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Effective potential for composite operators and for an auxiliary scalar field
in a Nambu—Jona-Lasinio model

Bang-Rong Zhou
CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
and Department of Physics, the Graduate School of Chinese Academy of Sciences, Beijing 100039, China
(Received 4 September 2003; published 12 March 2004

We derive the effective potentials for composite operators in a Nambu—Jona—Lasinio model at zero and
finite temperature and show that in each case they are equivalent to the corresponding effective potentials
based on an auxiliary scalar field. Both effective potentials could lead to the same possible spontaneous
breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals
is large enough, and can be transformed to each other when the Schwinger-Dyson equation of the dynamical
fermion mass from the fermion-antifermion vacudgor thermal condensates is used. The results also gener-
ally indicate that two effective potentials with the same single order parameter but rather different mathemati-
cal expressions can still be considered physically equivalent if the Schwinger-Dyson equation corresponding to
the extreme value conditions of the two potentials have the same form.
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[. INTRODUCTION Alternatively, we may have another approach to derive the
effective potential of the mod€l): i.e., the effective action
The effective potentidl1-5] is a basic means to research approach for composite operators presented by Conwall,
the vacuum of quantum field theory and spontaneous symdackiw, and TombouliéCJT) [9]. In this approach, instead of
metry breaking. It can be derived by means of different apintroducing an auxiliary scalar field, one considers the fer-
proaches. Consider a simple Nambu-Jona-LasiiNAL) mion propagator as the order parameter of the effective po-
model[6] of four-fermion interactions, tential. Since the fermion propagat@(x,y) is a bilocal
function, one must put in a bilocal external souiCéx,y).
The effective action is the energy of the system wigdr, y)
L(x)= Z X9 (X)) + 5 2 [0 ()12, is fixed. Hence in the derivation of the effective action, the
(1) external sourceK(x,y) must be so selected as to keep
G(x,y) fixed. In the final resultG(x,y) will be the exact
where ¢4 (x) are the fermion fields wittN “color” compo- fermion propagator, i.e., no higher-order corrections to it.
nents andy is the four-fermion coupling constant. The con- The CJT effective actiod’[G] for the models without a
ventional approach to derive an effective potential of thebasic scalar field can be expressed 8yi0]
model is to introduce an auxiliary scalar fielgx) [7], since . g ., .
the Lagrangiar(1) is equivalent to F[G]=—iTrin(SG ) —i Tr(S™°G) +i Tr1+I‘2[G],(4)

N

g(x>—2 P01 749, X a(x)E YOO () where
iSleiy"&M,

— 5-0%(%), ) i.e., S corresponds to the propagator for free massless fer-
mion. The Tr is in the functional sense. The first three terms
Then, in terms of a local external sourdex) and the stan- N Eg. (4) are the contributions of one-loop diagrams and
dard procedure, one will obtain from E) the effective I'2[G] represents the contributions of two- and more-loop
action and corresponding effective potential. The latter, invacuum graphs without fermion self-energy correction, since
the leading order of N expansion, can be expressed byGIS the exact fermion propagator. In a theory of translational
[7,8] invariance,G(x,y) =G(x—y), we can define the effective
potential V[ G] by
2 - 44 2
Vymy=ge+on [ In(l— Mo ) @ I[G]=-QV[G], )
29 (2m)* 12+ie

where () is the space-time volume. In the four-fermion in-
where the constant “classical fields. has been identified teraction model given by Eq(1), we will have V[G]
with the dynamical fermion mass,. =V(my), i.e., the order parameter may be replaced by the
dynamical fermion mass,.
Several natural and interesting questions follow: Is the
*Mailing address. effective potential so derived equivalent to the one from the
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auxiliary scalar field or not? Is there any relation between thé&/(mg), we may discuss spontaneous symmetry breaking of
two effective potentials? What will it mean if the answers arethe model(1). A nonzero order parameter, in the vacuum
positive? In this paper we will reply on the above questionsstate will mean spontaneous breaking of the discrete chiral
through calculating the CTJ potential of the mod®&l and  symmetryyp : i (X) X0 ys¢(X) and the special paritiep; :
comparing it with the result from the auxiliary scalar field

approach. Besides the zero-temperature case, we will also _ P _

discuss finite temperature case. The discussions will be con- #i(t, ... X, .. )=V (t, ..., =X, .. )(j=1,23).
ducted in the real-time thermal field thediyl—13, and this ) .

