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Metric perturbation approach to gravitational waves in isotropic cosmologies
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Mathematical Physics Department, National University of Ireland Dublin, Belfield, Dublin 4, Ireland
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Gravitational waves in isotropic cosmologies were recently studied using the gauge-invariant approach of
Ellis and Bruni. We now construct the linearized metric perturbations of the background Robertson-Walker
space-time which reproduce the results obtained in that study. The analysis carried out here also facilitates an
easy comparison with Bardeen.
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I. INTRODUCTION

In a recent paper@1# the gauge-invariant and covaria
approach of Ellis and Bruni@2# was used to examine shea
free gravitational waves propagating through isotropic c
mologies. In this approach the waves are modeled as s
perturbations of the Robertson-Walker space-time. The p
ence of the waves is found to perturb the shear and also m
notably to introduce anisotropic stress into the Univer
Other basic gauge-invariant quantities, for example, the v
ticity and energy flow, remain unchanged by the presenc
gravitational radiation.

Our purpose here is to construct the metric perturbati
of the Robertson-Walker space-time which give rise to
perturbations of the anisotropic stress and shear found in@1#.
The difficulty is that we wish to derive gauge-invariant pe
turbations and there is no waya priori to identify which
terms in the perturbed metric are pure gauge terms with
carrying out a lengthy calculation. In the process of study
the perturbed metric we identify the gauge terms and with
loss of generality we then put these terms equal to zero.

The paper is organized as follows: In Sec. II we introdu
the notation used and give some important equations.
unperturbed Robertson-Walker space-time is described
Sec. III. In Sec. IV we summarize the results of the gau
invariant and covariant study of gravitational radiation c
ried out in@1#. The perturbed metric is introduced in Sec.
Also in this section and in Sec. VI we demonstrate how
perturbed metric leads to the required gauge-invariant pe
bations of the shear and anisotropic stress. The Ricci te
components of the metric are listed in Appendix A and
Appendix B we briefly outline the calculation involved i
identifying those variables that are responsible for the p
ence of gauge terms. The paper ends with a discussio
which our results are compared with those of Bardeen@3#.

II. NOTATION AND BASIC EQUATIONS

Throughout this paper we use the notation and sign c
ventions of@4#. We are concerned with a four-dimension
space-time manifold with metric tensor componentsgab in a
local coordinate system$xa% and a preferred congruence
world lines tangent to a time-like vector field with comp
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nentsua anduaua521. With respect to this 4-velocity field
the symmetric energy-momentum-stress tensorTab can be
decomposed as

Tab5muaub1phab1qaub1qbua1pab, ~2.1!

where

hab5gab1uaub ~2.2!

is the projection tensor and

qaua50, pabua50, pa
a50, ~2.3!

with pab5pba. Here m is the matter energy density mea
sured by the observer with 4-velocityua, p is the isotropic
pressure,qa is the energy flow relative toua ~for example,
heat flow! andpab is the trace-free anisotropic stress~due to
processes such as viscosity!.

We indicate covariant differentiation with a semicolo
partial differentiation by a comma and covariant different
tion in the direction ofua by a dot. Also, as usual squar
brackets denote skew symmetrization, round brackets de
symmetrization and a definition is indicated by a colon f
lowed by an equality sign. Thus the 4-acceleration of
time-like congruence is

u̇a5ua
;bub, ~2.4!

andua;b can be decomposed into

ua;b5vab1sab1
1

3
u hab2u̇aub , ~2.5!

where

vabªu[a;b]1u̇[aub] ~2.6!

is the vorticity tensor of the congruence,

sabªu(a;b)1u̇(aub)2
1

3
u hab ~2.7!

is the shear tensor of the congruence and

uªua
;a ~2.8!

is the expansion~or contraction! of the congruence.
©2004 The American Physical Society38-1
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We shall make use of the Ricci identities

ua;dc2ua;cd5Rabcdu
b, ~2.9!

where Rabcd is the Riemann curvature tensor but for t
problem at hand the key equations are Einstein’s field eq
tions

Rab2
1

2
gabR5Tab . ~2.10!

HereRabªRa
c
bc are the components of the Ricci tensor,R

ªRc
c is the Ricci scalar and we have absorbed the coup

constant into the energy-momentum-stress tensor. No
that R52T(ªTa

a) and using Eq.~2.1! the field equations
can be decomposed into

Rabu
aub5

1

2
~m13p!,

Rabu
ahc

b52qc , ~2.11!

Rabhc
ahd

b5
1

2
~m2p!hcd1pcd .

It is in this form that we shall use Eq.~2.10! in later sections.

III. THE BACKGROUND SPACE-TIME

We choose as the unperturbed~background! space-time a
Robertson-Walker space-time with line element

ds25R2~ t !
~dx1!21~dx2!21~dx3!2

S 11
k

4
r 2D 2 2dt2, ~3.1!

whereR(t) is the scale factor,r 25(x1)21(x2)21(x3)2 and
k50,61 is the Gaussian curvature of the space-like hyp
surfacest5const. The world lines of the fluid particles a
the integral curves of the vector fieldua]/]xa5]/]t ~thus
ua5d 4

a since we shall label the coordinatesx15y,x25z,x3

5x,x45t). The background energy-momentum-stress ten
is Eq. ~2.1! specialized to a perfect fluid~by settingqa50
5pab) with proper density

m53
Ṙ2

R2
13

k

R2
, ~3.2!

and isotropic pressure

p52
Ṙ2

R2
22

R̈

R
2

k

R2
. ~3.3!

We find it convenient to put the line element given abo
in the following forms:

ds25R2~ t !$dx21p0
22f 2~dy21dz2!%2dt2, ~3.4!
06403
a-

g
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with p0511(K/4)(y21z2), K5const, f 5 f (x). We iden-
tify three distinct cases.

Case 1.We have
if k511 thenK511 and f (x)5sinx.
Noting that the transformationx→p/22x does not affect

the form of the line element~3.4! we see that in this cas
f (x) could equivalently be writtenf (x)5cosx.

Case 2.We have

if k50 thenH K50 and f ~x!51,

or

K511 and f ~x!5x.

Case 3.We have

if k521 then5
K521 and f ~x!5coshx,

or

K50 and f ~x!5 1
2 ex,

or

K511 and f ~x!5sinhx.

The form of the line-element~3.4! is also invariant under the
transformationx→2x so whenK50 in case 3 we could
instead writef (x)5 1

2 e2x. For a detailed explanation wh
these cases arise see, for example, Eqs.~5.3!–~5.19! in @1#.
In space-times with line-elements~3.4! the hypersurfaces

f~xa!ªx2T~ t !5const, ~3.5!

wheredT/dt5R21 are null hypersurfaces. The expansion
the null geodesic generators of these surfaces is

1

2
f ,a

;a5
f 8

R2f
1

Ṙ

R2
, ~3.6!

where f 85d f /dx, Ṙ5dR/dt. Using Eq.~3.5! we can show
that

2f ,a;b5jaf ,b1jbf ,a1f ,d
;dgab , ~3.7!

where

ja52
f 8

f
f ,a1Rf ,d

;dua . ~3.8!

It follows from Eq. ~3.7! that f ,a is shear-free@5#.
Finally in this section we note that for convenience w

have used the same coordinate labels$y,z,x,t% for all the
special cases included in Eq.~3.4!. Clearly the ranges of
some of these coordinates will vary from case to case
within cases 2 and 3. For example, in case 2xP(2`,
1`) if K50 butxP@0,1`) and is a radial polar coordinat
if K511. The shear-free null hypersurfaces~3.5! will also
be different in the different cases. This can be seen by ex
ining the intersections of these null hypersurfaces with
space-like hypersurfacest5const.

