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„2¿1…-dimensional noncommutative CPNÀ1 model
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We investigate possible extensions of the (211)-dimensional CPN21 model to noncommutative space. Up
to the leading nontrivial order of 1/N, we prove that the model restricted to the left fundamental representation
of the gauge group is renormalizable and does not have dangerous infrared divergences. In contrast, if the basic
field w transforms in accord with the adjoint representation, infrared singularities are present in the two-point
function of the auxiliary gauge field and also in the leading correction to the self-energy of thew field. These
infrared divergences may produce nonintegrable singularities leading at higher orders to a breakdown of the
1/N expansion. Gauge invariance of the renormalization procedure is also discussed.
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I. INTRODUCTION

One of the main characteristics of field theories defined
noncommutative space is the infrared-ultraviolet~IR-UV!
mixing, which, even in models without massless particl
leads to the appearance of infrared divergences and,
consequence, to the breakdown of the perturbative schem
many renormalizable models~see Ref.@1# for recent re-
views!.

The presence of infrared divergences in ordinary fi
theory signals that one may be expanding around a poin
nonanalyticity of the exact solution. It may indicate the e
istence of nonperturbative effects that cannot be reached
power series expansion on the perturbative coupling. In s
a case, two possible approaches are envisaged. One ma
resummation to rearrange the perturbative series to get a
ter behaved expansion. A difficulty in this method is t
identification of a parameter to control different orders of t
new series. Another possible procedure is to enlarge
theory with new interactions, which, hopefully, will canc
the IR divergences leading to a new expansion without
singularities mentioned. For noncommutative theories b
methods have been considered in the literature@2–8#. In fact,
it has been argued that resummation may be efficiently c
trolled by the Wilsonian renormalization group, in the ma
ner of Polchinski@9#. On the other hand, it has been show
that there exists a special class of theories, namely super
metric models, which are natural candidates to be consis
in noncommutative space, at least as far as renormalizatio
concerned. This has been proven to be correct for the n
commutative versions of the four-dimensional Wess-Zum
model @4,5# and the three-dimensional nonlinear sigm
model@6# to all orders and also, at least up to one-loop ord
for some supersymmetric gauge models@7,8#. However, non-
commutative theories are so subtle and unusual that det
investigations even in nonsupersymmetric theories are sti
order.
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Proceeding with the aforementioned investigations h
we will study the noncommutative CPN21 model. In this
model local gauge invariance is attained through a compo
field that, at least classically, is not dynamical. This simp
fying aspect makes the model a good candidate for the
vestigation of general properties of gauge fields in nonco
mutative space. The introduction of a gauge symmetry
noncommutative space produces a very rich structure in
sense that, even for theU(1) gauge group, there are thre
alternative ways in which the basic matter field could tra
form.

We begin our study by considering here the pure CPN21

model, i.e., without fermionic matter fields. As it happe
with its real O(N) symmetric counterpart, the nonlinea
sigma model is perturbatively renormalizable only in tw
dimensions for the commutative version of the model. Ho
ever, it is 1/N expandable in both two and three space-tim
dimensions@10,11#. Dynamical generation of gauge degre
of freedom and confinement are interesting aspects of
1/N-expansion of the two-dimensional model@10#. When
coupled to fermions either minimally or in a supersymmet
fashion the quanta of the basic fieldw are liberated and exac
S matrices are found@12#.

The three-dimensional model also possesses some i
esting properties. Its 1/N expansion presents phases in whi
the basic fields are either massive or massless@11#. In par-
ticular, if a Chern-Simons term is added@13–15# one finds
radiative corrections to the topological mass at the next
leading order of 1/N @13#. In this study we will work in the
unbroken phase~massive w) of the (211)-dimensional
model.

In the noncommutative CPN21 model, because of the un
derlying noncommutativity, we may consider the basic fie
as belonging alternatively to a fundamental~left or right! or
to the adjoint representation of the gauge group. We pre
a detailed discussion of the renormalization of the mode
the fundamental representation up to the next-to-leading
der of 1/N. The model turns out to be renormalizable but t
existence of planar and nonplanar graphs with distinct
behaviors unveils some interesting features. In particu
some graphs in the commutative case, as a consequen
charge conjugation, do not contribute. However, these gra
©2004 The American Physical Society12-1
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in the noncommutative setting where charge conjugation
longer holds@16#, produce non-null results. Despite this,
least up to the leading nontrivial order of 1/N, the model
turns out to be renormalizable and free of dangerous infra
divergences@17#.

In contradistinction to the left fundamental representati
the adjoint representation, already at leading order, pres
infrared singularities. The implications of these singularit
are twofold. On one hand, the divergences that occur in
gauge sector suggest the existence of strong long-ra
forces. In addition, in thew field self-energy corrections
there are also quadratic infrared divergences, which at hig
order will destroy the 1/N expansion. It could be argued tha
similarly to noncommutative QED4 @18#, this behavior may
be ameliorated by the inclusion of fermionic fields. This w
be the subject of a subsequent paper where we will disc
the dynamical generation of a Chern-Simons term. T
elimination of the~dangerous! IR-UV mixing in a supersym-
metric extension of the model will be also investigated.

This work is organized as follows. In Sec. II the possib
representations for the noncommutative CPN21 model are
presented. In Sec. III we investigate the leading contributi
to the case in which the basic field belongs to the left fun
mental representation and examine in detail both the UV
IR divergences up to the next-to-leading order of 1/N. Di-
mensional regularization is used and we prove that the m
is free from dangerous divergences~i.e., nonrenormalizable
or nonintegrable IR divergences are absent!. In Sec. IV we
analyze the behavior of the Green functions when the b
fields belong to the adjoint representation. In this situat
we verify explicitly the presence of IR-UV mixing, which
jeopardizes the consistency of the model. In Sec. V
present some concluding remarks. In the Appendix we
cuss some additional properties of the model.

