolet divergences,
associated with the planar graphs, may be absorbed by
reparametrizations. As usual, we define the renormalized
quantities by the replacements

1 (1—2x)? spectively. Renormalization parts are those graphs having
F(p)= J

Differently from the\ field, the gauge field has a particle
interpretation. Indeed;(0)=1/(3m) so that for small mo-
mentaA,, behaves as a Maxwell field of intensiy/N/37m

times the usual one. For large spacelike momenta A, —ZA,=(1+a)A,, (29
iN PuPu| (™ —Zp=(1+hb)Y2p, (30)
Fm(pwg(g,w— - )(5 —pz—zm). (25) pozetem (1D e
p A—ZY =(1+c)\, (31
To get the propagator from E€R4) it is necessary to fix _

the gauge. We choose to work in the Landau gauge by add- 1lg—24/g=(1+d)/g, (32)

ing to the Lagrangiaiil?) the term so that the Lagrangiafi7) written in terms of the new fields
changes aL— L+ L;;, where the counterterm Lagrangian

N S
— —(9,A")*(9,A") is given by

200 H
_ L= b&MQDT* Mo—m?be'e
+Ng,C*[*C+i(CxA*—A#+C)]  (26) )
+|B((3’MQDT*A'“*<p—goT*A'“*é’MQD)
and lettinge— 0 after the calculation. Notice the presence of
the Faddeev—Popov ghost term, which due to the non- +CoT*A % A% o+ DA* o (PT_FNE' (33)
Abelian character of the Moyal product does not decouple a g
(the ghost fields will not show up in our leading order cal-where we introduced
culations but will be relevant in higher ordgrdt is now

straightforward to verify that the gauge field propagator is B=(1+a)(1+b)—-1, (34)
given by )
C=(1+a)7(1+b)—1, (35
8 i 1
Aw(p)z_l(gw_ @) D=(1+c)(1+b)—1, (36)
N 2 ZF
P* /P7F(p) F=(1+c)(1+d)—1. (37)

~ E — % ;_ 4_m . @7 These counterterms may be used to enfon@es the physical
op2 J\=p2  ap? mass of thep field, to ensure the elimination of the remain-
ing divergences of the two-point function of tigefield and
As a last remark, on the Feynman rules, note that, as iof the three-point functiomTAMgoT@.
the commutative theory, any graph containing the diagrams The analysis of the UV divergences is greatly facilitated
of Fig. 2 as subgraphs must be omitted since thosevith the aid of the graphical identiti¢41] depicted in Fig. 3.
(subgraphs were already consider@d construct the propa- Due to the independence of the auxiliary field propagators on
gators for theA, and X fields). the noncommutative parameter, these identities are valid also
With these results at hand, we determine the ultraviolein the present situation. It should be observed that, as\the
degree of superficial divergence for a generic graplas field has no particle content, the identities may be used even
being if we restrict ourselves to the one-particle irreducible graphs,
i.e., to graphs that cannot be separated into disjoint pieces by
cutting just one line, wavy or continuous. Before going any
further we would like to stress some important consequences
of these identities. As in the commutative case, the identity
whereN,, N, ,N,, andN¢ are the number of the external of Fig. 3(a) implies that thep mass counterterm is innocuous
lines associated with the gauge, \, and ghost fields, re- since it cancels in all contributions to the Green functions.

N, N
d(y)=3—Na— 2N, — —£ — =<

2 2 28
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FIG. 4. Graphical structure of the field two-point function. The hatched bubble represents diagrams that are one-particle irreducible
with respect to all fields.

This will be explicitly verified in our discussion of the renor- planar and theitultraviole) divergences should be absorbed
malization of the two-point function of the field. Another  into a mass and wave function counterterms for ¢hield.
implication of the graphical identity is that tfi2\ ¢ T¢ coun- ~ The mass counterterm is associated with the higtupsa-
terterm is also innocuous if we consider Green functions ofiratic) divergence gotten by setting to zero the external mo-
the ¢ andA, fields only(no external\ lines); in that cased mentum of the contributing graphs. As can be easily
may be chosen at will and the wave function renormalizatiorchecked, these divergences cancel between Figs.ahd
for the \ field is therefore irrelevant. In our approach the 4(b) due to the graphical identity of Fig(8.
field tadpole contributions will not be considered separately The contributions for the wave function renormalization
but just in connection with the computation of the two-point of the ¢ field come from Figs. &) and 5b). Using dimen-
Green function of thep field. sional regularization, a straightforward calculation furnishes

