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Operator representation for Matsubara sums

Olivier Espinosa* and Edgardo Stockmeyer†
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In the context of the imaginary-time formalism for scalar thermal field theory, it is shown that the result of
performing the summations over Matsubara frequencies associated with loop Feynman diagrams can be writ-
ten, for some classes of diagrams, in terms of the action of a simple linear operator on the corresponding
energy integrals of the Euclidean theory atT50. In its simplest form this operator depends only on the number
of internal propagators of the graph. More precisely, it is shown explicitly that this ‘‘thermal operator repre-
sentation’’ holds for two generic classes of diagrams: namely, the two-vertex diagram with an arbitrary number
of internal propagators and the one-loop diagram with an arbitrary number of vertices. The validity of the
thermal operator representation for diagrams of more complicated topologies remains an open problem. Its
correctness is shown to be equivalent to the correctness of some diagrammatic rules proposed a few years ago.
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I. INTRODUCTION

In the imaginary-time formalism, the calculation of a loo
diagram in quantum field theory at finite temperature nec
sarily involves sums over Matsubara frequencies@1#, an op-
eration that we shall generically call the Matsubara sum
sociated with the graph. Although this sum can be compu
in a number of ways, usually in a systematic fashion, s
computations can become quite tedious for higher-loop
grams@2,3#.

In Ref. @4# a set of simple diagrammatic rules was pos
lated to write down an explicit expression for theresult of
performing the Matsubara sum associated with any fin
temperature Euclidean Feynman graph~in a scalar theory!.
Because of the similitude of the diagrammatic expans
with the one associated with the noncovariant old-fashio
perturbation theory~OFPT! formalism~at zero temperature!,
these diagrammatic rules will be referred to as the OF
rules.

Although in Ref.@4# the OFPT rules were explicitlyveri-
fied to hold for a few nontrivial diagrams, they were pr
sented as a sort of empirical discovery, with no rigoro
proof given.

In this paper we restate the diagrammatic analysis of R
@4# in an algebraic rather than diagrammatic fashion and
tend its validity to two particularclassesof diagrams, to be
described below. For these diagrams we establish that the
result of performing the Matsubara sum associated wit
given Feynman graph can be completely determined from
zero-temperature counterpart, by means of a simple lin
operator, as shown in Eq.~1! below. We have termed thi
result the thermal operator representation~TOR! of the Mat-
subara sum.

The two classes of diagrams for which we have been a
to prove the correctness of the TOR are~a! diagrams with
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two vertices and an arbitrary number of scalar internal pro
gators and~b! one-loop diagrams withI vertices andI scalar
internal propagators, withI>1. In what follows, whenever
we refer to a Feynman diagram we implicitly assume that
diagram actually belongs to one of the classes just descri
except when specifically qualified otherwise.

The precise mathematical formulation of the thermal o
erator representation is presented in the next section. Lea
out many of the technicalities, its content is as follows. Co
sider the Matsubara sum of a~amputated! scalar loop Feyn-
man graph withI internal lines and external Euclidean fou
momentaPa5(pa ,pa). ~A word about the notation: in orde
to avoid clutter, we will omit the customary 0 superscript
Euclidean energy variables. Since we shall not denote in
paper the modulus of a three-momentum vectorp with the
corresponding italic symbolp, there should be no danger o
confusion.! Instead of following the usual practice of par
metrizing all internal-line four-momenta in terms of a fe
independent loop four-momenta, by explicitly requiring fou
momentum conservation at each vertex, we choose to as
to each internal line independent three-momentumk i and
Matsubara frequencyki and impose four-momentum conse
vation by means of an appropriate number of delta functio
In this form, the Matsubara sum will depend only on t
external Euclidean energiespa ~which enter through Kro-
necker delta functions enforcing energy conservation at e
vertex!, on the kinematic energies of the internal lines,Ei

ª(k i
21mi

2)1/2 appearing in the propagators and, of cour
the temperatureT. Since there is no explicit dependence
the Matsubara sum on spatial three-momenta, external o
ternal, we shall suppress all reference to these in this pa
whenever possible.

