PHYSICAL REVIEW D 69, 064032 (2004

Caged black holes: Black holes in compactified spacetimes. Il. 5D numerical implementation
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We describe the first convergent numerical method to determine static black hole solutitnsn S°
horizon in 5D compactified spacetime. We obtain a family of solutions parametrized by the ratio of the black
hole size and the size of the compact extra dimension. The solutions satisfy the demanding integrated first law.
For small black holes our solutions approach the 5D Schwarzschild solution and agree very well with new
theoretical predictions for the small corrections to thermodynamics and geometry. The existence of such black
holes is thus established. We report on thermodynantteaiperature, entropy, mass and tension along the
compact dimensiorand geometrical measurements. Most interestingly, for large médess to the Gregory-
Laflamme critical magsthe scheme destabilizes. We interpret this as evidence for an approach to a physical
tachyonic instability. Using extrapolation we speculate that the system undergoes a first order phase transition.
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[. INTRODUCTION “south” poles touch. Whether this is the case or not is yet to
be established, but it is clear that some sort of instability will
In backgrounds with additional compact dimensions thereshow up when the poles are getting closer. Put differently: is
may exist several phases of black objects, including blackthere a maximal mass, beyond which the black hole “does
holes and black strings. The phase transition between thesmt fit into the circle” and there are no stable black holes?
phases raises puzzles and touches fundamental issues suciThis maximal mass would be analogous to the GL critical
topology change, uniqueness and cosmic censorship. mass, and would correspond to a perturbative, tachyonic in-
Consider for concreteness a background with a singletability. Yet another kind of instability may occur before that
compact dimensionk?~21x St. We denote the coordinate maximal mass is reached. Once the entropy of a black hole

along the compact dimension kyand the period by.. The ~ €quals the entropy of a uniform black strimgth the same

problem is characterized by a single dimensionlesgnass a transition between both phases will be allowed by

parametet, e.g., the dimensionless mags=G M/Ld-3 quantum tunneling, or by thermal fluctuations. This first or-

whereG i,s thed dimensional Newton cons’tantNanis th;a der phase transition is slower than the classical perturbative
N "

(asympotic mass. Gregory and Laflammi&L) [1,2] dis- instability due to tunneling suppression.

d th i biack stri b h No analytical solution for a black hole is known. More-
covered that a uniform black string—tfte-1 Schwarzs- 61 even though one can expect approximate analytic solu-

child solution times a line—becomes classically unstablgjons (g exist for very small black holes, the phase transition
below a certain critical valug.g, . They interpreted this in- physics happens when the size of the black hole is compa-
stability as a decay of the string to a single localized blackaple to the size of the compact dimension. Hence, in this
hole. Their discovery has initiated intensive reseafgh-17] work we take the numerical avenue.
that attempted to trace out the fate of the unstable GL string: |n our first papef23] we considered the theoretical back-
whether it settles at another intermediate stable phase as agtound for the staticd-dimensional quasi-spherical black
vocated in[3,4], or whether it really decays to a single black holes (BHs). There we outlined the goals of the numerical
hole. By now there is mounting direct evidence against thestudy. Prime among these goals is to establish the very exis-
former possibility[8,9], together with additional circumstan- tence of the static black hole solutions. To our knowledge,
tial evidence[5,6], and[15] which we also regard as evi- there is no direct evidence in the literature that such BHs do
dence against the stable non-uniform black string pase. exist though there are positive indications for tHa].
Here, motivated by8], we take another route; namely, we Among other goals is the study of such BH solutions in
address the following question: what happens to a small loyarious regimes and dimensions. The ultimate and the most
calized black hole as its mass incread®g e.g., absorption interesting aim is of course to determine the point of phase
of an interstellar dug? Such a black hole grows and naively transition.

one expects that there is a moment when its “north” and Based on recent progref8,21] we develop a numerical

*Email address: sorkin@phys.huji.ac.il “Arguments such as “in the limit when the radius of a BH is small

"Email address: barak_kol@phys.huiji.ac.il compared to the compactification radius the equivalence principle

*Email address: tsvi@phys.huji.ac.il implies that the black hole must be similar to the 5D Schwarzs-

!Later we will use another parametedefined in Eq.(4). child solution,” while intuitive, are not rigorously sufficient. In

®Related research includgsgs—24. fact, this argument fails in 4D with one of the space-like directions

SNote, however, that the authors pE5] did not interpret their  being curled to a circle, as there is no stable configuration of a
results either as supporting or as countering the conjecture. periodic array of point-like sources.
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scheme that allows us to find static axisymmetric BH solu-the standard numerical tests, such as convergence rate, con-
tions. Our scheme is dimension independent, provided thadtraint violation, etc. While it is possible that this is a lucky
d>4. As afirst step, in this paper we apply it to the 5D casecoincidence(though we believe it is ngt for our solutions
which is the example with the lowest dimensioamong the Smarr formula is satisfied with 3—4 % accuracy. More-
spacetimes with extra dimensions. In 5D we construct nuever, it is intriguing enough that the Smarr formula is satis-
merically a family of static BHs, parametrized Rywhich is  fied with the same 4% accuracy even for the problematic
the ratio of the size of the black hole to the size of thesolutions forx=0.20. This has to do with the fact that this
compact dimension, see E@}). For small values ok the  formula relates only three variables of the four thermody-
horizon region of our solutions approaches the 5D Schwarzsiamical variables, characterizing the system. It turns out that
child solution which can be considered as the “zeroth ordethe fourth variable is somewhat decoupled from the other
in a perturbative expansion” in powers a@f Moreover, in  three. However, as the inaccuracy in determining this fourth
this limit our solutions satisfy the theoretical expectations forvariable grows withx, this slows down and ultimately ruins
some next order corrections in this perturbative anafy@l$  the convergence. We believe that this is the variable which is
thereby allowing a confirmation of a new theoretical methodcoupled to the tachyonic mode.
through a numerical “experiment.” This establishes the ex- Even though the Smarr formula is satisfied to a good ac-
istence of static higher-dimensional BHs and shows that theuracy, we do have some larger inaccuracies in the solutions.
Schwarzschild solution is the smooth limit of these SOlUtion%ne of the fields suffers from a certain convergence prob|em'
for x—0. ) ) _ and its asymptotic behavior departs by some 30% from small
We succeed in controling the accuracy of our solutions Ug predictions. This is exactly the “fourth” asymptotic charge
to x=x,=0.20 (corresponding tqu,=0.047). Above this hat does not appear in Smarr’s formula. Due to its approxi-
limit, up to the last valuex,=0.25 (corresponding tou,  mate decoupling iis plausible that we indeed have good

=0.074), for which our solutions do not d"’_efge' the Con'accuracy for all other measurements. Even better, we have
vergence rate was very slow and the numerical EITors Werfs ications that this field is reliable for a sub-range »of
not small. These values qf should be compared with the 0.08=x=015

critical GL massu =0.070. The slowdown of convergence One can question what information can be extracted from

and eventual divergence is mainly seen on one of our metri .

