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Radiation reaction in Schwarzschild spacetime: Retarded Green’s function
via Hadamard-WKB expansion
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An analytic method is given for deriving the part of the retarded Green’s functionv(x,x8) that contributes
to the tail term in the radiation reaction force felt by a particle coupled to a massless minimally coupled scalar
field. The method gives an expansion ofv(x,x8) for small separations of the pointsx,x8 valid for an arbitrary
static spherically symmetric spacetime. It is obtained by using a WKB approximation for the Euclidean
Green’s function for the massless minimally coupled scalar field and is equivalent to the DeWitt-Schwinger
expansion forv(x,x8). The first few terms in this expansion are displayed here for the case of Schwarzschild
spacetime.
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I. INTRODUCTION

The past several years have seen a resurgence of int
in the gravitational radiation reaction problem in part b
cause space based gravitational wave detectors such a
Laser Interferometer Space Antenna~LISA! are expected to
be able to detect the gravitational radiation emitted whe
compact object such as a stellar mass black hole or neu
star spirals into a supermassive black hole@1,2#. In such a
situation the change in the spacetime geometry of the su
massive black hole due to the presence of the compact o
and the gravitational radiation it emits is negligible~except
near the compact object! so it is sufficient to compute the
trajectory of the compact object in the background geome
of the supermassive black hole@2#. The radiation reaction
under these simplifying conditions is known as the ‘‘se
force.’’

The radiation reaction problem for a point charge rad
ing electromagnetic waves in a curved space background
first investigated by DeWitt and Brehme@3# and later by
Hobbs@4#. Gravitational radiation reaction for a moving pa
ticle was considered by Mino et al.@5# and Quinn and Wald
@6#. The self-force on a particle interacting with a massle
minimally coupled scalar field was considered by Quinn@7#.
For a review see Ref.@8#. The scalar field case is of intere
primarily because it contains many of the same feature
the gravitational and electromagnetic cases while be
much easier to work with. As found originally by DeWitt an
Brehme@3# for the electromagnetic case, it is always possi
to break the radiation reaction force into two parts, one t
is local and which reduces to the standard Abraham-Lore
Dirac expression in the flat space limit, the other part wh
is nonlocal and consists of an integral of the retarded Gre
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function over the past trajectory of the particle@5–7#. The
nonlocal part is often called the ‘‘tail’’ term.

Much effort has gone into the computation of the se
force in Schwarzschild and Kerr spacetimes@9–29#. In most
schemes that do not involve the weak field limit it must
computed numerically by expanding either the retard
Green’s function, or the field itself, in terms of spheric
harmonics in Schwarzschild or the spin-weighted sphero
harmonics in Kerr@13–19,22,24–29#. However, a drawback
of these methods is that it has not been possible to sepa
out the local and nonlocal parts. The result is that there
divergences which must be regularized. The usual way
treat these divergences is through subtractions that occu
the level of the modes, resulting in a finite mode sum. This
similar to adiabatic regularization@30–34# introduced in the
context of quantum field theory in curved spacetime@35,36#.
Zeta function regularization has also been used@17#.

There is another way to obtain the tail term, at least
principle, by computing the part of the retarded Gree
function that contributes to it. In this paper we propose to u
the Hadamard expansion of the retarded Green’s function
this purpose. It is known that this expansion is valid on
when the points are close together. The self force on
object at a particular spacetime point has contributions fr
all points over its past trajectory. In nonlocal processes i
not unreasonable to start by taking into account contributi
from points closest to the object as they usually give
greater weight than those farther away. A quasilocal exp
sion such as the one we are suggesting is the logical wa
start an analytic approximation. Even if it turns out not
capture the dominant contribution, it is still worthwhile t
investigate its range of validity for the specific task at han
If any such analytic approximation produces even margina
reasonable results, it can provide a relatively quick way
estimating the self-force for a given trajectory. If the resu
are accurate enough then it can be used in place of b
force numerical integrations, thus giving an immen
economy of effort.

For a massless minimally coupled scalar field, the
©2004 The American Physical Society39-1
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tarded Green’s function takes the Hadamard form@7,37–39#1

Gret~x,x8!5 u(x,x8) H u~x,x8!

4ps~x,x8!
d@s~x,x8!#

2
v~x,x8!

8p
u[ 2s(x,x8)] J . ~1.1!