Let the unsubscripted symbolsp and E denote, respec-
tively, the full set of Euclidean external and kinematic inte
nal energies,pª$p1 ,p2 ,...,pn% and Eª$E1 ,E2 ,...,EI%.
Now, if we introduce theMatsubara D functionof the graph,
D(p,E,T), essentially as the Matsubara sum multiplied
the product of all internal kinematic energies, then we cla
that

D~p,E,T!5Ô~E,T!D0~p,E!, ~1!
©2004 The American Physical Society04-1



t
o

ea

-

t

i
nt
a

ue

e

e

l
b
i-
en
ed
io
f
l

n
ld

er
a
e

th

p
ry
u

fo
ib
t
tt

n
a
fo

e

e
ara
In
c-

for
op
be

-
r

ven
a-
-

or-

n-

tic

-
ach

lly to

ism
en-

-

nd
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where Ô(E,T) ~whose explicit form we give in the nex
section! is a linear operator that depends on the topology
the diagram, but is independent of the external Euclid
energiesp. The object acted upon by this operator,D0(p,E),
is simply the correspondingD function for the Euclidean
zero-temperature graph,D0(v,E), defined for real and con
tinuous external energies,vª$v1 ,v2 ,...,vn%, evaluated at
v5p:

D0~p,E!5D0~v,E!uv5p . ~2!

We shall callÔ(E,T) the ~Euclidean! thermal operator.
As we shall see in the next section, the thermal opera

has a form that can be readily and naturally extrapolated
diagrams of arbitrary topologies. Although this makes
tempting to conjecture that the thermal operator represe
tion holds for completely arbitrary diagrams, this remains
open problem and more work is needed to settle the iss

However, if true in general, the representation~1! would
have several immediate important consequences:~a! it
would show that the full finite-temperature result is encod
in the zero-temperature functionD0(p,E), rendering the ac-
tual computations of the Matsubara sums completely unn
essary.~b! Since all dependence on external energiesp is
contained in the zero-temperature functionD0 , any analytic
continuation ofD(p,E,T) to complex values of the externa
energies, physically meaningful or not, would need only
carried out onD0 . By the same token, the study of imag
nary parts of analytically continued Euclidean Gre
functions—i.e., the subject of cutting rules—would ne
only be done at the level of the zero-temperature funct
D0 , since the thermal operator is real~we give an example o
this in the last section of this paper!. ~c! Since the therma
operator is bounded as the internal energiesEi tend to infin-
ity, it would be enough to renormalizeD0 in order to renor-
malize the full finite-temperature result. This is consiste
with a well-known result in renormalization of thermal fie
theories.

Although there have appeared in the literature sev
works that touch upon the relationship between the full c
culation of finite-temperature Feynman graphs and th
zero-temperature counterparts~usually interpreted in terms
of forward scattering amplitudes in vacuum!, in both the Eu-
clidean imaginary-time@5# and real-time formalisms@6#, we
are unaware of any discussion of a representation of
simple form~1!, as given here.

We emphasize that all the results presented in this pa
are formulated in the context of the Euclidean imagina
time formalism, and we will have nothing to say here abo
their relationship to or consequences for the real-time
malism, except for the remark made above about the poss
analytic continuations of the Euclidean Green functions
complex values of the Euclidean external energies. The la
subject has been studied at great length in the literature@7#,
along with the connection between different analytically co
tinued Euclidean Green functions and the retarded,
vanced, or time-ordered Green functions of the real-time
malism and the subject of cutting rules in the real-tim
formalism @8#.
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The structure of the paper is as follows: In Sec. II w
shall present the general form of the TOR for the Matsub
sum of a general scalar graph, in two alternative forms.
Secs. III, IV, and V we prove that the TOR holds, respe
tively, for a one-loop single-propagator tadpolelike graph,
a generic graph with two vertices, and for a generic one-lo
graph; the number of internal propagators is allowed to
arbitrary~but at least equal to 2! in the last two cases. Addi
tional supporting evidence for the validity of the TOR fo
graphs of arbitrary topologies and our conclusions are gi
in Sec. VI. The reformulation of the old-fashioned perturb
tion theory rules of Ref.@4# in the form of the present rep
resentation has been relegated to an Appendix.

II. REPRESENTATION FOR THE MATSUBARA SUM

In a scalar field theory, the mathematical expression c
responding to an amputated graph withn11 vertices (n
>1), I internal lines, and external four-momentaPa
5(pa ,pa) has the form

~2l!n11

S E F)
i 51

I
d3ki

~2p!32Ei
)
V51

n

~2p!3d~3!~kV!GD~p,E,T!,

~3!

wherel represents the coupling constant andS is the sym-
metry factor of the graph;k i is the spatial three-momentum
of the i th internal line andEiª(k i

21mi
2)1/2 is its associated

kinematic energy;kV denotes the total three-momentum e
tering vertexV; the unsubscripted symbolsp andE denote,
respectively, the full set of Euclidean external and kinema
internal energies, pª$p1 ,p2 ,...,pn% and E
ª$E1 ,E2 ,...,EI%; andT is the temperature. The delta func
tions ensure conservation of spatial three-momentum at e
vertex, so that the integration measure reduces essentia
an integration over the three-momenta of theL5I 2n inde-
pendent loops. In the finite-temperature Euclidean formal
all lines, external and internal, carry discrete Euclidean
ergies which are integer multiples of 2pT. Each internal line
has an associated Matsubara frequency, denoted bykj
52pTnj . The D function is given by the normalized Mat
subara sum

D~p,E,T!5gETL (
n1 ,n2 ,...,nI

)
j 51

I

D~kj ,Ej !d~p,k!, ~4!

where

gEª)
i 51

I

2Ei , ~5!

