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Operator representation for Matsubara sums
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In the context of the imaginary-time formalism for scalar thermal field theory, it is shown that the result of
performing the summations over Matsubara frequencies associated with loop Feynman diagrams can be writ-
ten, for some classes of diagrams, in terms of the action of a simple linear operator on the corresponding
energy integrals of the Euclidean theoryTat 0. In its simplest form this operator depends only on the number
of internal propagators of the graph. More precisely, it is shown explicitly that this “thermal operator repre-
sentation” holds for two generic classes of diagrams: namely, the two-vertex diagram with an arbitrary number
of internal propagators and the one-loop diagram with an arbitrary number of vertices. The validity of the
thermal operator representation for diagrams of more complicated topologies remains an open problem. Its
correctness is shown to be equivalent to the correctness of some diagrammatic rules proposed a few years ago.
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I. INTRODUCTION two vertices and an arbitrary number of scalar internal propa-
gators andb) one-loop diagrams with vertices and scalar

In the imaginary-time formalism, the calculation of a loop internal propagators, with=1. In what follows, whenever
diagram in quantum field theory at finite temperature neceswe refer to a Feynman diagram we implicitly assume that the
sarily involves sums over Matsubara frequendibls an op-  diagram actually belongs to one of the classes just described,
eration that we shall generically call the Matsubara sum asexcept when specifically qualified otherwise.
sociated with the graph. Although this sum can be computed The precise mathematical formulation of the thermal op-
in a number of ways, usually in a systematic fashion, sucterator representation is presented in the next section. Leaving
computations can become quite tedious for higher-loop diadut many of the technicalities, its content is as follows. Con-
grams[2,3]. sider the Matsubara sum of(amputategi scalar loop Feyn-

In Ref.[4] a set of simple diagrammatic rules was postu-man graph with internal lines and external Euclidean four-
lated to write down an explicit expression for thesult of ~ momentaP = (p,,p,). (A word about the notation: in order
performing the Matsubara sum associated with any finiteto avoid clutter, we will omit the customary 0 superscript on
temperature Euclidean Feynman grajh a scalar theory ~ Euclidean energy variables. Since we shall not denote in this
Because of the similitude of the diagrammatic expansiorPaper the modulus of a three-momentum vegawith the
with the one associated with the noncovariant old-fashionegorresponding italic symbgd, there should be no danger of
perturbation theoryOFPT) formalism(at zero temperatuye ~ confusion) Instead of following the usual practice of para-

these diagrammatic rules will be referred to as the OFPTMetrizing all internal-line four-momenta in terms of a few
rules. independent loop four-momenta, by explicitly requiring four-

Although in Ref.[4] the OFPT rules were explicitlyeri- momentum conservation at each vertex, we choose to assign
fied to hold for a few nontrivial diagrams, they were pre- to each internal line independent three-momentimand
sented as a sort of empirical discovery, with no rigorousMatsubara frequendy, and impose four-momentum conser-
proof given. vation by means of an appropriate number of delta functions.

In this paper we restate the diagrammatic analysis of Refin this form, the Matsubara sum will depend only on the
[4] in an algebraic rather than diagrammatic fashion and exexternal Euclidean energigs, (which enter through Kro-
tend its validity to two particulaclassesof diagrams, to be necker delta functions enforcing energy conservation at each
described below. For these diagrams we establish that the fullerteX, on the kinematic energies of the internal lin&s,
result of performing the Matsubara sum associated with a=(ki2+ miz)l’2 appearing in the propagators and, of course,
given Feynman graph can be completely determined from itthe temperaturd. Since there is no explicit dependence of
zero-temperature counterpart, by means of a simple lineahe Matsubara sum on spatial three-momenta, external or in-
operator, as shown in Edql) below. We have termed this ternal, we shall suppress all reference to these in this paper,
result the thermal operator representati®®R) of the Mat-  whenever possible.
subara sum. Let the unsubscripted symbofs and E denote, respec-

The two classes of diagrams for which we have been ablévely, the full set of Euclidean external and kinematic inter-
to prove the correctness of the TOR de diagrams with  nal energies,p:={p1,p2,....pn} and E:={Eq,E,,... E}.

