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Symmetry-breaking mechanism for the Z4 general-covariant evolution system
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The general-covariant Z4 formalism is further analyzed. The gauge conditions are generalized with a view
to numerical relativity applications and the conditions for obtaining strongly hyperbolic evolution systems are
given both at the first and the second order levels. A symmetry-breaking mechanism is proposed that allows
one, when applied in a partial way, to recover previously proposed strongly hyperbolic formalisms, like the
BSSN and the Bona-Masg$ormulas. When applied in its full form, the symmetry-breaking mechanism allows
one to recover the full five-parameter family of first order KST systems. Numerical codes based in the
proposed formalisms are tested. A robust stability test is provided by evolving random noise data around
Minkowski space-time. A strong field test is provided by the collapse of a periodic background of plane
gravitational waves, as described by the Gowdy metric.
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[. INTRODUCTION with instabilities of constraint-violating modes, leading to
code crashing.

The waveform emitted in the inspiral and merger of a In particular, numerical codes based on these new hyper-
relativistic binary is a theoretical input crucial to the succesgolic formalisms happen to be quite intolerant to violations
of the laser interferometry gravitational laboratorfds-4]. of the Hamiltonian constraint in the initial data. This is a
Although the regular orbiting phase can be treated with goo@erious drawback if one is planning to use the results of the
accuracy by well-known analytical perturbation methods, theanalytical approximation to the regular orbiting phase of a
later phases belong clearly to the strong field regime of eithepinary system as initial data for a numerical simulation of the
a black hole or a neutron star collision, so that a computafinal ringdown and merger. The numerical code will crash
tional approach is mandatory. This kind of computationalbefore any template for the gravitational wave emission
effort has been the objective of the Binary Black H@&H)  could be extracted. This is because the analytical data are
Grand Challengd5] and other world wide collaborations. just a good approximation, so that the energy constraint does
The resulting numerical codes are based on the so-calle@Pt hold exactly and the code is intolerant to that kind of
Arnowitt-Deser-Misner(ADM) formalism [6] for the Ein- “off-sh_ell" initial data. A_Ithough there can be other qptio_ns,
stein field equations, where only a subset of the equations ate claim that a numerical code tolerant to constraint viola-
actually used for evolution whereas the remaining ones arion would be undoubtedly the best alternative.
considered as constraints to be imposed on the initial data There have been some attempts in that direction. In Ref.
only (free evolution approacf]). [21] the technique of Lagrange multipliers was used for in-

It is clear that, by taking the constraints out of the evolu-cluding the constraints into the dynamical system. The ex-
tion system, one is extending the solution space. This exteriended system includes the Lagrange multipliers as addi-
sion is the crucial step that opened the way to new hypertional dynamical fields X system. A further step along that
bolic formalisms after the seminal work of Choquet-Bruhatdirection is given in Ref[22], where the extended system is
and Rugger{8], using the constraints to modify the evolu- “@djusted” by further combining the evolution equations
tion system in many different way9—18, even taking ad- with the constraints, including then many extra arbitrary pa-
ditional derivativeg8,19,20. These formalisms can be inter- rameters. In both cases, the goal is to enforce the constraints
preted as providing many nonequivalent ways of extendindn @ dynamical way. One can monitor the errors by looking at
the solution space of Einstein’s equations with at least onéhe “subsidiary system,” which can be derived from Bianchi
common feature: constraint equations are left out of the finaldentities and can be interpreted as the evolution system for
evolution system. constraint deviations. Parameters are adjusted in a way such

This means that the resulting systems do have an exthat the characteristic speeds of the subsidiary system are
tended solution space, which includes constraint-violatingither real and non-zer¢so that the corresponding errors
solutions in addition to the solutions that verify the original Propagate away to the boundajies they have the right sign
Einstein’s equations. As far as the constraints are first inteln the imaginary part to enforce dampifigstead of explod-
grals of the extended evolution system, Einstein's solutiongg) the constraint deviations. _
could be computed by solving the constraints equations only A simpler option(but not the only one, see for instance
for the initial data(free evolution. But, unless some enforc- f24]) for including the constraints into the evolution system
ing mechanism is used during the subsequent time evolutiofvould be the general-covariant extension of the Einstein
numerical errors will activate constraint-violating modes. field equations proposed recent®4 system [25]:

Numerical simulations can deal with such modes, at least 1
when the deviations from Einstein’s solutions are moderate.
But it happens that large deviations are usually associated Ruvt Viulyt V2, =8 77<T’“’ ZTQW)’ @
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so that the full set of dynamical fields consists of the pair Il. 3+1 EVOLUTION SYSTEMS
19,v,Z,}. The solutions of the original field equations can

then be recovered by imposing the algebraic constraint The general-covariant equatioft can be written in the

equivalent 3-1 form [25] (the Z4 evolution systein
z,=0 2

(&t—ﬁﬁ)'yiJZ—ZaKij (4)
and the evolution of this constraint is subject to the linear )
homogeneous equation (0= Lp)Kij=—Viaj+ o IR +VZ;+V,Z— 2K

