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Metric perturbation approach to gravitational waves in isotropic cosmologies
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Gravitational waves in isotropic cosmologies were recently studied using the gauge-invariant approach of
Ellis and Bruni. We now construct the linearized metric perturbations of the background Robertson-Walker
space-time which reproduce the results obtained in that study. The analysis carried out here also facilitates an
easy comparison with Bardeen.
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I. INTRODUCTION nentsu® andu?u,= —1. With respect to this 4-velocity field
the symmetric energy-momentum-stress terEdt can be
In a recent papefl] the gauge-invariant and covariant decomposed as
approach of Ellis and Bruri2] was used to examine shear- ) ) b b b )
free gravitational waves propagating through isotropic cos- To= pufu’+ ph®+guP+ qPu?+ 7, 2.1
mologies. In this approach the waves are modeled as small
perturbations of the Robertson-Walker space-time. The preé’y
ence of the waves is found to perturb the shear and also more hab=gabt yayb 2.2)
notably to introduce anisotropic stress into the Universe.
Other basic gauge-invariant quantities, for example, the voris the projection tensor and
ticity and energy flow, remain unchanged by the presence of
gravitational radiation. qPu,=0, m*Pu,=0, =3,=0, (2.3
Our purpose here is to construct the metric perturbations
of the Robertson-Walker space-time which give rise to thewith m2°=7"2 Here u is the matter energy density mea-
perturbations of the anisotropic stress and shear foufitfin  sured by the observer with 4-velocity?, p is the isotropic
The difficulty is that we wish to derive gauge-invariant per- pressureg? is the energy flow relative ta® (for example,
turbations and there is no wag priori to identify which  heat flowy and 72 is the trace-free anisotropic stretie to
terms in the perturbed metric are pure gauge terms withouRrocesses such as viscosity
carrying out a lengthy calculation. In the process of studying We indicate covariant differentiation with a semicolon,
the perturbed metric we identify the gauge terms and withoupartial differentiation by a comma and covariant differentia-
loss of generality we then put these terms equal to zero. tion in the direction ofu® by a dot. Also, as usual square
The paper is organized as follows: In Sec. Il we introducebrackets denote skew symmetrization, round brackets denote
the notation used and give some important equations. Theymmetrization and a definition is indicated by a colon fol-
unperturbed Robertson-Walker space-time is described ilpwed by an equality sign. Thus the 4-acceleration of the

here

Sec. lIl. In Sec. IV we summarize the results of the gaugetime-like congruence is
invariant and covariant study of gravitational radiation car- .
ried out in[1]. The perturbed metric is introduced in Sec. V. ul=upu, 2.9

Also in this section and in Sec. VI we demonstrate how the )
perturbed metric leads to the required gauge-invariant pertu®NdUa;p can be decomposed into

bations of the shear and anisotropic stress. The Ricci tensor 1

components of the metric are listed in Appendix A and in Up:p= @ap+ Tap+ = Ohap—Ualp, (2.5
Appendix B we briefly outline the calculation involved in ' 3

identifying those variables that are responsible for the pres-

ence of gauge terms. The paper ends with a discussion I\Hhere

which our results are compared with those of Bardedn :
wab:=U[a;b]+U[an] (26)

Il. NOTATION AND BASIC EQUATIONS is the vorticity tensor of the congruence,

Throughout this paper we use the notation and sign con- ) 1
ventions of[4]. We are concerned with a four-dimensional T ap=U(a;p) T UgaUp) — §0hab (2.7
space-time manifold with metric tensor componayis in a
local coordinate systerfx®} and a preferred congruence of

. J X ) : is the shear tensor of the congruence and
world lines tangent to a time-like vector field with compo-

0:=u, (2.9
*Email address: emer.oshea@ucd.ie is the expansiorfor contraction of the congruence.
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We shall make use of the Ricci identities with po=1+ (K/4)(y?+2%), K=const, f=f(x). We iden-
) tify three distinct cases.
Ua:de™ Ua;ca= Rapbedd ™ 2.9 Case 1.We have

) ] if k=+1 thenK=+1 andf(x)=sinx.
where Rgpcq is the Riemann curvature tensor but for the  Noting that the transformation— m/2—x does not affect
problem at hand the key equations are Einstein’s field €quane form of the line element(3.4) we see that in this case
tions f(x) could equivalently be writteri(x) = cosx.
Case 2.We have

1
ab Zgab ab (210 K=0 and f(x)=1,

Here R,p:=R,, are the components of the Ricci tensar, if k=0 then or
:=RC, is the Ricci scalar and we have absorbed the coupling K=+1 and f(x)=x.
constant into the energy-momentum-stress tensor. Noting

ase 3.We have

thatR=—T(:=T?,) and using Eq(2.1) the field equations

can be decomposed into (K=—1 and f(x)=coshx,

ab 1 or
if k=—1 then{ K=0 and f(x)=3e,
Rapt?h2=—q, (2.11) or
\ K=+1 and f(x)=sinhx.

1
b_ _ . . .
Raphehg= 5 (u=P)hegt e The form of the line-elemen(®.4) is also invariant under the
transformationx— —x so whenK=0 in case 3 we could
It is in this form that we shall use E.10 in later sections. instead writef(x)=3e™*. For a detailed explanation why
these cases arise see, for example, Eg8)—(5.19 in [1].

IIl. THE BACKGROUND SPACE-TIME In space-times with line-element8.4) the hypersurfaces

We choose as the unperturbdmhckgroung space-time a ¢(x?):=x—T(t)=const, (3.5
Robertson-Walker space-time with line element
wheredT/dt=R™! are null hypersurfaces. The expansion of

oo (dxH)2+ (dx?)2+ (dx3)? , - the null geodesic generators of these surfaces is
ds“=R(t) > —dt?, 3.1 .
1+Er2 1,._1 R
4 Ed’ ;a_E"’ Ea (3-6)

whereR(t) is the scale factor,?= (x)*+ (xX*)*+ (<) and oot~ gt/dx, R=dR/dt. Using Eq.(3.5 we can show
k=0,=1 is the Gaussian curvature of the space-like hyperfhat '

surfacest=const. The world lines of the fluid particles are

the integral curves of the vector fielsfd/dx?=d/at (thus 26 ap=Ead ot Eud at b $9Gan, (3.7
ud= 8§ since we shall label the coordinates=y,x*=z,x3 o ' oo

=x,x*=t). The background energy-momentum-stress tensowhere

is Eqg. (2.1) specialized to a perfect fluithy settingg®=0

= 720 wi i f’
with proper densit .
7 with prop Y fa=— 1 bat R U, (39
- .
M:3¥+3§1 (3.2 it follows from Eq.(3.7) that ¢ , is shear-fred5].
Finally in this section we note that for convenience we
: - have used the same coordinate labglsz,x,t} for all the
d isot . . :
and isotropic pressure special cases included in E@3.4). Clearly the ranges of
RZ R K some of these coordinates will vary from case to case and
p=— ——2—— —. (3.3  Wwithin cases 2 and 3. For example, in casex2(—,
RZ2 R R2 +) if K=0 butxe[0,+») and is a radial polar coordinate

o _ _ _ if K=+1. The shear-free null hypersurfacgs5) will also
We find it convenient to put the line element given abovepe different in the different cases. This can be seen by exam-

in the following forms: ining the intersections of these null hypersurfaces with the
B space-like hypersurfaces- const.
ds?=RA(t){dx*+py *fA(dy’+dZ)} —dt?, (34 Case 1The intersection is a 2-sphere.
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Case 2.If K=+1 the intersection is a 2-sphere and if We now assume that the perturbed shear and anisotropic
K =0 the intersection is a 2-plane. Thus it is obvious that Egstress have the following form:
(3.5 describes two different families of shear-free null hy-
persurfaces that can occur in an open, spatially flat universe. Tap=SapF(#),  map=IlapF (), (4.9