functions. By examining the equations of maotion for our sys—ﬁ?gﬁledgi gfzgnly thdrie paLamelte(rjs for fthhe ?ntlreh sequ;ence
tem we observe a “wrong” sign in one of the equatidpsst 0 S" (x=0.25), an fm howledge o It € ourth oneh or
like the plus sign in the following harmonic oscillator equa- & SMal'ér range (0'08X~0'15_)‘ In particular, we show that
tion, ¢/’ + w2¢=0), which is an indication of the presence of th_e last black hple that we fingat x=0.25) dev_lates only
the tachyon. One could expect that the tachyonic behavior igllghtly from being spherical, and moreover, its poles are

suppressed for smak values and it is manifest for large quite d'St‘?‘F‘t from each other. . .

values, for which there are no static BH solutiSrisHow- In addition, one can ask whether there is a first order
ever, the tachyonic behavior influences the numerics eveﬁ?}izetht;agig'gn' c\)/;/?) Cr"’};gfglaeiaﬁ&i] thf’O v2\/:5th :i?ﬁ"nty’
before that criticak value and slows down the convergence. ! Py u Xa=U. ) IS St

We believe that the problematic variable is coupled to théar_ger than.the entropy c.)f the corresponding uniform black
tachyonic mode, and hence when the latter drives the formesrt”ng' A naive extrapolation of our data to larger valuex of

to behave pathologically, it is an indication that the system iéndlc_ates that the entr_op|es will become equal WSt above the
close to the phase transition point. maximal BH that we find, namely a=0.26, which corre-

In [23] we derived thel-dimensional Smarr formula, also SPONdS 10x3=0.082. It is rather suggestive thats, ,u,
known as the integrated first law, for the geometry undeNd A3 are all very close each to another. Since, all the .
study(see alsq16)). It is a relation between thermodynamic nqmbers in the system are expe_cted to be of the same order;
quantities at the horizon and those at infinity, relying on thethls fact may be regarded as an indication that we have found

generalized Stokes formula and the validity of the equation& real phase transition. Note that singg=pug_ we come
of motion in the interior. This naturally suggests using thisc!ose toa first demqnstraﬂon of a fa|lure. of higher dimen-
formula to estimate the “overall numerical error” in our nu- sional uniqueness W.'th twetable phases. F'n"’.‘"y we note,
merical implementations. This method comes in addition toth"’lt generally in a first (_)rder phase fransition one expects
MGL=m3=pu,. This remains to be tested numerically.
While we expect that the instability we found corresponds
SThis is maybe the lowest dimensional example, but because ofE’P a physical one we stress that we cannot rule out the con-

very slow asymptotic decay, it is certainly not the simplest to Solveservatlve possibility that it is a manifestation of imperfec-

numerically[5]. We discuss this in detail later on. tions of the nume-rics. S-incel our numerical scheme _is inde-
6Consider a tachyon in a box: the mode can materialize only if itg?€ndent of the dimensionality of the problem provided

inverse mass is not less than the dimension of the box; otherwise> 4, the immediate aim for the future work would be its

the mode is suppressed. application to higher dimensionsd=6, where the
"This is a classical “revolutionary situation”: a “poor” tachyon is

suppressed until the black hole becomes too fat. Then the tachyon

rises, gets strong and destroys the black hole, heading to a newPAlthough we did not demonstrate that we assume that our BHs

future (to another phase solutions are stable.
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FIG. 1. A spacelike slice of the black-hole spacetirt®.In the {r,z} plane the black hole’s horizon is a curve with a spherg3l
topology.(b) There is a conformal freedom to transform the domaif(t9z):|z|<L, r2+22>ph2}. By fixing p, /L the domain is uniquely
specified[21].

asymptotic fall off is faster and the solutions might be morewhereA,B and C are functions ofr,z only anddQ3=d6?
stable’ + sirfod¢”.
In Sec. Il we describe our system. We employ the “con-  To describe a BH it is convenient to transform to polar
formal ansatz” and derive the equations of motion and thecoordinates, defined by
boundary conditions. A short excursion into theoretical back-
ground(summarized fronj23]) is made in Sec. lll. Our nu- r=psiny, z=pcosy, ()
merical implementation is described in detail in Sec. IV, . . . .
where we also describe various tests. The results are listed §i"c€ the BH horizon is represented by a closed curve in the
Sec. V. We outline future directions in the final Sec. VI. In 12} Plane. The metric in these coordinates reads now
Appendix A we derive tha-dimensional field equations and L A2M121 a2B 24 242\ 1 a2C 2ai 2
boundary conditions for the cylindét®~21x St. In Appen- ds’=— A%dt*+e*(dp® + p dx®) + €*%p*sin’xd(2;. 3)
dix B we consider the asymptotic behavior of the equations.
We also refer the reader to independent work by Kudoh ando simplify the numerical procedure it is desirable that the
Wiseman who performed recently related calculations in 6Dboundaries of the integration dom&irie along the coordi-
[25]. nate lines. Note that by choosing the angajzor (3) we still
did not fix the gauge completely. There is still a freedom to
move the boundaries of the integration domain by a confor-
Il. FORMULATION mal transformation. It was shown [21] that using this con-
e_Wgormal freedom the horizon boundary could be set at a con-

In this section we focus on the five-dimensional cas . . o .
ptant radiuspy,, leaving the periodic boundaries aloryg

derive the field equations and discuss the boundary condi i Thus the d S o< 124 72
tions (b.c). Equations and b.c. on a generhtylinder are ;cozns ines. Thus the domain |$(_r,z).|z|\ 17z
discussed in Appendix A. The fifth spatial direction is de-=Pn 1> Where for future use we_deﬂne the _half—pende
noted byz and it is compact with a perioﬂ, ie.zandz =L/2 o_f the compac_t circle, see Flg. 1. 1n addltlon_, by fixing
+L are identified. We consider static localized BHs with anthe ratio of the radius of the horizon to the period of the

S horizon topology. We assume spherical symmgs®(3) circle
isometry] of the three extended spatial dimensions and we

denote the 4D radial coordinate by =" (4)

all residual gauge freedom is eliminated. In our implementa-

tion, we setp,= 1, without a loss of generality, and generate
We consider a static axisymmetric metric which is built different solutions by varying;.

out of three functions. We adopt a conforntal the {r,z} The fact thaix cannot be changed freely for a given solu-
plane ansatz of the form tion implies thatx is a characteristic parameter analogous to

ds?=—AZ2dt?+e?B(dr?+dZ) +e*°r2d02, (1)

A. Choice of coordinates

Owhat we call here the “domain of integration” could be called
alternatively the “domain of definition,” the “domain of relax-
%In fact the preliminary results show that the picture that we findation,” etc. By this term we refer to the region of space-time where
in 5D is qualitatively unchanged far=6. we solve our equations.
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the (normalized total mass or the temperature even though it 1 )
does not have a clear physical meaning. For example, if one 20,A(£—(1— £2)9,C) 20,Cl €~ 5(1-€699,C
enforces the horizon of a BH to be at a fixed radius set byAB+ £ N

. . . . 2 2
some giverk, it would be excessive to specify also the tem- Ap P
perature. Conversely, specifying the temperature one does 2B 2C
- . . a,C 20,A(1 l-e
not have the freedom to constrain the location of the horizon R A o) F e i I
[21]. p ’ A (-8
In polar coordinates the reflecting boundary of the com- @)

pact circle,z=0, is at y= /2, but the periodic boundary,

z=L, does not lie along a coordinate line in tfg x} plane.

