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Radiation reaction in Schwarzschild spacetime: Retarded Green’s function
via Hadamard-WKB expansion
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An analytic method is given for deriving the part of the retarded Green'’s funefigrx’) that contributes
to the tail term in the radiation reaction force felt by a particle coupled to a massless minimally coupled scalar
field. The method gives an expansionugfk,x") for small separations of the pointsx’ valid for an arbitrary
static spherically symmetric spacetime. It is obtained by using a WKB approximation for the Euclidean
Green’s function for the massless minimally coupled scalar field and is equivalent to the DeWitt-Schwinger
expansion fow (x,x"). The first few terms in this expansion are displayed here for the case of Schwarzschild

spacetime.
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I. INTRODUCTION function over the past trajectory of the parti¢e-7]. The

nonlocal part is often called the “tail” term.
Th ¢ | h fint Much effort has gone into the computation of the self-
€ past several years have seen a resurgence of in er?&?ce in Schwarzschild and Kerr spacetinjfs-29. In most

in the gravitational rad|a't|or.1 reaction problem in part be'schemes that do not involve the weak field limit it must be
cause space based gravitational wave detectors such as puted numerically by expanding either the retarded

Laser Interferometer Space AntenfldSA) are expected t0  Green's function, or the field itself, in terms of spherical
be able to detect the gravitational radiation emitted when §armonics in Schwarzschild or the spin-weighted spheroidal
compact object such as a stellar mass black hole or neutrgfyrmonics in Kerf13—19,22,24-2P However, a drawback
star spirals into a supermassive black hde2]. In such a  of these methods is that it has not been possible to separate
situation the change in the spacetime geometry of the supesut the local and nonlocal parts. The result is that there are
massive black hole due to the presence of the compact objedivergences which must be regularized. The usual way to
and the gravitational radiation it emits is negligitiexcept treat these divergences is through subtractions that occur at
near the compact objecso it is sufficient to compute the the level of the modes, resulting in a finite mode sum. This is
trajectory of the compact object in the background geometrgimilar to adiabatic regularizatior80—34 introduced in the
of the supermassive black hoJ&]. The radiation reaction context of quantum field theory in curved spaceti88,36.
under these simplifying conditions is known as the “self- Zeta function regularization has also been uEg.
force.” There is another way to obtain the tail term, at least in
The radiation reaction problem for a point charge radiatPrinciple, by computing the part of the retarded Green's
ing electromagnetic waves in a curved space background wdd4nction that contributes to it. In this paper we propose to use
first investigated by DeWitt and Brehni@] and later by th_e Hadamard expansion of the r_etarded Green_’s fun_ctlon for
Hobbs[4]. Gravitational radiation reaction for a moving par- S Purpose. It is known that this expansion is valid only
ticle was considered by Mino et db] and Quinn and Wald when the points are close .togethgr. The self .forc.e on the
[6]. The self-force on a particle interacting with a masslessobject at a particular spacetime point has contributions from

minimally coupled scalar field was considered by Qujith all points over its past trajectory. In nonlocal processes it is
. . . . not unreasonable to start by taking into account contributions
For a review see Ref8]. The scalar field case is of interest

. iv b i tai f1h feat from points closest to the object as they usually give a
primartly because it contains many of th€ same Tealures ag .o 5iar weight than those farther away. A quasilocal expan-
the gravitational and electromagnetic cases while bein

. , o - ion such as the one we are suggesting is the logical way to
much easier to work with. As found originally by DeWittand giart an analytic approximation. Even if it turns out not to