0 z,+R,,Z"=0, (3 +(trK—20)K;;—§;;+ %(trS—T)yi,—]
which can be easily obtained from E@.) allowing for the ©)

contracted Bianchi identities. Here again, by allowing for
non-zero values of the extra four-vecz_)l;, one is extending (0~ L) 0= E[ (3)R+2szk+(tr K —20@)tr K —tr(K?)
the solution space. But now, as we will see in the following 2
section, one is using all the field equations to evolve the pair
19.v,Z,}: no equation is taken out of the system and, as a
result, general covariance is not broken. The initial metric _ P
g, can be taken to be the one arising from analytical ap-(ﬂt_ﬁﬁ)zi_“[Vi(Ki —GitrkK)
proximations and the initial four-vectat, can be taken to +9.0-2KIZ —0a la—S] @
vanish without any kind of inconsistence: one can even use ! ) '
the evolving values oZ, during the calculation as a good \yhere we have noted
covariant indicator of the quality of the approximation.
Notice t_hat E_q.(3) pla_y§.the role here of the subsu_jlary O=aZ’ 7=87a’T® SESWaTOi, S;=87T;;
system. It is adjustedb initio, without any parameter fine- )
tuning, because light speed is the only characteristic speed in
Eq. (3). Constraint deviations, which are non-vanishing val- |n the form (4)—(7), it is evident that the Z4 evolution
ues of Z#, will then propagate to the boundaries. The factsystem consists only of evolution equations. The only con-
that our constraint&2) are algebraic will greatly simplify the  straints(2), that can be translated into
task of providing outgoing boundary conditions that let the
constraint deviations get out of the numerical dr2@]. ®=0, Z=0, 9
Besides these considerations, there are other important
theoretical issues that we will address in this work. The firstare algebraic so that the full set of field equatidis is
one is a thorough analysis of the hyperbolicity of the evolu-actually used during evolution. This is in contrast with the
tion system. This is more or less straightforward for the firstADM evolution system[6], which can be recovered from
order version of the system, as discussed in Appendix B, buEgs.(4)—(7) by imposing Eq(9). The first two equation&t),
it is not so well known in the case of the second order ver{5) would transform into the well known ADM evolution
sion, discussed in Appendix A, where we have used the resystem, whereas the last two equatigds (7) would trans-
sults of Kreiss and OrtiZ26] that recently shed light on this form into the standard energy and momentum constraints,
issue, which is crucial to discuss the well posedrigg$of  namely,
the evolution systenisee alsq28] for similar results for the

— 27 la—27] (6)

BSSN system CR+1tr2K —tr(K2)=27 (10)
The second theoretical point that we want to stress here is o
that the Z4 systen(l) is not just one more hyperbolic for- Vi(Kl=68ltrK)=§;. (11

malism to be added to the long list. As far as it is the only

general covariant one, the question arises whether the exist- In the “free evolution” ADM approacH7], both Eqs(10)

ing non-covariant hyperbolic formalisnj9—18 can be re- and(11) were taken out of the evolution system: they were
covered from(1) by some “symmetry-breaking” mecha- imposed only on the initial data. This was consistent because
nism. We have extended in this sense a previous W28k  (10), (11) are first integrals of the ADM evolution system,
where the deep relationship between the more widely usedut one cannot avoid violations ¢£0), (11) due to errors in
hyperbolic formalisms was pointed out. A partial sSymmetry numerical simulations or approximated initial data, as stated
breaking mechanism is presented in Sec. Il for recovering thieefore. As a result, numerical simulations will deal as well
second order systenjdl,12 and for the first order systems with extended solutions. The main difference with the Z4
containing additional dynamical field®,10] in Sec. lll.  case, aside from covariance considerations, is that in the Z4
These sections are followed by another one containing nucase the quantitiez, that describe constraint deviations are
merical simulations that have been proposed recd®ly- included in the evolution system.

32] as standard testbeds for numerical relativity codes. A One can also ask in this context what happens if, instead
more general symmetry breaking mechanism is proposed iof imposing the full set9), one imposes the single condition
Appendix C to recover first order formalisms which do not

contain additional dynamical field43-18. ®=0, (12
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obtaining a system with only three supplementary dynamicaverifying the “physical speed” requiremeiit4). As we have

variablesZ; of the kind determined ifi29] (the Z3 system
the one corresponding to the parameter choice

u=2, v=n=0 (13

(we follow the notation of 29]).