Now, if we introduce théviatsubara D functiorof the graph,
D(p,E,T), essentially as the Matsubara sum multiplied by
*Electronic address: olivier.espinosa@fis.utfsm.cl the product of all internal kinematic energies, then we claim
"Present address: Mathematisches Institut LMU nhen, that
Theresienstr. 39, 80333 Muahen, Germany. Electronic address: .
stock@mathematik.uni-muenchen.de D(p,E, T)=0O(E,T)Dg(p,E), (1)
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where O(E,T) (whose explicit form we give in the next The structure of the paper is as follows: In Sec. Il we

section is a linear operator that depends on the topology ofhall present the general form of the TOR for the Matsubara
the diagram, but is independent of the external EuclideagUm of a general scalar graph, in two alternative forms. In
energies)_ The Object acted upon by this Operamb(p,E)’ Secs. I, 1V, and V we prove that the TOR h0|dS, respec-

is simply the correspondin@ function for the Euclidean tively, for a one-loop single-propagator tadpolelike graph, for
zero-temperature grapB(w,E), defined for real and con- & generic graph with two vertices, and for a generic one-loop
tinuous external energiesy:={w;,w,,...,w,}, evaluated at graph; the number of internal propagators is allowed to be

w=p: arbitrary (but at least equal to)2n the last two cases. Addi-
tional supporting evidence for the validity of the TOR for
Do(p,E)=Do(w,E)|,-p- (2)  graphs of arbitrary topologies and our conclusions are given
in Sec. VI. The reformulation of the old-fashioned perturba-
We shall callO(E,T) the (Euclidean thermal operator. tion theory rules of Ref[4] in the form of the present rep-

As we shall see in the next section, the thermal operatofesentation has been relegated to an Appendix.
has a form that can be readily and naturally extrapolated to
diagrams of arbitrary topologies. Although this makes it ||| REPRESENTATION FOR THE MATSUBARA SUM
tempting to conjecture that the thermal operator representa- i ) i
tion holds for completely arbitrary diagrams, this remains an N @ scalar field theory, the mathematical expression cor-
open problem and more work is needed to settle the issuerésponding to an amputated graph with-1 vertices
However, if true in general, the representatidhwould ~ =1), | internal lines, and external four-momenta,
have several immediate important consequen¢as:it = (Pa.P.) has the form
would show that the full finite-temperature result is encoded o . |
in the zero-temperature functid,(p,E), rendering the ac- (—\)" d°k;
tual computations of the Matsubara sums completely unnech Iﬂl m\gl (2m)*8'¥(ky) |D(p.E,T),
essary.(b) Since all dependence on external energieis (3)
contained in the zero-temperature functidp, any analytic

continuation OfD(p,E,T) to CompleX values of the external where\ represents the Coup“ng constant 8@ the sym-
energies, physically meaningful or not, would need only bemetry factor of the graphk; is the spatial three-momentum
carried out onDo. By the same token, the study of imagi- of theith internal line ancE;:=(k?+m?)¥2 s its associated
nary parts of analytically continued Euclidean Greenyinematic energyk, denotes the total three-momentum en-
functions—i.e., the subject of cutting rules—would ”eedtering vertexV: the unsubscripted symbofsand E denote,

only be done at the level of the zero-temperature functionggpectively, the full set of Euclidean external and kinematic
Do, since the thermal operator is réale give an example of yiarnal energies, P:={p1,Pa,...Pr} and E

this in the last section of this papefc) Since the thermal ={E,,E,,... E}; andT is the tempé.réture. The delta func-

operator is bounded as the internal energiggend to infin-  tjons ensure conservation of spatial three-momentum at each
ity, it would be enough to renormaliZB, in order to renor-  yertex; so that the integration measure reduces essentially to
malize the full finite-temperature result. This is consistenty, integration over the three-momenta of the | —n inde-

with a well-known result in renormalization of thermal field pendent loops. In the finite-temperature Euclidean formalism

theories. all lines, external and internal, carry discrete Euclidean en-

Although there have appeared in the literature severgligios which are integer multiples ofI'. Each internal line
works that touch upon the relationship between the full caly,5q an associated Matsubara frequency, denotedk;by
' j

culation of finite-temperature Feynman graphs. and theit_s 1  TheD function is given by the normalized Mat-
zero-temperature counterpafissually interpreted in terms subara Jsum

of forward scattering amplitudes in vacuyrm both the Eu-
clidean imaginary-tim¢5] and real-time formalismf5], we [
are unaware of any discussion of a representation of the  pp E T)=yeT- > H A(kj,Epa(p,k), (4)
simple form(1), as given here. Nyfg....ny j=1