L is the number of independent loops in the graph, a
D(kj ,Ej ) is the scalar propagator associated with thej th
internal line, with

D~k,E!ª
1

k21E2 . ~6!
4-2
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OPERATOR REPRESENTATION FOR MATSUBARA SUMS PHYSICAL REVIEW D69, 065004 ~2004!
The sums over eachnj run from2` to 1`. Thed function,
with k5$k1 ,...,kI%, is a generalized Kronecker delta whic
ensures conservation of energy at each vertex. The topo
of the diagram is totally contained in this generalized de

The OFPT rules given in@4#, which are reproduced in th
Appendix, were conjectured to allow us to write down t
complete result for Eq.~4! by a simple diagrammatic analy
sis. But as shown in the Appendix, there exists a sim
algebraic representation for the diagrammatic OFPT rules
that the conjecture of Ref.@4# can be recast in the following
terms.

Statement 1 (thermal operator representation). The D
function defined in Eq.~4! for an amputated Feynman grap
can be expressed in the form

D~p,E,T!5Ô~E,T!D0~v,E!uv5p , ~7!

where D0(v,E) is the D function of the Euclidean zero
temperature graph andÔ(E,T), the thermal operator, is th
following linear operator:

Ô~E,T!ª11(
i 51

I

ni~11Si !1 ( 8
^ i 1 ,i 2&

ni 1
ni 2

~11Si 1
!~11Si 2

!

1¯1 ( 8
^ i 1 ,...,i L&

)
l 51

L

ni l
~11Si l

!. ~8!

Here ni[n(Ei), where n(E)5(ebE21)21 is the Bose-
Einstein thermal occupation factor;SiªSEi

is a reflection

operator,Sxf (x)ª f (2x); the indicesi 1 ,i 2 ,... runfrom 1 to
I ~the number of internal propagators! and the symbol
^ i 1 ,...,i k& stands for an unorderedk-tuple with no repeated
indices, representing a particular set of internal lines. T
primes on the summation symbols imply that certain tup
^ i 1 ,...,i k& are to be excluded from the sums: those such
if we snip all the linesi 1 ,...,i k then the graph becomes di
connected.

Note that the operatorÔ(E,T) contains products of a
mostL thermal occupation factorsn(Ei), since for anL-loop
graph the maximum number of lines that can be snip
without disconnecting the graph is preciselyL. This generic
feature of the thermal graph in the imaginary-time formali
is, of course, well known. However, as discussed in Secs
and V, there exists a simpler algebraic form for the therm
operator.

Statement 2 (simpler form of the thermal operator). When
acting on the zero-temperatureD function D0(p,E), the
thermal operatorÔ(E,T) can be replaced by the simpler

Ô!~E,T!5)
i 51

I

@11ni~11Si !#. ~9!

Note that the operatorÔ!(E,T) in Eq. ~9! can be ex-
panded as in Eq.~8!, except that the summation symbo
carry no primes: that is, all tupleŝi 1 ,...,i k& (1<k<I ) are
allowed in the sum. Clearly, the form~9! will follow from
Eq. ~8! if we can somehow show that tuples associated w
06500
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disconnected graphs@the ones excluded from the summ
tions in Eq.~8!# give rise to operators that produce a vanis
ing contribution to theD function in Eq.~7!. So the simpler
representation will follow from Eq.~8! if the following state-
ment is true.

Statement 3 (cut sets do not contribute). The zero-
temperatureD functionD0(v,E) is annihilated by the opera
tors

A~C!ª )
i lPC

~11Si l
!, ~10!

whereC stands for a cut set of the graph—that is, any se
indicesi 1 ,...,i k such that the graph becomes disconnecte
the corresponding lines are snipped.

We make clear at this point that, although we make re
ence tocut sets, we imply no connection to the concepts
cuts and cut diagrams as they are usually understood in
grammatic quantum field theory. Cut sets are determi
solely by the topology of the diagram, and have no furth
mathematical or physical meaning.

The goal of the next three sections is to prove that th
statements are indeed true for the two generic types of gra
described in the Introduction. The strategy of the proof w
be to evaluate the Matsubara sums contained inD(p,E,T)
by conventional means—namely, the contour integrat
method or the Saclay method—and then show that the re
can be written as in the right-hand side of Eq.~7!.