Case 1.The intersection is a 2-sphere.
8-2
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Case 2.If K511 the intersection is a 2-sphere and
K50 the intersection is a 2-plane. Thus it is obvious that
~3.5! describes two different families of shear-free null h
persurfaces that can occur in an open, spatially flat unive

Case 3.In this case the intersection of Eq.~3.5! with the
t5const hypersurfaces is always a 2-space of constant
vature. The curvature of this 2-space is given byK which
takes values 0,61. So we have three different families o
shear-free null hypersurfaces in ak521 universe. We refer
the reader to@6# for a geometrical explanation for the exi
tence of these subcases.

IV. GAUGE-INVARIANT AND COVARIANT APPROACH
TO GRAVITATIONAL WAVES

In a recent paper@1# we used the gauge-invariant an
covariant approach of Ellis and Bruni@2# to construct gravi-
tational wave perturbations of the Robertson-Walker spa
times described in the previous section. This involves wo
ing in a general local coordinate system with gauge-invar
small quantities which by their nature vanish in the ba
ground, rather than small perturbations of the backgro
metric. For isotropic space-times the Ellis and Bruni va
ables are sab , u̇a, vab , Xa5ha

bm ,b , Ya5ha
bp,b , Za

5ha
bu ,b , pab , qa and the ‘‘electric’’ and ‘‘magnetic’’ parts

of the Weyl tensor, with componentsCabcd, given, respec-
tively, by

Eab5Capbqu
puq, Hab5 * Capbqu

puq. ~4.1!

Here * Capbq5
1
2 hap

rsCrsbq is the dual of the Weyl tenso
~the left and right duals being equal!, habcd5A2geabcd
whereg5det(gab) andeabcd is the Levi-Civita permutation
symbol. However, we found that it is tensor quantities t
describe gravitational wave perturbations. Thus for this pr
lem the important Ellis and Bruni variables aresab , pab ,
Eab , Hab and we can set all other gauge-invariant variab
equal to zero. The equations satisfied by these variables
obtained by projections in the directionua and orthogonal to
ua of the Ricci identities, the equations of motion and t
energy conservation equation contained inTab

;b50 and the
Bianchi identities written in the form

Cabcd
;d5Rc[a;b]2

1

6
gc[aR;b] . ~4.2!

To keep this section to a reasonable length we shall not
all of the equations~they are given in Eqs.~2.14!–~2.25! in
@1#!. We note here that from the projections of the Ric
identities~after settingu̇a505vab) we find

Eab5
1

2
pab1

2

3
s2hab2

2

3
u sab2sa fs

f
b2ha

f hb
gṡ f g ,

~4.3!

and

Hab52ha
t hb

ss (t
g;chs) f gcu

f . ~4.4!

Thus these variables are derived frompab andsab .
06403
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We now assume that the perturbed shear and anisotr
stress have the following form:

sab5sabF~f!, pab5PabF~f!, ~4.5!

whereF is an arbitrary real-valued function of its argume
f(xa). We emphasize that at this pointf(xa) is arbitrary
and not that defined in Eq.~3.5!. This idea of introducing
arbitrary functions into solutions of Einstein’s equations d
scribing gravitational waves goes back to work by Trautm
@7# and the above form for the gauge-invariant variables w
introduced by Hogan and Ellis@8#. Substituting~4.5! into the
linearized versions of the equations satisfied by these v
ables and noting thatsab andPab are trace-free and orthogo
nal to ua with respect to the background metric we find th
@1#

gabf ,af ,b50, sabf ,b50, Pabf ,b50, ~4.6!

with gab here the background metric, and

sab
ub50, Pab

ub50, ~4.7!

where for clarity we have used a stroke to denote covar
differentiation with respect to the background metric. W
also discover~see@1#! the following wave equation forsab :

sabud
ud2

2

3
u ṡab2S 1

3
u̇ 1

4

9
u 2D sab1S p2

1

3
m D sab

52Ṗab2
2

3
u Pab, ~4.8!

and a propagation equation forsab along the null geodesics
tangent tof ,d, namely,

stb8 1S 1

2
f ,d

ud2
1

3
u ḟ D stb52

1

2
ḟP tb , ~4.9!

wherestb8 ªstbudf ,d and ḟ5f ,aua. The internal consisten
cies of these equations were checked in@1#. The ‘‘electric’’
and ‘‘magnetic’’ parts of the Weyl tensor are now given b
@1#

Eab5S 1

2
Pab2 ṡab2

2

3
u sabDF2ḟsabF8 ~4.10!

and

Hab52s(a
puchb) f pcu

fF2s(a
phb) f pcu

ff ,cF8, ~4.11!

whereF85]F/]f. These equations are easily checked
substituting~4.5! into ~4.3! and ~4.4!.

We wish to construct pure gravitational wave perturb
tions, i.e. having pure typeN perturbed Weyl tensor in the
Petrov classification. It is shown in@1# that on account of
~4.6! the F8 parts of Eab and Hab above are typeN with
degenerate principal null directionf ,a. Then if we also re-
quire theF parts ofEab andHab to be typeN the perturba-
tions we have constructed describe pure gravitational wa
with propagation directionf ,a in the Robertson-Walker
8-3
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background and the histories of the wave fronts are the
hypersurfacesf(xa)5const. Making use of the following
null tetrad,ka52ḟ21f ,a , l a5ua2 1

2 ka andma , m̄a a com-
plex covariant vector field and its complex conjugate, cho
so they are null (mama505m̄am̄a), are orthogonal toka

and l a and satisfymam̄a51. We find that a simple way to
ensure that theF parts of Eab and Hab are typeN is to
require the null hypersurfacesf(xa)5const to satisfy~see
@1#!

f ,bucm̄
bl c50, ~4.12!

and

f ,aubmamb50. ~4.13!

To exhibit explicit examples we specialize to the casef
5x2T(t) with T(t) introduced in Eq.~3.5!. Then the null
tetrad described above is given by the 1-forms

kadxa5Rdx2dt, l adxa52
1

2
~Rdx1dt!,

madxa5
1

A2
Rp0

21f ~dy1 idz!, ~4.14!

and it is straightforward to check that Eqs.~4.12! and~4.13!
are satisfied. Sincesab andPab are trace-free and orthogon
to ua andf ,a, they each have only two independent comp
nents. These components ares2252s115â(y,z,x,t), s12

5s215b̂(y,z,x,t) and P2252P115A(y,z,x,t), P125P21

5B(y,z,x,t) where we have labeled the coordinatesx1

5y,x25z,x35x,x45t. Now we can write

sab5 s̄mamb1sm̄am̄b, ~4.15!

with

s̄52R2p0
22f 2~ â1 i b̂ !, ~4.16!

and

Pab5P̄mamb1Pm̄am̄b, ~4.17!

with

P̄52R2p0
22f 2~A1 iB !. ~4.18!

It follows from ~4.7! that â, b̂ and A, B must satisfy the
Cauchy-Riemann equations

]

]y
~p0

24â !2
]

]z
~p0

24b̂ !50, ~4.19!

]

]y
~p0

24b̂ !1
]

]z
~p0

24â !50 ~4.20!

and
06403
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]y
~p0

24A!2
]

]z
~p0

24B!50, ~4.21!

]

]y
~p0

24B!1
]

]z
~p0

24A!50. ~4.22!