An important implication of the identity of Fig.(B) is  the following results:
that, except for the second diagram of Figb)2 all contri-
butions containing the quadrilinear vertex will cancel pair- ' d°k (k+ 2p) ,(k+2p)
wise; they need not be considered anymore. We also need to Eff)(p): —IJ D > 2
consider those divergences that do not have a corresponding (2m) (k+p)"—m
counterterm. They may hawe, equal to either O or 1. For 1 64p2

: . . 1 64p%

N,=1, the dangerous divergences are associated with == + finite terms, (39
graphs withN,=0 andN,=1. As mentioned earlier, this N 372e
last possibility does not happen if a Lorentz covariant regu-
larization is employed. dPk 1

For N, =0 there are more possibilities: 3. () =—if A, (k
A p ¢ (P) (2m)° (k4 p)2—m? A (K)

=A#(k)

(1) Graphs withN,=0 andN, equal to either 4 or 6.

(2) Graphs withNy=1 andN,=4. 1 4p®

(3) Graphs withN,=2 andN,=0. =Cptiy - +finite terms, (39
(4) Graphs withN,=3 andN,=0.

Besides the UV behavior, in all cases we need to investiwheree=D —3 andC,, is a quadratically divergent constant
gate the possible presence of infrared divergentBsIR that would contribute to the mass renormalization of ¢he
mixing). field; as mentioned earlier, the mass renormalization terms

We focus first on the processes whose correspondingancel. Figure &), on the other hand, cancels between Figs.
counterterms are correlated by gauge invariance, namely(a) and 4b) due to Fig. 8b). The divergent parts are there-
corrections for thep propagator, the three—poil(m'AMgogoU fore eliminated by the counterterm (Y(20/72€) &MQDT&"@,
and the four-poin(TAMA“qucp) functions. We have the fol- which fixes the divergent part ofb as by, =(1/N)
lowing: X (20/7%€). The overall divergences associated with the tad-

(1) The subleading contributions to the self-energy of thepole in Fig. 4b) are absorbed in the counterterm in Figd4
¢ field, I'(p), are shown in Figs. 4 and 5. They are purely We also assume th&t possesses a finite part which enforces

k
k k kfa
(\J’t/ //"\\ §
\
2 (p) = ﬂ*—i&*—f—k el et gy LAY, L
p P p p k+p p p P i(Dm2+ bpz)
a b C d

FIG. 5. Subleading contributions to thepropagator.
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p

p

i
p

, <D

' '
F(I,ZEP p) = + —/—.—:’—F + _/_.—:’_'L
. o pl p1+p pl pl+p pl p1+p
EP(P’PN
a b c
FIG. 6. General structure of the three-point vertex function ofAheand ¢ fields.
m as the physical mass, i.e., by adjustihgndb we impose RE _
the following normalization conditions: f ——— e 1(@/p=p/\py)
(2m)°
F(p):O forp2:m2, (40) [2(k+pl)+p] [2(p1+p)] 2pl(r Ap(r(k)
*H(k+ po)?— ][ (k+ py-+ p)— ]
(42)
ar .
ﬁZO for p®=m-. (41)  Due to the asymptotic behavior df,,(k), this integral is
P finite even when the phase factor is absent so that the result

is free from IR singularities. Figure(d), on the other hand,

is linearly divergent ap=0. To see how this divergence is
(2) Three-point function of theA, and ¢ fields, i.e., anceled we write its amplitude as

(TALe o). Because of our prewous remark on the cancel-
lation of diagrams containing the quadrilinear vertex 3 _
A, A*¢Tp, we have to analyze only those diagrams without f —— e 1@ PTPAPIL (K,p,py)

this vertex, i.e., those which are depicted in Figs. 6 and 7. In (2m)°

Fig. 7 there are two one-loop diagrams and eight two-loop o

diagrams. Notice that the last four two-loop diagrams differ :f e 1@Np=PAPI[| (k,0,00+R,(K,p,p1)],
from the first four two-loop ones just by the orientation of (2m)3 a a

the charge flow in the upper bosonic loop. In the commuta- (43)

tive situation, graphs which differ just by the orientation of

the charge flow are related by charge conjugation, and Fukyhere

ry’s theorem states that they either give equal contributions

or cancel between themselves. Here, however, charge conju- [2(k+p1)+pl.
gation is lost and Furry’s theorem is no longer valid so that !x(K,P.p1)= K D= T (Kt Dot D12— Ax(k)

the contributions should be individually analyzed. In the con- [kt py)"=m7L(k+ Pyt p) = m7] (44)
struction of the diagrams implicit in Fig.(B) it is important

to notice that any planar contribution is automat|ca|ly OVera”and R (k p pl) presents at most |Ogar|thm|c d|vergences_
ultraviolet finite. Indeed, these planar diagrams have zergxphcmy

degree of superficial divergence but, because of Lorentz co-

variance, they are proportional m,, which lowers the ef- d3k .