III. SIMPLEST LOOP DIAGRAM

We begin by considering a one-loop graph with only o
internal propagator, as the one shown in Fig. 1. This parti
lar graph contributes at first order to the self-energy in
lf4 theory. The actual number of external legs of the gra
is unimportant, since we are only interested in the Matsub
sum associated with the loop. Although we could have c
sidered this graph as the simplest case of the generic
loop graph considered in Sec. V, we prefer to analyze
separately, since the proof given in Sec. V applies more n
rally to the case of two or more internal propagators.

According to Eq.~4!, theD function for the graph of Fig.
1 is simply given by

D~p,E,T!5~2E!T (
n52`

1`
1

~2pTn!21E2 . ~11!

The sum above can be computed in a variety of ways and
result is well known@1#. One obtains

FIG. 1. One-loop single-propagator diagram.
4-3
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D~p,E,T!5112n~E!, ~12!

wheren(E)5(ebE21)21 is the Bose-Einstein thermal oc
cupation factor. The zero-temperatureD function D0(v,E)
can be computed directly from its definition,

D0~v,E!5~2E!E
2`

` dk0

2p

1

k0
21E2 , ~13!

or simply by taking the limitT→0 of D(p,E,T) in Eq. ~12!.
The result is

D0~v,E!51. ~14!

Since a constant function is unchanged by the reflection
eratorSE defined by

SEf ~E!ª f ~2E!, ~15!

wheref is any regular function in the variableE, we certainly
have the identity

D~p,E,T!5@11n~E!~11SE!#D0~p,E!, ~16!

which proves that the thermal operator representation g
by Eqs.~7! and ~8! does hold for the simple graph we a
considering.

IV. TWO-VERTEX DIAGRAM

A. Calculation

The Matsubara sum for the two-vertex diagram withI
internal propagators shown in Fig. 2 is most convenien
calculated using the Saclay method@2#, which we now
briefly review.

Let Kª(k,k) be the Euclidean four-momentum vect
associated with a given internal line;k is a Matsubara fre-
quency to be summed over.

Then each scalar propagator

D~K !ª
1

K21m2 5
1

k21E2ªD~k,E!, ~17!

whereEªEk5Ak21m2, is represented as

D~k,E!5E
0

b

dt eiktD~t,E!, ~18!

whereb51/T, as usual. The mixed propagatorD(t,E), 0
<t<b, is given by

FIG. 2. Two-vertex diagram withI internal lines.
06500
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D~t,E!5
1

2E
$@11n~E!#e2Et1n~E!eEt%, ~19!

wheren(E)5(ebE21)21. For our purposes, it will be con
venient to use the following representations for the mix
propagator~19!:

D~t,E!5
1

2E
@11n~E!~11SE!#e2Et ~20!

5
n~E!ebE

2E
@11e2bESE#e2Et, ~21!

whereSE is the reflection operator defined in Eq.~15!. Sub-
stituting the representation~20! back into Eq.~18! and using
the fact that the operator (1/2E)@11n(E)(11SE)# is linear,
we obtain the following equivalent Saclay representation
the scalar propagator:

D~k,E!5
1

2E
@11n~E!~11SE!#E

0

b

dt e~ ik2E!t. ~22!

Consider now the two-vertex diagram withI internal lines
of Fig. 2. Let P5(p,p) be its external~incoming! four-
momentum~note that herep stands for asingle Euclidean
energy variable! and letK j5(kj52pTnj ,k j ), j 51,...,I , be
the four-momenta of the internal lines, flowing from the le
to the right vertex. The MatsubaraD function corresponding
to this graph is given by

D~p,E,T!5gETI 21 (
n1 ,n2 ,...,nI

)
j 51

I

D~kj ,Ej !dk11¯1kI p
,

~23!

where the delta function is a Kronecker delta enforcing c
servation of energy at both vertices,( j 51

I kj5p, andgE was
defined in Eq.~5!.

Now, because the variablesp andkj are quantized in units
of 2pT, the Kronecker delta in Eq.~23! can be represente
as

dk11¯1kI ,p5TE
0

b

dt e2 i t~k11¯1kI2p!, ~24!

so that the sums over the integersnj decouple:

D~p,E,T!5gETIE
0

b

dt eipt)
j 51

I F(
nj

D~kj ,Ej !e
2 i tkj G .

~25!

Using now the Saclay representation~22! for each propaga-
tor D(kj ,Ej ) ~with integration variablet j ), we find
4-4
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OPERATOR REPRESENTATION FOR MATSUBARA SUMS PHYSICAL REVIEW D69, 065004 ~2004!
D~p,E,T!5TI)
j 51

I

@11n~Ej !~11SEj
!#

3E
0

b

dt eipt)
j 51

I F E
0

b

dt je
2Et j(

nj

ei ~t j 2t!kj G .
~26!