We emphasize that all the results presented in this paper
are formulated in the context of the Euclidean imaginary-where
time formalism, and we will have nothing to say here about
their relationship to or consequences for the real-time for- !
malism, except for the remark made above about the possible 7E‘:H 2E;, (5)
analytic continuations of the Euclidean Green functions to =1
complex values of the Euclidean external energies. The latter ) )
subject has been studied at great length in the literditire L 1S the number of independent loops in the graph, and
along with the connection between different analytically con-2(Kj,E;) is the scalar propagator associated with jlie
tinued Euclidean Green functions and the retarded, adnhternal line, with
vanced, or time-ordered Green functions of the real-time for-
malism and the subject of cutting rules in the real-time A(KE) =
formalism[8]. '

1
RrE ©
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The sums over eaaty run from —o to +o. The & function,

with k={k,,...,k}, is a generalized Kronecker delta which

ensures conservation of energy at each vertex. The topology

of the diagram is totally contained in this generalized delta.
The OFPT rules given if4], which are reproduced in the

Appendix, were conjectured to allow us to write down the P —-P
complete result for Eq4) by a simple diagrammatic analy-
sis. But as shown in the Appendix, there exists a simple FIG. 1. One-loop single-propagator diagram.

algebraic representation for the diagrammatic OFPT rules, so

that the conjecture of Ref4] can be recast in the following yisconnected graphighe ones excluded from the summa-

terms. _ tions in Eq.(8)] give rise to operators that produce a vanish-
Statement 1 (thermal operator representatioipe D ing contribution to theD function in Eq.(7). So the simpler
function defined in Eq(4) for an amputated Feynman graph rgpresentation will follow from Eq(8) if the following state-

can be expressed in the form ment is true.
- Statement 3 (cut sets do not contributdhe zero-
D(p,E, T)=0(E,T)Do(®,E)|,=p, (7)  temperaturé® functionD,(w,E) is annihilated by the opera-
tors

where Dg(w,E) is the D function of the Euclidean zero-

temperature graph ar@(E,T), the thermal operator, is the
following linear operator: A(C):,HC (1+Si), (10

||E
|
O(E,T)::1+E n(l+S)+ E’ non (1+S)(1+S.) whereC stands for a cut set of the graph—that is, any set of
= (i 12 ! 2 indicesiy,... i, such that the graph becomes disconnected if
the corresponding lines are snipped.

We make clear at this point that, although we make refer-
ence tocut setswe imply no connection to the concepts of
cuts and cut diagrams as they are usually understood in dia-
Here n;=n(E;), where n(E)=(eff—1)"! is the Bose- grammatic quantum field theory. Cut sets are determined
Einstein thermal occupation facto§:=Sg is a reflection SO":‘:}Y bytt'hel IODOLOQY 0‘; the diagram, and have no further

() PTPE mathematical or physical meaning.
?pgrﬁto;%r;g(e)r‘_gf( in);)e’r;gtla IS?A;ZZ;{;)iéﬁ'drl'ltﬂferorsnyrtz)%l The goal of t_he next three sections is to prove that these
(i1,...,ix) stands for an unorderddtuple with no repeated statements are indeed true for the two generic types of graphs
indices, representing a particular set of internal lines. Th escribed in the Introduction. The strategy of the proof will

primes on the summation symbols imply that certain tuple e to evaluate the Matsubara sums containeD {p,E, T)

: . ) y conventional means—namely, the contour integration
i<fl \1Ne slnk|>p 1r|<|—:tttr(])eb"enggcludeid f[fen:] ttzi Zlg;j] Lheocsoemseusczitshamethod or the Saclay method—and then show that the result
1aerealk -

connected. can be written as in the right-hand side of Ef).

Note that the operato@(E,T) contains products of at
mostL thermal occupation factors(E;), since for ar_-loop

graph the maximum number of lines that can be snipped \ye begin by considering a one-loop graph with only one
without disconnecting the graph is precisélyThis generic  internal propagator, as the one shown in Fig. 1. This particu-
feature of the thermal graph in the imaginary-time formalismjay graph contributes at first order to the self-energy in the
is, of course, W(_all knovv_n. However, as discussed in Secs. I} #* theory. The actual number of external legs of the graph
and V, there exists a simpler algebraic form for the thermalg ynimportant, since we are only interested in the Matsubara
operator. ) sum associated with the loop. Although we could have con-
Statement 2 (simpler form of the thermal operatdhen  gigered this graph as the simplest case of the generic one-
acting on the zero-temperatu2 function Do(p,E), the  |oop graph considered in Sec. V, we prefer to analyze it
thermal operato©(E,T) can be replaced by the simpler separately, since the proof given in Sec. V applies more natu-
rally to the case of two or more internal propagators.
According to Eq.4), the D function for the graph of Fig.