fective degree of divergence by one unit. On the other hand, f e & p=pApdl (K,0,0)

as we will show, the nonplanar contributions in Figb)eare (2m)°

used to cancel infrared divergences in the nonplanar dia- 5

grams of Fig. 7. =consix > e'P/\P1 (45)
The first two diagrams shown in Fig. 7 are purely nonpla- p

nar and therefore are ultraviolet finite but could originate ~
nonintegrablelinean IR divergences. In fact, because of the where we introduced a simplified notatign“=0*"p,.
transversality of the\ ,, propagator, Fig. (&) is finite and is  Now, among the diagrams implicit in Fig(l§ we consider
given by the diagram of Fig. & which may be obtained from Fig.
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+

P E
R
2P P
/ ° I+
/ k+p, % k+p+p P k+p+p

23 PP n oA * p§ P+P BN ® P+P
Juw - 7
ZM(P’P‘) k k
a b
P%
Se
R q q+p q a+p
ﬁ B
1 I
] 1
k k+q tk’P k+p | k
1 1
+ + ' + '
. B % k+p p+P P k+p+p * PHP
d e . i
FIG. 7. Three-point function
C of the A, and ¢ fields.
P
q
q+p
I 1
1 1
Kt Kiq tk-P
1 1
+ ! ! + +
P, k+P, P+p P
f g h
.
<
é p
q+p q
1 1
1 1
k —
Kogep 7P
+ + : :
P, k+p,  P+p

7(b) by joining its ¢ external lines at a newe ' vertex and

/ ! ¢ : Bk g s

attaching the external lines to a seconde’ vertex linked J,L(pypl):Ax(P)J s e (FeTRhey

to the first one by the\. propagator. The amplitude for this (2m)° (2m)

graph reads 2
xX1,(k,p,q)

(@>—m?)[(q+p)2—m?]
(46)

Expandingl ,(k,p,q) aroundp=qg=0 as before and using
Eqg. (22) we get

J,(p.p1)=— constxf)—’;eiwpl
p

3 3
\ e +f dk A iaenp-prpy
‘ (2m)® (2m)®
tp
S 2
Py PL+P XR,(K,p,q) Ax(p),
\ b g (@?—m?)[(q+p)>—m?] "

FIG. 8. Compensating diagrams for Figgbj7and 7j). (47
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where the second term has at most logarithmic IR diversimple Taylor expansion as we did in the above calculation.
gences. Thus, adding the two contributions, no dangerous IBymming the analytical expressions fgrand vy it remains
divergence survives. This cancellation is just a manifestation@,my a mild logarithmic IR divergence.

of the identity expressed in Fig(8. Being nonplanar, Figs.
7(a) and 1b) do not present ultraviolet divergences either.

This is an interesting point since in the renormalization ofI :
; N ) oops they may have one-loop divergent subgraphs. Here,
the commutative QED model the contribution of Figajris however, we are concerned only with the overall divergence

important to secure the gauge invariance of the _perturbaﬂ\;?ostponing the analysis of the divergences of the subgraphs
r_nethod. Th? above procedure can be generalized for a Y a later discussioksee Appendix Figure 7c) is actually
linearly IR divergent graph. From any nonplanar grapive 46 since, due to the transversality of the gauge field propa-
may construct a new diagram by joining two externalp  gator, the external vertices in the lower line cannot depend
lines of y in a new trilinear vertex ¢'. This new diagram  on the loop momentum containing the two wavy lines. In the
containsy as a subgraph so that it presents the same IRollowing we list the divergent contributions arising from the
divergence ag. The divergence iny may be extracted by a Figs. 1d)—7(f):

The next set of graphs shown in Fig. 7 consists of four
planar diagrams, Figs.(@—7(f). As those graphs have two

(@) Figure 7d):

o d°k d°q (20+P) ,0pP1,A“P(K) Ay (k—p)
r&2— _jaNe PP ©
ZC R f (2m)° (2P [(k+ pp)?— M2 (k+0)?— mP](P— mD)[(q+ p)°— ]

1
- +finite terms. (48)

=i(py) e PP 16
P)u 3N 2

ko

(b) Figure 7e):

F“2L=—iNe’mVWJ. d°k  d°q (2g+p),(k+29+2p)s(k+2p+2p1),  A*P(K)A,\(k+p)
#© (2m)P (2m)P [(k+p+pp)2—m?][(k+q+p)°—m?] (g2—m?)[(q+p)2—m?]