But

T(
nj

ei ~t j 2t!kj5(
n

d~t j2t1nb!5d~t j2t!

for 0,t j , t,b, ~27!

so that the final result for the MatsubaraD function for the
graph of Fig. 2 is

D~p,E,T!5)
j 51

I

@11n~Ej !~11Sj !#E
0

b

dt e~ ip2Etot!t

5)
j 51

I

@11n~Ej !~11Sj !#
e2bEtot21

ip2Etot
, ~28!

whereSjªSEj
, Etotª(j51

I Ej , and we have used the fact th

exp(ibp)[1.

B. Proof of the thermal operator representation

We will now show that the result~28! can be put into the
form ~7!, where the zero-temperatureD function for the
graph of Fig. 2 is given by

D0~p,E!52S 1

ip2Etot
2

1

ip1Etot
D , ~29!

as can be easily be obtained from a calculation in the o
fashioned perturbation theory formalism. First, we obse
that this function satisfies statement~3!. In fact, since the
only cut set of the two-vertex diagram is the set of all line
we only need to show that the function~29! is annihilated by
the operator

Aª)
j 51

I

~11Sj !. ~30!

But sinceSx is a reflection operator (Sx
2[1), we have

F)
j 51

I

~11Sj !G 1

ip2Etot
5F)

j 51

I

~11Sj !G S )
j 51

I

Sj

1

ip1Etot
D

5F)
j 51

I

~11Sj !G 1

ip1Etot
, ~31!

so that indeedAD0(p,E)[0. Therefore it is enough to show
that Eq.~7! holds with the thermal operator in the form~9!.
But this follows immediately from the identity
06500
-
e

,

F)
j 51

I

@11n~Ej !~11Sj !#G e2bEtot

ip2Etot

5F)
j 51

I

n~Ej !e
bEj@11e2bEjSj #G e2bEtot

ip2Etot

5F)
j 51

I

n~Ej !e
bEj@11e2bEjSj #e

2bEjSj G 1

ip1Etot

5F)
j 51

I

@11n~Ej !~11Sj !#G 1

ip1Etot
,

where we have used the property (e2bEjSj )
2[1.

V. ONE-LOOP DIAGRAM

A. Calculation

The calculation of the Matsubara sum for the one-lo
diagram withI vertices andI internal propagators shown i
Fig. 3 is most conveniently done using the standard cont
integration method@1#. If a meromorphic functionf has no
singularities along the imaginary axis andk stands for the
Matsubara frequencyk52pTn, then

T (
n52`

`

f ~ ik !5
1

2p i R
C

f ~z!n~z!dz, ~32!

wheren(z)5(ebz21)21 and C is the positive contour tha
runs vertically upwards the complexz plane, infinitesimally
to the right of the imaginary axis, from«2 i` to «1 i`, and
then comes back vertically and infinitesimally to the left
the imaginary axis, from2«1 i` to 2«2 i`, with «
501.

If un(z) f (z)u goes fast enough to zero whenuzu goes to
infinity, we can change the contour of integration to tw
negatively oriented semicircumferences, one on each sid
the imaginary axis, with radii tending to infinity. Thus, b
Cauchy’s integral theorem,

FIG. 3. A one-loop diagram withI vertices.
4-5
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T (
n52`

`

f ~ ik !52(
l

Resz5zl
@ f ~z!n~z!#, ~33!

wherezl are the poles of the functionf (z).
Consider now the one-loop graph of Fig. 3. LetPi

5(pi ,pi) be the external incoming momenta at each vert
Letting k52pnT be the Matsubara frequency of line 1, th
MatsubaraD function in this case can be reduced to the fo

D~p,E,T!5gET(
n

D~k,E1!D~k1p2 ,E2!¯

3DS k1(
j 52

I

pj ,EI D , ~34!

where the energiesEi are defined as before. Introducing
new set of variablesujª( l 51

j pl2p1 ( j 52,...,I ) and letting
u1ª0, we can write Eq.~34! as

D~p,E,T!5gET(
n

)
j 51

I

D~k1uj ,Ej !. ~35!