II. THE NONCOMMUTATIVE CP NÀ1 MODEL

The commutative CPN21 model is specified by the La
grangian density

L5~Dmw!†Dmw2m2w†w1lS w†w2
N

g D , ~1!

where w i , i 51, . . . ,N, are complex scalar fields,Dmw
[(]m1 iAm)w is the covariant derivative ofw, andAm is an
auxiliary gauge field@classically it is just a convenient nota

tion for the composite field (g/N)(w† ]m
↔

w)]; l is the
Lagrange multiplier field enforcing the constraintw†w
5N/g. Because of this constraint, the presence of the m
term is classically not relevant. At the quantum level,m will
be identified with the physical mass for the quanta of thew
field insofar as one enforces a zero vacuum expectation v
for the l field. The discussion of this fact is entirely anal
gous to the one in theO(N) nonlinear sigma model and wil
not be pursued here@6#. The noncommutative versions of th
model are obtained by replacing the ordinary pointwise pr
uct by the Moyal product@19,20#, which is associative and
satisfies@21#
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f1~x!* f2~x!5 lim
y→x

e( i /2)Qmn(]/]ym)(]/]xn)f1~y!f2~x!,

~2!

where the constant and antisymmetric matrixQmn gives a
measure of the noncommutativity strength. To avoid poss
unitarity and/or causality problems@22# we will set Q0i50
~see also Ref.@23#!.

As the Moyal-ordered product is noncommutative, w
shall investigate three possible representations for the m
field.

~1! Left representation:

w→~eiL!* * w, ~3!

w†→w†* ~e2 iL!* , ~4!

whereL is the gauge transformation function and

~eiL!* [11 iL1
i 2

2
L* L1•••. ~5!

~2! Right representation:

w→w* ~e2 iL!* , ~6!

w†→~eiL!* * w†. ~7!

~3! Adjoint representation:

w→~eiL!* * w* ~e2 iL!* , ~8!

w†→~eiL!* * w†* ~e2 iL!* . ~9!

To keep the action unchanged under these transfor
tions, the usual derivatives are replaced by covariant der
tives defined as

Dmw5]mw1 iAm* w, left representation, ~10!

Dmw5]mw2 iw* Am , right representation, ~11!

Dmw5]mw1 iAm* w2 iw* Am , adjoint representation.
~12!

In all three above representations, the gauge field transfo
as

Am→~eiL!* * Am* ~e2 iL!* 1 i @]m~eiL!* #* ~e2 iL!* .
~13!

For sake of simplicity, we shall restrict our analysis to t
left and adjoint representations, as the analysis for right
left representations are very similar. In the left representa
the part of the Lagrangian containing the auxiliary fieldl
must be written either as

l* S w†* w2
N

g D ~14!

if l does not change or
2-2
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l* S w* w†2
N

g D ~15!

if l changes according to the adjoint representation.
If w belongs to the adjoint representation, thenl also

belongs to this representation and the constraint part of
Lagrangian should be of the form

l* S aw†* w1bw* w†2
N

g D , ~16!

wherea andb are free parameters. In what follows, no ma
ter what representation for thew field is adopted, we always
assume thatl belongs to the adjoint representation. As sh
be clear in the next section, a great advantage of this ass
ment is the independence of thel andAm fields in the fun-
damental representation~at the leading order of 1/N). With
this choice, the noncommutative action for the CPN21 model
in the left representation reads

L5~Dmw!†* Dmw2m2w†* w1l* S w* w†2
N

g D . ~17!

As we will do shortly, to complete this Lagrangian we sh
add to it a gauge-fixing and Faddeev-Popov terms.

III. THE NONCOMMUTATIVE CP NÀ1 MODEL
IN THE LEFT REPRESENTATION

For the left fundamental representation our graphical
tation prescribes the following Feynman rules:

Dw~p!5
i

p22m21 i0
~18!

for the w propagator and

iAa~w]aw†2]aww†! vertex ↔ 2 i ~2k1p!ae2 ik`p,

~19!

AmAnww† vertex ↔ 2igmne2 ik1`k2cos~p1`p2!,

~20!

lww† vertex ↔ ie2 ik`p ~21!

for the vertices~see Fig. 1!, wherea`b[ 1
2 ambnQmn . Ex-

cept for some graphs containing the quadrilinear vertex~20!,
in the left representation, new features associated with

FIG. 1. Interaction vertices associated to the Lagrangian~17!.
The propagators for theAm , l, and w fields are represented b
wavy, dashed, and continuous lines, respectively. For the com
field, charge flows in the opposite direction to the one indicated
06501
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noncommutativity are present only for graphs with mo
than two vertices. This fact depends crucially on our cho
of l field as belonging to the adjoint representation, wh
fixes the sign of the phase in Eq.~21!. In particular, the
leading 1/N contribution for the mixed propagator^TlAm& is
the same as in commutative situation and therefore vanis
due to Lorentz covariance.

Contrary to theO(N) nonlinear sigma model, we wil
demonstrate that it is possible to construct a renormaliza
model without nonintegrable IR-UV mixing. Actually, w
have the following.

~a! l field propagator:Dl(p)521/Fl(p) where@see Fig.
2~a!#

Fl~p!5NE d3k

~2p!3

1

~k1p!22m2

1

k22m2

'
iN

8A2p2 S 12
4m

p

1

A2p2D , ~22!

and the expression at the right corresponds to the la
spacelikep behavior ofFl(p); as shown in the Appendix
for the analysis of the renormalization of the theory only t

leading 1/A2p2 is relevant. It should be remarked also th
the above propagator does not have poles and therefore
not have a particle content.