One can easily understand two of the three condition

(13), namely,

w=2, v=n, (14)

because this amounts to the “physical speed” requirement

for the degrees of freedom not related to the gd@&$g and

nothing else can arise from the general covariant equations
(1) which are at our starting point. But values of the remain-

ing parameten other than zero would be very interesting. In
particular, the choice

(15

already mentioned, it follows that the particular case

n:_

3 (21)

is quasiequivalent to the BSSN syst¢ii,12. The system

?18)—(21) can be decomposed into trace and trace-free parts

e*=y1B3  yj=e My (22)
K=9IKij, Aj=e *(Ky—3Kyy) (23
Ti=—yuM j+2z, (24)

to follow the correspondence with BSSN more closely. It
must be pointed out, however, that one does not get in this
way the original BSSN system: there is actually one differ-
ence in the lower order term®nly the principal parts are
equivalent. The difference is in the term of the form

would lead to the evolution system which is quasiequivalent

(equivalent principal part$29]) to the well known BSSN
system[11,12.

At this point, let us consider the following recombination
of the dynamical fields:

. n
Kij=Kij= 50 (16)

so that the Z4 systenfd)—(7) can be written in a one-

parameter family of equivalent forms just by replacing ev-

erywhere

~ n
Kij—Kij+ 50 - 17

n

3

a Z*yij (25

in the evolution equatiol9), which is missing in the origi-
nal BSSN systeni12]. This lower order term is needed for
consistency with the general covariant equati@hs

We have seen then how the widely used ADM and BSSN
systems can be obtained from the more general Z4 formal-
ism. The equivalence transformatigh6) plays the crucial
role because suppressing t@efield (12) produces a sort of
symmetry breaking: different values of the parameteavill
lead to evolution systems that can no longer be transformed
one into another once the set of dynamical fields is reduced
by the disappearance @. It can be regarded as a partial
symmetry-breaking mechanism for the original equations

This kind of transformations leave invariant the solution (4)—(6). The terms “partial” refers to the fact that only the
space of the systel(it is actually the same system expressedquantity ® is suppressed, while th& are kept into the sys-

in a different set of independent fie)dBut if the suppres-
sion of the® field (12) is made after the replaceme(if7),

tem(18)—(20). A complete symmetry-breaking mechanism is
discussed in Appendix C.

one gets a one-parameter family of non-equivalent systems |n Sec. IV we present the results of some test-bed simu-

(Z3 evolution systems namely,
(o”t—ﬁﬁ)yij=—2aKij (18)
(at_EB)Kij = —Viaj + a[ (3)R|j +V|ZJ +VJZ|_2Kﬁ

n
—zol GCIR+2V - Z+tr’K —tr(K?)

—Z(aflak)Zk—ZT]yij (19

(0= L) Zi=a[ V(K- sltrK)—2KZ; - S ] (20)
where we have suppressed the tilde okegr, allowing for
the vanishing 0f®.

The resulting system(18)—(20) is quasiequivalent
(equivalent principal parjsto the “system A’ in Ref.[29],

lations for the ADM and Z4 systems. We have considered for
simplicity only vacuum space-times with the time coordinate
conditions

(h—Lg)na=—a[ftrK—\O] (26)
which are a further generalization of the one proposed in
[25], where

f=1, A=2 (27

This two-parameter family of coordinate conditions is very
interesting from the point of view of numerical relativity
applications. But it is also interesting from the theoretical
point of view, because it provides the opportunity to apply
the recent results of Kreiss and Orfiz6] on the hyperbolic-
ity of the ADM system in a wider context. In Appendix A we
will use the same formulatiofsee Ref[27] for more details
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to study the hyperbolicity of the Z4 system with the two- where we have noted
parameter family of dynamical gauge conditid@s).
VkEDkrr_Drrk_Zk. (38)
Il FIRST ORDER SYSTEMS We are now in a position to discuss the hyperbolicity of
A first order version of the Z4 evolution syste@)—(7) this first order version of the Z4 systems. This is done in a

can be obtained in the standard way by considering the firsgtraightforward way in Appendix A.
space derivatives In order to compare the new first order system with the

Bona-Massmnes[9,10] we could either apply here again the
recombination(16) followed by the suppressiofl2) of the

0 field or we could take directly a first order version of the
Z3 system (18)—(20). Equations(18), (20), (30) do not
as independent dynamical quantities with evolution equaehange, but Eqg29), (33), (34) are replaced in this case by
tions given by