Next using the identity

1

k21E2 52
1

2E
S 21

ik1E
1

1

ik2E
D 52

1

2E
(

s561

s

ik2sE
,

~36!

we get

D~p,E,T!5~21! IT(
n

H )
j 51

I F (
s j 561

s j

ik1 iu j2s jEj
G J ,

5~21! IT(
n

H(
s

)
j 51

I
s j

ik1 iu j2s jEj
J , ~37!

where now sª$s1 ,s2 ,...,s I%. If the function between
brackets in Eq.~37! is called f ( ik), then we see that the
poles of f (z) are located atzl52 iul1s lEl , so that the
application of Eq.~33! gives us

D~p,E,T!5~21! I 11(
s

(
l 51

I

n~s lEl !s l

3)
j Þ l

I
s j

i ~uj2ul !1s lEl2s jEj
. ~38!

In order to express the result for theD function in terms of
Bose-Einstein factors of positive argument only, we will p
form the summation overs l explicitly. Introducing the nota-
tion s li ª(s1 ,...,s l 21 ,s l 11 ,...,s I) and using the identity
n(2El)52@11n(El)#, we find
06500
.

-

D~p,E,T!5~21! I 11(
l 51

I

(
s li

H)
j Þ l

I
s j

i ~uj2ul !2El2s jEj

1n~El !F)
j Þ l

I
s j

i ~uj2ul !2El2s jEj

1)
j Þ l

I
s j

i ~uj2ul !1El2s jEj
G J . ~39!

In terms of the auxiliary function

dl~p,E!ª(
s li

)
j Þ l

I
s j

i ~uj2ul !2El2s jEj

5)
j Þ l

I

(
s j

s j

i ~uj2ul !2El2s jEj
~40!

and the reflection operatorSiªSEi
, defined in Eq.~15! we

have

D~p,E,T!5~21! I 11(
l 51

I

@dl~p,E!

1n~El !~11SEl
!dl~p,E!#. ~41!

B. Proof of the thermal operator representation

We shall prove now that theD function ~41! for the one-
loop graph of Fig. 3 can be written in the form~7!, as

D~p,E,T!5F11(
j 51

I

n~Ej !~11Sj !GD0~p,E!, ~42!

with

D0~p,E!5~21! I 11(
l 51

I

dl~p,E!. ~43!

Since the graph of Fig. 3 gets disconnected if two or m
lines are snipped, the thermal operator has terms no hig
than linear in the Bose-Einstein factorsn(E). But Eq. ~42!
will reduce to Eq.~41! if the operator (11Sj ) annihilates the
auxiliary function dl(p,E) when j Þ l . This is indeed the
case: from Eq.~40! we see that, whenj Þ l ,

dl~p,E!5(
s j

s j

i ~uj2ul !2El2s jEj

3 )
kÞ l , j

I

(
sk

sk

i ~uk2ul !2El2skEk

5(
s j

2s j

i ~uj2ul !2El1s jEj

3 )
kÞ l , j

I

(
sk

sk

i ~uk2ul !2El2skEk

52Sjdl~p,E!, ~44!
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which means that

~11Sj !dl~p,E![0 if j Þ l . ~45!

Statement~1! is then valid for the one-loop graph of Fig. 3
Furthermore, statement~3! is also true for this graph. In

fact, any cut set will at least contain two lines, say linesi and
j. But then

~11Si !~11Sj !dl~p,E![0, ~46!

since, for any givenl, either i or j will be different from l
~since iÞ j ), leading to a vanishing contribution because
Eq. ~45!.

VI. FURTHER EVIDENCE AND CONCLUSIONS

One piece of evidence in favor of the general validity
the representation~7! is provided by a comparison with
well-known result of thermal field theory, first formulated b
Weldon @10#, concerning the interpretation of the imagina
part of the retarded self-energyPR in terms of the direct and
inverse decay rates of a particle propagating in the ther
medium. A well-known result of quantum statistical mecha
ics @11# is that the full retarded self-energyPR can be ob-
tained from the Euclidean self-energyPb by analytic con-
tinuation as

PR~v,p!52Pb„i ~v1 i«!,p…, ~47!

wherev stands for a real continuous variable. In the cont
of perturbative quantum field theory, the imaginary part
PR is given in the form of integrals over phase space
amplitudes squared, weighted by certain statistical fac
that account for the possibility of particle absorption fro
the medium or particle emission into the medium@10#. For
example, for the one-loop two-vertex diagram correspond
to Fig. 4 in the Appendix, the result for the imaginary part
the retarded self-energy is~we have setg[1)

Im PR~v,p!52pE d3k

~2p!3

1

4E1E2
$~11n11n2!

3@d~v2E12E2!2d~v1E11E2!#

2~n12n2!@d~v2E11E2!

2d~v1E12E2!#%, ~48!

whereni[n(Ei). But from the general form~3! for a dia-
gram in the Euclidean formalism, it is clear that the ima
nary part of the analytically continued diagram is determin
by the analytic continuation of itsD function. The genera
validity of our main representation in the form~7! would
imply that the latter is in turn completely determined
terms of the analytic continuation of the zero-temperatureD

function D0 , since the thermal operatorÔ is real and does
not involve the external momenta.