~b! Gauge field two-point proper function@Fig. 2~b!#:

Fmn~p!5NE d3k

~2p!3

3H ~2k1p!m~2k1p!n

@~k1p!22m2#~k22m2!
2

2gmn

k22m2J ,

~23!

which turns out to be finite if a gauge invariant regularizati
is adopted. Indeed, using dimensional regularization, we
tain

Fmn~p!52
iN

8p S gmn2
pmpn

p2 D p2F~p!, ~24!

where

ex FIG. 2. Diagrams contributing to the proper functions of thel
andAm fields.
2-3
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FIG. 3. Graphical identities for the CPN21

model.
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F~p!5E
0

1

dx
~122x!2

@m22p2x~12x!#1/2
.

Differently from thel field, the gauge field has a partic
interpretation. Indeed,F(0)51/(3m) so that for small mo-
mentaAm behaves as a Maxwell field of intensity1

2 AN/3pm
times the usual one. For large spacelike momenta

Fmn~p!'
iN

8p S gmn2
pmpn

p2 D S p

2
A2p222mD . ~25!

To get the propagator from Eq.~24! it is necessary to fix
the gauge. We choose to work in the Landau gauge by a
ing to the Lagrangian~17! the term

2
N

2a
~]mAm!* ~]nAn!

1N]mC̄* @]mC1 i ~C* Am2Am* C!# ~26!

and lettinga→0 after the calculation. Notice the presence
the Faddeev-Popov ghost term, which due to the n
Abelian character of the Moyal product does not decou
~the ghost fields will not show up in our leading order c
culations but will be relevant in higher orders!. It is now
straightforward to verify that the gauge field propagator
given by

Dmn~p!52
8p i

N S gmn2
pmpn

p2 D 1

p2F~p!

'
16i

N S gmn2
pmpn

p2 D S 1

A2p2
2

4m

pp2D . ~27!

As a last remark, on the Feynman rules, note that, a
the commutative theory, any graph containing the diagra
of Fig. 2 as subgraphs must be omitted since th
~sub!graphs were already considered~to construct the propa
gators for theAm andl fields!.

With these results at hand, we determine the ultravio
degree of superficial divergence for a generic graphg as
being

d~g!532NA22Nl2
Nw

2
2

NC

2
, ~28!

whereNA , Nw ,Nl , andNC are the number of the externa
lines associated with the gauge,w, l, and ghost fields, re
06501
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s
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spectively. Renormalization parts are those graphs hav
d(g)>0; in a noncommutative theory they occur only f
planar ~sub!graphs. Some of the ultraviolet divergence
associated with the planar graphs, may be absorbed
reparametrizations. As usual, we define the renormali
quantities by the replacements

Am→ZA
1/2Am5~11a!Am , ~29!

w→Zw
1/2w5~11b!1/2w, ~30!

l→Zl
1/2l5~11c!l, ~31!

1/g→Zg /g5~11d!/g, ~32!

so that the Lagrangian~17! written in terms of the new fields
changes asL→L1Lct , where the counterterm Lagrangia
is given by

Lct5b]mw†* ]mw2m2bw†w

1 iB~]mw†* Am* w2w†* Am* ]mw!

1Cw†* Am* Am* w1Dl* w* w†2FN
l

g
, ~33!

where we introduced

B5~11a!~11b!21, ~34!

C5~11a!2~11b!21, ~35!

D5~11c!~11b!21, ~36!

F5~11c!~11d!21. ~37!

These counterterms may be used to enforcem as the physical
mass of thew field, to ensure the elimination of the remain
ing divergences of the two-point function of thew field and
of the three-point function̂TAmw†w&.

The analysis of the UV divergences is greatly facilitat
with the aid of the graphical identities@11# depicted in Fig. 3.
Due to the independence of the auxiliary field propagators
the noncommutative parameter, these identities are valid
in the present situation. It should be observed that, as thl
field has no particle content, the identities may be used e
if we restrict ourselves to the one-particle irreducible grap
i.e., to graphs that cannot be separated into disjoint piece
cutting just one line, wavy or continuous. Before going a
further we would like to stress some important consequen
of these identities. As in the commutative case, the iden
of Fig. 3~a! implies that thew mass counterterm is innocuou
since it cancels in all contributions to the Green functio
2-4
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FIG. 4. Graphical structure of thew field two-point function. The hatched bubble represents diagrams that are one-particle irred
with respect to all fields.
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This will be explicitly verified in our discussion of the reno
malization of the two-point function of thew field. Another
implication of the graphical identity is that theDlw†w coun-
terterm is also innocuous if we consider Green functions
thew andAm fields only~no externall lines!; in that caseD
may be chosen at will and the wave function renormalizat
for the l field is therefore irrelevant. In our approach thel
field tadpole contributions will not be considered separat
but just in connection with the computation of the two-po
Green function of thew field.

An important implication of the identity of Fig. 3~b! is
that, except for the second diagram of Fig. 2~b!, all contri-
butions containing the quadrilinear vertex will cancel pa
wise; they need not be considered anymore. We also nee
consider those divergences that do not have a correspon
counterterm. They may haveNl equal to either 0 or 1. Fo
Nl51, the dangerous divergences are associated
graphs withNw50 and NA51. As mentioned earlier, this
last possibility does not happen if a Lorentz covariant re
larization is employed.

For Nl50 there are more possibilities:

~1! Graphs withNA50 andNw equal to either 4 or 6.
~2! Graphs withNA51 andNw54.
~3! Graphs withNA52 andNw50.
~4! Graphs withNA53 andNw50.

Besides the UV behavior, in all cases we need to inve
gate the possible presence of infrared divergences~UV-IR
mixing!.

We focus first on the processes whose correspond
counterterms are correlated by gauge invariance, nam
corrections for thew propagator, the three-point^TAmww†&
and the four-point̂ TAmAmw†w& functions. We have the fol-
lowing:

~1! The subleading contributions to the self-energy of
w field, G(p), are shown in Figs. 4 and 5. They are pure
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planar and their~ultraviolet! divergences should be absorbe
into a mass and wave function counterterms for thew field.
The mass counterterm is associated with the highest~qua-
dratic! divergence gotten by setting to zero the external m
mentum of the contributing graphs. As can be eas
checked, these divergences cancel between Figs. 4~a! and
4~b! due to the graphical identity of Fig. 3~a!.