could give us some more insight of how to calculate the cJT 1S obtained from Eq(9) that

effective potential in the real-time formalism of thermal field —
theory, noting that conventional calculations were made in IV (mo) _ _p —Mo 1-4Ng( =
the imaginary-time formalisrh14]. amg (p2+m?)2 p2+m?

The paper is arranged as follows. In Sec Il we will derive (10)
the CJT potential of the modél) when temperaturd =0 _
and Fermionic chemical potential=0, discuss spontaneous With
symmetry breaking, and explore the relation between the re- — 5 ) ) )
sult and Eq.(3) from the auxiliary scalar field approach. In pT—mp \ My A__3| A_+1 PN
Seg. .III the aboyg discussio_ns will be gener-alized to the case (aerm%)z 1672 mg n m% A2+m§ '
of finite T and finitex, and in Sec. IV, we give our conclu-
sions. where A is the four-dimensional Euclidean momentum cut-

off. It is easy to check that
Il. CJT POTENTIALAT T=p=0 -
In the momentum space, we have = 55 >0, when —>1.82. (11
(p=+mp) Mo

S(p)=ilp, G(p)=i/(p=mo), p=¥"p,. ©) Assuming thatA is large so that Eq(11) is true, then the

) . extreme value conditioaV(mg)/dmy=0 will be satisfied if
whereG(p) is the exact fermion propagator when the four- (i) my=0, and(ii) my=my,, wheremy, is determined by the
fermion interactions exist and the dynamical fermion masgyap equation

my should be a constant. When keeping only the vacuum-

vacuum diagram up to two-loop order with one four-fermion 1

coupling vertex inl"5[ G], we will obtain from Eq.(4) the 1—4Ng<_2 > > =0. (12
CJT effective action of the modé€l) at T=u =0, + Moy

Then we may verify that

1 1
=4N<:2>(1—4Ng<:2>) (13
my=0 P p

_2_m2 m2
:32N29< _pz 2012>< = 012 2
Mo=TMgy (p=+mgy) (p*+mgy)

I[G]=—iN{[trInS(p)G~ }(p)+trS L(p)G(p)—tri]
3?V(mp)

2
gm3

X(plp))+ 3 (1rG(p)Y(2m)*5%(0), @

where tr only represents the trace of a spinor matrix, and thgnd
denotation(- - - has been used fgid*p/(27)*. By means

of Eq. (6) and the relationgp|p)=(2)*6*0)=Q, we can J2V(my)
write Eq. (7) by —

oma
I[G]=—QV(m), ®) ,
A
>0, if —>1.82.
where, after the Wick rotation of the integral varialplethe 0, if m31>1 82 (14

effective potentiaM(mg) may be expressed by
B Obviously, when +4Ng(1/p?)=1—NgA%/47°>0 or
p2+m2 m2 NgA?/4m2<1, i.e., the four-fermion coupling is weak,
V(mg)=—2N{ In P + V(m,) has the only minimum pointn,=0 thus no sponta-

p2+md i in thi
0 neous symmetry breaking occurs in this case. Conversely,
2 when
2 Mo