If we defineG5p0
24f 3R3(â1 i b̂) and note thatf 5 f (x), R

5R(t) and â, b̂ satisfy Eqs.~4.19! and ~4.20! thenG is an
analytic function of zªy1 iz. We can now rewrite Eq.
~4.16! as

s̄52R21p0
2f 21G~z,x,t !. ~4.23!

From the propagation equation~4.9! we find

P̄522R22p0
2f 21~DG1ṘG!, ~4.24!

whereD is given byD5]/]x1R]/]t5]/]x1]/]T and the
dot indicates differentiation with respect tot. As a conse-
quence of this and~4.18! A1 iB is analytic inz and so Eqs.
~4.21! and ~4.22! are automatically satisfied. Replacingsab

by Eqs.~4.15! and~4.23! andPab by Eqs.~4.17! and~4.24!
the wave equation~4.8! simplifies to

D2G1kG50, ~4.25!

with k50,61 labelling the Robertson-Walker backgroun
with line elements of the form~3.4!. The solutions of these
three differential equations are as follows: fork50,

G~z,x,t !5a~z,x2T!~x1T!1b~z,x2T!, ~4.26!

for k511,

G~z,x,t !5a~z,x2T!sinS x1T

2 D1b~z,x2T!cosS x1T

2 D ,

~4.27!

and fork521,

G~z,x,t !5a~z,x2T!sinhS x1T

2 D1b~z,x2T!coshS x1T

2 D ,

~4.28!

where in each casea(z,x2T), b(z,x2T) are arbitrary
functions. Using the identityx1T52x2(x2T) ~and some
simple trigonometric and hyperbolic relations!, we can re-
write Eq. ~4.26! in the form

G~z,x,t !5h1~z,x2T!1xh2~z,x2T!, ~4.29!

with h1 , h2 arbitrary, Eq.~4.27! as

G~z,x,t !5h3~z,x2T!sinx1h4~z,x2T!cosx,
~4.30!

with h3 , h4 arbitrary and Eq.~4.28! as

G~z,x,t !5h5~z,x2T!sinhx1h6~z,x2T!coshx,
~4.31!
8-4
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with h5 , h6 arbitrary. In addition Eq.~4.31! can be set in the
form

G~z,x,t !5h7~z,x2T!ex1h8~z,x2T!e2x. ~4.32!

When these results are derived from metric perturbation
Sec. V the expressions~4.29!–~4.32! will be more useful for
comparison purposes than the equivalent expressions~4.26!–
~4.28!.

The ‘‘electric’’ and ‘‘magnetic’’ parts of the Weyl tenso
@Eqs.~4.10! and~4.11!, respectively# are now calculated and
we find that they can be written compactly as@1#

Eab1 iH ab522R22p0
2 f 21

]

]x
~GF !mamb. ~4.33!

HereG is given by Eqs.~4.26!–~4.28! @or equivalently Eqs.
~4.29!–~4.32!# and F5F(x2T) so thatF85]F/]x, p051
1(K/4)(y21z2), f 5 f (x) described in the previous sectio
and R(t) is the scale factor. It follows from Eqs.~4.5!,
~4.15!, ~4.17!, ~4.23! and ~4.24! that to findsab , pab from
sab andPab we simply replaceG by GF. This does not affect
Eqs. ~4.24! and ~4.25! since DF50. Conversely withF
5F(x2T) andG given by Eqs.~4.26!–~4.28! F can be ab-
sorbed intoG.

V. THE PERTURBED METRIC

We now exhibit a line element which~i! can be viewed as
a perturbation of the space-time line-element~3.4! and ~ii !
produces the same explicit perturbations described in
gauge-invariant formalism of the previous section. We fi
introduce a pair of null coordinates,

u5
1

A2
@x2T~ t !#, v5

1

A2
@x1T~ t !#, ~5.1!

with T(t) introduced after~3.5!. Writing

R„t~T!…[V~T!5V~v2u!, ~5.2!

the line element~3.4! written in terms ofu andv reads

ds25V2p0
22f 2~dy21dz2!12V2dudv, ~5.3!

where now f 5 f (u1v). The coordinatesy,z,u,v are such
that the surfacesu5const,v5const are two families of in-
tersecting null hypersurfaces. The general form of a line
ement in a coordinate system based upon two families
intersecting null hypersurfaces is given in@9#. For our pur-
poses we write this as

ds25b2hAB~dxA1a1
Adu1a2

Adv !~dxB1a1
Bdu1a2

Bdv !

12cdudv, ~5.4!

whereA, B take values (1,2)@hAB(y,z,u,v)# is a unimodular
232 symmetric matrix, (x1,x2)5(y,z) anda1

A , a2
A , b, c are

six functions ofy,z,u,v. It is convenient to use the follow
ing parametrization@10# of (hAB):
06403
in
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~hAB!5S e2acosh 2b sinh 2b

sinh 2b e22acosh 2b D . ~5.5!

Here a, b are taken to be small of first order. With (hAB)
given by Eq.~5.5! it is easy to check that, working to firs
order, Eq.~5.4! can be written

ds25b2@~11a!dy1bdz1$a1
1~11a!1a1

2b%du

1$a2
1~11a!1a2

2b%dv#2

1b2@bdy1~12a!dz1$a1
1b1a1

2~12a!%du

1$a2
1b1a2

2~12a!%dv#212cdudv. ~5.6!

The background space-time is obtained from this by sett

a1
A50, a2

A50, b5p0
21V f , c5V2, a50, b50.

~5.7!

For the perturbed space-time that we require we find thatb, c
retain their background values, and we can puta1

A505a2
A .

These latter quantities actually play the role of gauge te
~see Sec. VII and Appendix B for an illustration of this!.
Every shear-free system of gravitational waves involves
arbitrary analytic function@11# and we now have two rea
functionsa, b available to provide the real and imagina
parts of this analytic function. Also we find that th
4-velocityua, the isotropic pressurep and the matter-energy
densitym take their background values~these are given in
Sec. III!.

To demonstrate that this space-time does indeed desc
the perturbations of Sec. IV we shall work on the tetr
given via the 1-forms

u 15p0
21f V$~11a!dy1bdz%,

u 25p0
21f V$bdy1~12a!dz%,

u 35Vdu,

u 45Vdv, ~5.8!

with p0511(K/4)(y21z2) as in ~3.4!. We note that with
respect to this tetrad the line element is now

ds25~u 1!21~u 2!212u 3u 45gabu
au b, ~5.9!

thus defining the tetrad componentsgab of the metric tensor.
The tetrad components of the matter 4-velocity are given
the 1-form

uau a5
1

A2
~u 32u 4!. ~5.10!

Since we wish to reproduce the linear perturbations of
previous section we shall discard any terms which are sec
order or smaller ina andb. Our first step is to calculate th
Ricci rotation coefficients and the Ricci tensor componen
This results in a lengthy list of equations which for conv
8-5



o
.

f
in

ia

a

de-

by
he

e
e

the

hese

h-
f the
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nience we give in Appendix A. We now use the Ricci tens
components and~5.10! in the field equations given by Eqs
~2.11!. Noting that

V85
1

A2
RṘ, V95

1

2
R2R̈1

1

2
RṘ2, ~5.11!

where the prime denotes differentiation with respect tov and
using Eqs.~3.2! and~3.3! it is easily checked that the first o
Eqs. ~2.11! is identically satisfied. The second equation
~2.11! yields

q15
p0

3

A2
f 21V22$~p0

22a!yu1~p0
22b!zu2~p0

22a!yv

2~p0
22b!zv%, ~5.12!

q25
p0

3

A2
f 21V22$~p0

22a!zv2~p0
22b!yv2~p0

22a!zu

1~p0
22b!yu%, ~5.13!

q350, ~5.14!

q450. ~5.15!

