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Effective potential for composite operators and for an auxiliary scalar field
in a Nambu–Jona-Lasinio model

Bang-Rong Zhou
CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China

and Department of Physics, the Graduate School of Chinese Academy of Sciences, Beijing 100039, China*
~Received 4 September 2003; published 12 March 2004!

We derive the effective potentials for composite operators in a Nambu–Jona–Lasinio model at zero and
finite temperature and show that in each case they are equivalent to the corresponding effective potentials
based on an auxiliary scalar field. Both effective potentials could lead to the same possible spontaneous
breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals
is large enough, and can be transformed to each other when the Schwinger-Dyson equation of the dynamical
fermion mass from the fermion-antifermion vacuum~or thermal! condensates is used. The results also gener-
ally indicate that two effective potentials with the same single order parameter but rather different mathemati-
cal expressions can still be considered physically equivalent if the Schwinger-Dyson equation corresponding to
the extreme value conditions of the two potentials have the same form.
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h
ym
ap

n-
th

i
by

the

all,
f
er-
po-

he
p

it.

fer-
ms
nd
op
ce

nal

-

the

the
the
I. INTRODUCTION

The effective potential@1–5# is a basic means to researc
the vacuum of quantum field theory and spontaneous s
metry breaking. It can be derived by means of different
proaches. Consider a simple Nambu–Jona-Lasinio~NJL!
model @6# of four-fermion interactions,

L~x!5 (
k51

N

c̄k~x!igm]mck~x!1
g

2 (
k51

N

@c̄k~x!ck~x!#2,

~1!

whereck(x) are the fermion fields withN ‘‘color’’ compo-
nents andg is the four-fermion coupling constant. The co
ventional approach to derive an effective potential of
model is to introduce an auxiliary scalar fields(x) @7#, since
the Lagrangian~1! is equivalent to

Ls~x!5 (
k51

N

c̄k~x!igm]mck~x!2s~x!(
k51

N

c̄k~x!ck~x!

2
1

2g
s2~x!, ~2!

Then, in terms of a local external sourceJ(x) and the stan-
dard procedure, one will obtain from Eq.~2! the effective
action and corresponding effective potential. The latter,
the leading order of 1/N expansion, can be expressed
@7,8#

Vs~m0!5
m0

2

2g
12NE id4l

~2p!4
lnS 12

m0
2

l 21 i«
D , ~3!

where the constant ‘‘classical field’’sc has been identified
with the dynamical fermion massm0.
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Alternatively, we may have another approach to derive
effective potential of the model~1!: i.e., the effective action
approach for composite operators presented by Conw
Jackiw, and Tomboulis~CJT! @9#. In this approach, instead o
introducing an auxiliary scalar field, one considers the f
mion propagator as the order parameter of the effective
tential. Since the fermion propagatorG(x,y) is a bilocal
function, one must put in a bilocal external sourceK(x,y).
The effective action is the energy of the system whenG(x,y)
is fixed. Hence in the derivation of the effective action, t
external sourceK(x,y) must be so selected as to kee
G(x,y) fixed. In the final result,G(x,y) will be the exact
fermion propagator, i.e., no higher-order corrections to
The CJT effective actionG@G# for the models without a
basic scalar field can be expressed by@9,10#

G@G#52 i Tr ln~SG21!2 i Tr~S21G!1 i Tr 11G2@G#,
~4!

where

iS215 igm]m ,

i.e., S corresponds to the propagator for free massless
mion. The Tr is in the functional sense. The first three ter
in Eq. ~4! are the contributions of one-loop diagrams a
G2@G# represents the contributions of two- and more-lo
vacuum graphs without fermion self-energy correction, sin
G is the exact fermion propagator. In a theory of translatio
invariance,G(x,y)5G(x2y), we can define the effective
potentialV@G# by

G@G#52VV@G#, ~5!

whereV is the space-time volume. In the four-fermion in
teraction model given by Eq.~1!, we will have V@G#
5V(m0), i.e., the order parameter may be replaced by
dynamical fermion massm0.

