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Symmetry-breaking mechanism for the Z4 general-covariant evolution system

C. Bona, T. Ledvinka, C. Palenzuela, and M. Zˇ áček
Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07071 Palma de Mallorca, Spain

~Received 14 July 2003; published 26 March 2004!

The general-covariant Z4 formalism is further analyzed. The gauge conditions are generalized with a view
to numerical relativity applications and the conditions for obtaining strongly hyperbolic evolution systems are
given both at the first and the second order levels. A symmetry-breaking mechanism is proposed that allows
one, when applied in a partial way, to recover previously proposed strongly hyperbolic formalisms, like the
BSSN and the Bona-Masso´ formulas. When applied in its full form, the symmetry-breaking mechanism allows
one to recover the full five-parameter family of first order KST systems. Numerical codes based in the
proposed formalisms are tested. A robust stability test is provided by evolving random noise data around
Minkowski space-time. A strong field test is provided by the collapse of a periodic background of plane
gravitational waves, as described by the Gowdy metric.
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I. INTRODUCTION

The waveform emitted in the inspiral and merger of
relativistic binary is a theoretical input crucial to the succe
of the laser interferometry gravitational laboratories@1–4#.
Although the regular orbiting phase can be treated with g
accuracy by well-known analytical perturbation methods,
later phases belong clearly to the strong field regime of ei
a black hole or a neutron star collision, so that a compu
tional approach is mandatory. This kind of computation
effort has been the objective of the Binary Black Hole~BBH!
Grand Challenge@5# and other world wide collaborations
The resulting numerical codes are based on the so-ca
Arnowitt-Deser-Misner~ADM ! formalism @6# for the Ein-
stein field equations, where only a subset of the equations
actually used for evolution whereas the remaining ones
considered as constraints to be imposed on the initial d
only ~free evolution approach@7#!.

It is clear that, by taking the constraints out of the evo
tion system, one is extending the solution space. This ex
sion is the crucial step that opened the way to new hyp
bolic formalisms after the seminal work of Choquet-Bruh
and Ruggeri@8#, using the constraints to modify the evolu
tion system in many different ways@9–18#, even taking ad-
ditional derivatives@8,19,20#. These formalisms can be inte
preted as providing many nonequivalent ways of extend
the solution space of Einstein’s equations with at least
common feature: constraint equations are left out of the fi
evolution system.

This means that the resulting systems do have an
tended solution space, which includes constraint-violat
solutions in addition to the solutions that verify the origin
Einstein’s equations. As far as the constraints are first in
grals of the extended evolution system, Einstein’s soluti
could be computed by solving the constraints equations o
for the initial data~free evolution!. But, unless some enforc
ing mechanism is used during the subsequent time evolu
numerical errors will activate constraint-violating mode
Numerical simulations can deal with such modes, at le
when the deviations from Einstein’s solutions are moder
But it happens that large deviations are usually associ
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with instabilities of constraint-violating modes, leading
code crashing.

In particular, numerical codes based on these new hy
bolic formalisms happen to be quite intolerant to violatio
of the Hamiltonian constraint in the initial data. This is
serious drawback if one is planning to use the results of
analytical approximation to the regular orbiting phase o
binary system as initial data for a numerical simulation of t
final ringdown and merger. The numerical code will cra
before any template for the gravitational wave emiss
could be extracted. This is because the analytical data
just a good approximation, so that the energy constraint d
not hold exactly and the code is intolerant to that kind
‘‘off-shell’’ initial data. Although there can be other options
we claim that a numerical code tolerant to constraint vio
tion would be undoubtedly the best alternative.

There have been some attempts in that direction. In R
@21# the technique of Lagrange multipliers was used for
cluding the constraints into the dynamical system. The
tended system includes the Lagrange multipliers as a
tional dynamical fields (l system!. A further step along that
direction is given in Ref.@22#, where the extended system
‘‘adjusted’’ by further combining the evolution equation
with the constraints, including then many extra arbitrary p
rameters. In both cases, the goal is to enforce the constr
in a dynamical way. One can monitor the errors by looking
the ‘‘subsidiary system,’’ which can be derived from Bianc
identities and can be interpreted as the evolution system
constraint deviations. Parameters are adjusted in a way
that the characteristic speeds of the subsidiary system
either real and non-zero~so that the corresponding erro
propagate away to the boundaries! or they have the right sign
in the imaginary part to enforce damping~instead of explod-
ing! the constraint deviations.

A simpler option~but not the only one, see for instanc
@24#! for including the constraints into the evolution syste
would be the general-covariant extension of the Einst
field equations proposed recently~Z4 system! @25#:

Rmn1¹mZn1¹nZm58 pS Tmn2
1

2
TgmnD , ~1!
©2004 The American Physical Society36-1
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so that the full set of dynamical fields consists of the p
$gmn ,Zm%. The solutions of the original field equations ca
then be recovered by imposing the algebraic constraint

Zm50 ~2!

and the evolution of this constraint is subject to the line
homogeneous equation

h Zm1RmnZn50, ~3!

which can be easily obtained from Eq.~1! allowing for the
contracted Bianchi identities. Here again, by allowing
non-zero values of the extra four-vectorZm , one is extending
the solution space. But now, as we will see in the followi
section, one is using all the field equations to evolve the p
$gmn ,Zm%: no equation is taken out of the system and, a
result, general covariance is not broken. The initial me
gmn can be taken to be the one arising from analytical
proximations and the initial four-vectorZm can be taken to
vanish without any kind of inconsistence: one can even
the evolving values ofZm during the calculation as a goo
covariant indicator of the quality of the approximation.