The subscriptsy,z,u,v here indicate partial differentiation
with respect to these variables. We recall that in the covar
approach we found thatqa[0. With a, b chosen so they
satisfy the Cauchy-Riemann equations in the form:

~p0
22a!y1~p0

22b!z50, ~5.16!

~p0
22a!z2~p0

22b!y50, ~5.17!

it follows that qa[0 as required. For later use we note th
as a result of these equationsp0

22(a2 ib) is analytic inz
5y1 iz. With qa50 the last of Eqs.~2.11! can be rewritten
as

Rab5muaub1phab1pab2
1

2
~3p2m!gab . ~5.18!

With the Ricci tensor components given by~A.11!–~A.20! it
follows from this and Eqs.~3.2!, ~3.3!, ~5.9!–~5.11!, ~5.16!,
~5.17! that pab50 except forp11, p22 andp12 with

p115A2R22Ṙ~av2au!22R22f 21f 8~av1au!

22R22avu , ~5.19!

p2252A2R22Ṙ~av2au!12R22f 21f 8~av1au!

12R22avu , ~5.20!

p125A2R22Ṙ~bv2bu!22R22f 21f 8~bv1bu!

22R22bvu . ~5.21!

We have made use of
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2 f 952k f , 2~ f 8!21k f25K, ~5.22!

to simplify these equations. We note that the prime here
notes differentiation with respect tov5(1/A2)(x1T). Simi-
lar equations to these appear in@1# @Eq. ~5.41!#. In @1# the
prime indicates differentiation with respect tox and hence
the factors of 2 in Eqs.~5.22! do not appear there.

Now in terms of the background null tetrad described
Eq. ~4.14! we can write the coordinate components of t
~small! anisotropic stress tensor as

p i j 5p̄mimj1pm̄im̄j . ~5.23!

Using Eqs.~4.14! and ~5.8! ~with a5b50 sincepab is a
first order quantity! we find

p̄5
1

2
~p112p22!2 ip12. ~5.24!

Substituting from Eqs.~5.19!–~5.21! above yields

p̄522p0
2f 21R22@p0

22f ~a2 ib!uv

1p0
22f 8$av1au2 i ~bv1bu!%#

2A2R22Ṙ$au2av2 i ~bu2bv!%. ~5.25!

In the previous section we worked withPab and P̄ which
we expressed in terms of an analytic functionG. But pab
5PabF and as indicated following Eq.~4.33! F can be ab-
sorbed intoG. Hence, in order to make contact with th
gauge-invariant descriptionp̄ here must satisfy the sam

equation asP̄ and thus we require

p̄522p0
2f 21R22$DG1ṘG%, ~5.26!

with D5]/]x1R]/]t5A2]/]v for some analytic function
G. Taking

G5
1

A2
p0

22f $au2av2 i ~bu2bv!%, ~5.27!

we find that it is indeed possible to writep̄ in this form
provided we choosea, b to satisfy the following:

if f 850 then avv50,bvv50; ~5.28!

if f 8Þ0 then av50,bv50. ~5.29!

We note that the first of these conditions corresponds to
casek50, K50 described following Eq.~3.4!. We now as-
sume that these conditions hold. As a consequence of t
and Eq.~5.22! it immediately follows thatG given by~5.27!
satisfies the wave equation~4.25!. Also noting thatf 5 f (x)
and using the Cauchy-Riemann equations~5.16!–~5.17! we
see that as beforeG is an analytic function ofz5y1 iz.

We now turn our attention to the shear. In a similar fas
ion to the anisotropic stress the coordinate components o
~small! shear tensor can be written in the form
8-6
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s i j 5 s̄pmimj1spm̄im̄j , ~5.30!

wheremi , m̄j are given by Eq.~4.14! and in terms of the
Ricci rotation coefficients

s̄p5
1

2A2
$~Y1412Y2422Y1311Y232!

1 i ~Y1321Y2312Y1422Y241!%. ~5.31!

Evaluating this using the Ricci rotation coefficients given
Appendix A we find

s̄p5
1

A2
R21$~a2 ib!v2~a2 ib!u%52p0

22f 21R21G,

~5.32!

with G as before. Taking into account that we can absorF

into G and thats̄p5 s̄F @with s̄ defined by Eq.~4.15!# we see
that the perturbations we have produced here also satisfy
~4.23!. Thus we have shown thatthe perturbations described
by the metric~5.6! take the same form as those found by
covariant approach. In the next section we shall illustrat
that they also satisfy the wave equation~4.8! and the propa-
gation equation~4.9!.

For the remainder of this section we compare the exp
G found here with the solutions of the wave equation fou
in @1# and listed in Eqs.~4.26!–~4.28! @or equivalently
~4.29!–~4.32!#. We first examine the case when k50. There
are two subcases to consider here:~i! K50 andf (x)51, ~ii !
K511 and f (x)5x. When K50, p051 and Eq.~5.27!
reads

G5
1

A2
$~a2 ib!u2~a2 ib!v%. ~5.33!

Since f 850 in this case we haveavv505bvv . Thus in
addition toa2 ib being analytic inz this complex-valued
function is also linear inv. Hence we can write

G~z,x,t !5a1~z,x2T!~x1T!1a2~z,x2T!, ~5.34!

wherea1 , a2 are arbitrary~analytic! functions of their argu-
ments. WhenK511, f (x)50 and from ~5.29! we have
av505bv . Therefore the functionp0

22(a2 ib) is analytic
in z and independent ofv5(x1T)/A2, i.e. it depends only
on z andu5(x2T)/A2, and we can write~5.27! in the form

G5xa3~z,x2T!, ~5.35!

with a3 an arbitrary analytic function. Using the identityx
1T52x2(x2T) as in Sec. IV we can rewrite~5.34! in the
form ~4.29!. Then~5.35! is the special case of~4.29! corre-
sponding toh1(z,x2T)[0. Thus in the case k50 there are
two independent expressions forG(z,x,t) which are given in
the form of a superposition in~4.29!. This arises becaus
~4.29! is obtained by solving the linear wave equation~4.25!
with k50 and in general this equation is insensitive to t
allowable values ofK50,61.
06403
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We now look at the solution whenk511. There is only
one case to consider here,K511 with f (x)5sinx or
equivalently ~see Sec. III! f (x)5cosx. Again we have
p0

22(a2 ib) analytic inz and independent ofv so~5.27! can
now be written

G5a4~z,x2T!sinx or G5a5~z,x2T!cosx, ~5.36!

wherea4 , a5 are arbitrary functions.The two equations in
~5.36! are equivalent to~4.30!.

Finally whenk521 there are three subcases to look
corresponding toK50,61. In all casesf 8(x)Þ0 and so we
havep0

22(a2 ib) independent ofv andG has the form

G5 f ~x!a6~z,x2T!, ~5.37!

wherea6 is an arbitrary analytic function. WhenK50 we
have f (x)5 1

2 ex or equivalentlyf (x)5 1
2 e2x and soin this

case~5.37! agrees with~4.32!. WhenK511, f (x)5sinhx
and now ~5.37! agrees with~4.31! when h6(z,x2T)[0.
When K521, f (x)5coshx and ~5.37! agrees with~4.31!
whenh5(z,x2T)[0. This casek521 is a good illustration
of the insensitivity of the expressions~4.31! and~4.32! to the
values ofK.