For the particular simple diagram we are consideri
which is actually a special case of the general two-ver
06500
f

f

al
-

t
f
f
rs

g
f

-
d

,
x

graph considered in Sec. IV, the thermal operator repres
tation has been proven to hold. Hence,

Im D„i ~v1 i«!,E1 ,E2 ,T…

5Ô~E1 ,E2 ,T!Im D0„i ~v1 i«!,E1 ,E2…. ~49!

The last imaginary part could in principle be obtained fro
the standard cutting rules that apply in zero-temperature fi
theory, without having to computeD0 itself. In this case,
however, we have the closed result~29! for D0 , which al-
lows us to compute, directly,

Im D0„i ~v1 i«!,E1 ,E2…

5ImF 1

v1E11E21 i«
2

1

v2E12E21 i«G
52p@d~v1E11E2!2d~v2E12E2!#. ~50!

Now in this case the thermal operator is given by

Ô~E1 ,E2 ,T!511n1~11S1!1n2~11S2!

511n11n21n1S11n2S2 . ~51!

Since

n1S1@d~v1E11E2!2d~v2E12E2!#

5n1@d~v2E11E2!2d~v1E12E2!#,

etc., we readily obtain

Ô Im D05p$~11n11n2!@d~v2E12E2!

2d~v1E11E2!#2~n12n2!@d~v2E11E2!

2d~v1E12E2!#%, ~52!

thereby reproducing Eq.~48!, with all the correct signs and
thermal factors.

In this paper we have restricted our attention to so
simple diagrams in the finite-temperature imaginary-tim
formalism for a scalar relativistic field theory. We hav
shown that the full result of performing the Matsubara su
associated to any given Feynman graph can be obtained
its zero-temperature counterpart by means of a simple lin
operator. Given the general form~8! of the thermal operator
which can be readily and naturally extrapolated to diagra
of arbitrary topologies, it is not at all implausible that th
representation~7! be actually valid in complete generality
This generalization remains an open problem, however,
work in this direction is in progress.

An analysis similar to the one presented here should ap
in a theory containing fermions; the algebra will be sligh
more complicated because of the spin structure. We h
deferred this analysis, as well as the extension of our res
to gauge theories, until we have been able to prove or
prove that the thermal operator representation put forwar
this paper does indeed hold for an arbitrary loop graph i
scalar field theory.
4-7
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APPENDIX

OFPT rules

The rules originally put forward in Ref.@4# to write down
an explicit expression for the MatsubaraD function corre-
sponding to the general scalar graph considered in Sec. I
given by the following statements~refer to Fig. 4!.

~a! For each external line, characterized by a real Euc
ean four-vector (pl ,pl), define its energy asipl . For each
internal line define its energy asEi5(k i

21mi
2)1/2, wherek i

is the three-momentum carried by the line andmi is the mass
of the propagating particle.

~b! Define adirection of timeor energy flow~which we
shall take conventionally from left to right! and consider all
possible orderings of the vertices along this direction.@See,
e.g., Figs. 4~a! and 4~b!. For a graph withn11 vertices there
will be (n11)! such orderings.#

~c! For each time-ordered graph generated in~b! consider,
in addition to itself, all possibleconnectedgraphs that can be
obtained by snipping any number of internal lines. Each l

FIG. 4. An example of the diagrams which appear in the OP
rules.
06500
is
t
t-

re
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e

that is snipped becomes a pair of legs we shall callthermal
legs. Attach a cross to their ends to distinguish them from
original external lines of the graph. Both legs of a given p
inherit the energyEi of the internal line that originated them
However, one leg must be oriented asincomingwith energy
Ei and the other asoutgoingwith energyEi . Both possible
orientations have to be considered, each one generati
different diagram@see, e.g., Figs. 4~c! and 4~d!#.

~d! For each graph in~c!, define its total incoming energy
Einc as the sum of all incoming external energies plus
energies of all incoming thermal legs that join the diagra
beforetheir outgoing partner@e.g., as in Figs. 4~d! and 4~f!#.
Thermal leg pairs that satisfy this property shall be refer
to asexternaland those that do not asinternal @e.g., as in
Figs. 4~c! and 4~e!#. Then associate to this graph an expre
sion equal to the product of the following factors:

~1! Draw a full vertical division~a ‘‘cut’’ ! between each pai
of consecutive time-ordered vertices~there aren such
cuts in a graph withn11 vertices!; for each cut, include
a factor

1

Einc2Ecut
, ~A1!

whereEcut is the total energy of the intermediate sta
associated with the cut, defined as the sum of the e
gies of all the lines that cross the cut in question~as in
zero-temperature time-ordered perturbation theory!, plus
the energies of allinternal thermal pairs whose originat
ing internal line would have crossed the cut.