Case 3.In this case the intersection of E(.5) with the . . . .
_ : whereF is an arbitrary real-valued function of its argument
t=const hypersurfaces is always a 2-space of constant cur;

5 N . ¢(x?). We emphasize that at this poidt(x?) is arbitrary
Y;ﬁgf;,;ﬂgscg\fngg \?vfetrr]::\vi StE?eC: clj?ff(gelr\(/ei? }gyrvnvir;ilgz of and not that defined in Eq3.5). This idea of introducing
' . . arbitrary functions into solutions of Einstein’s equations de-
shear-free null hypersurfaces irka — 1 universe. We refer

the reader t46] for a geometrical explanation for the exis- scribing gravitational waves goes back to work by Trautman
g P [7] and the above form for the gauge-invariant variables was
tence of these subcases.

introduced by Hogan and Ell[8]. Substituting(4.5) into the
linearized versions of the equations satisfied by these vari-
ables and noting tha,, andIl,, are trace-free and orthogo-
nal tou, with respect to the background metric we find that

In a recent papefl] we used the gauge-invariant and [1]
covariant approach of Ellis and Bruff] to construct gravi-
tational wave perturbations of the Robertson-Walker space-
Fimgs described in the pre\{ious section. T_his involvgs W‘?rk'vvith g here the background metric, and
ing in a general local coordinate system with gauge-invariant
small quantities which by their nature vanish in the back- Sab|b:0, Hab‘bzo, 4.7
ground, rather than small perturbations of the background
metric. For isotropic space-times the Ellis and Bruni vari-where for clarity we have used a stroke to denote covariant

ables are oap, U, ., Xa=hluw,, Y,=hSp,, z, differentiation with respect to the background metric. We
=h20 ,, 7ap, Ga and the “electric’ and “magnetic” parts also discovefsee[1]) the following wave equation fos,,:
of the Weyl tensor, with componen,;.q4, given, respec-

IV. GAUGE-INVARIANT AND COVARIANT APPROACH
TO GRAVITATIONAL WAVES

0%°¢ ¢ =0, sP¢,=0, I1%°¢,=0, (4.6

. 2 . 1. 4 1
tively, b abld _ % pzab_ [Ty % 2)cab, [ g1 |qab
Yy, by s™%q 3 0s 30 9 0°|s p 3 ,u) S
Eap= Capbqupuq’ Hap= *CapqupUq. (4.7 )
— _qJrab_ = ab
Here * Capbq= 3 7ap “Crshq iS the dual of the Weyl tensor =~ =Z 01", (4.8

(the left and right duals being eqialyapee= v — J€abcd

whereg=det(g,,) ande,p.qis the Levi-Civita permutation and a propagation equation feg, along the null geodesics
symbol. However, we found that it is tensor quantities thattangent tog®, namely,

describe gravitational wave perturbations. Thus for this prob-
lem the important Ellis and Bruni variables asg,, 7,p,

E.n, Hap and we can set all other gauge-invariant variables
equal to zero. The equations satisfied by these variables are ]
obtained by projections in the directio? and orthogonal to  where s{b==stb‘d¢'d and ¢= ¢ ,u®. The internal consisten-
u? of the Ricci identities, the equations of motion and thecies of these equations were checkedlh The “electric”
energy conservation equation containedr Pr’i’;b=0 and the and “magnetic” parts of the Weyl tensor are now given by
Bianchi identities written in the form [1]

Sipt

1 q 1 . 1.
590304 stb:_§¢ntbv (4.9

abcd c[a;b] 1 c[ap;b] 1 c ? j ’
CaPed y=ReA=P) - gelaR"), (4.2 Eab=| 5 lab—Sab— 3 0Sap|F ~ dsaF (4.10
To keep this section to a reasonable length we shall not lisand
all of the equationgthey are given in Eqs2.14—(2.25 in o ) R
[1]). We note here that from the projections of the Ricci Hab=—S@"  MytpcU' F —Sa” moytpct' 9 °F', (4.1D)

identities (after settingu®=0=w,y,) we find whereF’=9F/d¢. These equations are easily checked by

1 2 2 _ substituti'ng(4.5) into (4.3) and(4.4). o
Eabziﬂ'ab"' §g'2hab— §ggab— gafgfb—h;hggfg, ~ We wish to construct pure gravitational wave perturba-
tions, i.e. having pure typ&l perturbed Weyl tensor in the
(4.3 Petrov classification. It is shown ifl] that on account of
(4.6) the F’ parts ofE,, andH,, above are typeN with
degenerate principal null directiog®. Then if we also re-
Hap=— h;hgo(tg?cns)fgcuf. (4.4) quire theF parts ofE,, andH,, to be typeN the perturba-
tions we have constructed describe pure gravitational waves
Thus these variables are derived frarg, and oy, . with propagation direction¢'® in the Robertson-Walker

and
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background and the histories of the wave fronts are the null

hypersurfacesp(x®) =const. Making use of thE following
null tetrad .k, = — ¢‘1¢,a, l,=u,— 3k, andm,, m, a com-

plex covariant vector field and its complex conjugate, chosen

so they are null fi?m,=0=m?m,), are orthogonal tck?

and|? and satisfym®m,=1. We find that a simple way to
ensure that thé= parts of E,, and H,, are typeN is to
require the null hypersurfaces(x?)=const to satisfy(see
[1])

b pcM”1°=0, (4.12
and

b 2pMPmP°=0.

(4.13

To exhibit explicit examples we specialize to the case
=x—T(t) with T(t) introduced in Eq.(3.5. Then the null
tetrad described above is given by the 1-forms

1
kodx®=Rdx—dt, |,dx®=— E(Rdx+ dt),

1
madxazﬁRpglf(ddez), (4.14

and it is straightforward to check that Eq4.12 and(4.13

PHYSICAL REVIEW D 69, 064038 (2004

i o ‘A i 0, ‘B)=0 4.2
W(po )~ 5, (Po 'B)=0, (4.2

2 (95 *B)+ = (pg A =0 (4.22
gy "0 9z "0 : :

If we defineG=p, *f°R%(a+iB) and note thaf=f(x), R
=R(t) and a, B satisfy Eqs(4.19 and (4.20 theng is an
analytic function of {:==y+iz. We can now rewrite Eq.
(4.16 as

s=—Rpgf 'G(Lx.b). (423
From the propagation equati@gA.9) we find
1= 2R 2p2f~{(DG+RG), (4.24

whereD is given byD = d/ dx+ Ral dt= 9l 3x+ 4/ JT and the
dot indicates differentiation with respect toAs a conse-
quence of this an.18 A+iB is analytic in{ and so Egs.
(4.21) and (4.22) are automatically satisfied. Replacisg
by Egs.(4.15 and(4.23 andII2® by Eqgs.(4.17 and(4.24)
the wave equatioi4.8) simplifies to