Here u(x,x8) is defined to be zero outside of the past lig
cone and one inside of it. The quantitys(x,x8) is equal to
one-half the square of the proper distance between the p
x and x8 along the geodesic connecting them. The funct
v(x,x8) contributes to the tail part of the self-force. It obe
the equation

hxv~x,x8!50. ~1.2!

Note thatv(x,x8) is finite when the points come together.
For small separations of the points the functionsu andv

can be computed by using the DeWitt-Schwinger expans
@35,40–42#. To second order in derivatives of the metric t
result forv is

v~x,x8!52
1

6
R~x!. ~1.3!

Christensen’s expansions@41# can be used to comput
v(x,x8) to fourth order. Phillips and Hu@39# have computed
it to sixth order for a conformally coupled massless sca
field. Their result is useful for the study of a massless m
mally coupled field in Schwarzschild spacetime because
any spacetime with zero scalar curvature the Green’s fu
tions for the massless scalar field do not depend upon
coupling to the scalar curvature. However, taking the gen
expressions for the terms in an arbitrary spacetime from R
@39# and evaluating them for the Schwarzschild geometry
still nontrivial.

The results of these calculations show that for Schwa
schild spacetime the sixth order contribution tov(x,x8) from
the DeWitt-Schwinger expansion gives the first nonvanish
term, and that is the only term which the results from R
@39# can provide. To compute the self-force more terms
needed from an expansion forv(x,x8). Also, given the fact
that no explicit computations ofv(x,x8) have been done fo
Schwarzschild spacetime using the DeWitt-Schwinger
pansion, it is of some general interest to obtain the first f
nonvanishing terms in the series.

In this paper we describe a method we have develope
compute an expansion forv(x,x8) for a massless minimally
coupled scalar field in a general static spherically symme
spacetime. The method involves the use of a WKB exp
sion for the radial mode functions of the Euclidean Gree
function for the scalar field. It gives the same results as

1Our definitions for the Hadamard expansion are equivalen
those of Refs.@37–39#. Corresponding expressions in Ref.@7# do
not have the factor of 1/4p for u(x,x8) and the factor of 1/8p for
v(x,x8).
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DeWitt-Schwinger expansion. Because of its reliance o
WKB expansion for the radial modes of the Euclide
Green’s function, it should be straightforward to general
the method to the cases of the electromagnetic and gra
tional fields in static spherically symmetric spacetimes. Sin
the scalar, electromagnetic, and gravitational wave equat
in Kerr spacetime are separable@43–45#, it is likely that the
method can be adapted to those cases as well.

In Sec. II we show the relationship between the Euclide
Green’s function andv(x,x8) for the massless minimally
coupled scalar field in a general static spherically symme
spacetime. In Sec. III our method of deriving an expans
for v(x,x8) in powers of (x2x8) is given and the first few
terms of the expansion for Schwarzschild spacetime are
played. We draw our conclusions in Sec. IV.

II. EUCLIDEAN GREEN’S FUNCTION
AND THE TAIL TERM

The metric for a static spherically symmetric spacetim
can be written in the form

ds252 f ~r !dt21h~r !dr21r 2dV2, ~2.1!

where f (r ) and h(r ) are arbitrary functions of the radia
coordinate anddV2 is the metric of a 2-sphere. Changing th
time variablet to t5 i t gives the Euclidean metric.~Quanti-
ties defined in the Euclidean space carry a subscriptE.! The
Euclidean Green’s function is a solution to the equation

hxGE~x,x8!52
d~x,x8!

AgE

~2.2!

wheregE is the determinant of the Euclidean metric. If th
analytic continuation

~t2t8!2→2~ t2t8!21 i e ~2.3!

is used withe an infinitesimal positive real quantity then@46#

GE~2 i t,xW ;2 i t8,xW8!5 iGF~x,x8! ~2.4!

with GF the Feynman Green’s function. Since@41#

Im GF~x,x8!52
1

2
G(1)~x,x8! ~2.5!

whereG(1)(x,x8) is the Hadamard Green function, it is cle
that

ReGE(2 i t,xW ;2 i t8,xW8)

5
1

2
G(1)~x,x8!

5
u~x,x8!

8p2s~x,x8!
1

v~x,x8!

16p2
log@ us~x,x8!u#1

w~x,x8!