Several natural and interesting questions follow: Is
effective potential so derived equivalent to the one from
©2004 The American Physical Society07-1
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auxiliary scalar field or not? Is there any relation between
two effective potentials? What will it mean if the answers a
positive? In this paper we will reply on the above questio
through calculating the CTJ potential of the model~1! and
comparing it with the result from the auxiliary scalar fie
approach. Besides the zero-temperature case, we will
discuss finite temperature case. The discussions will be
ducted in the real-time thermal field theory@11–13#, and this
could give us some more insight of how to calculate the C
effective potential in the real-time formalism of thermal fie
theory, noting that conventional calculations were made
the imaginary-time formalism@14#.

The paper is arranged as follows. In Sec II we will deri
the CJT potential of the model~1! when temperatureT50
and Fermionic chemical potentialm50, discuss spontaneou
symmetry breaking, and explore the relation between the
sult and Eq.~3! from the auxiliary scalar field approach. I
Sec. III the above discussions will be generalized to the c
of finite T and finitem, and in Sec. IV, we give our conclu
sions.

II. CJT POTENTIAL AT TÄµÄ0

In the momentum space, we have

S~p!5 i /p” , G~p!5 i /~p”2m0!, p”[gmpm , ~6!

whereG(p) is the exact fermion propagator when the fou
fermion interactions exist and the dynamical fermion m
m0 should be a constant. When keeping only the vacuu
vacuum diagram up to two-loop order with one four-fermi
coupling vertex inG2@G#, we will obtain from Eq.~4! the
CJT effective action of the model~1! at T5m50,

G@G#52 iN^@ tr ln S~p!G21~p!1tr S21~p!G~p!2tr 1#

3^pup&&1
g

2
^tr G~p!&2~2p!4d4~0!, ~7!

where tr only represents the trace of a spinor matrix, and
denotation̂ •••& has been used for*d4p/(2p)4. By means
of Eq. ~6! and the relationŝpup&5(2p)4d4(0)5V, we can
write Eq. ~7! by

G@G#52VV~m0!, ~8!

where, after the Wick rotation of the integral variablep, the
effective potentialV(m0) may be expressed by

V~m0!522NK ln
p̄21m0

2

p̄2 L 14NK m0
2

p̄21m0
2L

28N2gK m0

p̄21m0
2L 2

, ~9!

where, and afterwards, the denotationp̄ will be understood
as Euclidean four momentum. By the effective poten
06500
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V(m0), we may discuss spontaneous symmetry breaking
the model~1!. A nonzero order parameterm0 in the vacuum
state will mean spontaneous breaking of the discrete ch
symmetryxD : ck(x) →xD g5ck(x) and the special paritiesPj :

ck~ t, . . . ,xj , . . . !→
Pj

g jck~ t, . . . ,2xj , . . . !~ j 51,2,3!.

It is obtained from Eq.~9! that

]V~m0!

]m0
54Nm0K p̄22m0

2

~ p̄21m0
2!2L S 124NgK 1

p̄21m0
2L D

~10!

with

K p̄22m0
2

~ p̄21m0
2!2L 5

m0
2

16p2 FL2

m0
2

23 lnS L2

m0
2

11D 12
L2

L21m0
2G ,

whereL is the four-dimensional Euclidean momentum cu
off. It is easy to check that

K p̄22m0
2

~ p̄21m0
2!2L .0, when

L2

m0
2
.1.82. ~11!

Assuming thatL is large so that Eq.~11! is true, then the
extreme value condition]V(m0)/]m050 will be satisfied if
~i! m050, and~ii ! m05m01, wherem01 is determined by the
gap equation

124NgK 1

p̄21m01
2 L 50. ~12!

Then we may verify that

]2V~m0!

]m0
2 U

m050

54NK 1

p̄2L S 124NgK 1

p̄2L D ~13!

and

]2V~m0!

]m0
2 U

m05m01

532N2gK p̄22m01
2

~ p̄21m01
2 !2L K m01

2

~ p̄21m01
2 !2L

.0, if
L2

m01
2

.1.82. ~14!