The treatment of this irregular boundary introduces a certain 2
complication in the numerical scheme as described in Seca ¢ — OALE— (1~ )9, Cl
IV A. Nevertheless, we believe that it is preferable to work Ap? p?
in polar coordinate$2) and to have an irregular boundary at

1
4a§c[§— 5(1—52)(950}

z=L, rather than work in rectangular coordinafesz} and N 449,C 24 C)2+% 14”9 C) +1—92(B_C) o

have an irregular boundary at the horizon. Intuitively, this is p P Alp °° p2(1—¢2) -

because we expect that the region near the horizon would

become the region of the “activity” ag increases. (8)
For numerical reasons it would be convenient to use an-

other angular coordinate Here we used the variableinstead ofy and the Laplacian

becomesh =g+ (1/p)d,+ (LIp?) V1— E29,(\V1—£25y).

The constraint equations expand to

§=cogy). (5
1

o | 12 AP 2e0,8-9,0)
The benefit of using this coordinate is twofold. First, the gﬁs 5 A - 5
irregularz=L boundary has a particularly simple represen- P 1-¢
tation,p=L/&. Second, as we explain shortly, the coordinate 25.B
singularity at the axist =0, becomes first order instead of +—§+2a§CapB+2¢9§B&pC—2a§C&pC
second order. p

A

B. Equations of motion ~24,,C{ =0 9
p

Our basic equations are the five-dimensional time-
independent vacuum Einstein equations. There are five equa-
tions in 5D: two are equations of motion f&,C, while 0 A[§—2(1—§2)(9 B] 4&(0.B—a.C)
.. . .. . p_ppé_—_ & ¢ ¢ 3
variation with respect to the metric in the,£) plane yields 95~ 9= +

2 2
three additional equations. In the conformal ansatz one of Ap P
them is an equation of motion fd8 while the other two 2 2\ 72
o . . . 2(1—- 20.B— 1-£&90:A
result from gauge fixing. The equations can be combined in a — (1~ &)(29,8-9,C)9,C + (1=
way that three of them will take the form of elliptic equa- p? Ap?

tions, which we call the interior equations. The other two 1
combinations that contain a hyperbolic differential operator . 9 A(—+2& B)
will be termed “the constraints.” These constraint equations N 2[—£9,C+(1-£9)0:C] N Plp
are not independent as they are related to the interior equa- p? A

tions via the Bianchi identities.

In order to obtain the interior equations we can follow the 1 aﬁA )
general procedure described in Appendix A, or alternatively, +2(26,8-9,C) ; +,C A 29,C=0.
use a suitable symbolic math application, e.g., GRTensor
[28] to evaluate the relevant quantities. In either route one (10

obtains the interior equations which are the following com- ] o ) o .
binations of the components of the Einstein tensgf: ASsuming that the interior equations are satisfied, the Bian-
+ 1/2g§+ 1/2g5_2g§ , Zgz_ zgi_zgz_,_ g% and gz+ g§ chi |denr:|t|esga;ﬁ—'0, |mply [9] .the following relations be-
+G»—Gi. They can be written, respectively, as tween the constraint equations:

20A ) 1
AA+ —pz—[—f'f'(l—f )3§C]+2(9PA ;+(9PC =0,
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where {=logp, and we define the rescaled constraitts ric functions are not differentiable &t=1. This requires a

=p\—9(G2— G I2V=p?—gG} with g=detg,,;. modification of the numerical scheme there, replacing the
A nice feature followg9]. The constraints/ and)V satisfy ~ second order normal derivative of the interior equations by a

the Cauchy-Riemanfill) relations and hence each one of first order one due to the considerations above as described

them is a solution of the Laplace equation. Hence, if one ofn Sec. IV A.

the constraints is satisfied at all boundaries and the other at a

single point along some boundary these constraints must be 3. The horizon

satisfied everywhere inside the domain. This fact will be re-  The horizon in our construction is located @t=1. For

ferred hereafter as the “constraint rule.” In our implementa-static solutions various notions of the horizon coincide—the
tion, following the choice irf9] we imposed/=0 along all  eyent horizor(globally marginally trappexi the apparent ho-

boundaries ant/= 0 in the asymptotic region. Itis important rizon (the outermost boundary of locally trapped surfaces
to check and confirm that the constrainend) are satisfied and the Killing horizon are all the same. The latter charac-

everywhere for our numerical solutions, as we describe iRerizes the horizon as a surface where
Sec. IV B.
A=0. (14)

C. Boundary conditions and constraints

This implies that along the horizon
The interior elliptic equations(6)—(8) are subject to P g

boundary conditions. In this section we describe the bound- 9.A=g2A=0. (15)
ary conditions that define the problem completely. The inte- ¢ ¢

gration domain is defined by{(r,2):0=z<L, r?+2*  Eyen though the horizon normally is not singufar curva-
=py’}, designated by the thick dashed line in Fig. 1. Thetureg our equations do become singular there as the function
boundary conditions are specified on the axis, at the horizom vanishes. Now we describe how the physical regularity of
in the asymptotic region and at the reflecting and periodiche equations at the horizon gives boundary conditions for
boundarieg=L andz=0. our functionst! Expanding Eqs(7), (8) at the horizon we

obtain the condition
1. The z=0 and z=L boundaries

On the reflectingz=0, and the periodicz=L, bound- d,C=-1 (16)

aries we impose . . . . .
P We still need a condition foB. We obtain this condition

9,4=0, y=A,B,C. (120  from the zeroth law of the black-hole mechanjos thermo-
dynamicg, namely that for static solutions the surface grav-

While at the reflecting boundary this condition is simgly ity must be constant along the horizésee, for example,
=0, at the periodic boundary its implementation is not di-[26]). The surface gravity along the horizon reads

rect, see Sec. IVA1. B
K=€ "d,A, (17

2. The r=0 axis L . .
) _ _ and the derivative ok along the horizon vanishes
Regularity of the metric on the axigbsence of a conical
singularity) requires dpeA
= = . 1
5,A 0, at p=pp (18

B=C. (13
We use this equation as a Dirichlet condition BrEquation ;I'he upshot is that the b°‘f”‘?'ary condition ®can be ob-