Notice that Eq.~3! plays the role here of the subsidia
system. It is adjustedab initio, without any parameter fine
tuning, because light speed is the only characteristic spee
Eq. ~3!. Constraint deviations, which are non-vanishing v
ues ofZm, will then propagate to the boundaries. The fa
that our constraints~2! are algebraic will greatly simplify the
task of providing outgoing boundary conditions that let t
constraint deviations get out of the numerical grid@23#.

Besides these considerations, there are other impo
theoretical issues that we will address in this work. The fi
one is a thorough analysis of the hyperbolicity of the evo
tion system. This is more or less straightforward for the fi
order version of the system, as discussed in Appendix B,
it is not so well known in the case of the second order v
sion, discussed in Appendix A, where we have used the
sults of Kreiss and Ortiz@26# that recently shed light on thi
issue, which is crucial to discuss the well posedness@27# of
the evolution system~see also@28# for similar results for the
BSSN system!.

The second theoretical point that we want to stress he
that the Z4 system~1! is not just one more hyperbolic for
malism to be added to the long list. As far as it is the on
general covariant one, the question arises whether the e
ing non-covariant hyperbolic formalisms@9–18# can be re-
covered from ~1! by some ‘‘symmetry-breaking’’ mecha
nism. We have extended in this sense a previous work@29#
where the deep relationship between the more widely u
hyperbolic formalisms was pointed out. A partial symme
breaking mechanism is presented in Sec. II for recovering
second order systems@11,12# and for the first order system
containing additional dynamical fields@9,10# in Sec. III.
These sections are followed by another one containing
merical simulations that have been proposed recently@30–
32# as standard testbeds for numerical relativity codes
more general symmetry breaking mechanism is propose
Appendix C to recover first order formalisms which do n
contain additional dynamical fields@13–18#.
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II. 3¿1 EVOLUTION SYSTEMS

The general-covariant equations~1! can be written in the
equivalent 311 form @25# ~the Z4 evolution system!

~] t2Lb!g i j 522aKi j ~4!

~] t2Lb!Ki j 52¹ia j1a@ (3)Ri j 1¹iZj1¹jZi22Ki j
2

1~ tr K22Q!Ki j 2Si j 1
1
2 ~ tr S2t!g i j #

~5!

~] t2Lb!Q5
a

2
@ (3)R12¹kZ

k1~ tr K22Q!tr K2tr~K2!

22Zkak /a22t# ~6!

~] t2Lb!Zi5a@¹j~Ki
j2d i

j tr K !

1] iQ22Ki
jZj2Qa i /a2Si # ~7!

where we have noted

Q[aZ0, t[8pa2T00, Si[8paT i
0 , Si j [8pTi j .

~8!

In the form ~4!–~7!, it is evident that the Z4 evolution
system consists only of evolution equations. The only c
straints~2!, that can be translated into

Q50, Zi50, ~9!

are algebraic so that the full set of field equations~1! is
actually used during evolution. This is in contrast with t
ADM evolution system@6#, which can be recovered from
Eqs.~4!–~7! by imposing Eq.~9!. The first two equations~4!,
~5! would transform into the well known ADM evolution
system, whereas the last two equations~6!, ~7! would trans-
form into the standard energy and momentum constrai
namely,

(3)R1tr2K2tr~K2!52t ~10!

¹j~Ki
j2d i

j tr K !5Si . ~11!

In the ‘‘free evolution’’ADM approach@7#, both Eqs.~10!
and ~11! were taken out of the evolution system: they we
imposed only on the initial data. This was consistent beca
~10!, ~11! are first integrals of the ADM evolution system
but one cannot avoid violations of~10!, ~11! due to errors in
numerical simulations or approximated initial data, as sta
before. As a result, numerical simulations will deal as w
with extended solutions. The main difference with the
case, aside from covariance considerations, is that in the
case the quantitiesZm that describe constraint deviations a
included in the evolution system.

One can also ask in this context what happens if, inst
of imposing the full set~9!, one imposes the single conditio

Q50, ~12!
6-2



ic

on

e

io
in
In

en

n

-
v

on
ed

em

arts

It
this
er-

r

SN
al-

ed
ced
al
ns

e

is

u-
for
te

in

ry
y
al
ly

e

SYMMETRY-BREAKING MECHANISM FOR THE Z4 . . . PHYSICAL REVIEW D 69, 064036 ~2004!
obtaining a system with only three supplementary dynam
variablesZi of the kind determined in@29# ~the Z3 system!:
the one corresponding to the parameter choice

m52, n5n50 ~13!