16p2

~2.6!

o
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where in the second equality we have expressedG(1)(x,x8)
in the Hadamard form@37–39#.

Note that if the points are separated in the time directi
or if they are farther apart in the time direction than in oth
directions then@42,46#

s~x,x8!52 1
2 f ~r !~ t2t8!21O@~x2x8!3#. ~2.7!

Thusv(x,x8) is proportional to the coefficient of the log@(t
2t8)2# part of GE(x,x8). It is this fact that will enable us to
derive an expansion forv by finding one forGE using a
WKB approximation.

To find such an expansion forGE first note that in a
spacetime with metric~2.1! an exact expression forGE is
@47#

GE~x,x8!5
1

4p2E0

`

dv cos@v~t2t8!#

3 (
,50

`

~2,11!P,~cosg!Cv,pv,~r ,!qv,~r .!.

~2.8!

Here P, is the Legendre Polynomial of the,th order and
cosg [ x̂• x̂8 is the direction cosine between the spatial ve
tors defining the pointsx,x8. The notationr . (r ,) refers to
the larger ~smaller! of r and r 8. The mode functionpv,

satisfies the appropriate boundary condition at some s
value of r andqv, satisfies the appropriate boundary con
tion at some large value ofr. They are both solutions to th
radial equation

1

h

d2S

dr2
1F 2

rh
1

1

2 f h

d f

dr
2

1

2h2

dh

dr G dS

dr

2Fv2

f
1

,~,11!

r 2 GS50. ~2.9!

They satisfy the Wronskian condition

Cv,Fpv,

dqv,

dr
2qv,

dpv,

dr G52
1

r 2 S h

f D
1/2

. ~2.10!

A WKB approximation for the modes can be derived
follows: First define

pv,5
1

~2r 2W!1/2
expF E r

WS h

f D
1/2

drG ,
qv,5

1

~2r 2W!1/2
expH 2F E r

WS h

f D
1/2

drG J
~2.11!

with
06403
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W25V21
1

2rh

d f

dr
2

f

2rh2

dh

dr
1

1

2 F f

hW

d2W

dr2

1S 1

h

d f

dr
2

f

h2

dh

dr D 1

2W

dW

dr
2

3

2

f

h S 1

W

dW

dr D 2G
~2.12!

and

V25v21,~,11!
f

r 2
. ~2.13!

Then solve the equation forW iteratively, the lowest order
solution beingW5V. Each iteration adds two derivatives o
the metric. To second order one finds

W5V1
1

2V S 1

2rh

d f

dr
2

f

2rh2

dh

dr D
2

1

8V3S 1

2rh

d f

dr
2

f

2rh2

dh

dr
D 2

1
1

4 F f

hV2

d2V

dr2

1S 1

h

d f

dr
2

f

h2

dh

dr D 1

2V2

dV

dr
2

3

2

f

h

1

V3
S dV

dr
D 2G .

~2.14!

Substitution of Eq.~2.11! into Eq. ~2.10! shows that for the
WKB ansatz,Cv,51.

III. COMPUTATION OF v„x,x8…

To compute an expansion forv(x,x8) in powers of (x
2x8) one first solves Eq.~2.12! to a specified adiabatic orde
and substitutes the result into Eq.~2.11! and then into Eq.
~2.8!. As shown below, the resulting expression can be b
ken into sums and integrals of the form

Smnp5E
0

`

dv cos@v~t2t8!#v2n(
,50

` (2,11)[,(,11)]m

Vp

~3.1!

with m, n, andp integers.
Our goal is to determine the coefficient of the log(t2t8)

term since this is related tov(x,x8) through Eqs.~2.6! and
~2.7!. This can be accomplished by using the Plana sum
mula @48#
9-3
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(
n5N

`

F~n!5
1

2
F~N!1E

N

`

dnF~n!

1 i E
0

` dt

e2pt21
@F~N1 i t !2F~N2 i t !#

~3.2!

to compute the sums over,. There are superficial diver
gences in some of the sums over, which can be isolated by
expanding the summand for a given sum in inverse pow
of , and then truncating at order 1/,. If the remaining terms
are subtracted from the summand then the result will be
nite. Effectively this amounts to subtracting terms which a
porportional tod(t2t8) and its derivatives. This procedur
is discussed in Ref.@47#. After computing the sum over, one
can expand the result in inverse powers ofv. Most of the
expressions will be infrared divergent, however this is n
important because we are only looking for the coefficient
the log(t2t8) term.2 Thus it suffices to put in a lower limi
cutoff l on the integral overv.