L
+oet 20 I ma+s). (8)
(ig,.ip)y =1

lll. SIMPLEST LOOP DIAGRAM

|
6*(E’T):i1:[1 [1+n(1+85)]. (9 1is simply given by
- e 1
Note that the operatoO,(E,T) in Eq. (9) can be ex- D(p.E.T)=(2E)T — 11
panded as in Eq(8), except that the summation symbols (PE.T)=(2E) n;w (2mTn)*+E* 1

carry no primes: that is, all tupl€s,,...,i,) (1<k=<lI) are
allowed in the sum. Clearly, the fortt®) will follow from The sum above can be computed in a variety of ways and the
Eq. (8) if we can somehow show that tuples associated wittresult is well known1]. One obtains
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1
A(7,E)= E{[“ n(E)]le E"+n(E)ef7, (19

P ’ \ P
9 wheren(E) = (efE—1)"1. For our purposes, it will be con-

K venient to use the following representations for the mixed
1

propagator(19):
FIG. 2. Two-vertex diagram with internal lines.
1
D(p,E,T)=1+2n(E), (12) A(T,E)ZE[1+H(E)(1+SE)]97ET (20
wheren(E)=(eff—1)"! is the Bose-Einstein thermal oc- .
cupation factor. The zero-temperatubefunction Do(w,E) _n(E)e [1+e FEs Je E" -
can be computed directly from its definition, 2E E ' (21)
= dkgy ) . , .
Do(w,E)=(2E) 57 KT ER (13 whereSg is the reflection operator defined in E45). Sub-
e 5

stituting the representatidi20) back into Eq.(18) and using
the fact that the operator (E2[1+n(E)(1+Sg)] is linear,

we obtain the following equivalent Saclay representation for
the scalar propagator:

or simply by taking the limiff—0 of D(p,E,T) in Eq. (12).
The result is

Do(w,E)=1. (14)

1 B .
_ k—E)7
Since a constant function is unchanged by the reflection op- A(kE)= ZE[1+”(E)(1+SE)]J’O dre™ "B (22
eratorSg defined by

Sef(E):=f(—E), (15) Consider now the two-vertex diagram witinternal lines
of Fig. 2. Let P=(p,p) be its external(incoming four-
wheref is any regular function in the variablg we certainly ~momentum(note that herep stands for asingle Euclidean
have the identity energy variableand letK;=(k;=2#Tn; k), j=1,...}, be
the four-momenta of the internal lines, flowing from the left
D(p,E,T)=[1+n(E)(1+Sg)]Do(p,E), (16) to the right vertex. The MatsubaEafunction corresponding
to this graph is given by
which proves that the thermal operator representation given
by Egs.(7) and (8) does hold for the simple graph we are [

considering. D(p,E,T)=9yeT "1 > HA(kj,Ej)(‘)‘lir‘,,Jrklp,

ni,Np,...n j=1
(23
IV. TWO-VERTEX DIAGRAM

A. Calculation where the delta function is a Kronecker delta enforcing con-

The Matsubara sum for the two-vertex diagram with servation of energy at both vertices,_ 1 kj=p, andyg was
internal propagators shown in Fig. 2 is most convenientlydefined in Eq(5).
calculated using the Saclay meth¢d], which we now Now, because the variablpsandk; are quantized in units
briefly review. of 27T, the Kronecker delta in E423) can be represented
Let K:=(k,k) be the Euclidean four-momentum vector as
associated with a given internal link;is a Matsubara fre-
guency to be summed over. B .
Then each scalar propagator L, ,pszO dre irtkit+ki—p) (24)

1
A(K):: = k2+E2 =:A(k,E), (17)

K2+ m? so that the sums over the integersdecouple:

whereE:=E, = Jk?+n?, is represented as 8 [
D(p,E,T>=yET'f dre ] [E A(k,—.E,—)e-iTkj}.
0 n;