~we follow the notation of@29#!.
One can easily understand two of the three conditi

~13!, namely,

m52, n5n, ~14!

because this amounts to the ‘‘physical speed’’ requirem
for the degrees of freedom not related to the gauge@29# and
nothing else can arise from the general covariant equat
~1! which are at our starting point. But values of the rema
ing parametern other than zero would be very interesting.
particular, the choice

m52, n5n5
4

3
~15!

would lead to the evolution system which is quasiequival
~equivalent principal parts@29#! to the well known BSSN
system@11,12#.

At this point, let us consider the following recombinatio
of the dynamical fields:

K̃ i j [Ki j 2
n

2
Qg i j ~16!

so that the Z4 system~4!–~7! can be written in a one
parameter family of equivalent forms just by replacing e
erywhere

Ki j →K̃ i j 1
n

2
Qg i j . ~17!

This kind of transformations leave invariant the soluti
space of the system~it is actually the same system express
in a different set of independent fields!. But if the suppres-
sion of theQ field ~12! is made after the replacement~17!,
one gets a one-parameter family of non-equivalent syst
~Z3 evolution systems!, namely,

~] t2Lb!g i j 522aKi j ~18!

~] t2Lb!Ki j 52¹ia j1a@ (3)Ri j 1¹iZj1¹jZi22Ki j
2

1tr KKi j 2Si j 1
1
2 ~ tr S2t!g i j #

2
n

4
a@ (3)R12¹•Z1tr2K2tr~K2!

22~a21ak!Z
k22t#g i j ~19!

~] t2Lb!Zi5a@¹j~Ki
j2d i

j tr K !22Ki
jZj2Si # ~20!

where we have suppressed the tilde overKi j , allowing for
the vanishing ofQ.

The resulting system~18!–~20! is quasiequivalent
~equivalent principal parts! to the ‘‘system A’’ in Ref. @29#,
06403
al

s

nt

ns
-

t

-

s

verifying the ‘‘physical speed’’ requirement~14!. As we have
already mentioned, it follows that the particular case

n5
4

3
~21!

is quasiequivalent to the BSSN system@11,12#. The system
~18!–~21! can be decomposed into trace and trace-free p

e4f5g1/3, g̃ i j 5e24fg i j ~22!

K5g i j Ki j , Ãi j 5e24f~Ki j 2
1
3 Kg i j ! ~23!

G̃ i52g̃ ikg̃k j
, j12Zi ~24!

to follow the correspondence with BSSN more closely.
must be pointed out, however, that one does not get in
way the original BSSN system: there is actually one diff
ence in the lower order terms~only the principal parts are
equivalent!. The difference is in the term of the form

1
n

2
akZ

kg i j ~25!

in the evolution equation~19!, which is missing in the origi-
nal BSSN system@12#. This lower order term is needed fo
consistency with the general covariant equations~1!.

We have seen then how the widely used ADM and BS
systems can be obtained from the more general Z4 form
ism. The equivalence transformation~16! plays the crucial
role because suppressing theQ field ~12! produces a sort of
symmetry breaking: different values of the parametern will
lead to evolution systems that can no longer be transform
one into another once the set of dynamical fields is redu
by the disappearance ofQ. It can be regarded as a parti
symmetry-breaking mechanism for the original equatio
~4!–~6!. The terms ‘‘partial’’ refers to the fact that only th
quantityQ is suppressed, while theZi are kept into the sys-
tem~18!–~20!. A complete symmetry-breaking mechanism
discussed in Appendix C.

In Sec. IV we present the results of some test-bed sim
lations for the ADM and Z4 systems. We have considered
simplicity only vacuum space-times with the time coordina
conditions

~] t2Lb!ln a52a@ f tr K2lQ# ~26!

which are a further generalization of the one proposed
@25#, where

f 51, l52. ~27!

This two-parameter family of coordinate conditions is ve
interesting from the point of view of numerical relativit
applications. But it is also interesting from the theoretic
point of view, because it provides the opportunity to app
the recent results of Kreiss and Ortiz@26# on the hyperbolic-
ity of the ADM system in a wider context. In Appendix A w
will use the same formulation~see Ref.@27# for more details!
6-3
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BONA et al. PHYSICAL REVIEW D 69, 064036 ~2004!
to study the hyperbolicity of the Z4 system with the tw
parameter family of dynamical gauge conditions~26!.

III. FIRST ORDER SYSTEMS

A first order version of the Z4 evolution system~4!–~7!
can be obtained in the standard way by considering the
space derivatives

Ak[ak /a, Dki j[
1

2
]kg i j ~28!

as independent dynamical quantities with evolution eq
tions given by

] tAk1]k@a~ f tr K2lQ!#50 ~29!

] tDki j1]k@aKi j #50 ~30!

~we will consider in what follows the vanishing shift case f
simplicity!, so that the full set of dynamical fields can b
given by

u5$a, g i j , Ki j , Ak , Dki j , Q, Zk% ~31!

