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Monopoles in the Higgs phase

David Tong*
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

~Received 5 August 2003; published 4 March 2004!

We describe new solutions of Yang-Mills-Higgs theories consisting of magnetic monopoles in a phase with
fully broken gauge symmetry. Rather than spreading out radially, the magnetic field lines form flux tubes. The
solution is topologically stable and, when embedded inN52 SQCD, preserves 1/4 of the supercharges. From
the perspective of the flux tube the monopole appears as a kink. Many monopoles may be threaded onto a
single flux tube and placed at arbitrary separation to create a stable, BPS necklace of solitons.
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Should we ever be lucky enough to find a magnetic mo
pole, one might consider displaying it in the Natural Histo
Museum embedded within a superconductor. The magn
flux lines would not spread out radially, but instead have
peculiar property of forming a flux tube. Adjoining intera
tive displays could describe this delightful consequence
the Meissner effect while waxing lyrical about an analogo
mechanism in QCD which is responsible for holding us
together. Nearby, the holographic image of a celebrity ph
cist might explain how similar strings are conjectured to u
derlie the very fabric of our Universe.

In this paper we shall describe smooth, topologica
stable, magnetic monopole solutions with the property
scribed above. Recall that in QED, monopoles are Dirac-
singular affairs, essentially put into the theory by hand.
find smooth solutions, we must turn toSU(2) Yang-Mills
theories. When the gauge group is broken toU(1) by an
adjoint scalar field, ’t Hooft and Polyakov showed that top
logical considerations guarantee the existence of monop
@1#. However the theory is in the Coulomb phase and
magnetic flux lines spread out radially. Suppose we atte
to naively break the gauge symmetry further so that theU(1)
is also broken at low energies by the Higgs mechanism.
magnetic field lines must now form flux tubes at large d
tances, but the price we have paid is to lose the topolog
stability of the configuration which remains, at best, me
stable. An exception to this is ifU(1)→Z2 which can be
achieved by a second adjoint scalar field. In this caseZ2

strings are supported and the resulting stable monopole
tube configuration was discussed by Hindmarsh and Kib
@2#. Monopoles attached toZN strings have also been dis
cussed in@4#.

Here we shall discuss a slightly different symmetry bre
ing structure, involving a locking of gauge and flavor sym
metries, which supports bothU(1) flux tubes of the familiar
Nielsen-Olesen form@3# and magnetic monopoles in th
manner of ’t Hooft–Polyakov@1#. We work with anN52
supersymmetric theory ind5311 dimensions with a
U(N)G vector multiplet and Nf5N fundamental
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hypermultiplets1 with an SU(N)F flavor symmetry. The full
symmetry group is2

G5U~N!G3SU~N!F .

The bosonic field content of the theory is as follows: t
vector multiplet contains aU(N)G gauge fieldAm , together
with a complex adjoint scalar fieldf; the hypermultiplets
contain scalarsqi , i 51, . . . ,NF , each of which transforms
in the N representation ofU(N)G , and a furtherNf scalars
q̃i transforming in theN̄. The bosonic part of the Lagrangia
is given by

L5TrS 1

4e2
FmnFmn1

1

2e2
uD mfu2D 1(

i 51

Nf

~ uDmqi u21uDmq̃i u2!

2 Tr S 1

2e2 @f†,f#21e2U(
i 51

Nf

qi q̃iU2

1
e2

2
S (

i 51

Nf

qiqi
†2q̃i

†q̃i2v2D2D
2(

i 51

Nf

~qi
†uf2mi u2qi1q̃i uf2mi u2q̃i

†!.

In the above expression we have introduced complex m
parametersmi and a real FI parameterv2, each consisten
with N52 supersymmetry. For generic values of these
rameters the theory has a unique vacuum state, up to W
permutations, given by

f5diag~mi !, qi
a5vd i

a , q̃i
a50, ~1!

1This is a minimal choice: the solutions we describe exist
any Nf>N.

2The classical theory has a furtherSU(2)R3U(1)R R-symmetry
group, but this will not be responsible for stabilizing any solito
solutions and we shall pay it less attention.
©2004 The American Physical Society03-1
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where a51, . . . ,N is the color index. TheU(N)G gauge
symmetry is completely broken and the theory lies in
gapped, color-flavor-locked phased.