The integral overv can be computed for each term of th
series. For positive powers ofv there are no log(t2t8) terms
so these do not contribute tov(x,x8). For all negative pow-
ers ofv there will be log(t2t8) terms. Forv21 one finds

E
l

`

dv cos@v~t2t8!#
1

v
52ci~l~t2t8!!

52 log~t2t8!1•••. ~3.3!

For all negative powers ofv, successive integrations b
parts can be performed until the integral is in the form~3.3!.
The result is

E dv cos@v~t2t8!#
1

v2n11

5
~21!n11

~2n!!
~t2t8!2nlog~t2t8!1•••. ~3.4!

If the points are split only in the time direction then one fin
that using a second order WKB expansion givesv to zeroth
order in (t2t8), a fourth order one givesv to second order
in (t2t8), and so forth. For Schwarzschild spacetime
lowest nonvanishing order is (t2t8)4 which requires use of a
sixth order WKB approximation.

To compute the expansion when the points are also s
in the angular direction one can begin by expanding the
gular part of the mode functions in powers of (cosg21) so
that

P,~cosg!511
,~,11!

2
~cosg21!1•••. ~3.5!

2There is an alternative way to do the WKB expansion wh
gives no infrared divergences@47,49,50#.
06403
rs

-
e

t
f

e

lit
n-

Then the sum over, and the integral overv can be com-
puted as before. At the end of the calculation one should a
expand the terms of the form (cosg21)j in powers of u
2u8 andf2f8.

To compute the expansion when the points are also s
in the radial direction one should first fixr 8 to be either less
than or greater thanr. For our purpose it will not matter
which is chosen so, as an example, we assume thatr 8,r .
Then one expandspv,(r 8) in powers ofr 82r and repeat-
edly uses the mode equation~2.9! to eliminate all but first
derivatives ofpv, . Thus

pv,~r 8!5pv,~r !1pv,8 ~r !~r 82r !

1H F2
2

r
2

1

2 f

d f

dr
1

1

2h

dh

dr Gpv,8 ~r !

1Fv2h

f
1

,~,11!h

r 2 Gpv,~r !J ~r 82r !2

2
1•••.

~3.6!

Then this expansion is substituted into the expression~2.8!
for GE and the WKB expansion is introduced to write th
equation in terms ofW and its derivatives as before. Th
terms will be proportional to various powers ofv and ,(,
11) multiplying either 1, 1/W, or W8/W2. Those multiply-
ing 1 are proportional tod(t2t8)d(V2V8) and various
derivatives of these delta functions. Therefore, they do
contribute to the calculation ofv(x,x8) and can be ignored
For the other terms one substitutes the WKB approximat
for W to some specified order and computes the coefficie
of the log(t2t8) terms as before.

To affirm the validity of the WKB scheme, we note th
when this program is carried out for a Reissner-Nordstr¨m
spacetime the expansion forv(x,x8) agrees with the results
of Christensen@41# at order (x2x8)2. To leading order, it is
also a solution to Eq.~1.2!. For Schwarzschild spacetim
v(x,x8) vanishes at order (x2x8)2. However, by using an
eighth order WKB approximation for the modes it has be
possible to computev(x,x8) to order (x2x8)6 in Schwarz-
schild spacetime. Writing

v~x,x8!5 (
i , j ,k50

`

v i jk~ t2t8!2i~cosg21! j~r 2r 8!k

~3.7!

we find

v0005v0015v1005v0105v0025v1015v0115v00350
~3.8!

and

v2005
3M2~2M2r !3

448r 11

v1105
27M2~2M2r !2

560r 8
9-4
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v1025
29M2~2M2r !

1120r 9

v0205
9M2~2M2r !

560r 5

v0125
29M2

560r 6

v0045
3M2

2240~2M2r !r 7

v2015
23M2~11M24r !~2M2r !2

448r 12

v1115
227M2~8M23r !~2M2r !

560r 9

v1035
9M2~9M24r !

1120r 10

v0215
29M2~5M22r !

560r 6

v0135
27M2

560r 7

v0055
23M2~7M24r !