~38 independent fields!.
Care must be taken when expressing the Ricci tensor(3)Ri j

in Eq. ~5! in terms of the derivatives ofDki j , because as fa
as the constraints~28! are no longer enforced, the identity

] rDsi j5]sDri j ~32!

cannot be taken for granted in first order systems. As a c
sequence of this ordering ambiguity of second derivativ
the principal part of the evolution equation~5! can be written
in a one-parameter family of non-equivalent ways, name

] tKi j 1]k@al i j
k #5 . . . ~33!

l i j
k [2G i j

k 1
12z

2
~Di j

k1D ji
k2d i

kDr j
r2d j

kDri
r !

1
1

2
d i

k~Aj1D jr
r 22Zj !1

1

2
d j

k~Ai1Dir
r 22Zi ! ~34!

so that the parameter choicez511 corresponds to the stan
dard Ricci decomposition

(3)Ri j 5]kG
k
i j 2] iG

k
k j1G r

rkGk
i j 2Gk

ri G
r
k j ~35!

whereas the opposite choicez521 corresponds to the d
Donder–Fock@31,32# decomposition

(3)Ri j 52]kD
k
i j 1] ( iG j )k

k22Dr
rkDki j14Drs

iDrs j

2G irsG j
rs2G ri j G

rk
k ~36!

which is most commonly used in numerical relativity code
Note that this ambiguity does not affect the principal part
Eq. ~6!, namely,

] tQ1]k@aVk#5 . . . ~37!
06403
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where we have noted

Vk[Dkr
r2Dr

rk2Zk . ~38!

We are now in a position to discuss the hyperbolicity
this first order version of the Z4 systems. This is done in
straightforward way in Appendix A.

In order to compare the new first order system with t
Bona-Masso´ ones@9,10# we could either apply here again th
recombination~16! followed by the suppression~12! of the
Q field or we could take directly a first order version of th
Z3 system ~18!–~20!. Equations ~18!, ~20!, ~30! do not
change, but Eqs.~29!, ~33!, ~34! are replaced in this case b

] tAk1]k@a f tr K#50 ~39!

] tKi j 1]k@alk
i j #5 . . . ~40!

l i j
k [2G i j

k 2
n

2
Vkg i j 1

1

2
d i

k~Aj1D jr
r22Zj !

1
1

2
d j

k~Ai1Dir
r22Zi !

1
12z

2
~Di j

k1D ji
k2d i

kDr j
r2d j

kDri
r !. ~41!

The full Bona-Masso´ family of evolution equations is recov
ered for thez521 case, where~41! can be written as

l i j
k [D i j

k 2
n

2
Vkg i j 1

1

2
d i

k~Aj2D jr
r12Vj !

1
1

2
d j

k~Ai2Dir
r12Vi ! ~42!

with Vk defined by Eq.~38!.
In the following section, we will compare the behavior

both families in numerical simulations. To this end, we w
also consider the first order version of the ADM syste
which can be obtained from the previous versions just
suppressing theZi eigenfields,

Zi50. ~43!

Before proceeding to the test section, let us just ment
that the same game of recombining theQ field with Ki j ~17!
before suppressing it can also be played with theZk fields
and Dki j in first order systems. As stated before, this w
provide a complete symmetry-breaking mechanism. We w
do that in Appendix C, where we will show how the we
known KST system@17# can also be recovered in that wa
from the Z4 framework discussed in this paper.

IV. TESTING SECOND AND FIRST ORDER SYSTEMS

We will present in this section a couple of numerical e
periments which have been suggested very recently@30# as
standard testbeds for numerical relativity codes. Our philo
phy is that all the tests could be done ‘‘out of the box’’ b
using well known numerical methods and the equations
6-4
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are fully presented here: anyone should be able to reprod
our results without recourse to additional information.

We will use the standard method of lines@33# as a finite
differencing algorithm, so that space and time discretizat
will be dealt with separately. Space differencing will cons
of taking centered discretizations of derivatives in our thr
dimensional~3D! grid. We use the standard centered sten
for first derivatives and we make sure that second der
tives, when needed, are coded also as centered derivativ
these first derivatives, even if it takes up to five point alo
every axis. In order to avoid boundary effects, the grid h
the topology of a three-torus, with periodic boundaries alo
every axis. The time evolution will be dealt with a third ord
Runge-Kutta algorithm. The time step dt is kept small
enough to avoid an excess of numerical dissipation
could distort our results in long runs.

A. Robust stability test

Let us consider a small perturbation of Minkowski spac
time which is generated by taking random initial data
every dynamical field in the system. The level of the rand
noise must be small enough to make sure that we will k
in the linear regime even for a thousand of crossing tim
~the time that a light ray will take to cross the longest w
along the numerical domain!. This is in keeping with the
theoretical framework of Appendix A, where only linear pe
turbations around the Minkowski metric are considered.