—8Ng| =5— © 2

pe+mg NgA

2.2 >1, (15
a

where, and afterwards, the denotatﬁnNiII be understood
as Euclidean four momentum. By the effective potentiali.e., the four-fermion coupling is strong enoughy/(mg)
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will have a maximum poinimy=0 and a minimum point I{[G]=—i Tr[In(STG{l)]“—i Tr(S;leT)“
my= My, which is now the nonzero solution of E¢L2). In
this case spontaneous symmetry breaking will occur. lz\loting FiTr1+ o[ G]
. . . . 2

Titggq (15 is compatible with the conditionA</mg, — —iN([t]In SH(p) G+ l(p)]ll)()

We indicate that the same conclusion can be obtained by _iN<tr[S1fl(p)GT(p)]11>Q
the effective potentia(3) derived from the auxiliary scalar
field approach. In fact, after the Wick rotation, E§) be- +iIN(tr1)Q +T'51[ G], (19
comes

whereS; and Gt are 2x2 thermal matrix propagators, the
superscript “11” represents the 11 component of the corre-

2 T2 2 . ;
m +m sponding matrix. In the momentum space, we h
V(,(mo):2—5—2N<Inp — °> (1 -rondaind P =
p ~ ~
ST(p):MpS(p)Mpv GT(p):MpG(p)Mp (20
and it further leads to with the thermal transformation matrM, defined by
" cosé, —ePrlZsing,
Vy(mg) mg PT | o Bl '
v Pl 1= e siné cosé
oM 1-4Ng 32+m§ (17 p p
0(p°) 0(—p°)

sifg,= B=1T (21)

It is seen by a comparison that Eq$7) and (10) are iden- ePP-m ] P M4

tical except for a factor Mg((p?—m3)/(p?+m3)?). Conse-
quently, as far as symmetry breaking is concernggmg) and
will lead to the same conclusion ag(m,) when Azlmg
>1.82. We notice that in the auxiliary scalar field approach, (p) (S(p) 0 ) 3
the dynamical fermion mass), comes from the vacuum ’
expectation value of the scalar fiete(x), and in the CJT (22
composite operator approachn, originates from the

fermion-antifermion condensatég ) through the relation where
S(p)=il(p+ie), S*(p)=—il(p—ie),
g — m
mo=—§<ww>:4Ng<52+°mg>. (19 G(p)=il(p~m+is), G*(p)=—i/(B-m—ie),

(23

andm=m(T,u) is the dynamical fermion mass at finife

Hence if we substitute Eq(18) into the CJT potential and . It is noted that, by Eq(20),

V(mo) in Eq. (9 and physically this amounts to view
—(9/2){ 4y effectively as the vacuum expectation value of 1, VIR -1
an auxiliary scalar field, then we should be able to obtain InSr(p)Gr " (P)=INMpS(p)G™(P)M,,
V,(mg) from V(mg). This is in fact true. Comparing E) =M. InT3(p)G 1 ML 24
with Eq. (16) we may see that the last two terms in E@) piN[S(P) (P] . (24
should correspond to the first term on the right-hand side o{
Eqg. (16). This can be directly verified by putting E(L8)
into Eq. (9).

We emphasize that the key sectors of the extreme valu
equationsdV(mg)/dmy=0 and dV,(my)/dmy=0 are the | -1 11
same and it is just Eq18). This fact indicates tha¥(mg) tlin Sr(p)Gr7(p)]

he last step can be checked by a formal power series expan-
sion of the In expression. We may obtain from E¢(&1)—
5324) that

andV ,(mo) are essentially determined by the form of the SD  =cos 6,tr In[S(p)G ~*(p)]
equation(18) and this explains that why they are completely ) 1k
equivalent despite their different expressions. +sifO,tr In[S* (p)G ™ (p)]
2 m2
Ill. CJT POTENTIALAT FINITE  TAND p =2 Cogap'”( 1= p2+ic +2 S'r‘zap'”( 1= p2—ie)
The extension of the CJT effective actiof) to finite T (25)
andu can be expressed in the real-time formalism of thermal
field theory by Similarly, we may obtain
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t[ St (p)Gr(p) 1™ N(T, ;M)

—t[M; 75 (p)G(p)M ] om

. 2 .
= CcoZ 0t S H(p)G(p) ] + SO S M (p)G* (p)] :4N<%> m(1—4Ng<#
) ) (p*—m-+ie) [“—m+ie
p . p
=4 C0320p—+5|n20pp2_T .