A(KE)= foﬁdfeikwf,a, (19 m (25

where 8= 1/T, as usual. The mixed propagatalr,E), O Using now the Saclay representati(#?) for each propaga-
<7<, is given by tor A(k; ,E;) (with integration variabler;), we find
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|
D(p,E,T):T'jE[l [1+n(E))(1+8¢)]

|
B ) B )
% [farer I { [faneen3 e
0 =1 0 nj
(26)

But

>

nj

ei(fi’T)kJ':z o(rj—1+nB)=06(7— 1)
n

for 0<7;, 7<B, (27)

so that the final result for the Matsubdpafunction for the
graph of Fig. 2 is

|
o(p.E =TT [1+n(E)(1+8)1 | drete e
j=1 0

~BEwt_—

[
:]1:[1 [1+n(Ej)(1+Sj)]e (28

ip—Epr

wheres; ::SEJ_, Etot::E}=1 E;, and we have used the fact that

expisp)=1.

B. Proof of the thermal operator representation

We will now show that the resul28) can be put into the
form (7), where the zero-temperatuf@ function for the
graph of Fig. 2 is given by

1
ip+Eq)’

Do(p.E)=— (29

ip—Eo

PHYSICAL REVIEW &9, 065004 (2004

FIG. 3. A one-loop diagram with vertices.

1_'[ e BEwt
1+n(E)(1+S) ] |———
T (2+n(E)(1+8)] =g~
ll[ PE pE e Ffu
= n(E;)ersi[1+e  PEiSi] |-
=1 &) [ 2 1P~ Eo

Mol
= 11:[1 n(E))efSi[1+e PEiS Je  FEis;

ip+ Eo
o

= j1:[1 [1+n(E)(1+S)]

ip+Eg’

where we have used the propery ¢5iS;)?=1.

V. ONE-LOOP DIAGRAM

A. Calculation

as can be easily be obtained from a calculation in the old- )
fashioned perturbation theory formalism. First, we observe The calculation of the Matsubara sum for the one-loop

that this function satisfies statemef®. In fact, since the

diagram withl vertices and internal propagators shown in

only cut set of the two-vertex diagram is the set of all lines,F19. 3 is most conveniently done using the standard contour

we only need to show that the functi¢29) is annihilated by
the operator

|
A==Hl (1+5)). (30)
=

But sinceS, is a reflection operator&izl), we have

|
1 1

—— =T a+s S——
1P~ Etot Lﬂl( 2 11;[1 lip+E

|
{H (1+S))

i=1

31

|
= 1+S)) |- ,
LHI( 2 1P+ Eqot

so that indeeddDy(p,E)=0. Therefore it is enough to show

that Eqg.(7) holds with the thermal operator in the for(®).
But this follows immediately from the identity

integration method1]. If a meromorphic functiorf has no
singularities along the imaginary axis akdstands for the
Matsubara frequenck=2#Tn, then

- 1
T fik)=5— jgcf(z)n(z)dz, (32)

n=-—=

wheren(z)=(e#*—1)"! andC is the positive contour that
runs vertically upwards the complexplane, infinitesimally
to the right of the imaginary axis, from—iw to e +i%, and
then comes back vertically and infinitesimally to the left of
the imaginary axis, from—e+icc to —e—ic, with ¢
=0".

If [n(2)f(z)| goes fast enough to zero whéz goes to
infinity, we can change the contour of integration to two
negatively oriented semicircumferences, one on each side of
the imaginary axis, with radii tending to infinity. Thus, by
Cauchy’s integral theorem,
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T E f(ik)=-2 Res—;[f(@n(2], (33

n=-—o

wherez, are the poles of the functiof(z).
Consider now the one-loop graph of Fig. 3. LB}

=(pi,

Letting k=27nT be the Matsubara frequency of line 1, the
MatsubaraD function in this case can be reduced to the form

D(p,E,T>=yET§ A(K,Ep)A(k+py,Ep)- -

(39

|
Al k+ >, pj,E,),
j=2

where the energiek; are defined as before. Introducing a

new set of variables;:==X{_;p,—
u;:=0, we can write Eq(34) as

p1 (j=2,...)) and letting

D(p,E,T>=yET§ Hl A(k+u;,E)). (35

=

Next using the identity

1 1/ -1 1 1 o

- 5 —— - +.— s . 1

k24 E2 2E\ik+E ik—E 2E s==1 ik—cE
(36)

we get

|
D(PET)=(~1'T [H 7i

j=1

.

|

j= |k+|uJ JE]]’ (37)