We have plotted in Fig. 1 our results for the standa
harmonic case~27!. We see the expected polynomial~linear
in this case! growth @27# of the weakly hyperbolic ADM
system. Notice that modifications of the lower order ter
~the ones not contributing to the principal part! could lead to
catastrophic exponential growth, revealing an ill-posed e
lution system@27#. In this paper, however, we will limit our-
selves to discussing the linear regime as an hyperbolicity

FIG. 1. The maximum of~the absolute value of! tr K is plotted
against the number of crossing times in a logarithmic scale.
initial level of random noise remains constant during the evolut
in the case of strongly hyperbolic systems~only the second orde
Z4 system is shown here for clarity!. In the case of weakly hyper
bolic systems, like the ADM second order system ADM-2 or its fi
order version ADM-1, a linear growth is detected up to the po
where the codes crash. Notice that the second order version is
robust, an order of magnitude, than the first one. The simulat
are made with 50 grid points with dt50.03 dx.
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for the principal part of the system. In this sense, the lin
growth of the ADM plots in Fig. 1 confirms the weakly hy
perbolic character of the ADM system.

The Z4 system shows instead the no-growth behavior,
dependent of the time resolution~see Figs. 1 and 2!, which
one would expect from a strongly hyperbolic system. T
same qualitative behavior is shown by the corresponding
systems in Eqs.~18!–~20!, including the one withn54/3
that is quasiequivalent to the BSSN system.

We also show in Fig. 3 the same results, but they
distorted by using too much numerical dissipation: the ti
evolution here is dealt with the second order ICN meth
rather than the third order Runge-Kutta method of Fig.
After hundreds of crossing times, the numerical dissipat
manages to curve the linear growing of ADM and the no
level goes down in the Z4 case. This is just a numeri

e
n

t
t
ore
s

FIG. 2. Same as Fig. 1, but with less time resolution (t
50.06 dx with the same dx). There is a slight amount of dissipatio
that delays the crashing of the ADM codes; this is especially vis
for the second order version ADM-2, which keeps being more
bust than its first order counterpart ADM-1. The behavior of the
code keeps unaffected.

FIG. 3. Array of results of numerical experiments in the gau
parameter plane (f ,l), by using the Z4 system. A triangle stand
for the linear growth of noise~weak hyperbolicity!, whereas a cross
stands for a constant noise level~strong hyperbolicity!. This is con-
sistent with the strong hyperbolicity requirements predicted in A
pendix B: eitherf 51 andl52, or f Þ1 and f .0.
6-5
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artifact, because in the linear regime there is no phys
damping mechanism for strongly hyperbolic systems in
three-torus, where periodic boundary conditions do not al
propagation outside the domain. This is why we will use h
the third order Runge-Kutta method instead of the IC
method proposed in@30#.

In Fig. 4 we explore parameter space in the (f ,l) plane. If
we interpret the constant behavior in Fig. 1 as revealin
strongly hyperbolic system and the polynomial growth~lin-
ear in this case! in Fig. 1 as revealing a weakly hyperbol
system, the results of our numerical experiment fully ag
with the theoretical results presented in Appendix A.

B. Gowdy waves

In order to test the strong field regime, let us consider n
the Gowdy solution@34#, which describes a space-time co
taining plane polarized gravitational waves~see also@35# for
an excellent review of these space-times as cosmolog
models!. The line element can be written as

ds25t21/2eQ/2~2dt21dz2!1t~ePdx21e2Pdy2! ~44!

where the quantitiesQ and P are functions oft and z only
and periodic inz, so that Eq.~44! is well suited for finite
difference numerical grids with periodic boundary conditio
along every axis. Following@30#, we will choose the particu-
lar case

P5J0~2pt !cos~2pz! ~45!

Q5pJ0~2p!J1~2p!

22ptJ0~2pt !J1~2pt !cos2~2pz!

12p2t2@J0
2~2pt !1J1

2~2pt !

2J0
2~2p!2J1

2~2p!# ~46!

so that it is clear that the lapse function

FIG. 4. Same as Fig. 1, but using the second order ICN met
to evolve in time instead of a third order Runge-Kutta algorith
Numerical dissipation is severely distorting the plots, by mask
the linear growth in the weakly hyperbolic case and dramatic
reducing the initial noise level in the strongly hyperbolic case. N
tice than both dt and dx are the same as in Fig. 1 and we are us
also the same space discretization algorithm: only the time ev
tion method has changed.
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a5t21/4eQ/4 ~47!

is constant everywhere at any timet0 at which J0(2pt0)
vanishes. In@30# the initial slice t5t0 was chosen for the
simulation of the collapse, where 2pt0 is the 20th root of the
Bessel functionJ0, i.e. t0.9.88.

Let us now perform the following time coordinate tran
formation:

t5t0e2t/t0, t05t0
3/4eQ(t0)/4.472, ~48!

so that the expanding line element~44! is seen in the new
time coordinatet as collapsing towards thet50 singularity,
which is approached only in the limitt→`. This ‘‘singular-
ity avoidance’’ property of thet coordinate is not surprising
if one realizes that the resulting slicing byt5const surfaces
is harmonic@36#.

This means that we can launch our simulations start
with a constant lapsea051 at t50 (t5t0) with the gauge
parameter choicef 51 ~which means alsol52 in the Z4
case!. Notice that the harmonic time coordinatet is not the
proper time and it does not coincide with the number
crossing times, due to the collapse of the lapse. Remem
also that the local value of light speed~proper distance ove
coordinate time! is 6a. Even though in our plotst goes up
to 10000, the light ray manages to cross the domain in thz
direction onlyt0.9.88 times, as it follows from the origina
form ~44! of the line element.