The pattern of symmetry breaking at intermediate ene
scales depends on the relative values ofmi andv2. For umi
2mj u@ev, the flavor group is explicitly broken by th
masses at a higher scale than the spontaneous symm
breaking induced by the FI parameter,

U~N!G3SU~N!F→
m

U~1!G
N3U~1!F

N21→
v

U~1!diag
N21 . ~2!

However, if ev@umi2mj u, then the spontaneous breakin
due to the vacuum expectation value ofq occurs at a higher
scale than the explicit breaking due to masses,

U~N!G3SU~N!F→
v

SU~N!diag→
m

U~1!diag
N21. ~3!

For both patterns~2! and ~3! the symmetry breaking
due to the masses supports magnetic monop
@P2„SU(N)/U(1)N21

…5ZN21# while the symmetry break
ing due to the FI parameter breaks aU(1) factor, ensuring
the stability of vortices@P1„U(1)…5Z#. Thus the topology
suggests the existence both monopoles and fluxes. We
now see that indeed the theory admits magnetic monop
attached to two vortex strings which whisk away their fl
~see Fig. 1!.

The solutions will turn out not to involve the fieldsq̃ and
we set them to zero at this stage. Moreover, the simp
configurations have Im(mi)50 which allows us to also se
Im(f)50. In the following f will therefore denote a rea
adjoint scalar field.3 Since the flux will leave the monopol
in a tube, we must decide in which direction this string w
head: we choose thex3 direction. Restricting to time inde
pendent configurations the Hamiltonian reads

3It seems likely that interesting dyonic monopole-flux tube co
figurations can be built by relaxing this condition to allow Im(mi)
Þ0.

FIG. 1. An impressionistic rendering of theU(2) monopole in
the Higgs phase whenLvort@Lmon.
06500
y

try

es

all
es

st

H5
1

2e2
Br

21
1

2e2
uD rfu21uDrqi u21

e2

2
~qiqi

†2v2!2

1qi
†~f2mi !

2qi

5
1

2e2
~D1f2B1!21

1

2e2
~D2f2B2!2

1„D3f2B32e2~qiqi
†2v2!…21uD1qi2 iD2qi u2

1uD3qi1~f2mi !qi u22v2B31
1

e2
]r~fBr!

>2v2B31
1

e2
]r~fBr!, ~4!

where we have left color indices and traces implicit, summ
over the flavor indexi, and introduced the spatial indexr
51,2,3. Both terms in the final line are topological inva
ants. The first measures the flux carried by vortex strin
lying in the x3 direction; the second measures the magne
charge carried by a monopole. As we shall see, we can h
strings without any need for monopoles, but the presenc
a monopole will require two, semi-infinite vortex strings
carry away its flux. In the Coulomb phase, the integral o]
•(fB) is evaluated on theS̀2 boundary. In the present cas
the monopole’s flux does not make it to all points on t
boundary and is instead captured by integrals over the
planesR`

2 at x356`. The Bogomoln’yi equations can b
found within the total squares on the second line of Eq.~4!
and read

B15D1f, B25D2f, B35D3f1e2S (
i 51

N

qiqi
†2v2D ,

D1qi5 iD2qi , D3qi52~f2mi !qi . ~5!

A quick glance reveals these to be interesting mix of
monopole and vortex equations. I have not been able to
an explicit solution. Indeed, since no analytic solution exi
to the Nielsen-Olesen vortex equations, it seems rather
likely that the task is simpler in these generalized equatio
Nevertheless, we can gain insight into the form of the so
tion by studying the equation in two different limits.