The contributions for the wave function renormalizatio
of the w field come from Figs. 5~a! and 5~b!. Using dimen-
sional regularization, a straightforward calculation furnish
the following results:

Sw
(a)~p!52 i E dDk

~2p!D

~k12p!m~k12p!n

~k1p!22m2
Dmn~k!

52 i
1

N

64p2

3p2e
1finite terms, ~38!

Sw
(b)~p!52 i E dDk

~2p!D

1

~k1p!22m2
Dl~k!

5Cb1 i
1

N

4p2

3p2e
1finite terms, ~39!

wheree5D23 andCb is a quadratically divergent constan
that would contribute to the mass renormalization of thew
field; as mentioned earlier, the mass renormalization te
cancel. Figure 5~c!, on the other hand, cancels between Fi
4~a! and 4~b! due to Fig. 3~b!. The divergent parts are there
fore eliminated by the counterterm (1/N)(20/p2e)]mw†]mw,
which fixes the divergent part ofb as bdiv5(1/N)
3(20/p2e). The overall divergences associated with the ta
pole in Fig. 4~b! are absorbed in the counterterm in Fig. 4~d!.
We also assume thatF possesses a finite part which enforc
FIG. 5. Subleading contributions to thew propagator.
2-5
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FIG. 6. General structure of the three-point vertex function of theAm andw fields.
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m as the physical mass, i.e., by adjustingF andb we impose
the following normalization conditions:

G~p!50 for p25m2, ~40!

]G

]p2
50 for p25m2. ~41!

~2! Three-point function of theAm and w fields, i.e.,
^TAmw†w&. Because of our previous remark on the canc
lation of diagrams containing the quadrilinear vert
AmAmw†w, we have to analyze only those diagrams witho
this vertex, i.e., those which are depicted in Figs. 6 and 7
Fig. 7 there are two one-loop diagrams and eight two-lo
diagrams. Notice that the last four two-loop diagrams dif
from the first four two-loop ones just by the orientation
the charge flow in the upper bosonic loop. In the commu
tive situation, graphs which differ just by the orientation
the charge flow are related by charge conjugation, and
ry’s theorem states that they either give equal contributi
or cancel between themselves. Here, however, charge co
gation is lost and Furry’s theorem is no longer valid so t
the contributions should be individually analyzed. In the co
struction of the diagrams implicit in Fig. 6~b! it is important
to notice that any planar contribution is automatically over
ultraviolet finite. Indeed, these planar diagrams have z
degree of superficial divergence but, because of Lorentz
variance, they are proportional topm , which lowers the ef-
fective degree of divergence by one unit. On the other ha
as we will show, the nonplanar contributions in Fig. 6~b! are
used to cancel infrared divergences in the nonplanar
grams of Fig. 7.

The first two diagrams shown in Fig. 7 are purely nonp
nar and therefore are ultraviolet finite but could origina
nonintegrable~linear! IR divergences. In fact, because of th
transversality of theDrs propagator, Fig. 7~a! is finite and is
given by
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E d3k

~2p!3
e2 i (2k`p2p`p1)

3
@2~k1p1!1p#m@2~p11p!#r2p1s

@~k1p1!22m2#@~k1p11p!22m2#
Drs~k!.

~42!

Due to the asymptotic behavior ofDrs(k), this integral is
finite even when the phase factor is absent so that the re
is free from IR singularities. Figure 7~b!, on the other hand
is linearly divergent atp50. To see how this divergence i
canceled we write its amplitude as

E d3k

~2p!3
e2 i (2k`p2p`p1)I m~k,p,p1!

5E d3k

~2p!3
e2 i (2k`p2p`p1)@ I m~k,0,0!1Rm~k,p,p1!#,

~43!

where

I m~k,p,p1!5
@2~k1p1!1p#m

@~k1p1!22m2#@~k1p11p!22m2#
Dl~k!

~44!

and Rm(k,p,p1) presents at most logarithmic divergence
Explicitly,

E d3k

~2p!3
e2 i (2k`p2p`p1)I m~k,0,0!

5const3
p̃m

p̃2
eip`p1, ~45!

where we introduced a simplified notationp̃m5Qmnpn .
Now, among the diagrams implicit in Fig. 6~b! we consider
the diagram of Fig. 8~a! which may be obtained from Fig
2-6
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FIG. 7. Three-point function
of the Am andw fields.
s

7~b! by joining itsw external lines at a newlww† vertex and
attaching the external lines to a secondlww† vertex linked
to the first one by thel propagator. The amplitude for thi
graph reads

FIG. 8. Compensating diagrams for Figs. 7~b! and 7~j!.
06501
Jm~p,p1!5Dl~p!E d3k

~2p!3

d3q

~2p!3
e2 i (2k`p2p`p1)

3I m~k,p,q!
i 2

~q22m2!@~q1p!22m2#
.

~46!

ExpandingI m(k,p,q) aroundp5q50 as before and using
Eq. ~22! we get

Jm~p,p1!52const3
p̃m

p̃2
eip`p1

1E d3k

~2p!3

d3q

~2p!3
e2 i (2k`p2p`p1)

3Rm~k,p,q!
i 2

~q22m2!@~q1p!22m2#
Dl~p!,

~47!
2-7
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where the second term has at most logarithmic IR div
gences. Thus, adding the two contributions, no dangerou
divergence survives. This cancellation is just a manifesta
of the identity expressed in Fig. 3~a!. Being nonplanar, Figs
7~a! and 7~b! do not present ultraviolet divergences eith
This is an interesting point since in the renormalization
the commutative QED model the contribution of Fig. 7~a! is
important to secure the gauge invariance of the perturba
method. The above procedure can be generalized for
linearly IR divergent graph. From any nonplanar graphg we
may construct a new diagramḡ by joining two externalw
lines ofg in a new trilinear vertexlww†. This new diagram
containsg as a subgraph so that it presents the same
divergence asg. The divergence inḡ may be extracted by a
ea

w
n

06501
r-
IR
n

.
f

e
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R

simple Taylor expansion as we did in the above calculati

Summing the analytical expressions forg and ḡ it remains
only a mild logarithmic IR divergence.