. . s . ained in one of the forms: either
(7) is not solved at the axis but it is only monitored there. For
A andC the boundary conditions are automatic—on axis the (9.A
(interior) equations for these functions become first order in B=C,_;+log——| , (19
derivatives normal to the boundary and have precisely the IpPe=1 Ph
form of a b.c. Namely these equations already incorporate
b.c. and these do not need to be additionally specified. W&om Eqgs.(17) and(13), or by integrating Eq(18) outwards
term this an “automatic boundary condition.” This occurs from the axis along the horizon. In our implementation we
because of our particular choice of the angular coordinateused the former form. However, we have checked that a
we useé instead ofy. The axial symmetry of the problem corresponding solution obtained by using the other option
dictates the’d, =0 condition for the metric functions, which differs only slightly from our original one. Note that condi-
translates to?, =0 in spherical coordinates andl—¢29,  tion (18) implies that Eq.(9) (or V=0) is guaranteed along
=0 in our coordinates. But on axié=1 and hence this the horizon, and vice versa.
condition need not be imposed in our coordinates. While the
coordinate singularity at the axis is quadratiesin(y) 2
when usingy, it becomes linear-(1— £) ! when usingé. YWe assume hereafter thafA|, +0, i.e., the horizon is not de-
With this advantage there is, however, a drawback: the metgenerate.
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We can get a different condition f@ as well. Examining clog(r) 1
Eq. (10) ((/=0), one obtains the condition C=—, +O(F)’ (24
d,B=—1, (20) where we also included the order of the corrections. Note the

o _ _ logarithmic term inC. This log-behavior is specific to 5D
which is necessary to ensure regularity of that equation alongnd indicates a very slow asymptotic falloff. At leading order

the horizon. the coefficients in22) are related by23]
Altogether we now have too many conditions at the hori-
zon: four boundary condition€&l4), (16), (19), (20) for the a—2b+c=0. (29

three metric functions. However, as explained[] it is ) ) . ) )

unnecessaryo impose both constrainté/c0 andy=0) at !N the numerical solution one can impose the simplest Di-

the same boundary, and actually ifiscessary ndp impose ~ fichlet conditions: A—1=B=C=0 at the asymptotic

both in order to protect the problem from being over con-boundary. However, since in our numerical implementation

strained. the “infinity” boundary is located at a finite' this option
Out of (19), (20) we choose to imposd9). The condition ~ appears to be 'too crude. O_ne can imprpve that by going to

(20) is satisfied for these solutions. The error becomedhe nextorder in the expansi¢@2) and using(25) to get the

smaller with grid refinement and reaches 2% for our finestefined conditions

grid. For the sake of completeness we also obtained solutions d

using (20) instead of(19). However, these solutions do not —(Ar)=1, (26)

have a manifestly constant surface gravity. The variatios of dr

along the horizon is small for smal] but can reach as much

as 15% for largex values. The overall difference between d(Br) -0 27)
the two solutions is maximal near the horizon, being of the dar 7

same 15% magnitude. This difference fades off asymptoti-

cally and the constraints are still satisfiedith the same C=(—1+A+2B)log(r). (28

accuracy. We conclude that, in principle, it is possible to use . N . )
the condition(20) to generate solutions, though the numericsHere we have rewritten the conditions in a form convenient

should be refined further to reach an acceptable accuracy. for a numerical implementation. _ N
Unfortunately, we discovered that these linear conditions

4. The asymptotic boundary do not lead to a convergent scheme. To understand this, ob-
serve that the function with the slowest decagidn 5D, to
resolve the difference between the first two terms in its
asymptotic expansion with just 10% accuracy one has to go
to r~exp(1l0p,—the logarithm strikes hard. When the
maximalr is not extremely largéwhich is the case here for
practical reasonghe non-linear corrections appear to be im-
portant for stabilizing the schenj@].

Recall the “constraint rule” which will help us to derive a
more subtle b.c. foC. In accordance with it we choose to
enforceV=0 along all boundaries. The rationale behind it is
that this constraint is satisfied trivially at the axis and at the
reflecting boundaries, asymptotically it decays exponentially
fast, and only at the horizon this constrain is not trivial and

Al yields(19). The second constraint must not be imposed at the
C"+3C'+2(C")%+ A (C D+ 1—-e?8-2C=0, horizon. At the axis it vanishes. Along the reflectirzg; 0,
21) and the periodicz=L, boundaries this constraint does not
carry any new information as it is just a linear combination
— . of the interior equations. Hence, we are left with the
Here the derivatives are calculated with resped{.to asymptotic boundary. This boundary can be potentially dan-

Asymptotic flatness at—« requiresA—1=B=C=0. . iy
Linearizing the above equations we can solve them analytigerous since on one hang {~G) decays here and on the

cally (see Appendix Bwith these boundary conditions ob- Other hand the measuge\'—g blows up. This competitive

Performing a Kaluza-KleirfKK) reduction one observes
that thez dependence of all fields is carried by massive KK
modes and hence fades off exponentially for largéhus, in
the asymptotic region we can rewrite E@8)—(8) retaining
only ther dependence. Defining for convenieng=log(r),
we get

A"+A"+2A'C'=0,

!

2A
B"—B’'-2C'—(C")*~ —~(C'+1)~1+e** *¢=0,

taining behavior can result in an unpredictableThus, to guarantee
that the constraint is satisfied, the natural and unique place to
a log?r imposel/ is the infinity.
A=1- T +0 -z ) (22 The upshot is that instead of the linear conditi@8) we

computeC at the asymptotic boundary using the constraint

equation/=0. By doing so we stabilize our algorithm and

i) (23) satisfy the “constraint rule.” Note that at leading order the
2 vanishing ofi/ is consistent with the linear conditiq28).
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IIl. THERMODYNAMICAL AND GEOMETRICAL With these 2-areas we define the eccentr’réity the “defor-
VARIABLES mation” of the horizon as
In this section we briefly summarize the results from our A
previous papef23] with a particular focus on the 5D case. €= FH_ 1 (34)

Hereafter we work in units such thét,=1. . _ _ . o

At infinity. As stated in[23] (see alsd16]) there are two Finally we define “the inter-polar distance” which is the
energy-momentum charges that asymptotically characterizeroper distance between the “north” and the “south” poles
our Conﬁguration_ These are the tota' mmmr the dimen- of the bIaCk hOle Calculated along the axis. Th|S d|Stance

sionless mas;z::m/I:), and what we called the tension. The reads

latter is what an observer at infinity interprets as the tension L

of an imaginary string stretched along the compact circle. Lpoes=2 | dz€ at r=0. (35

These charges can be calculated in terms of the numerical P

asymptoticq 23] Small black holesFor small black holesx<1) the tension
should vanish,7=0, according to Myer$19]. In this case

mlq 2 —1jla we have

=51 -2||b|

L b @9 413

2/3

a
b

m. (36)

The asymptotic mass can be calculated also in a direct way,
using the free energy or the Hawking-Horowitz | aqgition, in this limit we have
prescriptiort? [27] which gives the same result. In the linear
regime, using the relatiof25) in the above formulas one can 37,
express the physical charges in terms of any two of the nu- M= ?X ' (37)
merical asymptotics.