Let us start by considering the limitumi2mj u@ev. The
equations in the second line of Eq.~5! can be solved simply
by qi50, while, if we ignore the effect ofv2 for now, the
equations in the top line become the familiar Bogomoln
equationsBr'Drf describing a monopole with a non
Abelian core of widthLmon;1/umi2mj u. For distancesL
>Lmon, the magnetic field lies primarily within the Carta
subalgebraU(1)G

N21,SU(N)G,U(N)G and emerges radi
ally from the monopole core. However, this radial behav
cannot continue indefinitely. At scalesLvort;1/ev@Lmon,
the effect of the Higgs mechanism becomes apparent, da
ing the magnetic field as can be seen from the third of
Bogomoln’yi equations in Eq.~5!. At this point, it becomes

-

3-2
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energetically favorable to set the scalar fieldsf and qi to
their vacuum expectation values~1! in order to allow the
magnetic fieldB to vanish throughout the bulk. However, th
magnetic flux from the monopole has to go somewhere.
see where, note that whenf is set to its constant expectatio
value andAr is restricted to lie in the Cartan subalgebra th
the nontrivial equations of Eq.~5! read

B35e2S (
i 51

N

qiqi
†2v2D , D1qi5 iD2qi , ~6!

which are the non-Abelian form of the familiar Abelian vo
tex equations. They describe a tube of magnetic flux of wi
Lvort lying in the x3 direction. The string has finite tensio
2pv2, and therefore infinite mass due to its infinite leng
This reflects the fact that, like quarks in QCD, monopoles
the Higgs phase do not like to be alone.

For a Dirac monopole in QED, the flux string is expect
to depart in only one direction. When this happens, the t
sion of the string causes the monopole to accelerate and
configuration is unstable. However, for the superconduc
example of the opening paragraph this situation is avoide
the Cooper pair condensate has charge 2 which allows fo
formation of strings carrying a half quantum of flux@5#. Thus
the flux from the monopole may be carried away by two fl
tubes of equal tension, leaving in opposite directions. H
we shall see that the solution to Eq.~5! has a similar property
where each flux tube now carries a single quantum of fl
lying in a differentU(1),U(N)G subgroup. To see this, w
turn to the opposite limitev@umi2mj u where the width of
the vortexLvort is much smaller than the width of the mon
pole coreLmon. There is now no spatial region in which th
monopole looks like the usual ’t Hooft–Polyakov radial co
figuration. However, we can make progress by studying
monopole from the perspective of the vortex string. In fa
let us start by considering the situationmi50, so that the
symmetry breaking is simplyG→SU(N)diag. The theory
now supports vortex strings, but not monopoles. The vorti
satisfy Eqs.~6! and were studied recently in@6# ~related sys-
tems were examined even more recently in@7#!. For a single
vortex of unit winding number (Tr*d2xB3522p), it was
shown that the survivingSU(N)diag group acts on the soliton
resulting in a moduli spaceVN of solutions,

VN>C3CPN21,

whereC parametrizes the center of mass of the vortex str
in the x12x2 plane, whileCPN21 describes the internal de
grees of freedom of the vortex arising from theSU(N)diag
action. The Ka¨hler class ofCPN21 is 2p/e2 @6#. The low-
energy dynamics of the vortex string can be described b
d5(111)-dimensional sigma model with target spaceVN .
Since the vortex is BPS@9#, the low-energy dynamics pre
servesN5(2,2) supersymmetry.

How is this picture changed by the introduction of mas
mi? The masses break theSU(N)diag symmetry in the pattern
~3!, lifting the CPN21 moduli space. For a vortex of un
winding number there are nowN isolated solutions corre
sponding to an Abelian vortex embedded diagonally in o
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of the U(1),U(N)G subgroups. These different solution
are related by discreteSU(N)diag transformations but, as thi
includes the action of a global symmetry group, are phy
cally distinguishable configurations. From the perspective
the low-energy dynamics, the massesmi can be thought of as
inducing a potentialV on CPN21 with N isolated minima. In
fact, the exact form of the potentialV can be determined
using the techniques described in@8# and is of the formV
;k2, wherek is a Killing vector onCPN21.

Rather than enter into the details of theU(N)G theory,
here we simply concentrate on the case ofU(2)G gauge
group for which the internal vortex moduli space isCP1. We
parametrizeCP1 by a circle fibration over an interval, with
cP@0,2p) labeling the circle, and2p/e2<r<p/e2 label-
ing the interval. The circle degenerates atr 56p/e2 to yield
the topology of the sphere. Writing the two mass parame
as (m1 ,m2)5(m,2m), the low-energy internal dynamics o
the vortex string is governed by ad5(111)-dimensional
massive sigma model withCP1 target space,

Lvort5
1

2
H~r !~]r !21

1

2
H21~r !~]c!222m2H21~r !,

where

H~r !5
1

p/e21r
1

1

p/e22r
.