The next set of graphs shown in Fig. 7 consists of fo
planar diagrams, Figs. 7~c!–7~f!. As those graphs have tw
loops they may have one-loop divergent subgraphs. H
however, we are concerned only with the overall divergen
postponing the analysis of the divergences of the subgra
to a later discussion~see Appendix!. Figure 7~c! is actually
finite since, due to the transversality of the gauge field pro
gator, the external vertices in the lower line cannot depe
on the loop momentum containing the two wavy lines. In t
following we list the divergent contributions arising from th
Figs. 7~d!–7~f!:
~a! Figure 7~d!:

Gm(d)
(1,2)52 i4Ne2 ip1`pE dDk

~2p!D

dDq

~2p!D

~2q1p!mqbp1aDab~k!Dl~k2p!

@~k1p1!22m2#@~k1q!22m2#~q22m2!@~q1p!22m2#

5 i ~p1!me2 ip1`p
16

3Np2

1

e
1finite terms. ~48!

~b! Figure 7~e!:

Gm(e)
(1,2)52 iNe2 ip1`pE dDk

~2p!D

dDq

~2p!D

~2q1p!m~k12q12p!b~k12p12p1!a

@~k1p1p1!22m2#@~k1q1p!22m2#

Dab~k!Dl~k1p!

~q22m2!@~q1p!22m2#

5 i ~p11p!me2 ip1`p
16

3Np2

1

e
1finite terms. ~49!

~c! Figure 7~f!:

Gm( f )
(1,2)52 iNe2 ip1`pE dDk

~2p!D

dDq

~2p!D

~2q1p!mDl~k!Dl~k2p!

@~k1p1!22m2#@~k1q!22m2#

1

~q22m2!@~q1p!22m2#

52 i ~2p11p!me2 ip1`p
2

3Np2

1

e
1finite terms. ~50!
e
he-
pli-

no

e
di-
ding

-
ere
So altogether we have

Gm(d)
(1,2)1Gm(e)

(1,2)1Gm( f )
(1,2)5 i ~2p11p!me2 ip1`p

14/3

Np2

1

e

1finite terms. ~51!

The above divergence can be eliminated by the trilin

counterterm (14
3 i /Np2e)Am(w]mw†2]mww†), so that B

5 14
3 /Np2e.
Let us now consider the four nonplanar diagrams sho

in Figs. 7~g!–7~j!. As we have outlined in our discussio
r

n

subsequent to Eq.~47!, any infrared linear divergence can b
eliminated by adequately combining the graphs. Nevert
less, in specific situations there are further additional sim
fications. Indeed, we have the following:

~a! Figure 7~g!: Because of our gauge choice, there is
IR divergence associated to that diagram.

~b! Figures 7~h! and 7~i!: Again, due to our gauge choic
these diagrams may present only a mild logarithmic IR
vergence. This divergence is canceled by the correspon
diagrams implicit in Fig. 6~b!.

~c! Figure 7~j!: The amplitude associated with this dia
gram is linearly divergent at zero external momentum. H
2-8
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we apply the aforementioned construction which produ
the graph shown in Fig. 8~b! @this is another graph implicit in
Fig. 6~b!#. The leading IR divergences of these two diagra
cancels, as we proved earlier.

Our results can be used now to fix the value ofC as
defined in the counterterm Lagrangian~33!. In fact, asB
514/3Np2e, then a5B2bdiv5246/3Np2e so that C
5bdiv12a5232/3Np2e. We remark that the only possibl
contributions ofC would be for the next-to-leading correc
tions to theAm propagator; due to the graphical identity
Fig. 3~b! a nonvanishingC would have no effect up to the
order we have been considering.

~3! Four-point function of the Am and w fields,
^TAmAnw†w&. There are not ultraviolet divergences becau
a given graph is either nonplanar or one may find a ‘‘pa
ner’’ graph to which the graphical identity in Fig. 3~a! may
be applied. In the last case, the divergence in the orig
graph and its partner cancel pairwise. This is consistent w
the fact that for this four-point function no counterterm
effective; in fact, the absence of these divergences may
considered as a test for the consistency of the calculatio

Although the renormalized Lagrangian turned out to
gauge invariant both in commutative and in the noncomm
tative cases, the mechanism by which this gauge invaria
is achieved is entirely different in the two situations. Thu
Figs. 7~a! and 7~b!, which are nonplanar, are ultraviolet fi
nite, contrarily to the commutative case. On the other ha
in the noncommutative setting Furry’s theorem is not va
and so many graph cancellations that hold in the comm
tive case are now absent and new contributions arise.

~4! Five-point function,̂ TAmw†ww†w&. The contributing
diagrams are at most logarithmically divergent. In the pla
part this divergence can be obtained by calculating the re
larized amplitude at zero external momenta~after extracting
the phase factors which in this case do not depend on
internal momentum!. Because of Lorentz covariance, it
clear that the result of this computation vanishes so tha
counterterm is needed. The possible IR divergence conta
th

ur

th
ch

c
nl
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in the nonplanar diagrams of this type can be canceled u
a construction similar to the one described after Eq.~47!.

~5! Three-point vertex function of theAm field,
^TAmAnAr&. There are just two one-loop graphs that diff
only by the orientation of the charge flow in the loop~each
loop consists of three bosonic lines!. These diagrams are
both planar, and adding them together one gets a factor
pending on the sine of the wedge product of the two exter
momenta times an integral which is finite by symmetric
tegration.