Obviously, when 124Ng^1/p̄2&512NgL2/4p2.0 or
NgL2/4p2,1, i.e., the four-fermion couplingg is weak,
V(m0) has the only minimum pointm050 thus no sponta-
neous symmetry breaking occurs in this case. Convers
when

NgL2

4p2
.1, ~15!

i.e., the four-fermion couplingg is strong enough,V(m0)
7-2
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will have a maximum pointm050 and a minimum point
m05m01 which is now the nonzero solution of Eq.~12!. In
this case spontaneous symmetry breaking will occur. No
that Eq. ~15! is compatible with the conditionL2/m01

2

.1.82.
We indicate that the same conclusion can be obtained

the effective potential~3! derived from the auxiliary scala
field approach. In fact, after the Wick rotation, Eq.~3! be-
comes

Vs~m0!5
m0

2

2g
22NK ln

p̄21m0
2

p̄2 L ~16!

and it further leads to

]Vs~m0!

]m0
5

m0

g S 124NgK 1

p̄21m0
2L D . ~17!

It is seen by a comparison that Eqs.~17! and ~10! are iden-
tical except for a factor 4Ng^( p̄22m0

2)/( p̄21m0
2)2&. Conse-

quently, as far as symmetry breaking is concerned,Vs(m0)
will lead to the same conclusion asV(m0) when L2/m0

2

.1.82. We notice that in the auxiliary scalar field approa
the dynamical fermion massm0 comes from the vacuum
expectation value of the scalar fields(x), and in the CJT
composite operator approach,m0 originates from the
fermion-antifermion condensates^c̄c& through the relation

m052
g

2
^c̄c&54NgK m0

p̄21m0
2L . ~18!

Hence if we substitute Eq.~18! into the CJT potential
V(m0) in Eq. ~9! and physically this amounts to view
2(g/2)^c̄c& effectively as the vacuum expectation value
an auxiliary scalar field, then we should be able to obt
Vs(m0) from V(m0). This is in fact true. Comparing Eq.~9!
with Eq. ~16! we may see that the last two terms in Eq.~9!
should correspond to the first term on the right-hand side
Eq. ~16!. This can be directly verified by putting Eq.~18!
into Eq. ~9!.

We emphasize that the key sectors of the extreme v
equations]V(m0)/]m050 and ]Vs(m0)/]m050 are the
same and it is just Eq.~18!. This fact indicates thatV(m0)
andVs(m0) are essentially determined by the form of the S
equation~18! and this explains that why they are complete
equivalent despite their different expressions.

III. CJT POTENTIAL AT FINITE T AND µ

The extension of the CJT effective action~4! to finite T
andm can be expressed in the real-time formalism of therm
field theory by
06500
g

y

,

f
n

f

e

l

GT@G#52 i Tr@ ln~STGT
21!#112 i Tr~ST

21GT!11

1 i Tr 11G2T@G#

52 iN^@ tr@ ln ST~p!GT
21~p!#11&V

2 iN^tr@ST
21~p!GT~p!#11&V

1 iN^tr 1&V1G2T@G#, ~19!

whereST and GT are 232 thermal matrix propagators, th
superscript ‘‘11’’ represents the 11 component of the cor
sponding matrix. In the momentum space, we have@11#

ST~p!5M pS̃~p!M p , GT~p!5M pG̃~p!M p ~20!

with the thermal transformation matrixM p defined by

M p5S cosup 2ebm/2sinup

e2bm/2sinup cosup
D ,

sin2up5
u~p0!

eb(p02m)11
1

u~2p0!

eb(2p01m)11
, b51/T ~21!

and

S̃~p!5S S~p! 0

0 S* ~p!
D , G̃~p!5S G~p! 0

0 G* ~p!
D ,

~22!

where

S~p!5 i /~p”1 i«!, S* ~p!52 i /~p”2 i«!,

G~p!5 i /~p”2m1 i«!, G* ~p!52 i /~p”2m2 i«!,

~23!

and m[m(T,m) is the dynamical fermion mass at finiteT
andm. It is noted that, by Eq.~20!,

ln ST~p!GT
21~p!5 ln M pS̃~p!G̃21~p!M p

21

5M pln @S̃~p!G̃21~p!#M p
21 , ~24!

the last step can be checked by a formal power series ex
sion of the ln expression. We may obtain from Eqs.~21!–
~24! that

tr@ ln ST~p!GT
21~p!#11

5cos2uptr ln@S~p!G21~p!#

1sin2uptr ln@S* ~p!G21* ~p!#

52 cos2uplnS 12
m2

p21 i«
D 12 sin2uplnS 12

m2

p22 i«
D .