Brehme{3] for the electromagnetic case, it is always possiblecapiyre the dominant contribution, it is still worthwhile to
to break the radiation reaction force into two parts, one thaﬁwvestigate its range of validity for the specific task at hand.
is local and which reduces to the standard Abraham-Lorench‘ any such ana|ytic approximation produces even margina”y
Dirac expression in the flat space limit, the other part whichreasonable results, it can provide a relatively quick way of
is nonlocal and consists of an integral of the retarded Green'sstimating the self-force for a given trajectory. If the results
are accurate enough then it can be used in place of brute
force numerical integrations, thus giving an immense
*Email address: anderson@wfu.edu economy of effort.
"Email address: hub@physics.umd.edu For a massless minimally coupled scalar field, the re-
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tarded Green'’s function takes the Hadamard fpri87—39  DeWitt-Schwinger expansion. Because of its reliance on a
WKB expansion for the radial modes of the Euclidean

u(x,x") , Green’s function, it should be straightforward to generalize

7o (X,X') SLa(x,x")] the method to the cases of the electromagnetic and gravita-

' tional fields in static spherically symmetric spacetimes. Since

the scalar, electromagnetic, and gravitational wave equations

0[—0’(X,X’)]] . (1.))  in Kerr spacetime are separalp8—45, it is likely that the
method can be adapted to those cases as well.

In Sec. Il we show the relationship between the Euclidean
Green’s function and(x,x") for the massless minimally
goupled scalar field in a general static spherically symmetric

?)acetime. In Sec. Il our method of deriving an expansion

Gret(XrX’): 0(X=X,) {4

v(x,x")
8

Here 6(x,x") is defined to be zero outside of the past light
cone and one inside of it. The quantiyx,x’) is equal to

one-half the square of the proper distance between the poin
x andx’ along the geodesic connecting them. The functionfor v(x,x") in powers of k—x') is given and the first few

;)h(x,x ) ct(_)ntrlbutes to the tail part of the self-force. It obeys terms of the expansion for Schwarzschild spacetime are dis-

€ equation played. We draw our conclusions in Sec. IV.

Oy (x,x")=0. (1.2
II. EUCLIDEAN GREEN'S FUNCTION

Note thatv(x,Xx") is finite when the points come together. AND THE TAIL TERM

For small separations of the points the functienandv . . . . .
can be computed by using the DeWitt-Schwinger expansion The mgtnc fpr a static spherically symmetric spacetime
[35,40—42. To second order in derivatives of the metric the can be written in the form

result forv is ds?=—f(r)dt?+h(r)dr2+r2dQ?, (2.9

1 . . .
U(X,X'):_ER(X)_ (1.3y where f(r) and h(r) are arbitrary functions of the radial
coordinate andiQ)? is the metric of a 2-sphere. Changing the
time variablet to 7=it gives the Euclidean metri¢Quanti-

C(hxn)s(t,?rl‘:‘)efgzrtﬁxoazg‘:"o;ﬁl%] SC;: d Eagsﬁgvgioﬁ)ﬂ?gée ties defined in the Euclidean space carry a subsé&xipThe
UiAA : P P Euclidean Green’s function is a solution to the equation
it to sixth order for a conformally coupled massless scalar

field. Their result is useful for the study of a massless mini-

mally coupled field in Schwarzschild spacetime because in [0,Ge(x,x') = — S(x,x") 2.2
. . y X ELA, .
any spacetime with zero scalar curvature the Green’s func- VOe

tions for the massless scalar field do not depend upon the
coupling to the scalar curvature. However, taking the generalvherege is the determinant of the Euclidean metric. If the
expressions for the terms in an arbitrary spacetime from Refanalytic continuation
[39] and evaluating them for the Schwarzschild geometry is
still nontrivial. (r— 72— —(t—t')%+ie 2.3
The results of these calculations show that for Schwarz-
schild spacetime the sixth order contributiorviex,x’) from  is used withe an infinitesimal positive real quantity th¢#6]
the DeWitt-Schwinger expansion gives the first nonvanishing R R
term, and that is the only term which the results from Ref. Ge(—i7,x;—i7' x")=1Gg(x,x") (2.4
[39] can provide. To compute the self-force more terms are
needed from an expansion fo(x,x’). Also, given the fact with G the Feynman Green’s function. Sinp#l]
that no explicit computations af(x,x") have been done for
Schwarzschild spacetime using the DeWitt-Schwinger ex-
pansion, it is of some general interest to obtain the first few
nonvanishing terms in the series.
In this paper we describe a method we have developed twhereG")(x,x") is the Hadamard Green function, it is clear
compute an expansion for(x,x") for a massless minimally that
coupled scalar field in a general static spherically symmetric
spacetime. The method involves the use of a WKB expanreG.(—ir,x;—ir',x’)
sion for the radial mode functions of the Euclidean Green'’s