Thus all of the solutions found here are identical to t
solutions found using the gauge-invariant and covariant
proach to perturbations in@1#.

VI. PROPERTIES OF THE SHEAR AND ANISOTROPIC
STRESS

In the previous section we exhibited a perturbation of
Robertson-Walker background line element~3.4! that pro-
duced perturbations in the shear and anisotropic stress
sors which satisfied some of the equations found using
gauge-invariant and covariant approaches of Sec. IV.
now show that these perturbations satisfy the remain
equations, namely, that the anisotropic stress and shear
sors are trace-free, orthogonal toua, divergence-free with
respect to the background metric and also satisfy the w
equation~4.8! and propagation equation~4.9!. To do this we
shall, in this section, work in coordinate components~in the
local coordinatesy,z,x,t) instead of the tetrad componen
we have used up to this point. In terms of this local coor
nate system we can write the line element~5.6! ~with a1

A

5a2
A50, b5p0

21V f , c5V2) in the form

ds25ĝabdxadxb12gabdxadxb
ªgabdxadxb, ~6.1!

where ĝab5diag$p0
22f 2V2,p0

22f 2V2,V2,21% is the metric
of the background space-time and

gab5p0
22f 2V2S a b 0 0

b 2a 0 0

0 0 0 0

0 0 0 0

D ~6.2!
8-7
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is the perturbation. Clearlygab is trace-free and orthogona
to ua5d4

a ~with ĝabu
aub521). The non-vanishing Christ

offel symbols of the background metric tensor given via
line element~3.4! are

Ĝ11
1 52Ĝ22

1 5Ĝ12
2 52

1

2
Kp0

21y,

Ĝ12
1 52Ĝ11

2 5Ĝ22
2 52

1

2
Kp0

21z,

Ĝ14
1 5Ĝ24

2 5Ĝ34
3 5V21V t ,

Ĝ11
4 5Ĝ22

4 5p0
22f 2VV t , ~6.3!

Ĝ11
3 5Ĝ22

3 52p0
22f f x ,

Ĝ13
1 5Ĝ23

2 5 f 21f x ,

Ĝ33
4 5VV t .

We have used the hat here to emphasize that these are
ground Christoffel symbols and we shall continue to use
notation to denote background quantities for the remain
of this section. Using these and the Cauchy-Riemann eq
tions ~5.16!–~5.17! it is a simple exercise to show thatgab
defined above is divergence-free.

In order to show thatpab is also divergence-free we firs
write it in terms ofgab . We define the perturbation of th

Christoffel symbols to bedGbd
a
ªGbd

a 2Ĝbd
a . Noting that

gab5ĝab2gab ~heregab5ĝacĝb fgc f and we are neglecting
second order small quantities! it is easily derived from the
definition of the Christoffel symbols that

dGbd
a 5

1

2
~gbud

a 1gdub
a 2ĝa fgbdu f !, ~6.4!

where as usual the stroke indicates differentiation with
spect to the background metric. Nowgab is divergence-free
and thus we can see from this equation thatdGba

a 50. In
general the components of the Ricci tensor of a pertur
metric can be written in the form

Rbd5R̂bd1~dGbd
a ! ua2~dGba

a ! ud . ~6.5!

For the problem at hand we have

R̂bd5mubud1pĥbd2
1

2
~3p2m!ĝbd . ~6.6!

Substituting forRbd and R̂bd from Eqs. ~5.18! and ~6.6!,
respectively, in Eq.~6.5! yields

~dGbd
a ! ua5pbd1

1

2
~m2p!gbd . ~6.7!

Taking the divergence of Eq.~6.4! and using this equation
we arrive at
06403
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gbuda
a 1gduba

a 2ĝa fgbdu f a52pbd1~m2p!gbd . ~6.8!

Next making use of the Ricci identities

gabudc2gabucd5Ra f cdg b
f 2Rf bcdg a

f , ~6.9!

and recalling thatgab is divergenceless and orthogonal toua

we find ~sinceCabcd50 in the background!

gaudc
c 5

3

2
ga

cRcd1
1

2
gd

cRac2
1

2
gadRf cg

f c2
1

6
Rgad .

~6.10!

With R5m23p and Rab given by Eq.~5.18! this equation
allows us to write~since we are concerned here with firs
order terms only!

gbuda
a 1gduba

a 5S 5

3
m2pDgbd , ~6.11!

and hence Eq.~6.8! now becomes

ĝa fgbdu f a2
2

3
mgbd522pbd . ~6.12!

It is easy to see from this thatpab is trace-free and orthogo
nal toua. Starting with this equation we shall now prove th
pab is indeed divergence-free. That this is necessary to fu
make contact with the gauge-invariant and covariant
proach of Sec. IV follows from the fact that in this case w
wrote pab5PabF with Pab

ub50, F5F(x2T) and Pab

50 except forP11, P22 andP12 and thereforePab
ub50 is

equivalent topab
ub50 in this case. First making use of th

Ricci identities for a tensor of type~3,0!, Eq. ~2.1! and Eq.
~2.10!, we can write

gabud
udb5~gab

ub! ud
ud1S 7

6
m2

1

2
pDgad

ud50. ~6.13!

Also since for the perturbed space-time we are conside
here the matter densitym retains its background value w
havehc

bm ,b50 from which it follows that

m ,b52ṁub . ~6.14!

As a consequence of these last two equations we find
taking the divergence of Eq.~6.12!, that

pab
ub50, ~6.15!

as required.
We shall now examine the properties of the shearsab . As

with the anisotropic stress above it is necessary to exp
this in terms ofgab. This is easily done using the definitio
of the covariant derivative ofua :

ua;bª2Gab
c uc52Ĝab

c uc2dGab
c uc . ~6.16!

We remind the reader that the semicolon here indicates
variant differentiation with respect to the perturbed met
~background plus a small perturbation! while a stroke de-
8-8
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notes covariant differentiation with respect to the ba
ground metric. In the background Robertson-Walker spa
time the shear, vorticity and the 4-acceleration all vanish
so Eq.~2.5! specializes to

Ĝab
c ucªuaub5

1

3
u ĥab ~6.17!

in this case. Making use of this equation and Eq.~6.4! in Eq.
~6.16! it follows, on account ofhab5ĥab1gab ~since for the
problem at handua is unperturbed!, that

ua;b5
1

3
u hab1

1

2
ġab . ~6.18!

Here and for the remainder of this section a dot indica
covariant differentiation with respect to the background m
ric in the direction ofua. Recalling that the 4-acceleration
zero in the background Robertson-Walker space-time~i.e.
uaubub50) it is trivial to see from the latter equation that th
4-acceleration in the perturbed space-time also vanishes
also note that this equation is symmetric in (a,b) and thus it
is clear from Eq.~2.6! that, as in the covariant approach, t
vorticity tensor vanishes in the perturbed space-time. N
equating Eqs.~6.18! and ~2.5! with the 4-acceleration and
vorticity tensor both zero we arrive at a simple relations
betweensab andgab , namely,

sab5
1

2
ġab . ~6.19!

Using this and the properties ofgab it is straightforward to
check thatsab is trace-free and orthogonal toua. However,
further calculation is necessary to show that it is a
divergence-free~this is required for similar reasons to tho
given above while discussing the anisotropic stress!. First
using the Ricci identities given in Eq.~6.9! and noting that
Cabcd50 we calculate

ġab
ub5~gab

ub! .1
3

2
ga fR̂f cu

c2
1

2
R̂b fg

b fua. ~6.20!