2240~2M2r !2r 8

v3005
M2~2M2r !3~39M2226Mr 14r 2!

960r 15

v2105
M2~2M2r !2~135M2291Mr 114r 2!

448r 12

v2025
M2~2M2r !~171M22136Mr 126r 2!

448r 13

v1205
9M2~2M2r !~21M2218Mr 14r 2!

1120r 9

v1125
3M2~567M22473Mr 194r 2!

1120r 10

v1045
23M2~51M228r !~5M22r !

2240~2M2r !r 11
06403
v0305
M2~3M214r !~2M2r !

1680r 6

v0225
3M2~81M2270Mr 114r 2!

1120~2M2r !r 7

v0145
2M2~729M22773Mr 1202r 2!

2240~2M2r !2r 8

v0065
M2~249M22292Mr 186r 2!

6720~2M2r !3r 9
. ~3.9!

This expression is a solution to Eq.~1.2! to O@(x2x8)4#. By
that we mean that if it is substituted into the left hand side
Eq. ~1.2! then the resulting expression will be zero toO@(x
2x8)4#.

IV. CONCLUSIONS

We have presented a method that allows for the calc
tion of the part of the retarded Green’s functionv(x,x8) that
contributes to the tail part of the radiation reaction force
a massless minimally coupled scalar field in a general st
spherically symmetric spacetime. We expect it to be straig
forward to adapt this method to the cases of the electrom
netic and gravitational fields in static spherically symmet
spacetimes. It may be possible to adapt it, for all three fie
to Kerr spacetime as well given that the wave equations
all three fields are separable in the Kerr background@43–45#.

We have explicitly calculatedv(x,x8) in Schwarzschild
spacetime toO@(x2x8)6# for an arbitrary separation of th
points. One indication of the correctness of these express
is thatv(x,x8) satisfies Eq.~1.2! to the appropriate order.

Although we have not yet computed enough terms to
an estimate of the self-force, one qualitative feature in
results is distinct from other related cases@51#. In the larger
limit one can see that the leading order terms inv are all
proportional toM2. By comparison, calculations by DeWi
and DeWitt @9# and Pfenning and Poisson@23# show that
when the spacetime curvature is everywhere small, such
the case for a static star, then the leading order term is
portional to M. More specifically, in the calculation o
DeWitt and DeWitt the metric is everywhere the lineariz
Schwarzschild metric except at the origin where they assu
a delta function mass source. They made the approxima
that the Green’s function can be well approximated eve
where by the flat space Green’s function~this is known to be
false for regions close to the black hole event horizon! and
found that the leading order term comes from a signal t
propagates to the central condensation atr 50, bounces off
and comes back to the current location of the particle.

One might be concerned that similar processes will c
tribute a leading order term that is linear inM for the black
hole case. This may well turn out to be the case, and
should consider this factor seriously. However, before dra
ing any direct implications we caution that the case o
particle orbiting a static star is qualitatively different fro
9-5
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P. R. ANDERSON AND B. L. HU PHYSICAL REVIEW D69, 064039 ~2004!
that of a particle orbiting a black hole. For example, t
calculations in Refs.@9,23# assume that the curvature is n
where large which is not a valid assumption for the case
particle orbiting a black hole. Also, in the case of a bla
hole the existence of an event horizon precludes class
waves from scattering off the central condensation~note this
is different from the superradiance effect occurring in t
ergosphere of a Kerr black hole!, even though such scatterin
can occur for orbits withr .3M everywhere. We think it
likely that this type of nonlocal~infrared! contribution to the
self-force can be, at least approximately, decoupled from
quasilocal contribution we are considering here. If this is
case, then the nonlocal contribution can be considered s
rately and the result can be added to the quasilocal contr
tion to the self-force.

The method we have developed to computev(x,x8) can
be used to find the expansion to higher orders in (x2x8).
Work is in progress to compute an expansion forv(x,x8) to
substantially higher order in Schwarzschild spacetime, wh
s.
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should provide a better test of the usefulness of the H
amard expansion. Although the quasilocal expansion m
prove insufficient to compute the tail part of the self-forc
the facts that no regularization is necessary and the resu
expression is analytic make an investigation of its usefuln
well worth the effort. Such an investigation is underway a
the results will be presented elsewhere.
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