=i(py+p),e PP 6 EJrfiniteterms (49)
v 3N € '
(c) Figure Tf):
d°k d°q  (29+p),A\(K)A(k—p) 1

rt2— _jNe-iPi/\P
uh= e f<2w>D<2w>D [+ py) 2= P (k)2 m?] (q2— mA)[(q-+ p)2—n]

: 1
— —ipy/\p - § i
=—i(2p,;+p),e P2 3N € +finite terms. (50
|
So altogether we have subsequent to E@47), any infrared linear divergence can be
eliminated by adequately combining the graphs. Neverthe-
. 14/31 less, in specific situations there are further additional simpli-
rOa+T0g+r0A=i(2p,+ p)Me"PlAP—2 - fications. Indeed, we have the following:
Nm< € (a) Figure 7g): Because of our gauge choice, there is no

+ finite terms (51) IR divergence associated to that diagram.
) o o (b) Figures Th) and 7i): Again, due to our gauge choice
The above divergence can be eliminated by the trilineag,ege diagrams may present only a mild logarithmic IR di-
counterterm %‘i/Nwze)A#(cpanoT—&MgocpT), so that B vergence. This divergence is canceled by the corresponding
=YIN7%e. diagrams implicit in Fig. ).

Let us now consider the four nonplanar diagrams shown (c) Figure 7j): The amplitude associated with this dia-
in Figs. 19)—7(j)). As we have outlined in our discussion gram is linearly divergent at zero external momentum. Here
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we apply the aforementioned construction which produces
the graph shown in Fig.(B) [this is another graph implicit in

Fig. 6(b)]. The leading IR divergences of these two diagrams
cancels, as we proved earlier. \ 7 =5

Our results can be used now to fix the value @fas AN . A A5
defined in the counterterm Lagrangi&®3). In fact, asB
=14/Nn?e, then a=B—by,=—46/Nw?e so that C
=bg;, + 2a= —32/Nm?e. We remark that the only possible
contributions ofC would be for the next-to-leading correc-
tions to theA, propagator; due to the graphical identity in
Fig. 3(b) a nonvanishingC would have no effect up to the
order we have been considering.

(3) Four-point function of the A* and ¢ fields,
(TA,A,¢"¢). There are not ultraviolet divergences because ! ! ! !
a given graph is either nonplanar or one may find a “part- ! ! ! !
ner” graph to which the graphical identity in Fig(88 may ' ' ' '
be applied. In the last case, the divergence in the original
graph and its partner cancel pairwise. This is consistent with
the fact that for this four-point function no counterterm is FIG. 9. Three-point function of th& and ¢ fields.
effective; in fact, the absence of these divergences may be

considered as a test for the consistency of the calculation. j, the nonplanar diagrams of this type can be canceled using

Although the renormalized Lagrangian turned out to bey construction similar to the one described after @a).
gauge invariant both in commutative and in the noncommu- () Three-point vertex function of theA, field,
tative cases, the mechanism by which this gauge invarianC@rA A,A,). There are just two one-loop g,aphg that differ
is achieved is entirely different in the two situations. Thu&onlyﬂby the orientation of the charge flow in the loggach
Figs. 1@ and 1b), which are nonplanar, are ultraviolet fi- 155 consists of three bosonic linesThese diagrams are
nite, contrarily to the commutative case. On the other handyoth planar, and adding them together one gets a factor de-
in the noncommutative setting Furry's theorem is not validyending on the sine of the wedge product of the two external
and so many graph cancellations that hold in the commutayomenta times an integral which is finite by symmetric in-
tive case are now absent and new contributions arise. tegration.