~2! Include a thermal occupation factorni[n(Ei) for each
thermal pair~of energyEi) in the diagram~if any!.

~3! Include an overall factor of (21)n, wheren11 is the
number of vertices.

~e! The integrandD(p,E,T) in Eq. ~3!—i.e., the Matsub-
ara D function of the graph—is the sum of the expressio
computed according to rule~d!, over all the graphs in~c!.

Algebraic approach to the OFPT rules

Let us callDR(p,E,T) the expression for theD function
generated according to the OFPT rules. A trivial check t
the OFPT rules do satisfy is that they yield the known corr
result in the limitT→0, keeping the external Euclidean e
ergies p fixed. In fact, in the limit T→0 all the thermal
factors n(E) vanish, so that according to the rule
DR(p,E,0) is just given by all possible time-ordered di
grams with no snipped lines, calculated according to rule~d!
above. But this is precisely the result one would obtain c
culating theT50 Euclidean graph@with external momenta
(pl ,pl)] using old-fashioned perturbation theory@9#. We
have, therefore,

D0~p,E!5DR~p,E,0!, ~A2!

whereD0(p,E) is the D function associated with the zero
temperature Euclidean Feynman graph. Hence the rules
at T50.

T

4-8
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At finite temperature, we get extra contributions acco
ing to rules~c! and ~d! above. Now, instead of considering
as commanded by rule~c!, all possible connected graphs th
can be obtained by snippingany number of internal lines of
a given ‘‘unsnipped’’ time-ordered graph, let us rather grou
the snipped diagrams according towhich lines are snipped
regardless of the time ordering. Take, for instance, all
diagrams which have only thei th line snipped~i is fixed!. A
set of this type is conformed, for instance, by diagrams~c–f!
of Fig. 4. It follows directly from rule~d1! that a diagram in
which the snipped line forms aninternal thermal leg pair
@i.e., we have a ‘‘closed’’ snipping, as in Figs. 4~c! and 4~e!#
has exactly the same mathematical weight as the z
temperature ‘‘unsnipped’’ diagram, except of course for
extra thermal factorn(Ei). Thus the sum of all these
diagrams—i.e., the diagrams that have only thei th line
snipped closed—adds up ton(Ei)D0(p,E). On the other
hand, if the snipped line forms anexternalthermal leg pair
@i.e., we have a ‘‘open’’ snipping, as in Figs. 4~d! and 4~f!#,
we again have an extra thermal factorn(Ei), but now the
rest of the expression differs from that for the ‘‘unsnippe
graph in the sign of the energyEi . This is so because, for a
open snipping, the energyEi moves fromEcut to Einc , as can
be gathered from rule~d!.

Let x symbolize a variable and letSx be the operator tha
acts on functions ofx, changing the sign of the argumentx,
according to

Sxf ~x!ª f ~2x!.

In terms of the reflection operatorSx , we can write the sum
of all the time-ordered diagrams with only thei th line
snipped open as

n~Ei !SiD0~p,E!,
fo
e
ct

,

i,

e

06500
-

e

o-
e

’

where we have writtenSiªSEi
to avoid cluttering the nota-

tion. So the full contributions of the diagrams in which on
the i th line is snipped can be written as

n~Ei !~11Si !D0~p,E!.

The analysis above can clearly be generalized to add
the contribution of the graphs with more than one snipp
line. Taking into account that only connected graphs are
lowed by the OFPT rules~so that one is allowed to snip a
mostL internal lines, whereL is the number of independen
loops!, we arrive at the following result.

Theorem 1. The OFPT rules admit the mathematical re
resentation

DR~p,E,T!5Ô~E,T!D0~p,E!, ~A3!

whereÔ(E,T), the thermal operator, is given by

Ô~E,T!ª11(
i 51

I

n~Ei !~11Si !

1 ( 8
^ i 1 ,i 2&

n~Ei 1
!n~Ei 2

!~11Si 1
!~11Si 2

!1¯

1 ( 8
^ i 1 ,...,i L&

)
l 51

L

n~Ei l
!~11Si l

!. ~A4!

Here the indicesi 1 ,i 2 ,... run from 1 to I ~the number of
internal propagators! and the symbol̂ i 1 ,...,i k& stands for an
unorderedk-tuple with no repeated indices. The primes
the summation symbols imply that we are to exclude fro
the sums those tuples^ i 1 ,...,i k& such that if we snip all the
corresponding linesi 1 ,...,i k then the graph become
disconnected.
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