D2G+kG=0, (4.25

with k=0,=1 labelling the Robertson-Walker backgrounds

are satisfied. Sincg®® andI1?® are trace-free and orthogonal with line elements of the forni3.4). The solutions of these
to u and¢'#, they each have only two independent compo-three differential equations are as follows: for0,

nents. These components as&=—s=a(y,zx,t), s'?
=s=p(y,zxt) andI1%?=—1"=A(y,z,xt), 1P?=11%
=B(y,z,x,t) where we have labeled the coordinates
=y, x?=z,x3=x,x*=t. Now we can write

s2P=sm@mP+ snPm®, (4.15

with
s=—R%p, 2f4(a+ip), (4.16

and
T13°=TTm?mP + [T m2mP, (4.17)

with
I1=—R2p; 2f2(A+iB). (4.18

It follows from (4.7) that &, B and A, B must satisfy the
Cauchy-Riemann equations

d 4 J 4 _
W(po a)‘&(po B)=0, (4.19

R ,
@(po B)"‘E(po a)=0 (4.20

and

g x,H)y=a(,x—T)(x+T)+b({,x=T), (4.2

for k=+1,

X+T X+T
Q(g,x,t)=a(§,x—T)sin<T) +b(§,x—T)cos<T),

(4.27
and fork=—1,

[ x+T X+T
g, x,t)= a(g,x—T)smI-(T) + b(g,x—T)cos)'(T) ,
(4.28

where in each casea({,x—T), b({,x—T) are arbitrary
functions. Using the identitx+T=2x—(x—T) (and some
simple trigonometric and hyperbolic relationsve can re-
write Eq. (4.26) in the form

g(g,x,t):hl(g,X_T)'i‘Xhz(g,X_T),
with hy, h, arbitrary, Eq.(4.27) as

(4.29

G(Z,x,t)=hg({,x—=T)sinx+h,({,x—T)cosx,
(4.30

with hs, h, arbitrary and Eq(4.28 as

G(¢,x,t)=hg({,x—T)sinhx+hg({,x—T)coshx,
(4.3)
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with hg, hg arbitrary. In addition Eq(4.31) can be set in the
form

G(Lx,1)=h4({,x=T)e*+hg({,x—T)e *. (4.32

PHYSICAL REVIEW B9, 064038 (2004

e’*cosh 28

sinh 28

Here «, B are taken to be small of first order. Witlh{g)

sinh 28

e 2%cosh 2B/’

(hap)= (5.5

When these results are derived from metric perturbations i§IVen by Eq.(5.5) it is easy to check that, working to first

Sec. V the expressiong.29—(4.32 will be more useful for
comparison purposes than the equivalent expres$bgg)—
(4.28.

The “electric” and “magnetic” parts of the Weyl tensor
[Egs.(4.10 and(4.11), respectively are now calculated and
we find that they can be written compactly [43

Jd
E3P+iH3=—2R"?p3 f*la(gF)mamb. (4.33

Here G is given by Eqgs(4.26—(4.28 [or equivalently Egs.
(4.29—(4.32] andF=F(x—T) so thatF’'=dF/dx, po=1
+(K/4)(y?+z%), f=1(x) described in the previous section
and R(t) is the scale factor. It follows from Eqg4.5),
(4.15, (4.17), (4.23 and(4.24) that to findogy,, 4, from
Sap @andlIl,, we simply replac&j by GF. This does not affect
Egs. (4.24 and (4.295 since DF=0. Conversely withF
=F(x—T) andg given by Eqs.(4.26—(4.28 F can be ab-
sorbed intog.

V. THE PERTURBED METRIC

We now exhibit a line element whid) can be viewed as
a perturbation of the space-time line-eleméd) and (ii)
produces the same explicit perturbations described in th

gauge-invariant formalism of the previous section. We first

introduce a pair of null coordinates,

u=%[x—T(t)], v=%[x+T(t)], (5.2
with T(t) introduced aftef3.5). Writing
RE(T)=Q(T)=Q(v—u), (5.2

the line element3.4) written in terms ofu andv reads
ds?=02p, ?f2(dy?+dZ) +2Q%dud, (5.3

where nowf=f(u+wv). The coordinatey,z,u,v are such
that the surfaces=const,v=const are two families of in-

order, Eqg.(5.4) can be written
d?=b7[(1+ a)dy+ Bdz+{a}(1+ «)+a2B}du
+{a}(1+a)+a3B}dv]?
+b?[ Bdy+(1—a)dz+{al+a’(1—a)}du

+{a3B+a3(1—a)}dv]?+2cdud. (5.6)

The background space-time is obtained from this by setting

A

a}=0, ab=0, b=py,'Qf, c=0?% a=0, B=0.

(5.7)

For the perturbed space-time that we require we findlihat
retain their background values, and we can @i 0=a5.
These latter quantities actually play the role of gauge terms
(see Sec. VII and Appendix B for an illustration of this
Every shear-free system of gravitational waves involves an
arbitrary analytic functior{11] and we now have two real
functions «, B available to provide the real and imaginary
parts of this analytic function. Also we find that the
4-velocity u?, the isotropic pressung and the matter-energy
density u take their background valudthese are given in
ec. ll.
§ To demonstrate that this space-time does indeed describe
the perturbations of Sec. IV we shall work on the tetrad
given via the 1-forms

0"=p, "TO{(1+ a)dy+pdz,
6%=p, fQ{Bdy+ (1~ a)dZ},
63=Qdu,

6%=Qdv, (5.9

with po=1+ (K/4)(y?>+2%) as in(3.4). We note that with
respect to this tetrad the line element is now

ds?=(6Y)%+(62)%2+26°%0%=q,,026", (5.9

tersecting null hypersurfaces. The general form of a line elthus defining the tetrad componentg, of the metric tensor.
ement in a coordinate system based upon two families ofhe tetrad components of the matter 4-velocity are given via

intersecting null hypersurfaces is given[i®]. For our pur-
poses we write this as

ds?=b?h,g(dx +ajdu+asdy)(dxB+aldu+aSdv)
+2cdud, (5.9

whereA, B take values (1,2)hag(Y,z,u,v)] is a unimodular
2X 2 symmetric matrix, X*,x?) = (y,z) anday, a5, b, care
six functions ofy,z,u,v. It is convenient to use the follow-
ing parametrizatiof10] of (hag):

the 1-form

u 0a=i(03—04). (5.10
NG

Since we wish to reproduce the linear perturbations of the
previous section we shall discard any terms which are second
order or smaller inx and 8. Our first step is to calculate the
Ricci rotation coefficients and the Ricci tensor components.
This results in a lengthy list of equations which for conve-
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nience we give in Appendix A. We now use the Ricci tensor 2f"=—kf, 2(f")?+kf’=K, (5.22
components anéb.10 in the field equations given by Egs.
(2.11). Noting that to simplify these equations. We note that the prime here de-

notes differentiation with respect to=(1/y/2) (x+T). Simi-
L1 R S lar equations to these appear[i| [Eq. (5.41)]. In [1] the
Q= ERR' Q"= §R2R+ ERRZ' (5.19 prime indicates differentiation with respect xoand hence
the factors of 2 in Eq9(5.22) do not appear there.