At the horizonThe characteristic quantities at the horizon Small black holes are expected to resemble a 5D Schwarzs-
are the surface gravitjthe temperatujeand the aregthe  child black hole for which we have
entropy of the horizon. We have already defined the surface 1
gravity in Eq.(17), and Fhe temperature is proportional to it A,§Ch: 16772pﬁ, A§°h= 157Tp§, K=o (39
T=«/27. The entropy is related to the surface area by the Ph

famous Bekenstein-Hawking formuli, = (A/4Gy). Inour  \jgre generally, the dimensionless variables can be expanded

coordinates the surface area reads in a Taylor series as a function ®fIt can be showh24] that
this expansion foA®) takes the form
1
A3=47Tpﬁj leB”Cvl—fzdé AW=272[1-3.£(2)x%+ ...], (39)
1 where(2)=?/6 is the Riemann zeta function.
:477(2|_)3X3f eB2C\1- £2d¢. (30 The analogous expansion for the eccentricity reads
-1

8
_2 4
Out of these thermodynamical variables a single dimension- €73 HAXH (40

less quantity can be formed
g y Thus the prediction is that is positive, i.e., the black hole

A = A3 (31) becomes prolate along the axis. This agrees with the intuitive
30 expectation that the black hole should approach a string

In addition to the 3-area it is useful to define a pair of 2-area§'hape as It grows. -
Other dimensionless quantities are the 3-area

of horizon sections. The equatorial 2-area section is given by
A
A= 4mp2eC. (32) Ay =2mx+ (41)
The 2-area of the section of the horizon along the axis is justhe surface gravity and the temperature

1 wi=xkl=x"14+ ... and T=2mx"1+.... (42
A =2mp? f eBCd¢. (33 (
-1 and the polar distance

L3This definition differs from the standard definition of an ellipse’s
12The Hawking-Horowitz mass coincides with the ADM mass eccentricity. It is analogous ta/b—1=(1—e?)~Y2=1+0.52,
when both are applicable. wheree is the conventionally defined eccentricity.
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=Ly s/E- (43 numerical method. Another important task is to check
pote whether the measurables have the smalisymptotics as
Smarr’s formula.The Smarr formula, also known as the in- expected/derived theoretically. We use dimensionless mea-
tegrated first law, is a relation between the thermodynamicasurables: in this form the relations between them remain the
variables of the problem both at the horizon and at infinity. ltsame, regardless of whethey or L are varied?
can be obtained either from th@lifferentia) first law to-
gether with scale invariance, or by computing the Gibbons- IV. NUMERICAL IMPLEMENTATION

Hawking free energy and combining it with the expression
for the mass?* We find[23] In this section we describe our numerical algorithm for

solving the system of partial non-linear elliptic equations
8w (6)—(8). We estimate the rate of convergence of the numerics
A3=7aL. (44) and check that the numerical errors are small and the con-
straints are satisfied. All our simulations were written in For-
This formula relates the horizon characteristiss and x  tran. The typical run timem a 2 GHz Pentium4 PC took
with the asymptotic variable, together with the dimension- about 1-2 days. The output of the code was analyzed and

ful parameterl. This formula is an important test for our Visualized using Matlab.
numerical solutions.

A phase transitionOne of the most important questions A. The scheme
that we aim to answer is whether there is a maxifdahen-
sionles$ mass of the black hole phase as anticipatefBin
This is analogous to the minimal mags;; of the uniform
black string below which the string is classically unstable.
What happens to a black hole more massive than the critic

black hole is unknown and constitutes one of the puzzles o I:di?i?: Saltrii?\ ?ascE:;adcg dlsorﬁtzcrjmh:r?'itz?a:tir\l/znl;llgvsf:)rneqr%ité%rlﬁea
this system. The appearance of a critical mass should be ' P

signaled in the numerics by a very slow convergence anéés ﬁg?ot:g%% \évﬁh relaxation to find solutions of non-linear
ultimately no convergence. q e

Given the asymptotic magg9) of the black hole we can
calculate the area of the corresponding black string of the

The numerical technique that is often implemented to
solve partial elliptic equations is an iterative method, called
“Relaxation,” see, e.g[30,31]. In this method the solutions

re iteratively corrected, starting from some initial guess, un-

1. Numerical lattice and discretization

same mass Near the horizon we employ polar coordinafesé}. As-
ymptatically, however, cylindrical coordinates are the natural
Ags= 477(2G4m)2|: (45) choice. In order to use both we choose to divide our integra-
tion domain into two parts(i) “The nearby region” near the
or in a dimensionless form horizon is covered by polar coordinatéis) “The asymptotic

region”is glued to the nearby domain from the outer, far side

and is covered by cylindrical coordinates. The two patches

overlap in order to exchange information about the functions

during the relaxation.

While the existence of a maximal mass designates a pertur- We discretize our equations on a lattice that covers the

bative (tachyoni¢ instability, the solution with.Ags= A5 domaln of _the integration. We employ the f|n|t¢ dlfference

designates the point of the first order transition between th@Pproximation(FDA) in which one replaces derivative op-

black hole and the black string phases. This transition cagrators by their discrete counterparts. The discrete operators

occur quantum mechanically, via tunneling, or by thermal@re obtained by a formal Taylor expansion of functions at the

fluctuations. grid points. We use a FDA which is second order in the grid
Summaryln our problem we define four thermodynamic SPacing. For example, ifis the stepsize in, say, thedirec-

measurable quantities, namely, the horizon 3-area, the suion, which is sampled by indey then the first and the

face gravity, the asymptotic mass, and the tension, as well &&cond derivatives of a functiop at the lattice pointK,j)

two geometric quantities, the eccentricity of the horizon andire written to second order as

the inter-polar distance. The thermodynamic ones are related

by the very non-trivial Smarr formuléd4). The validity of W1 k-1 3

this formula for our measurables is one of the most important Ip¥ii= 2h +0(h%),

tests for the numeric¢in addition to the usual numerical

tests of convergence, constraint violation, et€his is be-

cause the Smarr formula relates horizon variables, with &zl/fk _ P+~ 28+ -1 +0(h3). (47)

asymptotic ones. Hence the degree of violation of this for- Pl h2

mula can serve as an indication of the global accuracy of the

A
ABS:=I:_B;; = 167T,u2. (46)

I5For a fixed numerical lattice spacing it is not the same to ygry
14see[29] for the appearance of the scalar charge in the first lawor L.
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ph (horizon) Y Peutoff
—r - -
z=L

peutoff

Z / / J Tnax
FIG. 2. “The nearby region” of the integration domain covered L»

by the polar coordinates, . The thin dashed lines mark the loca-

tion of the false grid points used for numerical implementation of  FIG. 3. The asymptotic region is glued to the “nearby patch.”

the Neumann or mixed Neumann-Dirichlet boundary conditions. The two patches overlap in order to exchange information about the
functions during relaxation.

Analogous expressions can be found for all other derivatives.