(4) Five-point function{TA,¢"¢¢"¢). The contributing (6) Three-point vertex function of tha and ¢ fields,
diagrams are at most logarithmically divergent. In the plana(T)\(P‘r(P)_ To order 1N the contributing graphs are depicted
part this divergence can be obtained by calculating the regun Fig. 9. The one-loop graphs, Figsa®and gb), are non-
larized amplitude at zero external momefaéter extracting  planar and therefore ultraviolet finite although in the infrared
the phase factors which in this case do not depend on thigmit they may present a mild logarithmic divergence. The
internal momentum Because of Lorentz covariance, it is graph in Fig. 9c), on the contrary, is planar and is ultraviolet
clear that the result of this computation vanishes so that ntogarithmically divergent. It has an analytic expression given
counterterm is needed. The possible IR divergence containday

B S — B Sy —
C d

d*k d%q e~ i(P1/\P)
j A\(q+p)A(Q+pitp). (52

(2m)* (2m)® [(k+py)?—m][(k+ p1+p)?—m?I[(k—)?—m?] (g°—m?)

Besides presenting an overall logarithmic divergence this The analytic expression for Fig(® differs from Eq.(52)
integral has a divergent subintegral, namely,dhietegration  just by an additional factoe29"*P and therefore is ultravio-
(this divergence will be examined in the context of the four-let finite and has a mild logarithmic divergence whetends
point function of thee field, in the next itemh The overall  to zero. Notice that in the commutative situation graphs Figs.
divergence cannot be eliminated through the use of th@&(c) and 9d) would give the same contributions, as a conse-
DAee' counterterm since contributions containing suchquence of charge conjugation invariance. There are other
counterterms are canceled due to the identity of Fig).3 graphs, not shown in Fig. 9, which differ from FiggcPand
However, as exemplified in the Appendix, the divergenced(d) just by the replacements, one at each time, of the inter-
mentioned is irrelevant as far the Green functions with onlynal dashed lines by wavy ones; because of the transversality
externale andA, fields are concerned. of the A, propagator these additional graphs are ultraviolet
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P, P,
o — T
| | § | | § % %
| | | |
| | - | |
P,
a b ¢ d FIG. 10. Four-point function
P, P, of the ¢ field.
Do — T
I I % I : § § §
I I I I
> | | | |
L)
e f g h
finite and without infrared singularities. IV. THE NONCOMMUTATIVE CP N~ MODEL
(7) Concerning the contributions to the four-point func- IN THE ADJOINT REPRESENTATION

tion (Teee'e') let us first examine the one-loop diagrams. | ot ys now consider the leadingNLicontributions when
One sees that there are two types to be considered as they i@ basic fields transform in accord with the adjoint repre-
depicted in Fig. 10. Whereas the graphs in the first row ofentation. We will adopt the same graphical notation as in the
Fig. 10 are ultraviolet linearly divergent, the graphs in theprevious section. However, we have new rules:
second row are nonplanar and therefore ultraviolet finites; (1) Trilinear AMgngo vertex— —2(2k+p) ,sink/\p).
they do not need counterterms. No counterterm is also (2) Quadrilinear A*AYe e vertex «— —4igt'sin(k,
needed for the four graphs of the first row because, as A\P1)SINKy/\po)+pP1—pPy.
consequence of the graphical identity of Figa)3there are ~ Note that these interactions are absent in the commutative
two-loop graphs which cancel the mentioned divergencedimit- _ _ _
For example, the highestinean divergence of the graph Usmg th.ese rules we fix the two-point function of the
Fig. 10a) is canceled by the one associated with the graph iipauge field:
Fig. 11(b). Figure 11b) has a subgraph with the same diver-
gence as Fig. 1@). If we contract this subgraph to a point F,,(p)=4N
and use the identity of Fig.(8), we obtain the cancellation
of these divergences. By a similar mechanism the logarith- N 1
mic divergences which are proportional to the external mo- -29 j —— ——sirAkAp) |. (53)
menta of the graph are also cancelled. The complete cancel- ) 2m)d ke—m?
lation of all ultraviolet divergences can become complicate, ) N .
as illustrated in the Appendix. As sirf(k/\p)=3[1—cos 2(</\p)] we get a planar part that is
(8) Six-point function,(Teeee eTe!). As before, the twice that of the gauge field two-point fun_ct|on in the corre-
divergences of the planar diagrams cancel pairwise by th&Ponding commutative theory. Concerning the nonplanar
use of the identity in Fig. @), whereas the nonplanar graphs Pi€ce, we perform the standard procedures to obtain
could at most develop a logarithmic infrared singularity. 1 FE aikp
The above discussion proves that, up to the leading non-g"P(p) = _ZNJ dxf {4k Kk,
trivial order of 1N, the noncommmutive CP'! model is a 0 (2m)® [K*=m%2"
renormalizable and without dangerous infrared singularities
if the ¢ field transforms in accord with the left fundamental TPuPu(2X = 1)? =29, [K2+ pA(x—1)2~m?]},

f d3k (2k+p) ,(2k+p), SiP(kA\p)