1
Im GF(x,x’)z—EG(l)(x,x’) (2.5

function for the scalar field. It gives the same results as the 1 1 ,
= =G (x,x")
2
lour definitions for the Hadamard expansion are equivalent to  U(X,X") v(x,x") , w(X,x")
those of Refs[37—39. Corresponding expressions in RET] do - 87720'(X x') 1672 |09[|U(ny )|]+ 1672
not have the factor of 1/ for u(x,x") and the factor of 1/8 for '
v(x,x"). (2.6)
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where in the second equality we have express€d(x,x’)
in the Hadamard fornh37—-39.

Note that if the points are separated in the time direction
or if they are farther apart in the time direction than in other
directions therj42,46|

a(x,x")=—=3f(r)(t—t")2+0[(x—x")%]. (2.7
Thusv(x,Xx") is proportional to the coefficient of the Igg
—7)?] part of Gg(x,x'). It is this fact that will enable us to
derive an expansion fos by finding one forGg using a
WKB approximation.

To find such an expansion fdg first note that in a
spacetime with metri¢2.1) an exact expression fdBg is
[47]

1 %
Ge(x,x")= 4—772f0 dwcog w(7—17')]

XZO (2€+1)P(COSY)C oy (Pue(r <) (r=).
(2.8

Here P, is the Legendre Polynomial of théth order and

cosy=x-X' is the direction cosine between the spatial vec-

tors defining the pointg,x’. The notatiorr - (r.) refers to
the larger(smalley of r andr’. The mode functionp,,,

satisfies the appropriate boundary condition at some small

value ofr andq,, satisfies the appropriate boundary condi-
tion at some large value of They are both solutions to the
radial equation

1d’S |2 1 df 1 dh|dS
hgrz |th " 2fhdr Zpzdr|dr
w? L(£+1)
It i = (2.9
They satisfy the Wronskian condition
dqa)€ dpw{’ 1/h vz
Cw([paMT_QweW ="l (2.10
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f d’wW
hW g2

dh 1
2

2rh2 dr

1df f dh

hdr p2dr

1 dWw 3f

2W dr 2h

1 dw\2
W dr

|

(2.12

and

O2=w?+0(¢ 1i 2.1
w+(+)r2. (2.13

Then solve the equation fod iteratively, the lowest order
solution beingW= (). Each iteration adds two derivatives of
the metric. To second order one finds

1 1 df f dh
w=Q0+ — ——————
20\ 2rh dr  2rph2 dr
1/ 1 df f dh\2 1| f d2Q
e +___
803\ 2rh dr 2rh2 dr 41 K02 dr2
1df f dh) 1 dQ 3f 1 [dQ\?
hdr p2dr)/o02dr 2hgqsldr/ |

(2.19

Substitution of Eq(2.11) into Eq. (2.10 shows that for the
WKB ansatz,C, ,=1.

Ill. COMPUTATION OF wv(x,x")

To compute an expansion far(x,x’) in powers of &
—x") one first solves Eq2.12) to a specified adiabatic order
and substitutes the result into E®.11) and then into Eq.
(2.8). As shown below, the resulting expression can be bro-
ken into sums and integrals of the form

A WKB approximation for the modes can be derived as

follows: First define

1 r h 1/2
pwe=—(2rZW)l/2exr{f W(?) dr},
1 r h 1/2
I
(2.1)

with

06403

o0

- 20+ 1)[£(€+1)]™
smnpzf do cos[w(7—7') 02", ( Uil
0 =0

QP

(3.2

with m, n, andp integers.