Our second order FDA incorporates a 5-point computa—=J;,(k+1). During the relaxation we sweep the lattice from
tion molecule in the interior. Obviously, it would be nice to k=1 to k=K,,,,and fromj=0 to j=J;,(k). At a given ray
have the same feature also at the boundaries. In fact, we we correct the outer points &—1 when we reach
retain this feature at all boundaries but the axis through the-J. (k—1) using the reflection b.c. To this end, for each
introduction of false grid points. For the functions that haveouter point, 0, we find the corresponding inner poiri,

a Dirichlet boundary condition we solve inside the domainwhich is its mirror reflection with respect to the boundary
using data at the boundaries. This is the methodandB  [(r,z)—(r,2L—2)]. The functions at the inner point are ob-
on the horizon and folC asymptotically. To implement a tained by a two-dimensional interpolation from the surround-
Neumann condition we introduce false grid points locatedng points and then the corresponding outer point is updated.
one stepsize outside the real boundaries. Since the norm@he important practical note is that the inner mirror points
derivative is given at the real boundary we define the funcshould be calculated only once prior to relaxation.

tion at the false grid points using the corresponding inner e choose fixed lattice spacings bothgdnand ¢ direc-
points. For example, at the horizond,C=(Cy; +1  tions. In thep direction the grid is truncated at a finjpe,-
—Cyj,-1)/2Ap=—1, wherej,=1 is the location of the For a specifict stepsizeA¢, the maximalp is

horizon py,; at the false pointK,j,—1) we haveCy; _,
=Ck’jh+1+2Ap. Now we solve the equation on the real L (48)

boundary just as for an interior point, using data at the false Peutof A¢

grid points. This is the method f& on the horizon and for

A, B and C on the equator. The mixed Neumann-Dirichlet The A¢ step is chosen such that#L (usually we took

conditions forA and B, which are written in the forni26), peutoii 10L.) Note that there are only two grid points on this

(27), are imposed in the same fashion. At the axis we havéar boundary in they direction for pgyn: One is atK

“automatic conditions” forA andC. Since the functions are —1 and the other is aK,,,,; see Fig. 2. Here the second

not differentiable here in th& direction we use one-sided patch of the integration begins.

(first-orde) ¢ derivatives. Here our FDA becomes 4 point  The asymptotic regiorr,z} - patch.This patch begins at

and not completely second order as E47); see also the r=r,in<pcuoi @Nd extends up to=r .. Note that there is

discussion in Sec. Il C 2. a “buffer zone” where both patches overlap; see Fig. 3. The
The boundary=L is rather complicated in polar coordi- variation of the functions in this portion of the integration

nates while being very simple in cylindrical ones. This bringsdomain is expected to be small provided thaf=L.

us to a closer examination of the coordinate patches. Thus, the lattice covering this portion does not need to be
The nearby region{p,¢} - patch.The lattice that covers very dense. The grid has a simple rectangular geometry with

this domain, see Fig. 2, has nodeskatl, ... KnaoKmax ~ Uniform grid spacings. There are two false boundaries at

+1, in the¢ direction, and nodes @=0,1, . .. J;,(k) inthe = =0,z=L. At the near boundary,,, all functions have Di-

p direction. HereJ; (k) is the coordinate of the last point richlet b.c., the values being received from the “nearby
that lieswithin the boundarz=L, which is represented by patch.” At the far boundaryy ., We implement the mixed
the curvep=L/¢. The false grid points here are introduced Dirichlet-Neumann condition$26), (27) for A and B and

by the requirement that for each inner point there will beevaluateC from the constraint/=0. Since for practical rea-
outer points that allow the implementation of the regularsons we were obligated to take finite, not too largg, [we
5-point second order FDA scheme. This implies that at eaclusually choser ..~ O(1000);] the use of the non-linear
k the outer points occupy;,(K)<j<J,u(k) whereJy,(k) condition forC is essential.
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The equations are relaxed on both patches one after theamely, passing from a coarse grid to a finer one. The origi-
other. First we sweep the lattice of the nearby region andhal multigrid techniqué31] incorporates motion in both di-
then the lattice of the asymptotic region. Then the sweeps anections, allowing newly excited modes to relax on suitable
iterated. The patches communicate. When sweeping the negrids. This two-directional method is expected to be much
patch we use the information from the far patch to supplymore effective and fagbut difficult to program).
boundary conditions gb.¢. FOr example, see Fig. 3, the  The multigrid technique was implemented only on the
green point atp.,o Can be obtained by, e.g., a bi-linear nearby patch. The asymptotic patch was chosen to have fixed
interpolation from the points marked by crosses. Whilegrid spacings. This is because the variation of the fields is
sweeping the far patch the boundary condition along theelatively small at large and there is no need for very dense
stitch atr,,, come from the near patch. For example, thegrids. Note also that by decreasing the grid spacings in the
yellow point atr ., is obtained from the points marked by nearby patchp..s Scales according to Eq48). Thus for
stars by a bi-linear interpolation. each more dense grial. .o IS doubled. We, however, chose

To relax the equations we used a scheme which incorpao keep the truncation radius constant, defined by the coars-
rates Newton iteration. To this end, at each grid poigf),  est grid. In this case when the grid spacings were halved the

any functiony=A,B,C is updated according to number of the points on the boundary gt puo Was
doubled.
ew oldon - Ey(k,j) In most of our simulations typical grid spacings in the
PNk ) =y (k,J)—wm . (49 asymptotic patch wereAz=0.25-1.0, and Ar=0.075
v "7 told —0.25. The typical grid spacings in the near patch were

L , ) ) Ap=0.1-0.25 andA£=0.08-0.12 for thecoarsestgrid.
where&,(k,}) is the FDA equation of motion for thig, and  gne can estimate the size of the lattice, taking typical

w is a numerical factor
: ~10py,, M min~ 10L and  rp .10 ~100L
The basic Gauss-Seidel algorithm uses 1 and it leads Nlo’é'zbhp"“fﬁ“th?‘g”case the siza\ gxnllTX ofptcﬁsﬁcoarsest
. 1 p 1
to a very slow convergend@.c_)ne way to speed up the per- o1 arid s 10¢1000, while the finest grid is 160
formance is to use successive over relaxaiB®R). The % 16000. The sizeN,x N, , of the asymptotic grid would

name originates from the fact that unlike the Gauss—Seide“‘,jwe been 181000, if the grid spacing in the direction
scheme where the functions are corrected by exactly whz%ere uniform. '

they should be from the equations, in the SOR algorithm the
correction is larger. The over-relaxation is managed by the
relaxation parameter 4w<2. Sometimes, for non-linear
equations it is better to use under-relaxation. In this case 0 Once we have a solution the horizon variables such as
<w<1 and the functions are under-corrected. The aase «,As,A; are calculated in a straightforward way from Eqgs.
>1 (w<1) can be imagined as a sort of acceleraiifsic-  (17), (30), and(32), (33) respectively. In order to obtain the
tion). We implemented the SOR algorithm for our problem asymptotic mass and the tensi@®) we have to expand the

and found that the convergence rate is still unsatisfactory fofmetric functions asymptotically. We use fitting functions of a
dense grids. suitable form to obtain those coefficients. For example, to

find b we need a quadratic fit in~* for B in the asymptotic
2. Multigrid technique region. To finda a linear fit is usually sufficient for a good