1
A=ayla, DkijEEé’kyij (28

At A af trK]=0 (39
At Il a(ftrK—A0)]=0 (29
ﬁtKij +(9k[a)\kij]= PR (40)
3Dyjj+ dl aKjj]1=0 (30 . .
(we will consider in what follows the vanishing shift case for Nij=—T% = 5 V¥ + 5 (A + D}, - 2Z)
simplicity), so that the full set of dynamical fields can be

given by 1
+ 55}<(Ai+Dirr_ZZi)

u={e, 7j, Kijj, A, Dyj, 0, Z} (3D

1_
(38 independent fields - Tg(Dij “+D; *-5D, "~ 5D, "). (4D
Care must be taken when expressing the Ricci téf&y

in Eq. (5) in terms of the derivatives dd,ij, because as far The full Bona-Massdamily of evolution equations is recov-
as the constraint&28) are no longer enforced, the identity  greq for the= —1 case, wheré41) can be written as

9 Dij= dsDyij (32 n 1
| | Nj=Dj— 5 Vi +5 81(A; =Dy "+2V))
cannot be taken for granted in first order systems. As a con-
sequence of this ordering ambiguity of second derivatives, 1
the principal part of the evolution equati@®) can be written + = 5;‘(Ai -D;"+2V)) (42
in a one-parameter family of non-equivalent ways, namely, 2
- kq_ with V, defined by Eq(38).
ki adadij]= .. 33 In the following section, we will compare the behavior of
1-¢ both families in numerical simulations. To this end, we will
Ni=—T"%+ ——(Dj “+D;; “~ 6D, "= 5D, ") also consider the first order version of the ADM system,

which can be obtained from the previous versions just by
1 1, suppressing th&; eigenfields,
Z SYCA. T 27 V4 — S5A: r_oz7.
+5 SK(A;+D], 2Z))+5 5{(Ai+Dj —2Z)) (34) Z -0, 43

so that the parameter choi¢e= +1 corresponds to the stan-  Before proceeding to the test section, let us just mention
dard Ricci decomposition that the same game of recombining hefield with K;; (17)
before suppressing it can also be played with Ziefields
BR. =g, % — Tk +T" Tk —Tk T

Rij=ad ™ =il N+ Fad ™ =g B9 5y Dy in first order systems. As stated before, this will
provide a complete symmetry-breaking mechanism. We will
do that in Appendix C, where we will show how the well
known KST systenj17] can also be recovered in that way
(3)Rij = _(;kaij +f9(irj)kk—2Drrkaij+4DrsiDrsj from the Z4 framework discussed in this paper.

whereas the opposite choide= —1 corresponds to the de
Donder—FocK 31,32 decomposition

—Tiesl" =Ty T (36) IV. TESTING SECOND AND FIRST ORDER SYSTEMS

which is most commonly used in numerical relativity codes. We will present in this section a couple of numerical ex-
Note that this ambiguity does not affect the principal part ofperiments which have been suggested very recg80y as
Eq. (6), namely, standard testbeds for numerical relativity codes. Our philoso-
phy is that all the tests could be done “out of the box” by
at®+ak[avk]= - (37) using well known numerical methods and the equations that
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FIG. 1. The maximum ofthe absolute value dfrK is plotted FIG. 2. Same as Fig. 1, but with less time resolutiont (d

against the number of crossing times in a logarithmic scale. The=0.06 & with the same ®). There is a slight amount of dissipation
initial level of random noise remains constant during the evolutionthat delays the crashing of the ADM codes; this is especially visible
in the case of strongly hyperbolic systettmnly the second order for the second order version ADM-2, which keeps being more ro-
Z4 system is shown here for clarjityin the case of weakly hyper- bust than its first order counterpart ADM-1. The behavior of the Z4
bolic systems, like the ADM second order system ADM-2 or its first code keeps unaffected.
order version ADM-1, a linear growth is detected up to the point
where the codes crash. Notice that the second order version is mofer the principal part of the system. In this sense, the linear
robust, an order of magnitude, than the first one. The simulationgrowth of the ADM plots in Fig. 1 confirms the weakly hy-
are made with 50 grid points withte 0.03 k. perbolic character of the ADM system.
The Z4 system shows instead the no-growth behavior, in-

are fully presented here: anyone should be able to reprodu@gpendem of the time resolutigeee Figs. 1 and)2which
our results without recourse to additional information. one would expect from a S[rong|y hyperbo"c system. The