(2m)* (K*=m?)[(k+p)?—m?]

representation. (54)
P Py
.2
1 '
m 1 P Ps B P
M DO ! ! o P,
! ! ! | | — -
P, b, b P
a b c d

FIG. 11. lllustration of the mechanism for the complete cancellation of the UV divergences in the four-point functior dicide The
first graph(G) containsy,, y,, andr as subgraphs.
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whereM?=m?—p?x(1—x). Now, using Ref[24], then, at the leading order ofN/ the mixed propagator van-
ishes but thex field propagator will have a nonplanar con-
Bk ekeP” i K_;IMV—p?] tribution. In this case the two-point function of thefield
= - will be
f (2,”_)3 [kZ_MZ]Z (27T)3/2\/m (_pZ)—1/4
—s 2F\(p)+Fnp(P)=E(p), (62
i e MV-p
7 v (55 whereF, was given in Eq(22) and the nonplanar paF,,
is

where K, is the modified Bessel function of order one iN (1 e MVF
obtains the complete two-point function of the gauge field Foo(D)=— I_J dxe . 63
(for simplicity we are employing the same notation used for P 4o M

the counterterms in the previous section; no confusion .
should arise since they refer to distinct situatjons As another consequence of the choi6e), the graphical
identity of Fig. 3a) is no longer valid. There are much more
(56) contributing diagrams than in the left representation.
We are now in a position which allows us to compute the
propagators for thé, and\ fields at leading order of I.
To encompass the two situations listed above, we shall des-
ignate the two-point function of the auxiliayfield by E(p)
(1_2X)2(1_9Mvh57)}, (57)  Wwith the understanding that for caép E(p) andD(p) are
given by Egs.(22) and (60), respectively, whereas for case
(2) E(p) is given by Eq(62) andD(p)=0. The propagators
Ni r1 1 = are then fixed by the inverse of the matrix which appears in
B:Tz dx — +M e MV—PY (58  the quad_ratic part of th_e Lagrangian. A direct calculation
mp=/0 V-p? then furnishes the following.
For theA,, propagator,

and a gauge-fixing term was added. Note that this result pos-

sesses an infrared singularity @t 0. AHr= (gt p2—ptp¥)
Concerning the part of the Lagrangian which depends on (p?)2A

the auxiliary field\, we should recall that, as pointed out in

Eq. (16), there is a two-parameter family of possible interac-Where

tion terms; some simplifications occur depending on which

F..(P)=(9,,p>—p.P,)A+p,p,B+p,p,C,
where

1
M

A Nild
parr

-1 KAV

~ ~ pTp
LAV _
P s (6

form the interaction is chosen. In particular, note the follow- b= —D?
ing. [E(A 2+B~2)_D2~2](A 2+B~2)
(1) If the interaction term containing is taken as in the P P P P P
preceding section, the computation of the two-point function Bp?
of the A field gives the same result as before but, differently m (65)
from the left representation, the mixed propagafokA ) P°A(AP P
turn§ out to be nonvanishing: In fact., we find that at the  £or the mixed propagator,
leading order of M the two-point function of the. andA,
fields is given by AV(p)E<TAV)\>:d'bV' (66)
d3k 2k+ . where
FA )\(p):NJ ( p)M —|2k/\p_
. (2m)® (K2=m?)[ (k+p)?—m?] b
(59 d= ~ : 67)
E(Ap?+Bp?) —D?p? (
In contrast with the commutative model, the above expres-
sion does not vanish and yields For the\ propagator,
Np, (2 A(P)=— =(1+dDF?) (68)
Pan(p) =~ —p—| ‘axe M F=p,, (o) M= g Lrdbey.
A 77 | _ p2 0 ~ _
At small momentab=1/p?(—p?)®? and A=\ —p? in
whereD is a nonvanishing function gi? and p2. both situations discriminated above aie 1/y —p? for case
(2) If the interaction term is chosen to be (1). Thus, the transversal part of th, field propagator
diverges badljfas 1p%(—p?)*? at small momentum. In a
Ax(px pT— pTx ), (61)  local model such behavior would in a nonrelativistic limit be
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associated with a potential that grows linearly with the dis- V. CONCLUDING REMARKS
tance from a charge probe. Therefore the quanta of¢the . . .
: - In this work we focused on the construction of a consis-
field would be confined. However, due to the nonlocal char-,[ent extension of the G model to the noncommutative

acter of the interaction, there are at the vertices momentum-

dependent form factorésine factors which smoothens the space. As we have seen, there are various possible extensions
long-distance behavior of the potential which depend on the way the fields transform under the