We plot in Fig. 5 the maximum values of the lapse fun
tion as time goes on, measured in terms of the harmonic t
coordinatet. Notice the huge magnitude of the dynamic
space we are covering, asa goes down~collapse of the
lapse! by the factor of one billion during the simulation. Th
is a real challenge for numerical codes and all of them
doing quite well untilt51000. The behavior at later times
dominated by the lower order terms: coordinate light spe
(6a) is so small that the dynamics of the principal part
frozen and care must be taken to avoid too big time steps.

d
.
g
y
-

u-

FIG. 5. Time evolution of~the maximum value of! the lapse
function a in a collapsing Gowdy space-time~harmonic slicing!.
Notice that the harmonic time coordinatet is not the proper time
and it does not coincide, by a 1029 factor, with the number of
crossing times due to the collapse of the lapse, which is visible h
6-6
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have not seen any of the codes crashing even in very
simulations~up tot560.000) when the size of the time ste
is kept under control.

In Fig. 6 we use the quantityQ, as computed from Eq
~6!, to monitor the quality of the simulation both in the Z
case~4!–~7!, whereQ is a dynamical field, and in the othe
two second order cases~ADM and Z3-BSSN!, whereQ is no
longer a dynamical quantity but can still be used as a g
measure of the error in the simulation. This makes it easie
perform convergence tests~second order convergence
shown in Fig. 7!. Notice that our Z3-BSSN code perform
here much better than the original BSSN code@12#, as re-
ported in@30#. This is mainly due to the fact that we are n
using here the conformal decomposition~22!–~24! which is
at odds with the structure of the line element~44!. This is
why we talk here about Z3-BSSN~18!–~21! instead of sim-
ply BSSN.

The same kind of comparison is made in Fig. 8 for t
first order version of the ADM and Z4 codes, which show t

FIG. 6. The quantityQ is plotted as an indicator of the accu
mulated error of the simulations for the ADM, Z4 and Z3-BSS
second order forms. Even in this logarithmic scale, it can be cle
seen how the Z4 and Z3-BSSN codes perform much better than
ADM code: error differs by one order of magnitude att.1000.
The Z3-BSSN code gets closer to the Z4 code in the oscilla
phase~up to t.2000).

FIG. 7. Convergence test for the Z4 code. The three lines
respond to 50, 100 and 200 grid points. The quantityQ itself is a
direct measure of the error. In that logarithmic scale difference
log 4 correspond to dividing by four the error when doubling t
resolution. This second order convergence rate is clearly show
the figure.
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same behavior as their second order counterparts in Fig
The third plot corresponds to the Z3 version of the Bon
Massócode, which can be obtained from Eqs.~39!–~41!,
with the parameter choicez521, n511. Notice that in the
oscillatory phase~up to t.2000) the Z3-BM code tends to
behave like the ADM code, whereas in Fig. 6 the Z3-BSS
code tends to behave more like the Z4 code.

Notice that the Z3 versions, when compared with bo
ADM and Z4, show a different behavior after the oscillato
phase:u grows at a much lower rate or even starts goi
down. This behavior is due to the extra terms that appea
the evolution equations forKi j after the symmetry breaking
which can be controlled by the parametern introduced in Eq.
~17!. This point is clearly shown in Fig. 9, where differen
choices ofn produce different behavior in the final collaps
phase~starting att.2000). This shows the relevance of th
recombination between the dynamical fields in numerical
plications, as pointed out in@17#. Further details and othe

ly
he

y

r-

f

in

FIG. 8. Same as Fig. 6, but with the first order versions of b
the ADM and Z4 codes, which behave in the same way as t
second order counterparts. The Z3-BM code here gets closer to
ADM code in the oscillatory phase~up to t.2000), in contrast to
the behavior of the Z3-BSSN code in Fig. 6.

FIG. 9. Same as Fig. 6, but with different values of the para
eter n arising from the symmetry breaking mechanism in the
codes. The differences show up in the collapse final phase~starting
at t.2000). Notice that the valuen54/3 corresponds to the Z3
BSSN case in Fig. 6, whereas the casen51 corresponds to~the
second order version of! the Z3-BM case in Fig. 8. First orde
versions~not shown! behave in the same way as their second or
counterparts shown here.
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numerical tests can be found in the webpage athttp://
stat.uib.es.
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APPENDIX A: HYPERBOLICITY OF THE SECOND
ORDER Z4 SYSTEM

Let us consider the linearized version of the Z4 syst
~4!–~7! around Minkowski space-time in order to study t
propagation of a plane wave in that background:

g i j 5d i j 12eiv•xĝ i j ~v,t ! ~A1!

a511eiv•xâ~v,t ! ~A2!

Ki j 5 iveiv•xK̂ i j ~v,t ! ~A3!

Q5 iveiv•xQ̂~v,t ! ~A4!