We will use the standard method of ling33] as a finite  same qualitative behavior is shown by the corresponding Z3
differencing algorithm, so that space and time discretizatiorgystems in Eqs(18)—(20), including the one withn=4/3
will be dealt with Separately. Space diﬁerenCing will ConSiStthat is quasiequiva|ent to the BSSN System_
of taking centered discretizations of derivatives in our three- \We also show in Fig. 3 the same results, but they are
dimensional(3D) grid. We use the standard centered stencilgistorted by using too much numerical dissipation: the time
for first derivatives and we make sure that second derivagyolution here is dealt with the second order ICN method
tives, when needed, are coded also as centered derivatives@kher than the third order Runge-Kutta method of Fig. 1.
these first derivatives, even if it takes up to five point alongafter hundreds of crossing times, the numerical dissipation
every axis. In order to avoid boundary effects, the grid hasnanages to curve the linear growing of ADM and the noise
the topology of a three-torus, with periodic boundaries alongevel goes down in the Z4 case. This is just a numerical
every axis. The time evolution will be dealt with a third order

Runge-Kutta algorithm. The time stept ds kept small A
enough to avoid an excess of numerical dissipation that

4 X A X X X
could distort our results in long runs.
3 X A X X X
A. Robust stability test
Let us consider a small perturbation of Minkowski space- 2 X X X X X
time which is generated by taking random initial data for
every dynamical field in the system. The level of the random 1 x A » x X
noise must be small enough to make sure that we will keep
in the linear regime even for a thousand of crossing times 0 x A % % %
(the time that a light ray will take to cross the longest way
along the numerical domainThis is in keeping with the
theoretical framework of Appendix A, where only linear per- 1 x 4 X % X
turbations around the Minkowski metric are considered.
We have plotted in Fig. 1 our results for the standard -2 o * f A 3 Z f
harmonic cas€27). We see the expected polynomiéihear
in this casg growth [27] of the weakly hyperbolic ADM FIG. 3. Array of results of numerical experiments in the gauge

system. Notice that modifications of the lower order termsparameter planef(:), by using the Z4 system. A triangle stands
(the ones not contributing to the principal pasbuld lead to  for the linear growth of noiséweak hyperbolicity, whereas a cross
catastrophic exponential growth, revealing an ill-posed evostands for a constant noise levstrong hyperbolicity. This is con-
lution systen{27]. In this paper, however, we will limit our- sistent with the strong hyperbolicity requirements predicted in Ap-
selves to discussing the linear regime as an hyperbolicity tegfendix B: eitherf=1 and\=2, orf#1 andf>0.
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FIG. 4. Same as Fig. 1, but using the second order ICN method FIG. 5. Time evolution of(the maximum value 9fthe lapse
to evolve in time instead of a third order Runge-Kutta algorithm. function a in a collapsing Gowdy space-tim@armonic slicing.
Numerical dissipation is severely distorting the plots, by maskingNotice that the harmonic time coordinateis not the proper time
the linear growth in the weakly hyperbolic case and dramatically@nd it does not coincide, by a 10 factor, with the number of
reducing the initial noise level in the strongly hyperbolic case. No-Crossing times due to the collapse of the lapse, which is visible here.
tice than both tland c are the same as in Fig. 1 and we are using
also the same space discretization algorithm: only the time evolu- a=t"1A4Q14 (47)
tion method has changed.

artifact, because in the linear regime there is no physicals constant everywhere at any tintg at which Jo(27t;)
damping mechanism for strongly hyperbolic systems in avanishes. In30] the initial slicet=t, was chosen for the
three-torus, where periodic boundary conditions do not allovsimulation of the collapse, wherer2, is the 20th root of the
propagation outside the domain. This is why we will use hereBessel functionl,, i.e. t,=9.88.
the third order Runge-Kutta method instead of the ICN Let us now perform the following time coordinate trans-
method proposed if30]. formation:

In Fig. 4 we explore parameter space in the\() plane. If
we interpret the constant behavior in Fig. 1 as revealing a . 34Ot /a
strongly hyperbolic system and the polynomial growlih- t=toe” 70, mo=ty e'0=472, (48)
ear in this casein Fig. 1 as revealing a weakly hyperbolic

system, the results of our numerical experiment fully agree L . .
with the theoretical results presented in Appendix A. S0 that the expanding line eleme@) is seen in the new

time coordinater as collapsing towards thte=0 singularity,
which is approached only in the limit—o. This “singular-
ity avoidance” property of ther coordinate is not surprising

In order to test the strong field regime, let us consider nowf one realizes that the resulting slicing by const surfaces
the Gowdy solutiorj34], which describes a space-time con- is harmonic[36].