+1 |k+|UJ_O'JEJ

T (3

where now o:={0,0,,...,0y}. If the function between
brackets in Eq(37) is called f(ik), then we see that the
poles of f(z) are located az;=—iu,+ o E;, so that the
application of Eq.(33) gives us

|
D(p,E,T):<—1)'“§ .21 n(oE)ay

|
XJ] 7]

i1 1H(uj—up)+oE - 38

oiE;

In order to express the result for tiefunction in terms of

Bose-Einstein factors of positive argument only, we will per-

form the summation oves, explicitly. Introducing the nota-
tion op:=(04,...,00-1,014+1,...,0q) and using the identity
n(—E)=-[1+n(E))], we find

pi) be the external incoming momenta at each vertex.

PHYSICAL REVIEW B9, 065004 (2004

| |
D(PET)=(~ 1)'“22[H- EoE

=1 %y |7 1~ oik;
: .
e I e e g
+j1j| i(uj—u,)ijErajEj ] 39
In terms of the auxiliary function
d(p.E): % Jl;[l |(Uj_U|)ijE|_‘7jEJ
EI' 2w Ees @O

]

and the reflection operatd:=Sg , defined in Eq(15) we
have
|

D<|o,E,T>=<—1>'“|§1 [di(p,E)

+n(E)(1+Sg)di(p.E)]. (4D

B. Proof of the thermal operator representation

We shall prove now that thB function (41) for the one-
loop graph of Fig. 3 can be written in the forfv), as

D(p,E,T)= 1+JZl n(E)(1+S)) |Do(p,E), (42

with
|

Do<p,E>=<—1>'“|=21 di(p,E). (43)

Since the graph of Fig. 3 gets disconnected if two or more
lines are snipped, the thermal operator has terms no higher
than linear in the Bose-Einstein factan§E). But Eq. (42)

will reduce to Eq.(41) if the operator (} ;) annihilates the
auxiliary functiond,(p,E) when j#I. This is indeed the
case: from Eq(40) we see that, whep+1,

9]

dl(p'E):% i(Uj_U|)_E|_0'jEj

o
X .
k]';I[,j % i(Ue—up) — B — oy Ey
_ — Y
;j |(UJ_U|)_E|+O'JE]
|
o
X .
k]';I[,j % i(Ue—up) —E — oy Ey
=—5;d|(p,E), (44)
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which means that graph considered in Sec. 1V, the thermal operator represen-
tation has been proven to hold. Hence,
(1+8)di(p,E)=0 if j#I. (45
Im D(i(w+i8),E1,E2,T)
Statementl) is then valid for the one-loop graph of Fig. 3. A ) )
Furthermore, statemei) is also true for this graph. In =O(E1,E2, T)IMDo(i (0 +ie),Eq,Ep). (49)
fact, any cut set will at least contain two lines, say linesd

. But then The last imaginary part could in principle be obtained from

the standard cutting rules that apply in zero-temperature field
_ theory, without having to computB,, itself. In this case,
1+8)(1+S;)d(p,E)=0, 46 0 i
( ) $di(p.E) (46 however, we have the closed res(#g) for Do, which al-

since, for any giveri, eitheri or j will be different from|  |0Ws us to compute, directly,

(ES(;Y:I%Eé)%]), leading to a vanishing contribution because of Im Do(i (w+ie),Ey,Ey)

1 1

=Im —— .
w+E1+E2+I£ w_El_E2+|8

VI. FURTHER EVIDENCE AND CONCLUSIONS

One piece of evidence in favor of the general validity of =—7[8(w+E;+Ey))—8(w—E;—Ey)]. (50)
the representatioli7) is provided by a comparison with a
well-known result of thermal field theory, first formulated by Now in this case the thermal operator is given by
Weldon[10], concerning the interpretation of the imaginary

part of the retarded self-ener@l in terms of the direct and O(E;,E,, T)=1+ny(1+8))+Nny(1+S,)
inverse decay rates of a particle propagating in the thermal
medium. A well-known result of quantum statistical mechan- =1+n1+ N+ NS+ NeS;. (51)

ics [11] is that the full retarded self-enerdyg can be ob- )

tained from the Euclidean self-enerdy, by analytic con- Since

tinuation as n1$1[5(w+ El+ E2)—5(w—E1—E2)]
Hg(w,p)=—Mg(i(0+ie),p), (47 =ny[8(w—E1+E,)— 8(w+E;—E,)],