Besides the aforementioned situation which indicates th |:|l:jg§ ggoggl‘ol: ?1” St'(t)u,?r;“eozfj’.(;'ivri ?jvzggﬁti;g;hi;u;gaw
possible occurrence of dangerous infrared singularities wi ging J P :

would like to stress that, in fact, radiative corrections bring 'g:(ij t?:rtoggigg\:t)ictgl(la fupgzp; n:ﬁ:a r:priz(?gﬁiéogftglsm?;:a
new infrared divergences that at higher order lead to th P yp bp

breakdown of the M expansion. The crucial point of the TAA,) propagator. In fact the possibility envisaged in Eq.

calculation is provided by the corrections to thdield two- (14) leads _to a no.nvanlshmg two-point proper function of the
A, andA fields given by

point function whose contributions are again given by the '»
graphs in Figs. 4 and Bve may have other diagrams con-
taining the mixed propagator but these are nonplanar dia- 3
grams without IR or UV divergencgsLet us first examine I _ _NJ d°k (2k+p),

those contributions for the situatidd) listed above. Apart Au*(p) (27)3 (K2—m?)[(k+ p)2—m?]
from Fig. 5b) which is still planar, now there are trigono-

e i2kAp

metric factors that deserve special consideration. iNp, (1 -
In the Landau gaugeq— ), in which we have chosen :—MJ dx e MV=P7, (71
to work, the transversality property of the gauge propagator 87\ —p2°

produces a reduction of the degree of divergence of the graph
in Fig. 5@) by two units. Indeed the amplitude for Fig(ab
turns out to be For the ¢ field belonging to the adjoint representation, the
mixing of theX andA , fields will occur unless the constraint
Lagrangian is used as in E(1).

Up to the leading nontrivial order of M/ all dangerous

d*k (2p+k),(2p+k), _
f A*Y(K)sirP(k/\p) , : )=
(2m)®  (p+k)2—m? IR divergences were shown to cancel if the bagidield
belongs to the left representation of the gauge group. We also
d3k 1 ) ) proved that the ultraviolet divergences may be absorbed into
=4pMpr (2m)? (p+k)2—m2AM (K)sin(k/\p). counterterms which preserve the form of the original La-

grangian. Therefore gauge invariance is maintained but this
(69 occurs in a way different from the commutative case. Indeed,
in the commutative setting all the counterterms coefficients
. s . . b, B, andC defined in Eq(33) are equal and tha, field is
The ultraviolet (logarithmig divergence of this expression not renormalized. In the present situation, however, Ahe

must be removed by an adequate counterterm; no infraréh|y gets renormalized and, although innocuous, a quadrilin-
divergence appears because the sine factors improve the b&ir vertexA ,A’oo' counterterm occurs
" .

havior of the integrand for small momenta. However, Fig.  an enirgly different picture is found if the basic field