where the prime denotes differentiation with respeat and Now in terms of the background null tetrad described by
using Eqgs(3.2) and (3.3 it is easily checked that the first of EQ. (4.14 we can write the coordinate components of the
Egs. (2.11) is identically satisfied. The second equation in(Smal) anisotropic stress tensor as
(2.1)) yields

il =ammi+7m'm. (5.23
3
a:= &fflﬂfz{(pgza)yﬁ(pgzﬁ)zu—(pgza)yv Using Egs.(4.14 and (5.8) (with a=B=0 sincem,y, is a
V2 first order quantity we find
~(Po *Blz}, (512 — 1 .
. = 5(7711_ o) — 1713 (5.29
_Po i op 2 v 2 2
02= \/§f Q7 H(Po “@) 2= (Po “Blyy—(Po “@) 2y Substituting from Eqs(5.19—(5.21) above yields
+(Po “Blyu}, (513 m=—2pgt 'R [pg *fa—iB)u
0s=0, (5.14 +Po *f {a, + ay—i(B,+Bu)}]
q4=0. (5.19 2R 2R{ay—a,~i(By—B,)}. (529

The subscriptsy,z,u,v here indicate partial differentiation In the previous section we worked will,, and IT which
with respect to these variables. We recall that in the covarianie expressed in terms of an analytic functi@n But .,
approach we found that,=0. With «, B8 chosen so they =II,,F and as indicated following Eq4.33 F can be ab-
satisfy the Cauchy-Riemann equations in the form: sorbed intoG. Hence, in order to make contact with the
. _ gauge-invariant descriptiom here must satisfy the same
(Po @)y +(po 2B),=0, (5.16 =

equation adl and thus we require
(Po “a),— (g °B)y=0, (5.1

it follows thatg,=0 as required. For later use we note that
as a result of these equatiopg‘z(a—iﬁ) is analytic in¢
=y+iz. With q,=0 the last of Eqs(2.11) can be rewritten
as

7=—2p3f 'R™3DG+RG}, (5.26

with D= d/dx+ Ralat= 29/ dv for some analytic function
g. Taking

1
1 Q=Epazf{au—av—i<ﬁu—ﬁu>}, (5.27)
Rap= slalp Phapt map— 5 (3P~ w)Gap-  (5.18
we find that it is indeed possible to write in this form

With the Ricci tensor components given 4.11)—(A.20) it provided we choose, 3 to satisfy the following:
follows from this and Eqs(3.2), (3.3), (5.9—-(5.12), (5.16),

(5.17 that 7,,=0 except formy;, 79, and 4, with if f'=0 then a,,=0,8,,=0; (5.28
7= V2R ?R(a, — ) = 2R 2f ' (a, + ) if f'#0 then a,=0,3,=0. (5.29
—2R 2a,,,, (5.19

We note that the first of these conditions corresponds to the
) casek=0, K=0 described following Eq(3.4). We now as-
Ta=— 2R 2R, — o) + 2R % "1 (e, + ) sume that these conditions hold. As a consequence of these
+2R 2a (5.20 and Eq.(5.22 it immediately follows thaiG given by (5.27)
od satisfies the wave equatidd.25. Also noting thatf = f(x)
and using the Cauchy-Riemann equati¢ds6—(5.17) we

— -2r _ _ —2¢—1¢r
1= 2R7R(B, = fu) = 2RTZTH (B, + Bu) see that as beforg is an analytic function of =y +iz.

—2R28,,,. (5.21) We now turn our attention to the shear. In a similar fash-
ion to the anisotropic stress the coordinate components of the
We have made use of (smal) shear tensor can be written in the form
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(5.30

Tij =§pmimj+spﬁﬁ- ,
wherem;, ﬁ are given by Eq(4.14 and in terms of the
Ricci rotation coefficients

— 1
Sp= ﬁ{(YMl_ Y242~ Y131t Y230

Fi(Y 130+ Y31~ Y14~ Youp}- (5.3

Evaluating this using the Ricci rotation coefficients given in

Appendix A we find

— 1
sp=ﬁR*l{<a—iﬁ>v—<a—iﬂ>u}= —po 2 IRTIG,
(5.32

PHYSICAL REVIEW B9, 064038 (2004

We now look at the solution whek=+1. There is only
one case to consider her&=+1 with f(x)=sinx or
equivalently (see Sec. INl f(x)=cosx. Again we have
Py 2(a—iB) analytic in{ and independent af so(5.27) can
now be written

G=ay({,x—T)sinx or G=as({,x—T)cosx, (5.36

wherea,, as are arbitrary functionsThe two equations in
(5.36) are equivalent td4.30.

Finally whenk= —1 there are three subcases to look at
corresponding t& =0,=1. In all cased’(x) #0 and so we
havep, ?(a—ip) independent of andG has the form

g=f(x)as({,x—T), (5.37

with G as before. Taking into account that we can abgerb Wheréae is an arbitrary analytic function. Whek=0 we

into G and thats,=sF [with s defined by Eq(4.19] we see

that the perturbations we have produced here also satisfy E
(4.23. Thus we have shown th#te perturbations described

by the metriq5.6) take the same form as those found by the
covariant approachIn the next section we shall illustrate

that they also satisfy the wave equati@n8) and the propa-
gation equatior(4.9).

For the remainder of this section we compare the explicit
G found here with the solutions of the wave equation foun

in [1] and listed in EQs.(4.26—(4.28 [or equivalently
(4.29—(4.32]. We first examine the case wher @. There
are two subcases to consider hdigK=0 andf(x)=1, (ii)

K=+1 andf(x)=x. WhenK=0, py=1 and Eq.(5.27)

reads

1 : :
g= E{(a_lﬁ)u_(a_lﬁ)v}' (5.33

Since f'=0 in this case we haver,,=0=p,,. Thus in
addition to «—i8 being analytic in this complex-valued
function is also linear in. Hence we can write

g(g,x,t):al(g,X_T)(X+T)+az(§,X_T), (534)

wherea,, a, are arbitrary(analytig functions of their argu-
ments. WhenK=+1, f(x)=0 and from(5.29 we have
a,=0=p,. Therefore the functionngz(a—iﬂ) is analytic
in ¢ and independent of = (x+T)/+/2, i.e. it depends only
on ¢ andu=(x—T)/\/2, and we can writé€5.27) in the form

G=xag({,x—T), (5.35

with az an arbitrary analytic function. Using the identity
+T=2x—(x—T) as in Sec. IV we can rewrit€5.39) in the
form (4.29. Then(5.39 is the special case @#.29 corre-
sponding tah,({,x—T)=0. Thus in the case*O0 there are
two independent expressions f@f{,x,t) which are given in

the form of a superposition i4.29. This arises because

(4.29 is obtained by solving the linear wave equatidm29

with k=0 and in general this equation is insensitive to the

allowable values oK=0,=1.

have f(x) = 3€* or equivalentlyf(x)=3e * and soin this

case(5.37) agrees with(4.32. WhenK=+1, f(x)=sinhx
ghd now (5.37 agrees with(4.3) when hg({,x—T)=0.
WhenK=—1, f(x)=coshx and (5.37) agrees with(4.31)
whenhs({,x—T)=0. This cas&= —1 is a good illustration

of the insensitivity of the expressio4.31) and(4.32 to the
values ofK.