B. Gowdy waves

taining plane polarized gravitational wavese alsq35] for This means that we can launch our simulations starting
an excellent review of these space-times as cosmologicalith a constant lapseg=1 at =0 (t=ty) with the gauge
models. The line element can be written as parameter choicé=1 (which means alsa =2 in the Z4

2 12002 5 5 bio. P cas@. Notice that the harmonic time coordinatds not the
ds*=t" e —dt°+dz) +t(e"dx“+e "dy?) (44)  proper time and it does not coincide with the number of
crossing times, due to the collapse of the lapse. Remember
also that the local value of light spe@oroper distance over
coordinate timgis *+ «. Even though in our plots goes up
to 10000, the light ray manages to cross the domain irzthe
direction onlyty=9.88 times, as it follows from the original

where the quantitie® and P are functions oft and z only
and periodic inz, so that Eq.(44) is well suited for finite
difference numerical grids with periodic boundary conditions
along every axis. Followin§30], we will choose the particu-

lar case form (44) of the line element.
P=J,(2mt)cog272) (45) We plot in Fig. 5 the maximum values of the lapse func-
tion as time goes on, measured in terms of the harmonic time
Q=mlo(2m)I1(27) coordinater. Notice the huge magnitude of the dynamical
space we are covering, as goes down(collapse of the
—2mtJo(2mt) Iy (27t)coS(27m2) laps@ by the factor of one billion during the simulation. This
2,90 12 2 is a real challenge for numerical codes and all of them are
F2m U Jo(2t) + J3(2mt) doing quite well untilz=1000. The behavior at later times is
—J32m)—-Jd32m)] (46) ~ dominated by the lower order terms: coordinate light speed
(£ ) is so small that the dynamics of the principal part is
so that it is clear that the lapse function frozen and care must be taken to avoid too big time steps. We
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T 0.014
10—04 ..

TVET T T T TT T L Y T T oorm T TTTTTIT T T T T T T T T TV T
10 100 1000 10000 1 10 100 1000 10000

FIG. 6. The quantityd is plotted as an indicator of the accu-  FIG. 8. Same as Fig. 6, but with the first order versions of both
mulated error of the simulations for the ADM, Z4 and Z3-BSSN the ADM and Z4 codes, which behave in the same way as their
second order forms. Even in this logarithmic scale, it can be clearlgecond order counterparts. The Z3-BM code here gets closer to the
seen how the Z4 and Z3-BSSN codes perform much better than th&DM code in the oscillatory phasgip to 7=2000), in contrast to
ADM code: error differs by one order of magnitude &1000.  the behavior of the Z3-BSSN code in Fig. 6.

The Z3-BSSN code gets closer to the Z4 code in the oscillatory

hase(up to 7=2000). . . -
phase(up ) same behavior as their second order counterparts in Fig. 6.

have not seen any of the codes crashing even in very longhe third plot corresponds to the Z3 version of the Bona-
simulations(up to 7=60.000) when the size of the time step Massocode, which can be obtained from Eq89)—(41),
is kept under control. with the parameter choicg= —1, n=+1. Notice that in the

In Fig. 6 we use the quantit), as computed from Eq. oscillatory phasdup to 7=2000) the Z3-BM code tends to
(6), to monitor the quality of the simulation both in the Z4 behave like the ADM code, whereas in Fig. 6 the Z3-BSSN
case(4)—(7), where® is a dynamical field, and in the other code tends to behave more like the Z4 code.
two second order cas€&DM and Z3-BSSN, where® is no Notice that the Z3 versions, when compared with both
longer a dynamical quantity but can still be used as a goo\DM and Z4, show a different behavior after the oscillatory
measure of the error in the simulation. This makes it easie_r tBhase:# grows at a much lower rate or even starts going
perform convergence testsecond order convergence is gown, This behavior is due to the extra terms that appear in
shown in Fig. 7. Notice that our Z3-BSSN code performs ¢ eyolution equations fdg;; after the symmetry breaking,

here (;n.ucgobe_f_tﬁ.r than t_h(le c()jriginal ESfSN nge]' as '€ \which can be controlled by the parametentroduced in Eq.
ported in[30]. This is mainly due to the fact that we are not (17). This point is clearly shown in Fig. 9, where different

using here the conformal decompositi(#9)—(24) which is choices ofn produce different behavior in the final collapse

at odds with the structure of the line elemedt). This is . .
i . .~ phase(starting atr=2000). This shows the relevance of the
why we talk here about Z3-BS5M8—(21) instead of sim recombination between the dynamical fields in numerical ap-

ply BSSN. o . . .
The same kind of comparison is made in Fig. 8 for thepllcatlons, as pointed out ifiL7]. Further details and other