ReplacingR̂ab here by the right-hand side of Eq.~6.6! and
keeping in mind thatgab

ub50, gabub50 leads to

ġab
ub50, ~6.21!

and therefore as a result of Eq.~6.19! sab
ub50.

At this point all that remains to fully make contact wit
the gauge-invariant and covariant description of gravitatio
wave perturbations outlined in Sec. IV is to reconstruct
wave equation~4.8! and the propagation equation~4.9!. This
is done as follows: Using the Ricci identities the covaria
derivative in the direction ofua of Eq. ~6.12! can be written
as
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22ṗab5gabud
ucdu

c2
1

3
u S p1

1

3
m Dgab1

1

2
~m13p!ġab

2
2

3
ṁgab2

2

3
mġab. ~6.22!

Also with hc
bm ,b50, hc

bp,b50, andhc
bu ,b50 we find, again

using the Ricci identities and Eq.~6.12!, that

gabud
ucdu

c5~ ġab! ud
ud2

2

3
u S 1

6
m1

1

2
pDgab2

1

3
u 2ġab

2
2

3
u S 2

3
mgab22pabD2

2

3
u g̈ab. ~6.23!

Entering this into Eq.~6.22! and replacingġab by 2sab we
arrive at

2ṗab2
2

3
u pab5sabud

ud2
2

3
u ṡab2S 1

3
u̇ 1

4

9
u 2Dsab

1S p2
1

3
m Dsab. ~6.24!

We have made use of the background values ofu̇ and ṁ to
write the equation in this form. The background value ofu̇ is

u̇ 52
1

3
u 22

1

2
~m13p! ~6.25!

which is obtained by specializing Raychaudhuri’s equation
the background~i.e. settingqa , pab , u̇a , sab and vab all
equal to zero! and the background value ofṁ is given by

ṁ52u ~m1p!. ~6.26!

This is found by specializing to the background the proje
tions along and orthogonal toua of the conservation equatio
Tab

ub50 @see, for example, Eqs.~2.20! and ~2.21! in @1##.
Both the wave equation and the propagation equation
actually contained in Eq.~6.24!. To confirm this we again pu

sab5sabF~f!, pab5PabF~f!, ~6.27!

where F(f) is an arbitrary function of its argumentf5x
2T(t). In the covariant approach we foundsabf ,b50 and
Pabf ,b50. This is also true here sincef ,b5(0,0,1,2R21)
and we havep3b50, p4b50, s3b50 ands4b50. In addi-
tion since the hypersurfacesf(xa)5const are null we have
f ,df ,d50. Thus we can write

ṗab5ṖabF1ḟPabF8, ~6.28!

ṡab5 ṡabF1ḟsabF8, ~6.29!

and

sabud
ud5sabud

udF1~2sabudf ,d1sabf ,d
ud!F8, ~6.30!
8-9
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where F85dF/df. Substituting these expressions forsab

and pab into Eq. ~6.24! and equating theF and F8 parts
separately yields the required wave equation~4.8! and propa-
gation equation~4.9!.

VII. DISCUSSION

We have shown in Secs. V and VI that the perturbatio
of the background Robertson-Walker space-time deri
here from metric perturbations are exactly the same as th
obtained using the covariant approach. Thus the metric~5.6!
with a1

A50, a2
A50 anda, b chosen to satisfy the Cauchy

Riemann equations~5.16!–~5.17! is indeed that which we se
out to find. We mentioned earlier that the functionsa1

A , a2
A

play the role of gauge terms. That this is true is seen
repeating the calculation ofG with a1

AÞ0, a2
AÞ0. To save

repetition here this calculation is outlined briefly in Appe
dix B. The result is thata1

A , a2
A do not appear in the require

analytic functionG, i.e. that which satisfies Eq.~5.26!. Thus
since all gauge invariant perturbations can be written
terms of thisG we conclude thata1

A , a2
A are pure gauge term

which we can set equal to zero without loss of generality
Metric perturbations of Robertson-Walker space-tim

which can be viewed as describing gravitational radiati
have also been studied by Bardeen@3# in an important paper
In this study the background space-time is taken to b
Robertson-Walker space-time with line element

ds25V2~T!$2dT21 3gabdxadxb%. ~7.1!

Here the greek indices take values 1, 2, 3 and3gab is the
metric tensor for a three-space of constant curvature. C
paring this to Eq.~3.4! we see that our background spac
time also has this form if we take3gab5(p0

22f 2,p0
22f 2,1)

and label the coordinatesx15y,x25z,x35x. The method
used in @3# involves separating the time-dependent a
spatial-dependent parts of the perturbations. Now for us
important coordinates are u5@x2T(t)#/A2, v5@x
1T(t)#/A2 and there is no natural way to carry out th
separation. Thus it is not possible to directly compare
results found here with those of@3#. However, there are som
obvious similarities and differences between the results
we shall briefly comment on these now. One point of agr
ment is that gravitational radiation is described by ten
perturbations only. Specifically in our case gravitation
waves are described by perturbations in the shear and a
tropic stress tensors. The perturbed space-time in@3# is given
by

ds252V2dT21gabdxadxb, ~7.2!

where

gab5V2@ 3gab12HT
(2)~T!Qab

(2)~xm!# ~7.3!

and Qab
(2) is a divergenceless trace-free tensor. This bea

strong resemblance to our perturbed space-time describe
~6.1! where gab given in ~6.2! is also divergenceless an
trace-free. However, it is clear from~6.2! that, in effect, our
small metric perturbationsgab are expressible in the form o
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a 232 matrix whereas (Qab
(2)) is a 333 matrix. In addition,

gab satisfies the inhomogeneous wave equation~6.12! while
Qab

(2) satisfies the homogeneous wave equation@3#

Q(2)ab;g
;g1k0

2Q(2)ab50, ~7.4!

wherek0 is a constant.

ACKNOWLEDGMENTS

I thank Professor Peter Hogan for many helpful disc
sions in the course of this work and IRCSET and Enterpr
Ireland for financial support.

APPENDIX A: THE RICCI TENSOR COMPONENTS

In this section we give the Ricci tensor components@on
the tetrad given by Eqs.~5.8!# for the metric defined by Eqs
~5.8! and~5.9!. In the calculation of the Ricci tensor compo
nents we use]V/]u52]V/]v and ] f /]u5] f /]v to sim-
plify equations. Also for convenience we shall use subscr
y,z,u,v to indicate partial derivatives with respect to the
variables and a prime to denote partial differentiation w
respect tov. Following the Cartan method to find the Ric
tensor components we first find the non-zero Ricci rotat
coefficients to be

Y12152
1

2
V21f 21~11a!Kz1V21f 21p0az

1
1

2
V21f 21Kby2V21f 21p0by , ~A1!

Y13152V22V81V21f 21f 81V21au , ~A2!

Y1415V22V81V21f 21f 81V21av , ~A3!

Y2125
1

2
V21f 21Kbz2V21f 21p0bz

2
1

2
V21f 21~12a!Ky2V21f 21p0ay , ~A4!

Y23252V22V81V21f 21f 82V21au , ~A5!

Y2425V22V81V21f 21f 82V21av , ~A6!

Y3435V22V8, ~A7!

Y43452V22V8, ~A8!

Y2315Y1325V21bu , ~A9!

Y1425Y2415V21bv . ~A10!

We note that in this calculation we have discarded any te
which are second order or smaller ina,b. Using these coef-
ficients we obtain the Ricci tensor components:
8-10
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R135p0
3f 21V22$~p0

22a!yu1~p0
22b!zu%, ~A11!