~6! Three-point vertex function of thel and w fields,
^Tlw†w&. To order 1/N the contributing graphs are depicte
in Fig. 9. The one-loop graphs, Figs. 9~a! and 9~b!, are non-
planar and therefore ultraviolet finite although in the infrar
limit they may present a mild logarithmic divergence. T
graph in Fig. 9~c!, on the contrary, is planar and is ultraviol
logarithmically divergent. It has an analytic expression giv
by

FIG. 9. Three-point function of thel andw fields.
E d3k

~2p!3

d3q

~2p!3

e2 i (p1`p)

@~k1p1!22m2#@~k1p11p!22m2#@~k2q!22m2#

1

~q22m2!
Dl~q1p1!Dl~q1p11p!. ~52!
igs.
e-

ther

ter-
ality
let
Besides presenting an overall logarithmic divergence
integral has a divergent subintegral, namely, theq integration
~this divergence will be examined in the context of the fo
point function of thew field, in the next item!. The overall
divergence cannot be eliminated through the use of
Dlww† counterterm since contributions containing su
counterterms are canceled due to the identity of Fig. 3~a!.
However, as exemplified in the Appendix, the divergen
mentioned is irrelevant as far the Green functions with o
externalw andAm fields are concerned.
is

-

e

e
y

The analytic expression for Fig. 9~d! differs from Eq.~52!
just by an additional factore22iq`p and therefore is ultravio-
let finite and has a mild logarithmic divergence whenp tends
to zero. Notice that in the commutative situation graphs F
9~c! and 9~d! would give the same contributions, as a cons
quence of charge conjugation invariance. There are o
graphs, not shown in Fig. 9, which differ from Figs. 9~c! and
9~d! just by the replacements, one at each time, of the in
nal dashed lines by wavy ones; because of the transvers
of the Am propagator these additional graphs are ultravio
2-9
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FIG. 10. Four-point function
of the w field.
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finite and without infrared singularities.
~7! Concerning the contributions to the four-point fun

tion ^Twww†w†& let us first examine the one-loop diagram
One sees that there are two types to be considered as the
depicted in Fig. 10. Whereas the graphs in the first row
Fig. 10 are ultraviolet linearly divergent, the graphs in t
second row are nonplanar and therefore ultraviolet fini
they do not need counterterms. No counterterm is a
needed for the four graphs of the first row because, a
consequence of the graphical identity of Fig. 3~a!, there are
two-loop graphs which cancel the mentioned divergenc
For example, the highest~linear! divergence of the graph
Fig. 10~a! is canceled by the one associated with the grap
Fig. 11~b!. Figure 11~b! has a subgraph with the same dive
gence as Fig. 10~a!. If we contract this subgraph to a poin
and use the identity of Fig. 3~a!, we obtain the cancellation
of these divergences. By a similar mechanism the logar
mic divergences which are proportional to the external m
menta of the graph are also cancelled. The complete can
lation of all ultraviolet divergences can become complica
as illustrated in the Appendix.

~8! Six-point function,^Twwww†w†w†&. As before, the
divergences of the planar diagrams cancel pairwise by
use of the identity in Fig. 3~a!, whereas the nonplanar graph
could at most develop a logarithmic infrared singularity.

The above discussion proves that, up to the leading n
trivial order of 1/N, the noncommmutive CPN21 model is
renormalizable and without dangerous infrared singulari
if the w field transforms in accord with the left fundament
representation.
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IV. THE NONCOMMUTATIVE CP NÀ1 MODEL
IN THE ADJOINT REPRESENTATION

Let us now consider the leading 1/N contributions when
the basic fields transform in accord with the adjoint rep
sentation. We will adopt the same graphical notation as in
previous section. However, we have new rules:

~1! Trilinear Amw†w vertex↔ 22(2k1p)msin(k`p).
~2! Quadrilinear AmAnw†w vertex ↔ 24igmnsin(k1

`p1)sin(k2`p2)1p1↔p2.
Note that these interactions are absent in the commuta

limit.
Using these rules we fix the two-point function of th

gauge field:

Fmn~p!54NF E d3k

~2p!3

~2k1p!m~2k1p!n

~k22m2!@~k1p!22m2#
sin2~k`p!

22gmnE d3k

~2p!3

1

k22m2
sin2~k`p!G . ~53!

As sin2(k`p)51
2@12cos 2(k`p)# we get a planar part that i

twice that of the gauge field two-point function in the corr
sponding commutative theory. Concerning the nonpla
piece, we perform the standard procedures to obtain

Fmn
np~p!522NE

0

1

dxE d3k

~2p!3

eikp̃

@k22M2#2
$4kmkn

1pmpn~2x21!222gmn@k21p2~x21!22m2#%,

~54!
FIG. 11. Illustration of the mechanism for the complete cancellation of the UV divergences in the four-point function of thew field. The
first graph~G! containsg1 , g2, andt as subgraphs.
2-10
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whereM25m22p2x(12x). Now, using Ref.@24#,

E d3k

~2p!3

eika p̃a

@k22M2#2
5

i

~2p!3/2A4M

K21/2@MA2 p̃2#

~2 p̃2!21/4

5
i

8p

e2MA2 p̃2

M
, ~55!

where Kn is the modified Bessel function of ordern, one
obtains the complete two-point function of the gauge fi
~for simplicity we are employing the same notation used
the counterterms in the previous section; no confus
should arise since they refer to distinct situations!

Fmn~p!5~gmnp22pmpn!A1 p̃mp̃nB1pmpnC, ~56!

where

A52
Ni

4pE0

1

dxF 1

M
~122x!2~12e2MA2 p̃2

!G , ~57!

B5
Ni

p p̃2
E

0

1

dxS 1

A2 p̃2
1M D e2MA2 p̃2

, ~58!

and a gauge-fixing term was added. Note that this result p
sesses an infrared singularity atp̃50.

Concerning the part of the Lagrangian which depends
the auxiliary fieldl, we should recall that, as pointed out
Eq. ~16!, there is a two-parameter family of possible intera
tion terms; some simplifications occur depending on wh
form the interaction is chosen. In particular, note the follo
ing.