Thus all of the solutions found here are identical to the

dsolutions found using the gauge-invariant and covariant ap-

proach to perturbations ifi].

VI. PROPERTIES OF THE SHEAR AND ANISOTROPIC
STRESS

In the previous section we exhibited a perturbation of the
Robertson-Walker background line elemdBt4) that pro-
duced perturbations in the shear and anisotropic stress ten-
sors which satisfied some of the equations found using the
gauge-invariant and covariant approaches of Sec. IV. We
now show that these perturbations satisfy the remaining
equations, namely, that the anisotropic stress and shear ten-
sors are trace-free, orthogonal t8, divergence-free with
respect to the background metric and also satisfy the wave
equation(4.8) and propagation equatiqd.9). To do this we
shall, in this section, work in coordinate componefitsthe
local coordinatey,z,x,t) instead of the tetrad components
we have used up to this point. In terms of this local coordi-
nate system we can write the line eleméht6) (with af
=a5=0, b=p,*Qf, c=0?) in the form

ds2= g, x@AX0+ 2,0 x2dXP =g, dx2dX?,  (6.1)

whereg,,=diag{p, 2f2Q?,p, 2f2Q02,02%,— 1} is the metric
of the background space-time and

a B 0 0

—n-2§202 B 0
Yab=Po “F°Q 0 0 (6.2

0O 0O 0 O
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is the perturbation. Clearly,, is trace-free and orthogonal
to ud= 6% (with g,,u®u®=—1). The non-vanishing Christ-
offel symbols of the background metric tensor given via theNext making use of the Ricci identities
line element(3.4) are

YbldaT Ydiba— 9 Yodta=2Tpa+ (L= P) Yoa- (6.9

Yabjde— Yablcd= Rafcd b= Rebed & (6.9
~ ~ ~ 1
Ih=-T3=I%=— 5Kpo ly, and recalling that?® is divergenceless and orthogonalud
we find (sinceC,,.q=0 in the background
-~ A ~ 1
1 __ P2 _72_ _ “pn-1 3 1 1 1
T=—Tu=T% 2 Kpo 2, 'yg|dc:§ YaReat E'ngaC_ Egadec'ny_ ER'yad-
812 3 -1 (6.10
F1=T3=T3,=0""Qy, ) . . .
With R=u—3p andR,, given by Eq.(5.18 this equation
4 =14 = p-2f200, 6.3 allows us to write(since we are concerned here with first-
1= " 22=Po ! 3 order terms only
f?ﬁf?z:—paszx, 5
'yabllda—" ’)’§|ba=(§ﬂ«_p) Ybd» (6.1
1_%3:1_‘%3: fﬁlfxa
and hence Eq6.8) now becomes
I'3:=00,. p
~af —
. - = =-2 . 6.1
We have used the hat here to emphasize that these are back- 9" Yodita™ 34 Vbd Thbd 6.12

ground Christoffel symbols and we shall continue to use this . .
notation to denote background quantities for the remaindelt IS easy to see from this that,, is trace-free and orthogo-
of this section. Using these and the Cauchy-Riemann equé].a| tou®. Starting with this equation we shall now prove that

tions (5.16—(5.17) it is a simple exercise to show that,  Tab IS indeed divergence-free. That this is necessary to fully
defined above is divergence-free. make contact with the gauge-invariant and covariant ap-

In order to show thatr® is also divergence-free we first Proach of Sec. IV follows from the fact that in this case we
— H b _ — b
write it in terms of y,,. We define the perturbation of the Wrote map=IIasF with 11%%,=0, F=F(x—T) and II*

. a . pa  fa . =0 except forlI*, 1?2 and [1*? and thereford12%,=0 is
Christoffel symbols t0 bedl'yg:=I'pq—I'sq. Noting that equivalent tOWab‘bZO in this case. First making use of the

g*°=g"—y* (here vab=§,a°§'”7cf and we are neglecting Rijcci identities for a tensor of typés,0), Eq. (2.1) and Eq.
second order small quantitieg is easily derived from the (210, we can write

definition of the Christoffel symbols that

'yab‘d|db:('yab|b)‘d|d+

7 1 )

1 . —pu—=p|y*%=0. (6.13
5ng:§(7’g\d+Yg\b_gaf%dh), (6.9 6k 2Pl

Also since for the perturbed space-time we are considering
where as usual the stroke indicates differentiation with renere the matter density retains its background value we
spect to the background metric. Noy#® is divergence-free havehb,u ,=0 from which it follows that
and thus we can see from this equation ta&f,=0. In o
general the components of the Ricci tensor of a perturbed W= —plp. (6.14
metric can be written in the form ’

As a consequence of these last two equations we find, on

Ryg= ﬁebd+(5rgd)‘a—(arga)|d. (6.5  taking the divergence of E¢6.12), that
For the problem at hand we have wab|b=0, (6.195
A - 1 - as required.
Roa= mpUa+ Phya— 5 (3P~ &) Gba- (6.6 We shall now examine the properties of the shegy. As

with the anisotropic stress above it is necessary to express
Substituting forR,y and Ry from Egs. (5.18 and (6.6, this in terms ofy?®. This is easily done using the definition
respectively, in Eq(6.5) yields of the covariant derivative afi,:

1 TR = ¢ = — [ c — c

(5ng)|a: That E(M_p) Ybd - (6.7) Yab I"aple I'apUc— ol gpUc - (6.16
We remind the reader that the semicolon here indicates co-
Taking the divergence of Ed6.4) and using this equation variant differentiation with respect to the perturbed metric
we arrive at (background plus a small perturbatjowhile a stroke de-
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notes covariant differentiation with respect to the back- b " 1 1 by 1 b
ground metric. In the background Robertson-Walker space- —27°= %19 ju°— 30| P+ gu |yt 5 (pt3p)y
time the shear, vorticity and the 4-acceleration all vanish and
so Eq.(2.5) specializes to 2. 2 .
BT A (6.22
A 1 .
[ Gplci=Ualp =73 Ohap (6.19  Also with h2u ,=0, h®p ,=0, andh®¢ ,=0 we find, again

using the Ricci identities and E¢6.12), that

in this case. Making use of this equation and &34 in Eq.