R2352p0
3 f 21V22$~p0

22a!zu2~p0
22b!yu%, ~A12!

R3354V24V8222V23V922 f 21f 9V22, ~A13!

R4454V24V8222V23V922 f 21f 9V22, ~A14!

R3454V23V922V24V8222 f 21f 9V22, ~A15!

R145p0
3f 21V22$~p0

22a!yv1~p0
22b!zv%, ~A16!

R2452p0
3f 21V22$~p0

22a!zv2~p0
22b!yv%, ~A17!

R1252V23V8~bv2bu!22V22buv

22 f 21f 8V22~bu1bv!, ~A18!

R1152V24V8222 f 21f 9V2212V23V9

22V22f 22f 821V22f 22K12V23V8~av2au!

22V22f 21f 8~av1au!22V22auv

1V22f 22$p0
4~p0

22a!yy2p0
4~p0

22a!zz

2Kzp0
3~p0

22a!z1Kyp0
3~p0

22a!y%

1V22f 22$2p0
4~p0

22b!yz1Kzp0
3~p0

22b!y

1Kyp0
3~p0

22b!z%, ~A19!

R2252V24V8222 f 21f 9V2212V23V922V22f 22f 82

1V22f 22K22V23V8~av2au!

12V22f 21f 8~av1au!12V22auv

1V22f 22$p0
4~p0

22a!yy2p0
4~p0

22a!zz

2Kzp0
3~p0

22a!z1Kyp0
3~p0

22a!y%
06403
1V22f 22$2p0
4~p0

22b!yz1Kzp0
3~p0

22b!y

1Kyp0
3~p0

22b!z%. ~A20!

APPENDIX B: THE EXISTENCE OF GAUGE TERMS IF
a1

A , A2
A ARE NON-ZERO

In this appendix we demonstrate thata1
A , a2

A appearing in
Eq. ~5.6! are pure gauge terms. For clarity we shall consid
only cases whenf 8Þ0. Whena1

AÞ0, a2
AÞ0 the line ele-

ment~5.6! with b, c given in ~5.7! can be written in the form

ds252V2dudv

1p0
22f 2V2$~11a!dy1bdz1Adu1Pdv%2

1p0
22f 2V2$bdy1~12a!dz1Bdu1Qdv%2,

~B1!

where

A5a1
1eacoshb1a1

2e2asinhb,

B5a1
1easinhb1a1

2e2acoshb,

P5a2
1eacoshb1a2

2e2asinhb,

Q5a2
1easinhb1a2

2e2acoshb. ~B2!

We find it convenient to work on the following tetrad:

u 15p0
21f V$~11a!dy1bdz1Adu1Pdv%,

u 25p0
21f V$bdy1~12a!dz1Bdu1Qdv%,

u 35Vdu, u 45Vdv. ~B3!

As before our first step is to calculate the Ricci tensor co
ponents. In this case they are found to be
R1352p0
21f 8V22~Pu2Av!2p0

21f V23V8~Pu2Av!1
1

2
p0

21f V22~Pu2Av!u

1p0
23f 21V22$~p0

22a!yu1~p0
22b!zu%2

1

2
p0

3 f 21V22S BzKp0
23y2

1

2
BK2p0

24yz2p0
22ByzD

2
1

2
p0

3 f 21V22S p0
22Azz2p0

23KAzz1AKp0
232

1

2
AK12p0

24y2D , ~B4!

R2352p0
21f 8V22~Qu2Bv!2p0

21f V23V8~Qu2Bv!1
1

2
p0

21f V22~Qu2Bv!u

2p0
23f 21V22$~p0

22a!zu2~p0
22b!yu%2

1

2
p0

3 f 21V22S AyKp0
23z2

1

2
AK2p0

24yz2p0
22AyzD

2
1

2
p0

3 f 21V22S p0
22Byy2p0

23KByz1BKp0
232

1

2
BK2p0

24z2D , ~B5!
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R3354V24V8222V23V922V22f 21f 91p0
2V22$~p0

22A!yu1~p0
22B!zu%

12V22f 21f 8p0
2$~p0

22A!y1~p0
22B!z%, ~B6!

R4454V24V8222V23V922V22f 21f 91p0
22V22$~p0

22P!yv1~p0
22Q!zv%

12V22f 21f 8p0
2$~p0

22Q!z1~p0
22P!y%, ~B7!

R3454V23V922V24V8222V22f 21f 91p0
2V23V8$~p0

22A!y1~p0
22B!z%

2p0
2V23V8$~p0

22P!y1~p0
22Q!z%1

1

2
p0

2V22$~p0
22A!yv1~p0

22B!zv%

1
1

2
p0

2V22$~p0
22P!yu1~p0

22Q!zu%1p0
2f 21f 8V22$~p0

22A!y1~p0
22B!z%

1p0
2f 21f 8V22$~p0

22P!y1~p0
22Q!z%, ~B8!

R145p0
3f 21V22$~p0

22a!yv1~p0
22b!zv%2p0

21f V23V8~Pu2Av!

22p0
21f 8V22~Pu2Av!2

1

2
p0

21f V22~Pu2Av!v

2
1

2
p0

3f 21V22H p0
22Pzz2PzKp0

23z1PKp0
232

1

2
PK2p0

24y2J
2

1

2
p0

3f 21V22H QzKp0
23y2p0

22Qyz2
1

2
QK2p0

24yzJ , ~B9!

R2452p0
3f 21V22$~p0

22a!zv2~p0
22b!yv%2p0

21f V23V8~Qu2Bv!

22p0
21f 8V22~Qu2Bv!2

1

2
p0

21f V22~Qu2Bv!v

2
1

2
p0

3f 21V22H p0
22Qyy2QyKp0

23y1QKp0
232

1

2
QK2p0

24z2J
2

1

2
p0

3f 21V22H PyKp0
23z2p0

22Pyz2
1

2
PK2p0

24yzJ , ~B10!

R115V22f 22$p0
4~p0

22a!zz2p0
4~p0

22a!yy1Kzp0
3~p0

22a!z2Kyp0
3~p0

22a!y%

1V22f 22$2p0
4~p0

22b!yz1Kzp0
3~p0

22b!y1Kyp0
3~p0

22b!z%

1V22f 22K1~p0
2V23V81p0

2f 21f 8V22!$3p0
22Ay22AKp0

23y22BKp0
23z1p0

22Bz%

2~p0
2V23V82p0

2f 21f 8V22!$3p0
22Py22PKp0

23y22QKp0
23z1p0

22Qz%

2
1

2
p0

21V22Kz~Bv1Qu!1V22S Ayv2
1

2
AvKp0

21y1Puy2
1

2
PuKp0

21yD
22V22auv22V22f 22f 8212V24V8222V22f 21f 912V23V9

22V23V8~au2av!22V22f 21f 8~av1au!, ~B11!
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R225V22f 22$p0
4~p0

22a!zz2p0
4~p0

22a!yy1Kzp0
3~p0

22a!z2Kyp0
3~p0

22a!y%

1V22f 22$2p0
4~p0

22b!yz1Kyp0
3~p0

22b!z1Kzp0
3~p0

22b!y%1V22f 22K

1~p0
2V23V81p0

2f 21f 8V22!$3p0
22Bz22BKp0

23z22AKp0
23y1p0

22Ay%

2~p0
2V23V82p0

2f 21f 8V22!$3p0
22Qz22QKp0

23z22PKp0
23y1p0

22Py%

2
1

2
p0

21V22Ky~Av1Pu!1V22S Bzv2
1

2
BvKp0

21z1Quz2
1

2
QuKp0

21zD
12V22auv22V22f 22f 8212V24V8222V22f 21f 912V23V9

12V23V8~au2av!12V22f 21f 8~av1au!, ~B12!