first order version of the ADM and Z4 codes, which show the

10+10 -

+6 10+98 o
10+96 ~
+4 10+04
+24 100
14
0.01 1
10—04 ~

16 oo

0_
—24

log||©f]e

—44

—6-

e ....10 g ......1.00 T ..r..ll(.)xoo T .....1.0.(.)00

-10 T T r .
L 10 100 1000 10000 FIG. 9. Same as Fig. 6, but with different values of the param-
eter n arising from the symmetry breaking mechanism in the Z3
FIG. 7. Convergence test for the Z4 code. The three lines coreodes. The differences show up in the collapse final pletaeting
respond to 50, 100 and 200 grid points. The quarfiitytself is a  at 7=2000). Notice that the value=4/3 corresponds to the Z3-
direct measure of the error. In that logarithmic scale differences oBSSN case in Fig. 6, whereas the casel corresponds tdthe
log 4 correspond to dividing by four the error when doubling the second order version pfthe Z3-BM case in Fig. 8. First order
resolution. This second order convergence rate is clearly shown imersions(not shown behave in the same way as their second order
the figure. counterparts shown here.
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numerical tests can be found in the webpagehtp:// The spectral analysis of the characteristic makiypro-
stat.uib.es vides the following list of eigenvalues and eigenfields:
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APPENDIX A: HYPERBOLICITY OF THE SECOND Kl*+Z, (A17)
ORDER Z4 SYSTEM A o

O =[try—y"-2"]. (A18)

Let us consider the linearized version of the Z4 system
(4)—(7) around Minkowski space-time in order to study the Notice that Eqgs(A16)—(A18) can be seen as the components

propagation of a plane wave in that background: of a tensor:
’y”:5”+2eiw.x’yil‘(w't) (Al) Lﬁ-—z[kij_(trk_2®)ninj]i[;\ij_Elninj]. (Alg)
a=1+e**a(w,t) (A2) (c) Gauge eigenfield&characteristic speedt \/f)
— - X[ ~ "~ 2—Na ~ 2f—N\ ~A A~ ~

Kij=iwe' " Kjj(o,1) (A3) GiE\/?trK+m® =l at T (ry= "2 .

O=iwe“*O(w,t) (A4) _ (A20)
From Egs.(A.15)—(A.20) we can easily conclude6,27|

Zk:iweiw-xzk(w’t) (A5) the following:

i All the characteristic speeds are réaleak hyperbolicity

where we will take for simplicity8'=0 and at least if and only if =0

_ in.m. — ii In the casef =0, the two components of the gauge pair
o=@ oTnin=1. (A6) (A.20) are not independent, so that the total number of inde-
The Z4 system reads then pendent eigenfields is 16 instead of the 17 required for strong
hyperbolicity.
(95,” = —inij (A7) iiil The casef=1 (harmonic caseis special:
If \#2, then the gauge pa{A.20), which can be previ-
da=—iw[ftr K — )\(:)] (A8) ously rescaled by af(- 1) factor, is equivalent to EGA.18),

so that one has only 15 independent eigenfields.
5 If A\=2, then the quotient (2\)/(f—1) can take any

— H nn n
HO=—lo[try=y"=27] (A9) value, reflecting the degeneracy of the gauge and light cone
- . P eigenfields. One can then recover the full set of 17 indepen-
0Zi=—lo[n(trK=0)—K] dent eigenfieldgstrong hyperbolicity.
(A10) iv In all the remaining casesf0, f# 1), the system is
. A strongly hyperbolic, as we can recover the full set of 17
9Kij= — i\ (A1l)  independent eigenfields.

where we have noted APPENDIX B: HYPERBOLICITY OF THE FIRST ORDER

~ ~ ~ ~ A A An A Z4 SYSTEM
Nij=vyijtminj(a+try) —mi(y]+Z) —nj(y +Z))
(12 The principal part of the first order Z4 evolution system

) ) (A)—(7), (26), (29—(30) can be written agvanishing shift
and where the symbal replacing an index means the con- cagg

traction with n;. It can be also expressed in matrix form,

namely, hyij= ..., da= ... (B1)
l’.\]:(&,A’yij !Rij ,(:),Zk) (A13) (9t®+(9k[a Vk]: . (BZ)
= —iwAl. (A14) aZi+ o a(SKtrK—0)—K*)]= ... (B3)

064036-8
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A Ifa(fFrK—\0)]= ... (B4)
&tDkij-f—&k[aKij]: P (BS)
aKij+adenil= ... (B6)

where
)\E(J:Dkii_ #(Dij “+ Dji K~ 6:(Drj r_5]kDri )]
1, ) 1 }
+5 3 (A=D; ' +2V))+ E(sjk(Ai—Dir +2V))
(B7)
V=D, "~ Dy — Zy. (B8)

PHYSICAL REVIEW D 69, 064036 (2004

(ii) In the casef=0, the two components of the pair
(B.16) are not independent, so that the total number of inde-
pendent eigenfields is 37 instead of the 38 required for strong
hyperbolicity.

(iii) The case £1 (harmonic caseis special:

If A#2, then the pair of field¢$B.16) is the same as Eqg.
(B.14), so that one has only 36 independent eigenfields.