5(c) has a leading contribution which, for high loop mo- belongs to the adjoint representation. First, the graphical
menta, behaves as identities characteristics of the commutative model are no
longer valid. Nonplanarity occurs already at the leading or-
a3k 1 der of 1N_an_q the number of diagrams to be analyzed in-
f cog 2k/A\p)— (70) creases significantly. Also, due to the presencdNbdyal)
(2m)3 \/ﬁ commutators, theA, field formally decouples from the
theory in the commutative limit. However, in this limit the
Green functions are singular and the limit does not seem to
and is quadratically divergent @gjoes to zero. The multiple exist (this is, of course, also true if the field is in the
insertions of this graph into a larger graph leads to nonintefundamental representatiprbangerous infrared divergences
grable singularities which destroy theNLéxpansion. At this  occur both in the gauge sector and in the radiative correc-
point we may wonder if this result could not be modified by tions to the two-point function of the field.
another choice for the trilinear interaction among thend Because of the noncommutativity of the Moyal product
¢ fields. In fact, the choicé6l1) as the interaction part in- there is a two-parameter family of interaction terms contain-
volving the \ field introduces a sine factor at the trilinear ing the auxiliary\ field. However, for no choice is it pos-
vertex as it already happens with tAgAchan vertex. If this  sible to cancel the divergences. Actually, the existence of
is done, then diagram of Fig(l» would have also a nonpla- IR-UV mixing suggests that to achieve consistency further
nar part which asymptotically is similar to, E70). How-  extensions of the model should be investigated. This issue is
ever, the numerical factors do not match and no cancellatiothe object of our next study where the inclusion of fermionic
could take place. matter fields will be investigated.
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- 0, _ 0 _ 1
Re=lc ety 1y, ~lam,ty,ly, ~lartsl
0 1 0 1
e,y tr st ety l v, atil -y (AL
wherel ¢ denotes the unsubtracted amplitude associated with
graph G; as usual|lg,, is the amplitude associated to the
reduced grapl/y obtained by contracting the subgraph

of G to a point. For a generic diagram t, is defined as the

In this appendix we shall demonstrate some results contaylor operator on the external independent momenta of
cerning the ultraviolet behavior of the noncommutativewith the proviso that it does not act on the noncommutative
CPY"! model when the basig field belongs to the left phase factor. Similarly, the BPHZ-subtracted amplitudes for
fundamental representation of the gauge group. They are age graphs?l, ;2 and r are
follows.

(@) The subleading contributions to theandA,, propa- Ry =15, Sy = 15t 15 S 1yt
gators, which are explicit in Eq§22) and(25), are irrelevant (A2)
as far as the ultraviolet divergences are concerned. In fact,
the o.nly case that. requirgs special attention is the two-ppint R,,=1%,~ |§2/72t32| o |72/Tti| A+ |§2/72t32| 72/Ttil .
function of thee field, which becomes at most linearly di- (A3)
vergent if the subleading contribution for the auxiliary fields
is used. Actually, it only occurs in the diagram of Fighp  and
up to the order that we have considered. Replacing this con-
tribution in Figs. 4 and 5 one sees that the would-be linear R,=1,—t]l,. (A4)

divergences cancel among themselves. The next subdiver-

gence which is only logarithmic vanishes due to Lorentz Note now that as a consequence of the graphical identity

covariance.

(b) Contributions containing the mass counterterm cancet — 1, ;.= —|

in Fig. 3@, l/y,=lcry,= —15,19,= 15,15, and thatlg,,

,/-= trivial four vertex, we see that when

pairwise. This result follows straightforwardly from the adding the above contributions all the subtraction terms can-

graphical identity depicted in Fig(& where the special ver-
tex stands for the mass counterterm insertion.

cel. We stress that the cancellation occurs for all subtractions
including those associated with the last subtraction for the

~ (c) Finally we will exemplify how the complete cancella- jinearly divergent diagramv (in this case, to the reduced
tion of ultraviolet divergences takes place in the case whergertex associated to the contraction ofo a point it is as-
several(subdiagrams are involved, as in the three-loop d'a'signed a linear polynomial in the external momentar}pf

gramG of Fig. 11. The ultraviolet divergent subgraphs®f
are y1,v», andr; they also occur assubgraphs of the dia-

gramsys,y,, and7 as shown in Fig. 11in spite of having a
different number of loops they are of the same order M) 1/

This proves that the sum of the unsubtracted diagrams is
finite.

If the charge flow in the upper and lower loops of Fig. 11
are in opposite direction, the corresponding diagrams are

These diagrams are all planar and have the same noncommuenplanar. They still have the same phase factor but it de-

tative phase (exiyp:/\p,—p1/\ps+ P>/ \p3]) which therefore
factorizes in their sum. Notice that; and y, are overlap-
ping and that both containr as a subgraph. In the
Bogolubov-Parasiuk-Hepp-Zimmerman(BPHZ) scheme
the relevantG forests are/Qyq,vs,7.{v1,7} and {y,,7}.
The BPHZ-subtracted amplitude associated with grépis
therefore

pends on the loop momentum of thadiagram. Individually
they present a linear infrared divergence which nonetheless
is cancelled whenever they are added. This is most easily
seen by factorizing the noncommutative phases and then
Taylor expanding the remaining of thes integrand up to
first order in the independent external momenta of that
graph.
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