26
p?—ml+ie 28

—ie —2775(I2—m2)sin20|> ) (30)
To two-loop order of the four-fermion interactions, we can|n view of Eq. (11), we will have (i(p?+m?)/(p?>—m?

calculate +ig)?)>0, if A?2/m?>1.82 (after Wick rotation is as-
sumed. Then the extreme value conditiov(T,wx,m)/dm
g =0 will correspond to the equation
o[ G]=5(Tr GH?2(2m)*5*(0) _
[
g m(1—4Ng<ﬁ—2w5(lz—m2)sin20|>)=O
—m°+
= 5NA(tr Gy'(p))?Q) ' 31

which is just the Schwinger-Dyson equation=—(g/2)

— 9 2 i * 2 —
2 N <tr[c0520pG(p) szepG (P70 X (1)1 obeyed by the dynamical fermion masst finite T

and u, where(y)+ is the thermal condensates at tempera-

- —8gN?( co m ture T [12]. The possible solutions of E@31) are that(i)
ppz_m2+i8 m=0, and(ii) m=m;, wherem; obeys the gap equation
m 2 i
+sifg,——) Q. (27) 1-4Ng{ —————2m8(12—m?)sirf6, ) =0.
ppz—mz—is> g<|2—m§—i-is ( v !
(32)
Substituting Eqgs(25—(27) into Eq. (19), we will get the  \we may further find out that
effective action at finitel and w,
V(T w,m)
I¢[Gl=—-QV(T,u,m), (29 am? -
where _NAZ NgA? Ng _
Tant | am g oTem0)
V(T, u,m) (33
_ 2 with the denotations
=i2N CO§0p|n 1—2—_
prtie ©  dxx 1
2 Fa(T,u,m)=2T?
+sin20pln(1—2m—. > 0 Vx2+y?| exp VX2+y?—r)+1
p—ie
m M
2 2 Hor—=r) |, y=—, r=—
viancog9,— 2 sig P T T
pZ—m2+ie p2—m?—ie

2 and
m
> V(T u,m)
2

m
+8gN?( cof9, ——— +sirtd, ———
g < Pp2—m?+ie Pp2—m2—ie

(29) am

2 m? m2
232Nzg< _pz 212>< — - 2 2>
m=m, (pe+mp“/ \ (p*+mj)

2
is the effective potential at finitd® and w with the order =0 if ~1.82 (34)
, 5>1.82.

parametem. By using Eq.(29), we can discuss spontaneous m?
symmetry breaking of the model at finifeand w. It is found
out that The gap equatio32) can be changed into
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2
my

Ng
F3(T,/.L,m1)+ 7|n

NgA?
1- 0 79
272

472

A%+ m?

m;

(39

and it is noted thaF5(T,u,m) increases asm goes down.
We may see from Eq33) that if

NgA?

472

Ng

1 +—2F3(T,,u,m=0)<0,
2

thenm=0 will be a maximum point o/ (T,x,m) and it is
easy to verify that in this case E(5) could have a solution
m;#0 which, by Eqg. (34), is a minimum point of
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2

m? 2
VU(T,,u,m)=E+|2N

< cos?apln( 1- ——

p’+ie

V(T,u,m); hence we will have spontaneous symmetry

breaking at finiteT and u. However, asT and/oru further
increasefF (T, x,m) will go up, and by Eq(35), m; will go
down and finally to zero. As a result, we will obtain the
equation satisfied by critical temperatufg and the critical
chemical potentiak.,

NgA?