~1! If the interaction term containingl is taken as in the
preceding section, the computation of the two-point funct
of the l field gives the same result as before but, differen
from the left representation, the mixed propagator^TlAm&
turns out to be nonvanishing. In fact, we find that at t
leading order of 1/N the two-point function of thel andAm
fields is given by

GAml~p!5NE d3k

~2p!3

~2k1p!m

~k22m2!@~k1p!22m2#
e2 i2k`p.

~59!

In contrast with the commutative model, the above expr
sion does not vanish and yields

GAml~p!52
Npm̃

4pA2 p̃2
E

0

1

dx e2MA2 p̃2
[Dp̃m , ~60!

whereD is a nonvanishing function ofp̃2 andp2.
~2! If the interaction term is chosen to be

l* ~f* f†2f†* f!, ~61!
06501
r
n

s-

n

-
h
-

n
y

s-

then, at the leading order of 1/N, the mixed propagator van
ishes but thel field propagator will have a nonplanar con
tribution. In this case the two-point function of thel field
will be

2Fl~p!1Fnpl~p![E~p!, ~62!

whereFl was given in Eq.~22! and the nonplanar partFnpl

is

Fnpl~p!52
iN

4pE0

1

dx
e2MA2 p̃2

M
. ~63!

As another consequence of the choice~61!, the graphical
identity of Fig. 3~a! is no longer valid. There are much mor
contributing diagrams than in the left representation.

We are now in a position which allows us to compute t
propagators for theAm andl fields at leading order of 1/N.
To encompass the two situations listed above, we shall d
ignate the two-point function of the auxiliaryl field by E(p)
with the understanding that for case~1! E(p) andD(p) are
given by Eqs.~22! and ~60!, respectively, whereas for cas
~2! E(p) is given by Eq.~62! andD(p)50. The propagators
are then fixed by the inverse of the matrix which appears
the quadratic part of the Lagrangian. A direct calculati
then furnishes the following.

For theAm propagator,

Dmn5~gmnp22pmpn!
21

~p2!2A
1bp̃mp̃n2

pmpn

~p2!2C
, ~64!

where

b5
2D2

@E~Ap21Bp̃2!2D2p̃2#~Ap21Bp̃2!

1
Bp2

p2A~Ap21Bp̃2!
. ~65!

For the mixed propagator,

Dn~p![^TAnl&5dp̃n, ~66!

where

d5
D

E~Ap21Bp̃2!2D2p̃2
. ~67!

For thel propagator,

Dl~p!52
1

E
~11dDp̃2!. ~68!

At small momentab.1/p2(2 p̃2)3/2 and A.A2 p̃2 in

both situations discriminated above andd.1/A2 p̃2 for case
~1!. Thus, the transversal part of theAm field propagator
diverges badly@as 1/p2(2 p̃2)1/2] at small momentum. In a
local model such behavior would in a nonrelativistic limit b
2-11
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associated with a potential that grows linearly with the d
tance from a charge probe. Therefore the quanta of thw
field would be confined. However, due to the nonlocal ch
acter of the interaction, there are at the vertices moment
dependent form factors~sine factors! which smoothens the
long-distance behavior of the potential.

Besides the aforementioned situation which indicates
possible occurrence of dangerous infrared singularities
would like to stress that, in fact, radiative corrections bri
new infrared divergences that at higher order lead to
breakdown of the 1/N expansion. The crucial point of th
calculation is provided by the corrections to thew field two-
point function whose contributions are again given by
graphs in Figs. 4 and 5~we may have other diagrams co
taining the mixed propagator but these are nonplanar
grams without IR or UV divergences!. Let us first examine
those contributions for the situation~1! listed above. Apart
from Fig. 5~b! which is still planar, now there are trigono
metric factors that deserve special consideration.

In the Landau gauge (C→`), in which we have chosen
to work, the transversality property of the gauge propaga
produces a reduction of the degree of divergence of the g
in Fig. 5~a! by two units. Indeed the amplitude for Fig. 5~a!
turns out to be

E d3k

~2p!3

~2p1k!m~2p1k!n

~p1k!22m2
Dmn~k!sin2~k`p!

54pmpnE d3k

~2p!3

1

~p1k!22m2
Dmn~k!sin2~k`p!.

~69!

The ultraviolet ~logarithmic! divergence of this expressio
must be removed by an adequate counterterm; no infra
divergence appears because the sine factors improve th
havior of the integrand for small momenta. However, F
5~c! has a leading contribution which, for high loop m
menta, behaves as

E d3k

~2p!3
cos~2k`p!

1

Ak2
~70!

and is quadratically divergent asp goes to zero. The multiple
insertions of this graph into a larger graph leads to nonin
grable singularities which destroy the 1/N expansion. At this
point we may wonder if this result could not be modified
another choice for the trilinear interaction among thel and
w fields. In fact, the choice~61! as the interaction part in
volving the l field introduces a sine factor at the triline
vertex as it already happens with theAmAnww† vertex. If this
is done, then diagram of Fig. 5~b! would have also a nonpla
nar part which asymptotically is similar to, Eq.~70!. How-
ever, the numerical factors do not match and no cancella
could take place.
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V. CONCLUDING REMARKS

In this work we focused on the construction of a cons
tent extension of the CPN21 model to the noncommutative
space. As we have seen, there are various possible exten
which depend on the way the fields transform under
gauge group. In all situations, we have chosen the auxil
field l as belonging to the adjoint representation. For thew
field belonging to the fundamental representation this p
scription automatically prevents the appearance of a mi
^TlAm& propagator. In fact the possibility envisaged in E
~14! leads to a nonvanishing two-point proper function of t
Am andl fields given by

GAml~p!52NE d3k

~2p!3

~2k1p!m

~k22m2!@~k1p!22m2#
e2 i2k`p

5
iNpm̃

8pA2 p̃2
E

0

1

dx e2MA2 p̃2
. ~71!