~25!

Similarly, we may obtain
7-3
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tr@ST
21~p!GT~p!#11

5tr@M p
21S̃21~p!G̃~p!M p#11

5cos2uptr@S21~p!G~p!#1sin2uptr@S21* ~p!G* ~p!#

54Fcos2up

p2

p22m21 i«
1sin2up

p2

p22m22 i«
G . ~26!

To two-loop order of the four-fermion interactions, we c
calculate

G2T@G#5
g

2
~Tr GT

11!2~2p!4d4~0!

5
g

2
N2^tr GT

11~p!&2V

5
g

2
N2^tr@cos2upG~p!2sin2upG* ~p!#&2V

528gN2K cos2up

m

p22m21 i«

1sin2up

m

p22m22 i«
L 2

V. ~27!

Substituting Eqs.~25!–~27! into Eq. ~19!, we will get the
effective action at finiteT andm,

GT@G#52VV~T,m,m!, ~28!

where

V~T,m,m!

5 i2NK cos2uplnS 12
m2

p21 i«
D

1sin2uplnS 12
m2

p22 i«
D L

1 i4NK cos2up

p2

p22m21 i«
1sin2up

p2

p22m22 i«
L

18gN2K cos2up

m

p22m21 i«
1sin2up

m

p22m22 i«
L 2

~29!

is the effective potential at finiteT and m with the order
parameterm. By using Eq.~29!, we can discuss spontaneo
symmetry breaking of the model at finiteT andm. It is found
out that
06500
]V~T,m,m!

]m

54NK i ~p21m2!

~p22m21 i«!2L mS 124NgK i

l 22m21 i«

22pd~ l 22m2!sin2u l L D . ~30!

In view of Eq. ~11!, we will have ^ i (p21m2)/(p22m2

1 i«)2&.0, if L2/m2.1.82 ~after Wick rotation! is as-
sumed. Then the extreme value condition]V(T,m,m)/]m
50 will correspond to the equation

mS 124NgK i

l 22m21 i«
22pd~ l 22m2!sin2u l L D 50

~31!

which is just the Schwinger-Dyson equationm52(g/2)
3^c̄c&T obeyed by the dynamical fermion massm at finiteT

andm, where^c̄c&T is the thermal condensates at tempe
ture T @12#. The possible solutions of Eq.~31! are that~i!
m50, and~ii ! m5m1, wherem1 obeys the gap equation

124NgK i

l 22m1
21 i«

22pd~ l 22m1
2!sin2u l L 50.

~32!

We may further find out that

]2V~T,m,m!

]m2 U
m50

5
NL2

4p2 F12
NgL2

4p2
1

Ng

2p2
F3~T,m,m50!G

~33!

with the denotations

F3~T,m,m!52T2E
0

` dxx2

Ax21y2 F 1

exp~Ax21y22r !11

1~2r→r !G , y5
m

T
, r 5

m

T

and

]2V~T,m,m!

]m2 U
m5m1

532N2gK p̄22m1
2

~ p̄21m1
2!2L K m1

2

~ p̄21m1
2!2L

.0, if
L2

m1
2
.1.82. ~34!

The gap equation~32! can be changed into
7-4
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12
NgL2

4p2
1

Ng

2p2 FF3~T,m,m1!1
m1

2

2
ln

L21m1
2

m1
2 G50

~35!

and it is noted thatF3(T,m,m) increases asm goes down.
We may see from Eq.~33! that if

12
NgL2

4p2
1

Ng

2p2
F3~T,m,m50!,0,

thenm50 will be a maximum point ofV(T,m,m) and it is
easy to verify that in this case Eq.~35! could have a solution
m1Þ0 which, by Eq. ~34!, is a minimum point of
V(T,m,m); hence we will have spontaneous symme
breaking at finiteT andm. However, asT and/orm further
increase,F3(T,m,m) will go up, and by Eq.~35!, m1 will go
down and finally to zero. As a result, we will obtain th
equation satisfied by critical temperatureTc and the critical
chemical potentialmc ,

12
NgL2

4p2
1

Ng

2p2
F3~Tc ,mc ,m150!50. ~36!