A . 2
(6.16) it follows, on account ofi,,=h,,+ vy, (since for the Yl cqul= ()9 4— 30
problem at handi? is unperturbey that

1 1 1 ..
—u+ = ab__ — p2 ab
TSPy 397

2 ..
—307° (623

_ E 0 E ab__ 277ab
1 1. 373 ry
ua;b:§ Ohapt E'yab- (6.18
Entering this into Eq(6.22 and replacingy?® by 252° we

Here and for the remainder of this section a dot indicate@ive at
covariant differentiation with respect to the background met-

ric in the direction ofu?. Recalling that the 4-acceleration is _ ab_ E 9 b= gabld _ E §oab— E'eJr f 02) &b

. ) |d
zero in the background Robertson-Walker space-tiive 3 3 39
ua|bub=0) it is trivial to see from the latter equation that the 1
4-acceleration in the perturbed space-time also vanishes. We +( -~ (6.24
also note that this equation is symmetric mlf) and thus it 3

is clear from Eq(2.6) that, as in the covariant approach, the , ,
vorticity tensor vanishes in the perturbed space-time. NowVe have made use of the background value$ @ind . to
equating Eqs(6.18 and (2.5 with the 4-acceleration and write the equation in this form. The background valuegds
vorticity tensor both zero we arrive at a simple relationship

between and , hamely, . 1 1
0 ab Yab Y 02—502—§(M+3p) (6.25
1.
Tab=75Yab- (6.19  which is obtained by specializing Raychaudhuri’s equation to

the backgroundi.e. settingq,, map, Ua, 0ap and wyy all

Using this and the properties ok, it is straightforward to ~ €dual to zerpand the background value gf is given by

check thato,, is trace-free and orthogonal té'. However, .

further calculation is necessary to show that it is also p==0(utp). (6.26
divergence-fredthis is required for similar reasons to those _ = o )
given above while discussing the anisotropic sirefirst  1his is found by specializing to the background the projec-
using the Ricci identities given in E¢6.9) and noting that t|ogs along and orthogonal t&' of the conservatlon.equatlon
Cabcg=0 We calculate T2%p=0 [see, for example, Eq$2.20 and (2.21) in [1]].
Both the wave equation and the propagation equation are
3 1 actually contained in Eq6.24). To confirm this we again put
~ab __ab = af|’:‘2 ut— —I?Q bfua. 6.2
VT (g YR Ry (620 Ta=SasF(8),  map=TlaF(4), (629

where F(¢) is an arbitrary function of its argumenri=x
—T(t). In the covariant approach we foursﬂbqsybzo and
I13¢ ,=0. This is also true here sinag,=(0,0,1-R™ %)

_ and we haver®®=0, 7*°=0, ¢%°=0 ando**=0. In addi-
¥*%,=0, (6.2 tion since the hypersurfaces(x?) =const are null we have
¢4 4=0. Thus we can write

Replacingﬁzab here by the right-hand side of E(6.6) and
keeping in mind thaty®’,=0, y*’u,=0 leads to

and therefore as a result of E@§.19 oab‘bzo.

At this point all that remains to fully make contact with mAP=[130F + HI13PF " (6.29
the gauge-invariant and covariant description of gravitational
wave perturbations outlined in Sec. IV is to reconstruct the 0?0=s2F + ps?PF " (6.29

wave equatiori4.8) and the propagation equatiof.9). This

is done as follows: Using the Ricci identities the covariantagnd

derivative in the direction ofi? of Eq. (6.12 can be written

as 0Pl =Pl F 4+ (2570199 |+ 2P d )F',  (6.30)
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where F'=dF/d¢. Substituting these expressions fef®  a 2x2 matrix Whereas(Q(jg) is a 3X 3 matrix. In addition,
and 72° into Eq. (6.24 and equating thé= and F’ parts  y,, satisfies the inhomogeneous wave equatin?) while
separately yields the required wave equati®®) and propa- QEEB) satisfies the homogeneous wave equafiZin
gation equatior(4.9).
Q(Z)aﬁ;y;ﬁ_ ng(Z)aB: 0, (7.4
VII. DISCUSSION

) ~ wherekg is a constant.
We have shown in Secs. V and VI that the perturbations

of the background Robertson-Walker space-time derived
here from metric perturbations are exactly the same as those
obtained using the covariant approach. Thus the méir&) | thank Professor Peter Hogan for many helpful discus-
with af=0, a5=0 anda, B chosen to satisfy the Cauchy- sions in the course of this work and IRCSET and Enterprise
Riemann equation&.16—(5.17) is indeed that which we set Ireland for financial support.

out to find. We mentioned earlier that the functicads, a5

play the role of gauge terms. That this is true is seen by

repeating the calculation @ with af+0, a5+0. To save APPENDIX A: THE RICCI TENSOR COMPONENTS
repetition here this calculation is outlined briefly in Appen-

dix B. The result is thaa , a5 do not appear in the required : oo
analytic functiong, i.e. that which satisfies E@5.26). Thus the tetrad given by Eq¢5.8)] for the metric defined by Eqs.

since all gauge invariant perturbations can be written in(5‘8) and(5.9. In the calculation of the Ricci tensor compo-

terms of thisg we conclude thaa® , a® are pure gauge terms "che> We us@(}/éu=—9Q0/v anddt/su=at/ov to sim-
. . .~ plify equations. Also for convenience we shall use subscripts
which we can set equal to zero without loss of generality.

Metric perturbations of Robertson-Walker space-timesy’z’.u’v to indicate.partial derivatives yvith_respeqt t_o the;e
: . o o ... _“Variables and a prime to denote partial differentiation with
which can be viewed as describing gravitational radiation

have also been studied by Bardg8hin an important paper. respect t. Following th_e Cartan method 10 f'nd. th_e Ricci
. . : tensor components we first find the non-zero Ricci rotation
In this study the background space-time is taken to be a

Robertson-Walker space-time with line element Coefficients to be

ACKNOWLEDGMENTS

In this section we give the Ricci tensor componefas

- @ 1

dSz—QZ(T){—dTZ‘l' 3gaBdX dXﬁ}. (71) lel:_EQ—lf—l(1+a)Kz_l_Q—lf—lpOa,Z

Here the greek indices take values 1, 2, 3 éggﬁ is the 1

metric tensor for a three-space of constant curvature. Com- T-1e-1 Co-lf-1

paring this to Eq.(3.4) we see that our background space- +5Q KBy — QO poBy (A1)

time also has this form if we taﬁgaﬁz(pngz,pngz,l)

and label the coordinates'=y,x?=z,x>=x. The method Yi3=—Q20'+Q U +Q ey, (A2)
used in [3] involves separating the time-dependent and
spatial-dependent parts of the perturbations. Now for us the Yi=Q20'+Q ¥ '+ 0 1a,, (A3)
important  coordinates areu=[x—T(t)]/\2, v=[x
+T(t)]/+/2 and there is no natural way to carry out this 1o C1e—1
separation. Thus it is not possible to directly compare the Yo1= 5 Q1 KBz= Q7 pofB,
results found here with those [8]. However, there are some
obvious similarities and differences between the results and 1 ... 1
we shall briefly comment on these now. One point of agree- B EQ F (1= a)Ky =07 oy, (A4)
ment is that gravitational radiation is described by tensor
perturbations only. Specifically in our case gravitational Yoem — Q20"+ Q 7 — 0 Ly, (A5)
waves are described by perturbations in the shear and aniso-
tropic stress tensors. The perturbed space-tinigJiis given Y,,=0 720" +Q Y -0 e, (A6)
by
—0O-20"'
4= — 02dT?+ g, ydxedx?, (7.2 Vaag= 20, (A7)

where Y43~ —Q72Q, (A8)