Zk5 iveiv•xẐk~v,t ! ~A5!

where we will take for simplicityb i50 and

vk5vnk , d i j ninj51. ~A6!

The Z4 system reads then

] tĝ i j 52 ivK̂ i j ~A7!

] tâ52 iv@ f tr K̂2lQ̂# ~A8!

] tQ̂52 iv@ tr ĝ2ĝnn2Ẑn# ~A9!

] tẐk52 iv@nk~ tr K̂2Q̂!2K̂k
n#

~A10!

] tK̂ i j 52 ivl̂ i j ~A11!

where we have noted

l̂ i j [ĝ i j 1ninj~ â1tr ĝ !2ni~ ĝ j
n1Ẑj !2nj~ ĝ i

n1Ẑi !
~12!

and where the symboln replacing an index means the co
traction with ni . It can be also expressed in matrix form
namely,

û5~ â,ĝ i j ,K̂ i j ,Q̂,Ẑk! ~A13!

] tû52 ivAû. ~A14!
06403
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The spectral analysis of the characteristic matrixA pro-
vides the following list of eigenvalues and eigenfields:

~a! Standing eigenfields~zero characteristic speed!

â2 f tr ĝ1l~ tr ĝ2ĝnn2Ẑn!, ĝn
'1Ẑ' ~A15!

where the symbol' replacing an index means the projectio
orthogonal toni .

~b! Light-cone eigenfields~characteristic speed61)

K̂''6ĝ'' ~A16!

K̂'
n 6Ẑ' ~A17!

Q̂6@ tr ĝ2ĝnn2Ẑn#. ~A18!

Notice that Eqs.~A16!–~A18! can be seen as the componen
of a tensor:

L̂ i j
6[@K̂ i j 2~ tr K̂22Q̂!ninj #6@ l̂ i j 2âninj #. ~A19!

~c! Gauge eigenfields~characteristic speed6Af )

Ĝ6[Af F tr K̂1
22l

f 21
Q̂G6F â1

2 f 2l

f 21
~ tr ĝ2ĝnn2Ẑn!G .

~A20!
From Eqs.~A.15!–~A.20! we can easily conclude@26,27#

the following:

i All the characteristic speeds are real~weak hyperbolicity
at least! if and only if f >0.

ii In the casef 50, the two components of the gauge pa
~A.20! are not independent, so that the total number of in
pendent eigenfields is 16 instead of the 17 required for str
hyperbolicity.

iii The casef 51 ~harmonic case! is special:
If lÞ2, then the gauge pair~A.20!, which can be previ-

ously rescaled by a (f 21) factor, is equivalent to Eq.~A.18!,
so that one has only 15 independent eigenfields.

If l52, then the quotient (22l)/( f 21) can take any
value, reflecting the degeneracy of the gauge and light c
eigenfields. One can then recover the full set of 17 indep
dent eigenfields~strong hyperbolicity!.

iv In all the remaining cases (f .0, f Þ1), the system is
strongly hyperbolic, as we can recover the full set of
independent eigenfields.

APPENDIX B: HYPERBOLICITY OF THE FIRST ORDER
Z4 SYSTEM

The principal part of the first order Z4 evolution syste
~4!–~7!, ~26!, ~29!–~30! can be written as~vanishing shift
case!

] tg i j 5 . . . , ] ta5 . . . ~B1!

] tQ1]k@a Vk#5 . . . ~B2!

] tZi1]k@a~d i
k~ tr K2Q!2K i

k !#5 . . . ~B3!
6-8



ith

la

rix

l-

ir
de-
ong

.

en-
ent

(

-

or

.

.
st
cter
a-

SYMMETRY-BREAKING MECHANISM FOR THE Z4 . . . PHYSICAL REVIEW D 69, 064036 ~2004!
] tAk1]k@a~ f tr K2lQ!#5 . . . ~B4!

] tDki j1]k@aKi j #5 . . . ~B5!

] tKi j 1]k@al i j
k #5 . . . ~B6!

where

l i j
k 5Dk

i j 2
11z

2
~Di j

k1D ji
k2d i

kDr j
r2d j

kDri
r !

1
1

2
d i

k~Aj2D jr
r12Vj !1

1

2
d j

k~Ai2Dir
r12Vi !

~B7!

Vk[Dkr
r2Drk

r2Zk . ~B8!

Now, if we consider the propagation of perturbations w
wavefront surfaces given by the unit~normal! vectorni , we
can express Eqs.~B1!–~B2! in matrix form

a21] tu1A~u!nk]ku5 . . . , ~B9!

where

u5$a, g i j , Ki j , Ak , Dki j , Q, Zk% ~B10!

~notice that derivatives tangent to the wavefront surface p
no role here!.

A straightforward analysis of the characteristic mat
A(u) provides the following list of eigenfields:

~a! Standing eigenfields~zero characteristic speed!

a, g i j , A' , D' i j , Ak2 f Dk1lVk ~B11!

~24 independent fields!, where the symbol' replacing an
index means the projection orthogonal toni :

D' i j [Dki j2nkn
rDri j . ~B12!