If A\=2, then the quotient (2\)/(f—1) can take any
value due to the degeneracy of the gauge and light eigen-
fields. One can then recover the full set of 38 independent
eigenfields(strong hyperbolicity.

(iv) The first order Z4 system described by E(B1)—

(B6) is strongly hyperbolic in all the remaining casef (
>0, f#1).

Notice also that the speci@harmonig casef=1, A=2
has been shown if25] to be symmetric hyperbolic for the
parameter choicg=—1. The corresponding energy func-

Now, if we consider the propagation of perturbations withtion can be written as

wavefront surfaces given by the uiiitorma) vectorn;, we
can express Eq$B1)—(B2) in matrix form

a”tou+Aun<ou= ..., (B9)

where

U:{a, Yij » K Ak! Dkij! 0, Zk} (BlO)

ijo

(notice that derivatives tangent to the wavefront surface play

no role herg
A straightforward analysis of the characteristic matrix
A(u) provides the following list of eigenfields:

(a) Standing eigenfield&ero characteristic speed
o, ’yij, AJ_, Dlij’ Ak_ka+)\Vk (Bll)

(24 independent fields where the symbol. replacing an
index means the projection orthogonalrta
DlijEDkij—nkn’Drij ) (B12)

(b) Light-cone eigenfield¢characteristic speett 1)
L5 =[Kjj—nin; tr K]=[A";—ninjtrA"] (B13)
LE=g=V" (B14)

(12 independent fields where the symboh replacing the
index means the contraction with

)\{}Enk)\{} . (B15)
Gauge eigenfield&haracteristic speed /f)
. 2—A\ -\

G =\f{trK+ — 0 | =A™ ——-\"|. (B16)

From Egs.(B11)—(B16) we can easily conclude the fol-
lowing:

(i) All the characteristic speeds are réakak hyperbolic-
ity at leasj if and only if f=0.

E=KUKj;+ NN+ (Ir K—20) 2+ AA + (AK—D",
(B17)

but notice that this expression is far from being unique. For
instance, allowing for Eq(B11), the last term in Eq(B17)
could appear with any arbitrary factor.

+ 2V (A= Dy, +2V))

APPEDIX C: RECOVERING THE KST SYSTEMS

Let us start with the first order Z4 evolution systé—
(7), (26), (29—(30) where the principal part is given by Eq.
(B1)—(B8). Now let us follow the two step “symmetry
breaking” process:

(i) Recombine the dynamical field§; , Dj; with ® and
Z; in a linear way,

~ n
Kij=Kij= 507, (Cy

dij=2Dyij + 7yiiZjy + XxZkYij »
(C2

where we have used the notation of Héf7], replacing only
their parametery by —n/2 for consistency. Notice that Egs.
(C1) and (C2) are generic in the sense that it is the most
general linear combination that preserves the tensor character
of the dynamical fields under linear coordinate transforma-
tions.

(i) Suppress bott# andZ; as dynamical fields, namely,

®=0, Z,=0. (C3)
In that way, the principal paiB1)—(B8) becomes
V= r Ga= ... (C4)
A+ dfaf trK]=0 (C5)
9+ arl e 28K — x(Ki— 8itrK) vy
+ (K™ =8 tr k)= ... (CH)
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atRij +ﬂk[a)\:(j]= e (C7) AiEUdirr+ e (C12)
n 1+¢
2\ =dbj 4(d"r dr )iy 2 (d"+ ;") and the set of dynamical fields is then further reduced to
1_§ Ky T Ky T K 1 r
- (67dy; +o7dy )+ 6f| A+ Edir u={vj, Kij, dgj}. (C13
1 The principal part of the evolution system is then given by
Kk r
o\ At §dir (€8 (we suppress the tildes over tHg;)
for the reduced set of variables dvi= ... (C14)
u={a, %, Kij, A, dyj}- (C9 Oydyij + o[ {2 6,Ki; — x (K" = 8itr K) v + 7y (KT,
This provides a “dynamical lapse” versiofl8] of the —5})trK)}]= . (C1H
KST evolution systems. In order to recover the original
“densitized lapse” version, one must in addition integrate K4
explicitly the dynamical relationshif26) between the lapse aKij+aarijl= ... (C18
and the volume elemeritemember that now® =0). It can
be easily done in the case ‘ « N ; K 1-¢ «
2N =df = g (A —d )y — —5— (8id"+ 67d )
f=20=const, (C10
1+ 1+20
namely +Tg(dijk+djik)+ > (5:<djrr+5]kdirr)
d(ay 7)=0, (C1y

so that the value o& can be defined in terms of for every
initial condition. The same thing can be done withandd, ,
so that

(C17

which corresponds precisely tigthe principal part of the
original KST systen]17].
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