9ap= Q[ *gapt 2HP(MQZ(x")] (7.3 Yo31=Y15=Q By, (A9)
and Q(azg is a divergenceless trace-free tensor. This bears a Y 140=Y2=Q 718, . (A10)

strong resemblance to our perturbed space-time described by

(6.1 where y,, given in (6.2) is also divergenceless and We note that in this calculation we have discarded any terms
trace-free. However, it is clear frof6.2) that, in effect, our which are second order or smallerangB. Using these coef-
small metric perturbationg,, are expressible in the form of ficients we obtain the Ricci tensor components:
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Ria=Pof ~*Q (g *a)yut (Po °B)2ul (A11) + Q726 2{2p3(po 2Byt KZpi(po *B)y

_ _ 3/ -2
Ros=—p5 T {(pg %)y (Do *Blyul (A12) +Kypo(Po “A)at- (A20)
R3=407%Q0"2-20730"-2f "0 ~2, (A13) APPENDIX B: THE EXISTENCE OF GAUGE TERMS IF

ay, A5 ARE NON-ZERO

Ry =407%0"2—-20730"—2f "0~ 2, (A14)
In this appendix we demonstrate tfﬁt, a’2A appearing in
Rs,=40730"-20740"2-2f "0 "2 (A15) Eq. (5.6) are pure gauge terms. For clarity we shall consider
only cases wheri’ #0. Whena}+#0, a5#0 the line ele-
Rya=Paf "2 2{(pg %)y + (P °B) 2} (A16)  ment(5.6) with b, c given in(5.7) can be written in the form
Roa=—Pof ' Q7 2{(Po “@)z— (Po “Blyu} (AL7)
24 0 { 0 Z, 0 y} dSZZZQZdUdU
_ -30/ _ _ -2
R12=20 Q" (B, = Bu) =20 “Buy +pg 2F20%(1+ a)dy+ Bdz+Adu+ Pdv}?
=27 Q73 By+ By), A18
(ButBy) (A18) +po 2F20%{ Bdy+ (1— a)dz+ Bdu+ Qdv}?,
Ry =20 %02 2f 1" "2+ 20 730" (B1)
—2072f 72124 072 72K +20730 (a, — @) where
=207 27 (o, + ay) —2Q 2y, A=aje“coshg+aje “sinhg,
+Q 722 pg(Po “a)yy— Po(Pg 2a) B=ale“sinhB+a%e “coshg,
—Kzp3(po ?a)+Kypa(po 2a)y} P=aje*coshB+a3e “sinhg,
+O 22 2p(pg 2B)y,+ Kz pi(pg 2
{2Po(Po"B)yzt+KzPoPo “B)y Q=aje*sinhB+a3e *coshg. (B2)
+Kypo(po 282, (A19)

We find it convenient to work on the following tetrad:
R,,=20"40"2—2f 1" "24+20730"—20 " 2f2f'2
+Q72f72K-20730 (a,— ay)
+207 % (@, + ay) 20 %ay,

+Q 722 pg(pg *@)yy— Po(Po “a) s,

6'=py HQ{(1+ a)dy+ Bdz+Adu+ Pdu},
62=p, 1 Q{Bdy+(1— a)dz+Bdu+Qdv},
0°=Qdu, 6#*=Qdv. (B3)

3 o B As before our first step is to calculate the Ricci tensor com-
—Kzpg(po “@),+ Kypa(po “a)y} ponents. In this case they are found to be

-ler—2 -1 30/ 1 -1 -2
R13=2pg f'Q (Pu_Au)_po fQ7°0 (Pu_Au)"'Epo fQA™(Py,—A)y
-3¢—-1n—2 -2 -2 1 3¢-1—2 -3 1 2~—4 -2
+Po *f Q0 H(pg “@)yut (P “B): _Epof Q"4 BKpg y_EBK Po 'YZ—Po By,

1 1
=500 107 pg *Az—po *KAzZ+AKp, °— EAK”po“yZ) : (B4)

—ler—2 -1 -30 1 -1 -2
Ras=2po 1" Q" (Qu=B,) =Py TQ Q' (Qu=B,)+ 5Py TQ (Qu=B,)y
-3¢-1—-2 -2 -2 1 3¢-1—2 -3 1 2~—4 -2
—po f 7 {(po @) 0= (Po IB)yu}_EpOf Q AprO Z= EAK Po YZ—Pg Ayz

1 . . L, 1 .
—5P3 f 1077 po *By,—p, *KByz+BKpy °*— 5 BK?pg 422), (B5)
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Re=407%0"2-20730" - 2072171+ pgQ =4 (pg *A)yu+ (Pg “B) 1}

+2072F 1 p2{ (pg 2A),+ (g 2B) ),

Ry=40 70" 2=207°0" = 2072 71"+ pg 207 4{(pg *P)y, + (Po “Q)}

+20 7217 p3{(po 2Q) .+ (Po 2P)y ),

Ry=40 730" —207%0" 2= 207 2f 1"+ piQ 30 {(pg °A)y + (py °B),}

1
—p5Q 32 {(Pg *P)y+(Po “Q)a} + 5 P50 2{(Pg *Aly,+(Pg “B)a}

1 B B e B
+ 5 P02 H{(Po “P)yut (Po “Q)zu+Pof Q7 H{(pg “A)y+(po °B)2}

+p3f T Q" H(py ?P)y+ (o 2Q) ),

Ria=Paf 1Q 2{(pg 2a)yy + (Pg °B) 2} — Po Q30 (P, —A,)

g 1o,
—2pg IO THPL=A) — 5P TQTHP A,

1 1
—ngf192|paZPZZ—PzKp53z+PKp53—EPsza“yZ]

1 _ _ 1 _
-5 p8f192‘ Q:KPo *y—Pg “Qyz~ 5 QK?pg “yZJ :

Roa= — Pof 1Q %{(pg *@) 2 — (Po 2By} — Po Q30 (Q,—B,)

1
—2py ' Q7%Qu=B,)~ 5P T A(Qu~B,),
1 N 3 .01 3
- Epgf‘lﬂ*' Po “Qyy— QyKPg 'y +QKpy °~ 5 QK?pg 422]

1 L 1 .
— 5 Pof ‘1Q‘Z| PyKpo *z=pg *Py,~ 5 PK?pg 4yz] ,

Ry1=Q 2f2{pg(po %)~ Po(Po 2a)yy+ Kzp3(po 2a) ,— Ky p(po 2a)y}

+ Q72 22p8(po 2B)y .+ KZP3(Po 2B)y+ KYPS(Po 2B) .}
+ Q726 72K+ (p2Q 730 + paf 1 Q2){3py A, — 2AKpy By — 2BK py 32+ py 2B}
—(p3Q 3 —p3f ' Q7 2){3py 2Py — 2PKp, 2y — 2QKp, *z+ py 2Q)
1 15-2 -2 1 -1 ! -1
—Epo 0O “Kz(B,+Q,)+Q AyU—EAva0 Y+Puy—§Pquo y

—20 2, — 2072722420740 2= 2072+ 20730
-20730 (ay—a,) —2Q 72 ' (a, + ay),
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Roo= Q™ 2~ 2{pg(pg *a) 17~ Po(Po “@)yy+ KZpa(Pg “a),— Ky pg(pg 2a)y}
+ Q72 72{2p3(pg 2Byt Ky Pa(Po 2 B) 2+ KZpa(pg 2B)y} + Q272K
+(psQ 3 +paf ' 2){3p, °B,— 2BKpg °z— 2AKp, 2y + pg °A}
— (P53 —p3f M’ Q7 2){3p, *Q,— 2QKpy *z— 2PKpy by +pg 2Py}
1 -1n—-2 -2 1 -1 1 -1
= 5Po 7Ky (A, +Py)+ 072 B, — 5B,KPg 2+ Qu~ 5 QuKpo 'z