wherew stands for a real continuous variable. In the contexietc., we readily obtain

of perturbative quantum field theory, the imaginary part of

I is given in the form of integrals over phase space of & |mD,=#7{(1+n;+n,)[d(w—E;—E,)

amplitudes squared, weighted by certain statistical factors

that account for the possibility of particle absorption from — 0w+ E1+Ep)]—(ny—ny)[8(0—E;+Ey)
the medium or particle emission into the mediit®]. For

example, for the one-loop two-vertex diagram corresponding ~do+E B (52
to Fig. 4 in the Appendix, the result for the imaginary part of

the retarded self-energy {sie have seg=1) thereby reproducing Eq48), with all the correct signs and

thermal factors.

43K 1 In this paper we have restricted our attention to some
ImHR(w,p)=—7Tf—3—{(1+n1+n2) simple diagrams in the finite-temperature imaginary-time
(2m)° 4E4E, formalism for a scalar relativistic field theory. We have

shown that the full result of performing the Matsubara sum

X[(=E1=B) = S0+ By +By)] associated to any given Feynman graph can be obtained from

—(ny—ny)[(w—E;+E,) its zero-temperature counterpart by means of a simple linear
operator. Given the general for(@) of the thermal operator,
—d(o+E1—Ep)]}, (48)  which can be readily and naturally extrapolated to diagrams

) of arbitrary topologies, it is not at all implausible that the
wheren;=n(E;). But from the general fornt3) for a dia-  representatior(7) be actually valid in complete generality.
gram in the Euclidean formalism, it is clear that the imagi-This generalization remains an open problem, however, and
nary part of the analytically continued diagram is determinedyork in this direction is in progress.
by the analytic continuation of it® function. The general  An analysis similar to the one presented here should apply
validity of our main representation in the forf@) would i a theory containing fermions; the algebra will be slightly
imply that the latter is in turn completely determined in more complicated because of the spin structure. We have
terms of the analytic continuation of the zero-temperafdire deferred this analysis, as well as the extension of our results
function Dy, since the thermal operat@ is real and does to gauge theories, until we have been able to prove or dis-
not involve the external momenta. prove that the thermal operator representation put forward in

For the particular simple diagram we are consideringthis paper does indeed hold for an arbitrary loop graph in a
which is actually a special case of the general two-vertexscalar field theory.
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that is snipped becomes a pair of legs we shall ttedrmal

legs Attach a cross to their ends to distinguish them from the
original external lines of the graph. Both legs of a given pair
inherit the energy; of the internal line that originated them.
However, one leg must be orientediasomingwith energy

E; and the other asutgoingwith energyE,;. Both possible
orientations have to be considered, each one generating a
different diagranisee, e.g., Figs.(d) and 4d)].

(d) For each graph ific), define its total incoming energy
Eic as the sum of all incoming external energies plus the
energies of all incoming thermal legs that join the diagram
beforetheir outgoing partnefre.g., as in Figs. @) and 4f)].
Thermal leg pairs that satisfy this property shall be referred
to asexternaland those that do not asternal [e.g., as in
Figs. 4c) and 4e)]. Then associate to this graph an expres-
sion equal to the product of the following factors:

(1) Draw a full vertical division(a “cut” ) between each pair
of consecutive time-ordered verticéthere aren such
cuts in a graph withn+ 1 vertices; for each cut, include
a factor
1

Einc_ Ecut,
where E.; is the total energy of the intermediate state
associated with the cut, defined as the sum of the ener-
gies of all the lines that cross the cut in quest{as in
zero-temperature time-ordered perturbation theglus
the energies of alihternal thermal pairs whose originat-
ing internal line would have crossed the cut.

(A1)

2
The authors would like to thank C. Dib and I. Schmidt for
suggestions and O. Orellana for interesting insights. Thig3)
work was supported by CONICYT, under grant Fondecyt
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Include a thermal occupation factay=n(E;) for each
thermal pair(of energyE;) in the diagram(if any).
Include an overall factor of£1)", wheren+1 is the
number of vertices.

(e) The integrand(p,E,T) in Eq. (3)—i.e., the Matsub-

ICM P99-135F.

APPENDIX
OFPT rules

The rules originally put forward in Ref4] to write down
an explicit expression for the Matsubabafunction corre-

araD function of the graph—is the sum of the expressions
computed according to rul@), over all the graphs ifc).