For thew field belonging to the adjoint representation, t
mixing of thel andAm fields will occur unless the constrain
Lagrangian is used as in Eq.~61!.

Up to the leading nontrivial order of 1/N, all dangerous
IR divergences were shown to cancel if the basicw field
belongs to the left representation of the gauge group. We
proved that the ultraviolet divergences may be absorbed
counterterms which preserve the form of the original L
grangian. Therefore gauge invariance is maintained but
occurs in a way different from the commutative case. Inde
in the commutative setting all the counterterms coefficie
b, B, andC defined in Eq.~33! are equal and theAm field is
not renormalized. In the present situation, however, theAm
field gets renormalized and, although innocuous, a quadr
ear vertexAmAnww† counterterm occurs.

An entirely different picture is found if the basic fiel
belongs to the adjoint representation. First, the graph
identities characteristics of the commutative model are
longer valid. Nonplanarity occurs already at the leading
der of 1/N and the number of diagrams to be analyzed
creases significantly. Also, due to the presence of~Moyal!
commutators, theAm field formally decouples from the
theory in the commutative limit. However, in this limit th
Green functions are singular and the limit does not seem
exist ~this is, of course, also true if thew field is in the
fundamental representation!. Dangerous infrared divergence
occur both in the gauge sector and in the radiative corr
tions to the two-point function of thew field.

Because of the noncommutativity of the Moyal produ
there is a two-parameter family of interaction terms conta
ing the auxiliaryl field. However, for no choice is it pos
sible to cancel the divergences. Actually, the existence
IR-UV mixing suggests that to achieve consistency furth
extensions of the model should be investigated. This issu
the object of our next study where the inclusion of fermion
matter fields will be investigated.
2-12
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APPENDIX

In this appendix we shall demonstrate some results c
cerning the ultraviolet behavior of the noncommutati
CPN21 model when the basicw field belongs to the left
fundamental representation of the gauge group. They ar
follows.

~a! The subleading contributions to thel andAm propa-
gators, which are explicit in Eqs.~22! and~25!, are irrelevant
as far as the ultraviolet divergences are concerned. In
the only case that requires special attention is the two-p
function of thew field, which becomes at most linearly d
vergent if the subleading contribution for the auxiliary fiel
is used. Actually, it only occurs in the diagram of Fig. 5~b!
up to the order that we have considered. Replacing this c
tribution in Figs. 4 and 5 one sees that the would-be lin
divergences cancel among themselves. The next subd
gence which is only logarithmic vanishes due to Lore
covariance.

~b! Contributions containing the mass counterterm can
pairwise. This result follows straightforwardly from th
graphical identity depicted in Fig. 3~a! where the special ver
tex stands for the mass counterterm insertion.

~c! Finally we will exemplify how the complete cancella
tion of ultraviolet divergences takes place in the case wh
several~sub!diagrams are involved, as in the three-loop d
gramG of Fig. 11. The ultraviolet divergent subgraphs ofG
areg1 ,g2, andt; they also occur as~sub!graphs of the dia-
gramsḡ1 ,ḡ2, andt as shown in Fig. 11~in spite of having a
different number of loops they are of the same order in 1/N).
These diagrams are all planar and have the same noncom
tative phase (expi@p1`p22p1`p31p2`p3#) which therefore
factorizes in their sum. Notice thatg1 and g2 are overlap-
ping and that both containt as a subgraph. In the
Bogolubov-Parasiuk-Hepp-Zimmermann~BPHZ! scheme
the relevantG forests are 0”,g1 ,g2 ,t,$g1 ,t% and $g2 ,t%.
The BPHZ-subtracted amplitude associated with graphG is
therefore
l,

’’

rg
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RG5I G2I G/g1
tg1

0 I g1
2I G/g2

tg2

0 I g2
2I G/ttt

1I t

1I G/g1
tg1

0 I g1 /ttt
1I t1I G/g2

tg2

0 I g2 /ttt
1I t , ~A1!

whereI G denotes the unsubtracted amplitude associated
graph G; as usual,I G/g is the amplitude associated to th
reduced graphG/g obtained by contracting the subgraphg
of G to a point. For a generic diagramg, tg is defined as the
Taylor operator on the external independent momenta og
with the proviso that it does not act on the noncommutat
phase factor. Similarly, the BPHZ-subtracted amplitudes
the graphsḡ1 , ḡ2, andt are

Rḡ1
5I ḡ1

2I ḡ1 /g1
tg1

0 I g1
2I ḡ1 /ttt

1I t1I ḡ1 /g1
tg1

0 I g1 /ttt
1I t ,

~A2!

Rḡ2
5I ḡ2

2I ḡ2 /g2
tg2

0 I g2
2I ḡ2 /ttt

1I t1I ḡ2 /g2
tg2

0 I g2 /ttt
1I t ,

~A3!

and

Rt5I t2tt
1I t . ~A4!

Note now that as a consequence of the graphical iden
in Fig. 3~a!, I G/g1

5I G/g2
52I ḡ1 /g1

52I ḡ2 /g2
and thatI G/t

52I ḡ1 /t52I ḡ2 /t5 trivial four vertex, we see that when
adding the above contributions all the subtraction terms c
cel. We stress that the cancellation occurs for all subtracti
including those associated with the last subtraction for
linearly divergent diagramt ~in this case, to the reduce
vertex associated to the contraction oft to a point it is as-
signed a linear polynomial in the external momenta oft).
This proves that the sum of the unsubtracted diagram
finite.

If the charge flow in the upper and lower loops of Fig.
are in opposite direction, the corresponding diagrams
nonplanar. They still have the same phase factor but it
pends on the loop momentum of thet diagram. Individually
they present a linear infrared divergence which nonethe
is cancelled whenever they are added. This is most ea
seen by factorizing the noncommutative phases and t
Taylor expanding the remaining of thet ’s integrand up to
first order in the independent external momenta of t
graph.
a,

a,
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