. . result. ForC we used a fit of the forna,log(r)/r +c,/r. How-
The algorithm that we found to work well is what we ever, we were unable to find a reliable fitting f& We

loosely “?”“ hgre a mylngrld a!gonthm; see, d3]. In the associate this with the slow logarithmic decay.
current simplified version of this method we solve the equa-

tions on several successive grids with doubled density. The
basic idea of the multigrid technique is simple—relax pertur-
bations of different wavelengths on suitable lattices. Clearly, There are always compromises in numerics between the
relaxation of a long-wave perturbation on a very fine gridcomputation time and the accuracy of the calculation. This
will require many iterations, while if we first relax the per- has to do with the grid density. Large grids mean small step-
turbation on a course grid and use the solution as an input faizes and hence better accuracy provided that the FDA is
the fine grid there is a chance to converge faster. Anothestable, i.e. it converges as a stepsize decreases. On the other
advantage of using the multigrid method is that there is &and, even if there were unlimited memory resources to store
natural measure of accuracy. We can compare the solutiodarge arrays, such dense grids would result in extended CPU
on different grids and see whether and how the differenceme that would be needed to sweep such large lattices. We
decrease, indicating convergence and scaling of the truncaéried different tricks to find a reliable compromise for this
tion error. We used four successive grids with halved step*CPU time vs accuracy” issue.
sizes. Our implementation of the multigrid method was very A non-uniform asymptotic gridOriginally we imple-
simple. We just improved the solution going in one direction,mented the asymptotic boundary conditions gi,, that is
30-50Q., or about 300-50Qf),. However, we found that
those values of ., are not large enough to determine the
181n fact, in our case this method is so slow that we could not infermass with sufficient accuracy, especially for large values of
that it converges at all. x. Since in 5D the asymptotic fall-off is slow22), imple-

3. Extracting measurables

4. Further developments
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menting the asymptotic boundary conditions at thegg, ~ With simple boundaries there is no analytical prescription to
values is not accurate enough. Naturally, one would like tepick such an optimatn. Often empirical estimates are the
extend the grid to the largef,,,. One way to do so is to add ©only way to find it. In our case the estimation of an optimal
more points to the grid. However, in order to reagh,,  « is even harder, since we need an omega for each of the
larger by a certain factor than the original,, the number of ~ three functions for both patches.
grid points must increase by the same factor. The same is While we cannot be confident that theés we have used
true for the increase in the CPU time. Since we negg of in our computations are the optimal ones, we can estimate
order exp(10py,, this makes the mere increase in the numbeithe range ofw outside which the code slowed down or di-
of points absolutely impractical. verged. The choice,=1-1.2, wc=1-1.1,wg=.5-1In

We used another technique—a non-uniform grid spacingghe nearby region and,=wc=1-1.2, wg=.02-0.1 in
in ther direction. The stepsizes were scaled in the followingthe cylindrical patch usually gave a reasonable convergence

fashion: rate. Some of these values dependxoiithe most influential
IS wg in the asymptotic region: a slight deviation of its
Ari 1=(1+e)Ar;, i=12,...N;. (500  value from the narrow range ruins the convergence.
Heree is a small number that we usually took as 0.01-0.03. B. Testing the numerics

In this case the coordinates of the mesh points irr ttieec- ) ) )
tion form a geometric progression and it is possible to reach AS usual in numerics one has to convince oneself that a
quite large values of ., with a relatively small number of Particular numerical method produces trustable results. Be-

the mesh points. The discretized equations are now modifiefpre discussing our findings, we present in this section the
and the truncation error at a grid poinscales ag)(eAr;) evidence that our method performs well. We show that the

+O(Ar?) rather than just(Ar?), which is the case for a numerical errors decrease sufficiently fast, indicating a glo-
uniformlgrid with the spacin@rl- ' Providede is small this P2l convergence of the scheme and that the residual errors of
i

modification is not that different from a uniform FDA and tEe eﬂuatlons are small, _In addition, .'nf.G? \c/)\?e r;]as tohensrl:re
does not cause problems. In thalirections stepsizes were LNat the constraint equations are satisfied. We show that they

left uniform and hence the corresponding FDA derivative'® satisfied to a good extent. However, this ceases to be the
operators remained unchanged case wherx is “too large.” For x above a certain valug,
Keeping e in the above ranée in order to reach |arge:0.20, the convergence is slowed down, the constraints are

enoughr [of order exp(10p,] the grid turns out to be large violated significantly and the errors are not small for the

enough to slow down the convergence notably. In praCticeresults to be reliable. Additional accuracy estimates come

we could reach onlyr,.~500-80@,. The logarithm from the Smarr formula, which our solutions satisfy with
strikes again. " " very gOOd. accuracy. . . .
Additional relaxation near the horizomhis is needed in Numerical testswe relax the equations on four grids with

order to increase the accuracy of the calculatior aihd the increa;ipg density. Fpr the first apd coargest grjd we give
area of the horizon and its sectiof®0)—(33). Especially, the some initial guess while when moving to a finer grid we start

eccentricity(34) is sensitive to the accuracy of the area mea—With the solution relaxed on t_he pre_vious grid. The first thif‘g
surement. This relaxation operates over a finite portion of th(‘-ﬁhat a good method must satisfy is independence of the initial

mesh in the vicinity of the horizon. The boundary conditionsgue?‘sf.T0 achieve faster convergence we regularly_ used as
along the horizon, axis and the equator are the same as b e initial guess the uncompactified 5D Schwarzschild solu-

fore but along the outer boundary one uses just the Dirichlefon restricted to|z|<L. However, we checked that oth_er
boundary conditions that come from the main relaxation. Nitial guesses, such as flat spacetime glued to the horizon,

Over this region the metric functions were relaxed on twoetc., relax to the same final solution. As an indicator of the

additional finer grids. One could suspect that the relaxatioffccuracy during the relaxation we use the accumulative re-

over a finite region would produce a mismatch along theSldual error defined as

stitch, which can be imagined as a kink or a “ripple” in the

metric fields. However, we have checked that this is not the Regy:= ! > |Agn . —Srcyn | with y=A,B,C,
case, but rather the behavior of the functions was smooth. 4" 1 4G ! !
The maximal change in the functions relative to the previous (51

grids occurred over a few mesh points near the horizon.