Algebraic approach to the OFPT rules

Let us callDg(p,E,T) the expression for th® function
generated according to the OFPT rules. A trivial check that
the OFPT rules do satisfy is that they yield the known correct

sponding to the general scalar graph considered in Sec. Il aresult in the limitT— 0, keeping the external Euclidean en-

given by the following statementsefer to Fig. 4.

ergiesp fixed. In fact, in the limitT—O0 all the thermal

(a) For each external line, characterized by a real Euclidfactors n(E) vanish, so that according to the rules

ean four-vector [, ,p;), define its energy ag,. For each
internal line define its energy &= (k?+m?)2, wherek;
is the three-momentum carried by the line ands the mass
of the propagating particle.

(b) Define adirection of timeor energy flow(which we
shall take conventionally from left to righaind consider all
possible orderings of the vertices along this directi®ee,
e.g., Figs. 4a) and 4b). For a graph witm+ 1 vertices there
will be (n+1)! such orderingg.

(c) For each time-ordered graph generatebinconsider,

Dgr(p,E,0) is just given by all possible time-ordered dia-
grams with no snipped lines, calculated according to (dle
above. But this is precisely the result one would obtain cal-
culating theT=0 Euclidean grapliwith external momenta
(py,p1)] using old-fashioned perturbation theof®]. We
have, therefore,

DO(p!E):DR(p’EIO)! (AZ)

whereDy(p,E) is the D function associated with the zero-

in addition to itself, all possibleonnectedjraphs that can be temperature Euclidean Feynman graph. Hence the rules hold
obtained by snipping any number of internal lines. Each lineat T=0.

065004-8
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At finite temperature, we get extra contributions accord-where we have writtei, ==$Ei to avoid cluttering the nota-

ing to rules(c) and (d) above. Now, instead of considering,
as commanded by rule), all possible connected graphs that
can be obtained by snippireny number of internal lines of
a given“unsnipped” time-ordered graph, let us rather group
the snipped diagrams accordingwdnich lines are snipped,

regardless of the time ordering. Take, for instance, all the

diagrams which have only thi¢h line snippedi is fixed). A
set of this type is conformed, for instance, by diagrdms)
of Fig. 4. It follows directly from rule(dl) that a diagram in
which the snipped line forms aimternal thermal leg pair
[i.e., we have a “closed” snipping, as in Figsictand 4e)]

has exactly the same mathematical weight as the zero-
temperature “unsnipped” diagram, except of course for the

extra thermal factorn(E;). Thus the sum of all these
diagrams—i.e., the diagrams that have only il line
snipped closed—adds up t(E;)Dy(p,E). On the other
hand, if the snipped line forms axternalthermal leg pair
[i.e., we have a “open” snipping, as in Figs(d and 4f)],
we again have an extra thermal facto(E;), but now the
rest of the expression differs from that for the “unsnipped”
graph in the sign of the enerdy . This is so because, for an
open snipping, the enerdy moves fromE, to E;,., as can
be gathered from rulé&d).

Let x symbolize a variable and I, be the operator that
acts on functions ok, changing the sign of the argument
according to

S f(x):==f(—x).

In terms of the reflection operatdk , we can write the sum
of all the time-ordered diagrams with only th¢h line
shipped open as

N(E;)SDo(p,E),

tion. So the full contributions of the diagrams in which only
theith line is snipped can be written as

N(E))(1+85)Do(p.E).

The analysis above can clearly be generalized to add up
the contribution of the graphs with more than one snipped
line. Taking into account that only connected graphs are al-
lowed by the OFPT rulesso that one is allowed to snip at
mostL internal lines, wheré. is the number of independent
loops, we arrive at the following result.

Theorem 1The OFPT rules admit the mathematical rep-
resentation

Dr(p,E, T)=0(E,T)Dy(p,E), (A3)

whereO(E,T), the thermal operator, is given by

|
O(E,T)==1+__2l n(E)(1+S)

+ 2 nEDNE)(L+S8)(1+S )+
(i1.ip)

(A4)

Here the indices,i,,... runfrom 1 to | (the number of
internal propagatoyjsand the symbo{i,,...,i\) stands for an
unorderedk-tuple with no repeated indices. The primes on
the summation symbols imply that we are to exclude from
the sums those tuplds,,...,i\) such that if we snip all the
corresponding linesiq,...,iy, then the graph becomes
disconnected.
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