+20 7 2, — 20721 72f'24 20740 2= 202"+ 20730

+2073Q0 (ay—a,)+2Q 72 H (o, + ay), (B12)
Ri=Q7Q'(A,+B))— Q730" (P,+Q,)+20 730" (B,~ By)
—2072B, —2Q 7 2 (B + B,) + QA TH (A +By)
O 2f 1 1(2‘2 10‘2
+ (Qy+ Pz) + E (AZU + Byv) + E (qu+ Qyu)- (813)
|
Here the subscripty,z,u,v indicate partial differentiation Po *AK=(pg °@)yu+ (Po °B)zu, (B16)
with respect to these variables, differentiation with respect to
v is denoted by a prime and is the constant introduced in _a 5 5
Eq. (3.4). Using the above Ricci tensor components and Eqgs. Po "PK=(po “@)y,+(Po “B)z (B17)
(3.2, (3.3, (5.1)) it is easily checked that the first of the
field equations(2.11) is satisfied provided we choose
A,B,P,Q to satisfy the Cauchy-Riemann equations pg“BKz _(p62a)zu+(p62lg)yu, (B18)
(Po “A)z=(Po “B)y,  (Po“A)y==(py’B);,  (B14) » . .
, , B , Po “QK=—(Po @)+ (Pg By, (B1Y
(Po “P)z=(Po “Qly, (Po“P)y=—(P“Q),.  (B1Y
Pu,=A,, Q,=B,, (B20)
Next with A,B,P,Q satisfying these equations we find from
the remaining two equations i2.11) that the conditions are sufficient to have,=0 andw,,=0 except for
1 : _ _ _ _
W“:(ERZR'OS+ szlf’p%){Spo ®Ay—2AKp, *y— 2BKp, “z+po °B,}
1 -2Ppn2 —2¢—1§1r 2 -2 -3 -3 -2
- ER Rpg—R™“f7"pg | {3pg “Py—2PKpy "y —2QKpg "2+ pg “Q,}
1 -2 -1 -2 1 -1 1 -1
_ER Kpo Z(Bu+Qu)+R Ayv_EAquo y+Puy_§Pqu0 y
+R2F2{pg(Po 2a) 2 Po(Po 2a)yy T KZP3(Pg 2a),—~ Ky P3(Pg 2y}
+R2f2{2pg(pg 2Bly,+ Kzpa(Py “B)y+ KYPS(Po “B) 2t — 2R ey,
2 .
+ —R ?R(a,— ay)—2R 2t (a,+ a), (B21)

2
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Following the procedure described in Sec. V we now con-
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2=

1 .
—R ?Rp3+R2f1f/ pé) {3pg °B,— 2BKpg °z— 2AKp, 3y +pg °A,}

V2

V2
1
2

1 .
—RZRpS—RZf1f'pé){3po2Q2—2QKpo3z—2PKpo3y+p02Py}

1

-1 1 -1
2 BvaO z+ I:)uz_ EQquO z

R™2Kp, *z(A,+ Py + R2( B, —

+R 7212 pd(po 2a) 12— PY(Po *@)yy+ KZp3(Po @) ,— Ky pa(Po @)y}
+R7212(2p5(pg *B)y.+ KZpa(Pg °B)y+ Ky pa(Po °B) 2}

-2 i —2r _ —2¢—1¢1
+2R “a,,+ R™“R(ay— a,) + 2R “f ' (a, t ay), (B22)

2

1 . 1
m1= =R ?R(A,+By—P,—Q,) +R?f ' (A,+B,+P,+Q,) + ER*Z(AZU +By, + P,y Qyu)

V2

+\2R72R(B,— Bu) — 2R 2By, — 2R 2f L' (B,+ B,). (B23)

1 )
structar= (11— 7ao— 2i 71,)/2. Using the conditions above = ERizR{Fuy_Guz"_ Guz—Fuy
to cancel terms we arrive at

7=\2R *R{a,~ ay,—i(B,~ Bu)}

—i (Fuz+ Guy_ sz_ Gvy)}
+R72M{F,,—~ Gy, +F,y—G,,

— 2R 2t M a,+a,—i(B,+Bu)}

—i(Fy+GuytF,,+G,y)}

1. - .
+-—R2R{A,~B,+Q,—P,—i(A,+B,—P,—Q,)} +RH{Fuy = Guuz 1 (Fuyrt G}

2

_ZR_Z(aUU_ i Buv)
+R2f M {A,~B,+P,—Q,~i(A,+B,+P,+Qy)}

+V2R 2R, — ay—i(B,— By}
—2R 2 ' a,+ a,—i(B,+ By}

1 _ZR_Z(auv_iIBuu)- (B28)
+§R72{Ayu_BZv+Pyu_Qzu D .
In order to writesr in the required form we choose
—i(Ag+By, + P,y +Qyu)}. (B24)
_ - -2 _EF _
We want to writerr in the form given in Eq(5.26) for some g= 2\/§p0 H{Guz=Fuy=GuztFoy
analytic functiong. Before we try to do this we note that on
account of the conditionB,=A,, Q,=B, we can write +i(Fu 4 Guy—F,,— Gy}
A=F,, P=F,, (B25) 1

for some functiong=(y,z,u,v), G(y,z,u,v) which satisfy
the Cauchy-Riemann equations

——=po *fla,—a,+i(Bu—B,)}.  (B29

V2

Noting thatD =24, we find that thisG does satisfy Eq.

(5.26) with 7 given by (B28) andf’#0 providede, 3 take
the following form:

B=G,, Q=G,, (B26)

(Po ’F)y=—(Po ?G),, (Po°F),=(py°G)y.

(827) aI%(Fy—GZ)‘FQ(vaaU)’ B:%(FZ—’_GY)_Fr(y’Z'u)'

Substituting these into EqB24) gives (B30

064038-14
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Hereq, r satisfy the Cauchy-Riemann equations 1
. . . . G=—=po “f(au+iry). (B32
(Po “d)y=—(Po )2y (Po @), =(Pg°T)y. (B3 J2rt e

We remark that this is the first time we have made use of the

fact thatf’+0. If f’=0 thena, B have a different form to  with k given by the first of Eqs(5.22 it is trivial to show
that given in the last equation. Thus we emphasize that thg,,; ¢ satisfies the wave equati@n.25. Now A,B,P,Q do

analysis which follows does not applyfif=0. Whenea, B —— - A
are given by these equations it is straightforward to Checlpgt dappeflr Ontt.ge t”gg; h_?: d S|gle oftﬁa32) ?n?) hsnf]al’ d
using the various Cauchy-Riemann equations thg} is az do hot contribute 1¢. Thus since the perturbed snear an

trace-free and the conditior®.16—(B.19) are identically ~anisotropic Astreis can both be written in termsjake con-
satisfied. Substituting the above expressionsdorg into ~ clude thata;, a; are pure gauge terms.
Eq. (B29) yields
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