4772

Ng
+_2F3(TC,/.LC,m1:0):O.
2

(36)

At T, and ., we get from Eqs(33) and(36)

aZV(Tc yMc m)

If T and/oru continue to go up anBi3(T,«,m=0) will also
further increase, then we will be led to

ﬁzV(TCvMCvm)

This indicates that at the critical poimt andw., m=0 will
change from being a maximum into a minimum, the orde
parametermm also varies from nonzero to zer¥(T,w,m)
will be left the only minimum pointm=0 and this means
that the discrete chiral symmetgy, and the special parities
Pi(j=1,2,3) which are spontaneously brokenTat u=0
and T<T. and/or u<u. will be restored. However, the

2
+sin20pln<1— S )> (37)
p—ie
NH(T,u,m) m i
— L =—|1-4Ng{ ————
Jam g ( g< pZ—m’+ie
—Zwﬁ(pz—mz)sin20p> ) , (38)
9V (T, w,m) 1 NgA2+ Ng
am? 0 g 4% 27°
X F4(T,u,m=0)|, (39)
9V (T, ,m —i
(—Z,u) =8m} 20
am m=m, (pc—mi+ie)
(40

wherem; is the nonzero solution o#V (T, x,m)/dm=0.
Obviously Egs.(37)—(40) will reproduce the total conclu-
sions from the CJT potentil(T,x,m). This indicates that

at finite T and u, the two potentials are also completely
equivalent. In fact, if substituting the SD equati(31) from

the thermal condensatég ) into Eq. (29), then we will
reduceV(T,u,m) to V,(T,u,m) given by Eq.(37). This
shows that the following two approaches will lead to physi-
cally identical results: one is that after the thermal conden-
sates(yy1 are formed, to consider them as an effective
constant scalar field to generate the dynamical fermion mass
m, and another one is that, from the beginning of the discus-
sions, to replace the four-fermion interactions by the effec-
tive Yukawa coupling between an auxiliary scalar field and
the fermions so as to spontaneously obtain the fermion mass
m. Although the CJT potentiadV(T,«,m) and the auxiliary
scalar field effective potential ,(T,«,m) may have differ-

ent expressions, the key sector contained in both are the
same. That is the derived Schwinger-Dyson equatigit)

(from the thermal condensatéEz/r)T.

IV. CONCLUSIONS

We have proven that in a 4D NJL model, the CJT effec-
tive potential based on composite operators and the effective
potential based on an auxiliary scalar field are completely

above discussions do not involve the order of the phase trarequivalent not only at = =0 but also at a finitd and u if

sition. For the latter more demonstrations are nedd&l

the momentum cutoff in the fermion loop integrals is large

Similar to the zero-temperature case, the above conclienough. The two effective potentials may give the same pos-

sions coming from the CJT potenti®( T, «.m) can also be
reached by the effective potentid|.(T,x,m) based on the
auxiliary scalar field. The effective potential of a NJL model
at finite T and x based on auxiliary field was derived for the
first time in Ref.[16]. For the model1), V (T,u«,m) and
relevant expressions can be written by

sible spontaneous symmeti§ncluding chiral symmetry
breaking atT=w=0 and a lowT and w, and symmetry
restoration at a finitd and w. Although the expressions of
the two effective potentials are different, the key sectors of
both are the same,; it is the derived Schwinger-Dyson equa-
tion originated from the fermion-antifermion condensates. In
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particular, when the above equation is used, the two potersus symmetry breaking. Hence, corresponding to a given
tials can be transformed into each other. The discussions al§orm of the SD equation, it seems that we are allowed to
imply that, in general, an effective potential, at least the ondnave different expressions for the corresponding effective
containing a single order parameter, is essentially determinegotential[8].

by the Schwinger-Dyson equation corresponding to the ex-
treme condition of the effective potential. This is because the
mathematical form of the SD equation will determine the
effective potential’'s extreme value points, maximums, mini-
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