Our goal is to determine the coefficient of the leg(@’)
term since this is related to(x,x") through Egs(2.6) and
(2.7). This can be accomplished by using the Plana sum for-
mula[48]
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” 1 . Then the sum ovef and the integral ovew can be com-
2 F(n)=zF(N)+ f dnF(n) puted as before. At the end of the calculation one should also
n=N 2 N expand the terms of the form (cgs-1) in powers of ¢
= dt —0" andgp—¢'.
+ij [F(N+it)—F(N—it)] To compute the expansion when the points are also split
0o e?™-1 in the radial direction one should first fiX to be either less
3.2 than or greater tham. For our purpose it will not matter
' which is chosen so, as an example, we assumerthat.

to compute the sums ovet. There are superficial diver- Then one expandp,,(r’) in powers ofr’—r and repeat-
gences in some of the sums ovewhich can be isolated by edly uses the mode equati@®.9) to eliminate all but first
expanding the summand for a given sum in inverse power§erivatives ofp,,. Thus

of ¢ and then truncating at order¢1/If the remaining terms " , ,

are subtracted from the summand then the result will be fi- Pot(") = Pue(T) +Po (N (r"=T)

nite. Effectively this amounts to subtracting terms which are | > 1df 1 dh

w’h  €(£+1)h
T T

porportional tos(7— 7') and its derivatives. This procedure —_———— — — —} pLe(r)
is discussed in Ref47]. After computing the sum overone r2fdr 2hdr
(r=n?
. i > Ny——s—
important because we are only looking for the coefficient of Pue(r) 2
the logt— ') term? Thus it suffices to put in a lower limit
series. For positive powers afthelre are no log(-7') terms  for G, and the WKB expansion is introduced to write this
so these do not contribute tqx,x"). For all negative pow-  equation in terms ofV and its derivatives as before. The

can expand the result in inverse powers«dfMost of the
expressions will be infrared divergent, however this is not {
cutoff A on the integral ovemw. (3.6
The integral ovew can be computed for each term of the Then this expansion is substituted into the expres&g
ers of w there will be logg—7’) terms. Forw™* one finds  terms will be proportional to various powers of and ¢ (¢
+1) multiplying either 1, W, or W'/W?. Those multiply-

o 1 . . ’ ’ .
dew cO V= = — i\ (7= 7 mg_l are proportional to5(7— 7-_)6(0—(2 ) and various
Jx Ccog (7T )]w (A(r=1) derivatives of these delta functions. Therefore, they do not
, contribute to the calculation af(x,x’) and can be ignored.
=—log(r—7")+---. (3.3 For the other terms one substitutes the WKB approximation

) o ) for W to some specified order and computes the coefficients
For all negative powers ofv, successive integrations by f the logt—7') terms as before.

parts can pe performed until the integral is in the fqB18). To affirm the validity of the WKB scheme, we note that
The result is when this program is carried out for a Reissner-Norastro
spacetime the expansion fofx,x’) agrees with the results

J’ do cog w(r—7)] of Christensc_ari[4l] at order k—x')2. To Ieadin_g order, it_is
w2n+1 also a solution to Eq(1.2). For Schwarzschild spacetime