The kinetic terms are those of a sigma model onCP1 en-
dowed with the round metric, while the potential term
proportional to the length2 of the ]c Killing vector on CP1.
As we described above, the masses have lifted the mo
space of vortices, leaving behind two isolated configuratio
at the minima of the potentialr 56p/e2. These correspond
to vortices carrying magnetic fluxB3;diag(0,1) andB3
;diag(1,0) respectively. From the perspective of the vor
theory, the existence of two different configurations giv
rise to the possibility of a new object: a kink. Such a stri
would start at r 52p/e2 at x3→2` and conclude at
r 51p/e2 as x3→1`. In fact domain walls in massive
CPN sigma models of this type have been much studied
the literature, starting in@10#. The solution is simply

r 5
p

e2
tanh„m~x32x0!…, c5const,

wherex0 is the center of mass of the kink along the strin
From the perspective of thed5311 gauge theory, this kink
on the vortex world sheet is simply the monopole describ
by Eqs.~5!. To see this, first note that the mass of the dom
wall is 4pm/e2, in agreement with the mass of the mon
pole calculated from the final term in Eq.~4!. Secondly, we
can examine the fluxes carried by the vortex string. Asx3

→2`, theU(2) magnetic field lies inB3;diag(1,0), while
for x3→1`, the magnetic field lies inB3;diag(0,1). Tak-
ing into account the direction of the flux, we see that t
domain wall acts as a magnetic source of the formB
;diag(1,21). This is precisely the flux emitted by th
3-3
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DAVID TONG PHYSICAL REVIEW D 69, 065003 ~2004!
monopole. Note that the vortex preserves half the origi
N52 supersymmetry@9# and the domain wall preserves ha
the supersymmetry of the vortex theory@10#. The monopole-
flux-tube-combo is therefore a 1/4-BPS state inN52
SQCD. An impressionistic, and not entirely accurate, port
of the magnetic flux lines is offered in the figure.

It is interesting to note that the original fascination wi
domain walls inCP1 sigma-models derived from the obse
vation that they exhibit features reminiscent of magne
monopoles@10#. Here we provide a simple explanation fo
this fact: the domain wallsare magnetic monopoles. Th
monopoles in question lie in the Higgs phase, and are th
fore restricted to sit on a string of flux wherein they appear
domain walls.

For U(N)G gauge group, the situation is similar. The
are nowN vacua of the low-energy vortex dynamics, and o
can consider domain walls interpolating from the fi
vacuum @B;diag(1,0, . . . ,0)# to the last @B
;diag(0, . . . ,0,1)#. Such domain walls were studied in d
tail in @11#. It was shown that the kinks can be placed
arbitrary separation without experiencing attractive or rep
sive forces. From the perspective of monopoles, this co
sponds to the fact that@so called (1,1, . . . ,1)] monopoles
can be threaded on a flux tube and placed arbitrary sep
tion. They may slide along the string at will and are co
strained only in that they may not pass each other. This
sults in a BPS necklace of monopoles, acting like hard be
threaded on a vortex flux tube.
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Let us close by recalling two other areas of physics wh
solutions similar to those discussed above appear. The
sits on a tabletop: theA phase of superfluid3He supports
configurations analogous to a monopole emitting one~or
more! vortex strings@5#. This composite object is referred t
as a nexus. In the case of3He, the strings are supported by
global symmetry but similar configurations with gauged vo
tices are argued to appear in chiralp-wave superconductor
@5#. The second application is in the context of cosmolo
Configurations of the type discussed here have been invo
as a way to catalyze monopole-anti-monopole annihilati
This could be of interest either in the early Universe to rid
of GUT monopoles@12#, or in the current epoch where neck
laces of monopoles have been suggested as a sourc
ultrahigh-energy cosmic rays@13#. It is to be hoped that the
existence of the simple Bogomoln’yi equations~5! may be of
help in determining the dynamics of solitonic necklaces.
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