~b! Light-cone eigenfields~characteristic speed61)

L6
i j [@Ki j 2ninj tr K#6@ln

i j 2ninj tr ln# ~B13!

L6[u6Vn ~B14!

~12 independent fields!, where the symboln replacing the
index means the contraction withni

l i j
n [nkl i j

n . ~B15!

Gauge eigenfields~characteristic speed6Af )

G6[Af F tr K1
22l

f 21
QG6FAn1

2 f 2l

f 21
VnG . ~B16!

From Eqs.~B11!–~B16! we can easily conclude the fo
lowing:

~i! All the characteristic speeds are real~weak hyperbolic-
ity at least! if and only if f >0.
06403
y

~ii ! In the casef 50, the two components of the pa
~B.16! are not independent, so that the total number of in
pendent eigenfields is 37 instead of the 38 required for str
hyperbolicity.

~iii ! The case f51 ~harmonic case! is special:
If lÞ2, then the pair of fields~B.16! is the same as Eq

~B.14!, so that one has only 36 independent eigenfields.
If l52, then the quotient (22l)/( f 21) can take any

value due to the degeneracy of the gauge and light eig
fields. One can then recover the full set of 38 independ
eigenfields~strong hyperbolicity!.

~iv! The first order Z4 system described by Eqs.~B1!–
~B6! is strongly hyperbolic in all the remaining casesf
.0, f Þ1).

Notice also that the special~harmonic! casef 51, l52
has been shown in@25# to be symmetric hyperbolic for the
parameter choicez521. The corresponding energy func
tion can be written as

E[Ki j Ki j 1lki jlki j1~ tr K22Q!21AkAk1~Ak2Dkr
r

12Vk!~Ak2Dkr
r12Vk! ~B17!

but notice that this expression is far from being unique. F
instance, allowing for Eq.~B11!, the last term in Eq.~B17!
could appear with any arbitrary factor.

APPEDIX C: RECOVERING THE KST SYSTEMS

Let us start with the first order Z4 evolution system~4!–
~7!, ~26!, ~29!–~30! where the principal part is given by Eq
~B1!–~B8!. Now let us follow the two step ‘‘symmetry
breaking’’ process:

~i! Recombine the dynamical fieldsKi j , Dki j with Q and
Zi in a linear way,

K̃ i j 5Ki j 2
n

2
Qg i j , ~C1!

dki j52Dki j1hgk( iZj )1xZkg i j ,
~C2!

where we have used the notation of Ref.@17#, replacing only
their parameterg by 2n/2 for consistency. Notice that Eqs
~C1! and ~C2! are generic in the sense that it is the mo
general linear combination that preserves the tensor chara
of the dynamical fields under linear coordinate transform
tions.

~ii ! Suppress bothu andZi as dynamical fields, namely,

Q50, Zi50. ~C3!

In that way, the principal part~B1!–~B8! becomes

] tg i j 5 . . . , ] ta5 . . . ~C4!

] tAk1]k@a f tr K̃#50 ~C5!

] tdki j1] r@a$2dk
r K̃ i j 2x~K̃k

r 2dk
r tr K̃ !g i j

1hgk( i~K̃r
j )2d r

j )tr K̃ !%#5 . . . ~C6!
6-9
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] tK̃ i j 1]k@al i j
k #5 . . . ~C7!

2lk
i j 5dk

i j 2
n

4
~dkr

r2dr
rk!g i j 1

11z

2
~di j

k1dji
k!

2
12z

2
~d i

kdr j
r1d j

kdri
r !1d j

kS Ai1
1

2
dir

r D
1d i

kS Aj1
1

2
djr

r D ~C8!

for the reduced set of variables

u5$a, g i j , K̃ i j , Ak , dki j%. ~C9!

This provides a ‘‘dynamical lapse’’ version@18# of the
KST evolution systems. In order to recover the origin
‘‘densitized lapse’’ version, one must in addition integra
explicitly the dynamical relationship~26! between the lapse
and the volume element~remember that nowQ50). It can
be easily done in the case

f 52s5const, ~C10!

namely

] t~ag2s!50, ~C11!

so that the value ofa can be defined in terms ofg for every
initial condition. The same thing can be done withAi anddi ,
so that
9

06403
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Ai[sdir
r1 . . . ~C12!

and the set of dynamical fields is then further reduced to

u5$g i j , Ki j , dki j%. ~C13!

The principal part of the evolution system is then given
~we suppress the tildes over theKi j )

] tg i j 5 . . . ~C14!

] tdki j1] r@a$2dk
r Ki j 2x~Kk

r2dk
r tr K !g i j 1hgk( i~Kr

j )

2d j )
r tr K !%#5 . . . ~C15!

] tKi j 1]k@al i j
k #5 . . . ~C16!

2lk
i j 5dk

i j 2
n

4
~dkr

r2dr
rk!g i j 2

12z

2
~d i

kdr
r j 1d j

kdr
ri !

1
11z

2
~di j

k1dji
k!1

112s

2
~d i

kdjr
r1d j

kdir
r !

~C17!

which corresponds precisely to~the principal part of! the
original KST system@17#.
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