v(x,x") vanishes at orderx(—x')2. However, by using an

(= )+t o , eighth order WKB approximation for the modes it has been
~(2n)! (r=7)Tog(r=7")+---. (34 possible to compute(x,x') to order &—x')® in Schwarz-
schild spacetime. Writing
If the points are split only in the time direction then one finds -
that using a second order WKB expansion give® zeroth . 2i j N
) ; X,X")= iik(t—t cosy— L) (r—r
order in t—t"), a fourth order one gives to second order v ) |,E 0 ikl ) (eosy— L)X )
in (t—t"), and so forth. For Schwarzschild spacetime the (3.7
lowest nonvanishing order i${t")* which requires use of a ,
sixth order WKB approximation. we find
To compute the expansion when the points are also split P S S
in the angular direction one can begin by expanding the an- =000 70017 #1007 7010 #0027 71017 ¥011™ %003 3.9
gular part of the mode functions in powers of (gesl) so '
that and
€(€+1) 3M?(2M —r)3
=1+ —1)+---. . -
P,(cosy)=1 5 (cosy—1) (3.5 V200 pyveE
5 . . . _ 27TM?(2M —r)?
There is an alternative way to do the WKB expansion which Ve —————————
gives no infrared divergencé¢d7,49,5(Q. 560r8
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M?(3M —14r)(2M —r)

U —
0%0 1680°
3M?(81IM?—70Mr + 14r?)
Vo022~ 7
112Q2M —r)r
—M?(729M?—773Mr +202r?)
S
o1 2240 2M —1)2r8
M2(249M?—292Mr + 86r?)
U006= (3.9

67202M —r)3r°

This expression is a solution to Ed..2) to O[ (x—x')*]. By
that we mean that if it is substituted into the left hand side of
Eq. (1.2) then the resulting expression will be zero®p(x
-x")4.

IV. CONCLUSIONS

We have presented a method that allows for the calcula-
tion of the part of the retarded Green'’s functiofx,x’) that
contributes to the tail part of the radiation reaction force for
a massless minimally coupled scalar field in a general static
spherically symmetric spacetime. We expect it to be straight-
forward to adapt this method to the cases of the electromag-
netic and gravitational fields in static spherically symmetric
spacetimes. It may be possible to adapt it, for all three fields,
to Kerr spacetime as well given that the wave equations for
all three fields are separable in the Kerr backgroutg-45.

We have explicitly calculated (x,x’) in Schwarzschild
spacetime tdD[ (x—x')®] for an arbitrary separation of the
points. One indication of the correctness of these expressions
is thatv (x,x") satisfies Eq(1.2) to the appropriate order.

Although we have not yet computed enough terms to get
an estimate of the self-force, one qualitative feature in our
results is distinct from other related ca$b4]. In the larger
limit one can see that the leading order termgirare all
proportional toM?. By comparison, calculations by DeWitt
and DeWitt[9] and Pfenning and Poissd23] show that
when the spacetime curvature is everywhere small, such as is
the case for a static star, then the leading order term is pro-
portional to M. More specifically, in the calculation of
DeWitt and DeWitt the metric is everywhere the linearized
Schwarzschild metric except at the origin where they assume
a delta function mass source. They made the approximation
that the Green’s function can be well approximated every-
where by the flat space Green'’s functighis is known to be
false for regions close to the black hole event horjzand
found that the leading order term comes from a signal that
propagates to the central condensation=a0, bounces off
and comes back to the current location of the particle.

One might be concerned that similar processes will con-
tribute a leading order term that is linear M for the black
hole case. This may well turn out to be the case, and one
should consider this factor seriously. However, before draw-
ing any direct implications we caution that the case of a
particle orbiting a static star is qualitatively different from
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that of a particle orbiting a black hole. For example, theshould provide a better test of the usefulness of the Had-
calculations in Refs[9,23] assume that the curvature is no- amard expansion. Although the quasilocal expansion may
where large which is not a valid assumption for the case of @rove insufficient to compute the tail part of the self-force,
particle orbiting a black hole. Also, in the case of a blackthe facts that no regularization is necessary and the resulting
hole the existence of an event horizon precludes classic@xpression is analytic make an investigation of its usefulness

waves from scattering off the central condensatioote this

well worth the effort. Such an investigation is underway and

is different from the superradiance effect occurring in thene results will be presented elsewhere.

ergosphere of a Kerr black hgJeven though such scattering
can occur for orbits withr>3M everywhere. We think it
likely that this type of nonlocalinfrared contribution to the
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