R125V23V8~Az1By!2V23V8~Pz1Qy!12V23V8~bv2bu!

22V22buv22V22f 21f 8~bu1bv!1V22f 21f 8~Az1By!

1V22f 21f 8~Qy1Pz!1
1

2
V22~Azv1Byv!1

1

2
V22~Pzu1Qyu!. ~B13!
t t
n
q
e
e

m

Here the subscriptsy,z,u,v indicate partial differentiation
with respect to these variables, differentiation with respec
v is denoted by a prime andK is the constant introduced i
Eq. ~3.4!. Using the above Ricci tensor components and E
~3.2!, ~3.3!, ~5.11! it is easily checked that the first of th
field equations ~2.11! is satisfied provided we choos
A,B,P,Q to satisfy the Cauchy-Riemann equations

~p0
22A!z5~p0

22B!y , ~p0
22A!y52~p0

22B!z , ~B14!

~p0
22P!z5~p0

22Q!y , ~p0
22P!y52~p0

22Q!z . ~B15!

Next with A,B,P,Q satisfying these equations we find fro
the remaining two equations in~2.11! that the conditions
06403
o

s.

p0
24AK5~p0

22a!yu1~p0
22b!zu , ~B16!

p0
24PK5~p0

22a!yv1~p0
22b!zv , ~B17!

p0
24BK52~p0

22a!zu1~p0
22b!yu , ~B18!

p0
24QK52~p0

22a!zv1~p0
22b!yv , ~B19!

Pu5Av , Qu5Bv , ~B20!

are sufficient to haveqa[0 andpab50 except for
p115S 1

A2
R22Ṙp0

21R22f 21f 8p0
2D $3p0

22Ay22AKp0
23y22BKp0

23z1p0
22Bz%

2S 1

A2
R22Ṙp0

22R22f 21f 8p0
2D $3p0

22Py22PKp0
23y22QKp0

23z1p0
22Qz%

2
1

2
R22Kp0

21z~Bv1Qu!1R22S Ayv2
1

2
AvKp0

21y1Puy2
1

2
PuKp0

21yD
1R22f 2$p0

4~p0
22a!zz2p0

4~p0
22a!yy1Kzp0

3~p0
22a!z2Kyp0

3~p0
22a!y%

1R22f 2$2p0
4~p0

22b!yz1Kzp0
3~p0

22b!y1Kyp0
3~p0

22b!z%22R22avu

1
2

A2
R22Ṙ~av2au!22R22f 21f 8~av1au!, ~B21!
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p225S 1

A2
R22Ṙp0

21R22f 21f 8p0
2D $3p0

22Bz22BKp0
23z22AKp0

23y1p0
22Ay%

2S 1

A2
R22Ṙp0

22R22f 21f 8p0
2D $3p0

22Qz22QKp0
23z22PKp0

23y1p0
22Py%

2
1

2
R22Kp0

21z~Av1Pu!1R22S Bzv2
1

2
BvKp0

21z1Puz2
1

2
QuKp0

21zD
1R22f 2$p0

4~p0
22a!zz2p0

4~p0
22a!yy1Kzp0

3~p0
22a!z2Kyp0

3~p0
22a!y%

1R22f 2$2p0
4~p0

22b!yz1Kzp0
3~p0

22b!y1Kyp0
3~p0

22b!z%

12R22avu1
2

A2
R22Ṙ~au2av!12R22f 21f 8~av1au!, ~B22!

p125
1

A2
R22Ṙ~Az1By2Pz2Qy!1R22f 21f 8~Az1By1Pz1Qy!1

1

2
R22~Azv1Byv1Pzu1Qyu!

1A2R22Ṙ~bv2bu!22R22buv22R22f 21f 8~bu1bv!. ~B23!
n
e

n

Following the procedure described in Sec. V we now co
structp̄5(p112p2222ip12)/2. Using the conditions abov
to cancel terms we arrive at

p̄5A2R22Ṙ$av2au2 i ~bv2bu!%

22R22f 21f 8$av1au2 i ~bv1bu!%

1
1

A2
R22Ṙ$Ay2Bz1Qz2Py2 i ~Az1By2Pz2Qy!%

22R22~auv2 ibuv!

1R22f 21f 8$Ay2Bz1Py2Qz2 i ~Az1By1Pz1Qy!%

1
1

2
R22$Ayv2Bzv1Pyu2Qzu

2 i ~Azv1Byv1Pzu1Qyu!%. ~B24!

We want to writep̄ in the form given in Eq.~5.26! for some
analytic functionG. Before we try to do this we note that o
account of the conditionsPu5Av , Qu5Bv we can write

A5Fu , P5Fv , ~B25!

B5Gu , Q5Gv , ~B26!

for some functionsF(y,z,u,v), G(y,z,u,v) which satisfy
the Cauchy-Riemann equations

~p0
22F !y52~p0

22G!z , ~p0
22F !z5~p0

22G!y .
~B27!

Substituting these into Eq.~B24! gives
06403
-
p̄5

1

A2
R22Ṙ$Fuy2Guz1Gvz2Fvy

2 i ~Fuz1Guy2Fvz2Gvy!%

1R22f 21f 8$Fuy2Guz1Fvy2Gvz

2 i ~Fuz1Guy1Fvz1Gvy!%

1R22$Fuyv2Guvz2 i ~Fuvz1Guvz!%

1A2R22Ṙ$av2au2 i ~bv2bu!%

22R22f 21f 8$av1au2 i ~bv1bu!%

22R22~auv2 ibuv!. ~B28!

In order to writep̄ in the required form we choose

G5
1

2A2
p0

22f $Guz2Fuy2Gvz1Fvy

1 i ~Fuz1Guy2Fvz2Gvy!%

2
1

A2
p0

22f $av2au1 i ~bu2bv!%. ~B29!

Noting that D5A2]v we find that thisG does satisfy Eq.
~5.26! with p̄ given by~B28! and f 8Þ0 provideda, b take
the following form:

a5
1

2
~Fy2Gz!1q~y,z,u!, b5

1

2
~Fz1Gy!1r ~y,z,u!.

~B30!
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Hereq, r satisfy the Cauchy-Riemann equations

~p0
22q!y52~p0

22r !z , ~p0
22q!z5~p0

22r !y . ~B31!

We remark that this is the first time we have made use of
fact that f 8Þ0. If f 850 thena, b have a different form to
that given in the last equation. Thus we emphasize that
analysis which follows does not apply iff 850. Whena, b
are given by these equations it is straightforward to ch
using the various Cauchy-Riemann equations thatpab is
trace-free and the conditions~B.16!–~B.19! are identically
satisfied. Substituting the above expressions fora, b into
Eq. ~B29! yields
,

06403
e

e

k

G5
1

A2
p0

22f ~qu1 ir u!. ~B32!

With k given by the first of Eqs.~5.22! it is trivial to show
that G satisfies the wave equation~4.25!. Now A,B,P,Q do
not appear on the right-hand side of Eq.~B32! and hencea1

A ,
a2

A do not contribute toG. Thus since the perturbed shear a
anisotropic stress can both be written in terms ofG we con-
clude thata1

A , a2
A are pure gauge terms.
ity
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