At Tc andmc , we get from Eqs.~33! and ~36!

]2V~Tc ,mc ,m!

]m2 U
m50

50.

If T and/orm continue to go up andF3(T,m,m50) will also
further increase, then we will be led to

]2V~Tc ,mc ,m!

]m2 U
m50

.0.

This indicates that at the critical pointTc andmc , m50 will
change from being a maximum into a minimum, the ord
parameterm also varies from nonzero to zero.V(T,m,m)
will be left the only minimum pointm50 and this means
that the discrete chiral symmetryxD and the special paritie
Pj ( j 51,2,3) which are spontaneously broken atT5m50
and T,Tc and/or m,mc will be restored. However, the
above discussions do not involve the order of the phase t
sition. For the latter more demonstrations are needed@15#.

Similar to the zero-temperature case, the above con
sions coming from the CJT potentialV(T,m.m) can also be
reached by the effective potentialVs(T,m,m) based on the
auxiliary scalar field. The effective potential of a NJL mod
at finiteT andm based on auxiliary field was derived for th
first time in Ref.@16#. For the model~1!, Vs(T,m,m) and
relevant expressions can be written by
06500
r

n-

u-

l

Vs~T,m,m!5
m2

2g
1 i2NK cos2uplnS 12

m2

p21 i«
D

1sin2uplnS 12
m2

p22 i«
D L , ~37!

]Vs~T,m,m!

]m
5

m

g S 124NgK i

p22m21 i«

22pd~p22m2!sin2upL D , ~38!

]2Vs~T,m,m!

]m2 U
m50

5
1

g F12
NgL2

4p2
1

Ng

2p2

3F3~T,m,m50!G , ~39!

]2Vs~T,m,m!

]m2 U
m5m1

58m1
2K 2 i

~p22m1
21 i«!2L .0,

~40!

wherem1 is the nonzero solution of]Vs(T,m,m)/]m50.
Obviously Eqs.~37!–~40! will reproduce the total conclu-
sions from the CJT potentialV(T,m,m). This indicates that
at finite T and m, the two potentials are also complete
equivalent. In fact, if substituting the SD equation~31! from
the thermal condensates^c̄c&T into Eq. ~29!, then we will
reduceV(T,m,m) to Vs(T,m,m) given by Eq.~37!. This
shows that the following two approaches will lead to phy
cally identical results: one is that after the thermal cond
sates^c̄c&T are formed, to consider them as an effecti
constant scalar field to generate the dynamical fermion m
m, and another one is that, from the beginning of the disc
sions, to replace the four-fermion interactions by the eff
tive Yukawa coupling between an auxiliary scalar field a
the fermions so as to spontaneously obtain the fermion m
m. Although the CJT potentialV(T,m,m) and the auxiliary
scalar field effective potentialVs(T,m,m) may have differ-
ent expressions, the key sector contained in both are
same. That is the derived Schwinger-Dyson equation~31!

from the thermal condensates^c̄c&T .

IV. CONCLUSIONS

We have proven that in a 4D NJL model, the CJT effe
tive potential based on composite operators and the effec
potential based on an auxiliary scalar field are complet
equivalent not only atT5m50 but also at a finiteT andm if
the momentum cutoff in the fermion loop integrals is lar
enough. The two effective potentials may give the same p
sible spontaneous symmetry~including chiral symmetry!
breaking atT5m50 and a lowT and m, and symmetry
restoration at a finiteT andm. Although the expressions o
the two effective potentials are different, the key sectors
both are the same; it is the derived Schwinger-Dyson eq
tion originated from the fermion-antifermion condensates.
7-5
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particular, when the above equation is used, the two po
tials can be transformed into each other. The discussions
imply that, in general, an effective potential, at least the o
containing a single order parameter, is essentially determ
by the Schwinger-Dyson equation corresponding to the
treme condition of the effective potential. This is because
mathematical form of the SD equation will determine t
effective potential’s extreme value points, maximums, mi
mums, etc., and they are essential for research on spon
06500
n-
lso
e
ed
x-
e

-
ne-

ous symmetry breaking. Hence, corresponding to a gi
form of the SD equation, it seems that we are allowed
have different expressions for the corresponding effec
potential@8#.
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