In addition, in a couple of runs we relaxed the equationsvheren is the grid numberrf=1 is the coarsepstand the
over theentireintegration domain on an additional fifth grid. factor 4'~* roughly compensates for the increase in the total
When the area and the surface gravity, obtained in this caseaumber of grid points. The iterations on a particular grid
were compared to the ones obtained in the relaxation ovewere stopped when the residuals were reduced by a desired
only a small region near the horizon, we found that the dif-factor relative to some number, that we usually took as the
ference in both results is less than 0.1%. The gain in compuinitial residual calculated before relaxation on that grid. In
tation time was, however, dramatic—hours vs days. Fig. 4 we depict the residuals on each grid. Their behavior

The over- (under-) relaxation parameter. There is no  suggests convergence.
universal algorithm to find the optimal that speeds up the Note that the decrease of residuals is not monotonic all
convergence. Except for a few very simple elliptic equationghe way down. This implies that there are modes that are
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FIG. 5. Alog-log plot of the normalized residuals vs the number
of iterations forx>0.20. After an initial convergence the solution
diverges.

whereh, is the grid spacing for this mesh. The rate of con-
vergence is defined by the powerlf p=1 one speaks about
linear convergence; =2 there is a quadratic convergence,
and so on. Taking differences between solutions on different
grids and considering the fraction of these differences the
value ofp can be estimated. Of course, the valuepahay
i vary at different points of the numerical lattice. However,
Nyeraione/3000 N, ratione 1500 one can calculate thminimal convergence rate by taking the
minimum of thosep. We find that in the asymptotic region
FIG. 4. Alog-log plot of the normalized residuals, Ress the the minimal convergence rates arig~3, pg~2, pc~3 for
number of iterations fok=1/7, implying convergence. the three metric functions. In the nearby region the conver-
gence rate is also found to be at least quadratic for all func-
continuously excited and then decay. For small valuex of tions. In the above estimates pfwe used only the three
these modes are harmless, but have an imprint on the residfinest grids. The reason not to include the first grid is simple:
als’ decay—the oscillations. For largewvalues these modes its prime role is to perform a rough adjustment of the initial
are not suppressed—the oscillation increases their amplitudguess to the given boundary conditions. Hence, one expects
and then they finally diverge; see Fig. 5. that the solution on this grid is only a very crude approxima-
In addition to the convergenceer grid we can use the tion to the final solution. To guide the reader we plot in Fig.
benefits of the multigrid technique and check the conver the metric functions in the asymptotic region at the equator
gence whemmoving between griddVe examine how much for four grids. The nice convergence there can be easily seen.
the solution is corrected when relaxed on different grids. ToWhen this is the picture we infer that our method converges
this end in Fig. 6 we depict thdifferencesbetween the so- nicely.
lution on thenth grid and the solution obtained on time Convergence of this kind occurred for intermediate values
—1, coarser grid. Since we used four grids there are threef x, roughly for 0.08sx=<0.15. Outside this range the rate
such pairs. We observe that the solution is corrected less asf convergence is still very good for all measurables but one.
finer grids, as expected for a convergent method. Most of th&o envisage our point it is more convenient to use the nu-
corrections occur in the regions near the horizon and near th@erical asymptotica andb, instead of our “physical” mea-
axis. In fact, this is the sort of behavior that allowed us tosurables, the asymptotic mass and tendiofhe typical be-
perform further relaxation with confidence even on finerhavior for our measurables as a function of the grid spacing
grids in the vicinity of the horizon as described in the previ-is depicted in Fig. 8. Whilé\;, x anda are observed to reach
ous section. their asymptotic valuesh is special—it does not seem to
We can also estimate thrate of convergenceAssuming converge to a definite value. Note that the asymptotic
that the solution converges to sorfiein the limit when the  chargesu and » seem to settle to definite values as well.
grid spacing goes to zero, we can write for thth grid

residuals
residuals

. b 1"Note thatb does have a physical meaning—it is the scétar
f*=f,+0O(hyp), (52 dilatonig charge.
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FIG. 6. The correctionéor differencegin the elliptic equations when relaxed on different gridsxXer0.1. One can see that the finer the
grid, the less the solution is corrected.

Moreover, even though does not behave monotonically, for in the measurements dfas the “theb problem.”
small x its value is limited to be within a narrow range; see  To get an idea of the overall accuracy of the numerics in
Fig. 8. We will see below that the real problems of conver-the final solution, i.e. after relaxation on all four grids, we
gence begin when the fluctuations lofare not small any- plot in Fig. 9 the normalized error in our elliptic equations.
more. We refer to these fluctuations and the lack of accuracyhis error is defined at each mesh poiktj) as

Ay j+Src iy

1 .
’?\/1—§23§(V1—§25§¢)k,j +[Src gyl

(53

Oy j= 1

2
aplﬂk’j'f‘ ;ap¢k,j +

One observes that the relative errors are very small, beingf accuracy is due to the geometric pathology of the polar
less then 0.02%. Ag approaches 0.20 the errors grow to acoordinates in the asymptotic region: the uniform grid cells
level of a few percent. in polar coordinates become very thin and prolonged when

Constraint equationsAdditional insight into the accuracy viewed in Cartesian coordinates. This causes a loss of accu-
of the method can be gained by studying the behavior of theacy, since asymptotically there are very few mesh points in
constraint equations. It is clear that these must be satisfietthe polar patch. Hence, an attempt to compute derivatives in
for the actual solution of the Einstein equations. In Fig. 10the z direction that are required from the physical point of
we plot the absolute value of the constraints on both gridview gives an inaccurate result. When we passed from grid
patches. The figure shows that the constraints are not smat grid the constraints were satisfied better. When evaluating
in the far region of the polar patch. We believe that this losghe constraints in the Cartesian patch we did not observe any
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constrains is not small. Thus, both Figs. 10 and 11 are com-
plimentary and bring to light different aspects of the con-
straints behavior. The relative errors in the Cartesian patch
are difficult to calculate because of the small absolute values
of the constraints there. The absolute errors are small there
and vary slowly; see Fig. 10. Hence an attempt to evaluate
the relative accuracy according to E&3) fails, producing
unpredictable results because of roundoff errors.

The fast convergence, small errors and small constraint
violation are all attributes of the smatlruns. For certairx
the convergence rate became noticeably slower and the er-
rors became uncontrollable. This was thevhen the “prob-
lematic” asymptoticb started to dominate. Even though we
may expect positive tension>0, namelyb<<a/2 in 5D, b
reacheda/2 and continued to grow for larget This desig-
nated the maximak for which we could fully trust our re-
sults, which is abouk=0.20.

Applications of Smarr’s formulaAside from numerical
tests the Smarr formul@l4) provides an important theoreti-
cal constraint. We found thaBmarr’s formula is satisfied
within 3—4 %; see Fig. 12. We find a small systematic error:
when evaluatind\;«/(8mal), which should equal unity, we

FIG. 7. Arun withx=0.12. Values of the functions at the equa- find that the mean value of the numerical points is about 0.97
tor in the asymptotic region for four grids. There is clear conver-with a mean spread of less then 2%. This shows that our

gence.

numerics produces systematically under-estimated values
with a relatively narrow spread. In addition, there is a slight
increase in accuracy when the asymptotic boundary is moved

pathologies. The constraints were small and decreased fastfarther away. In this case the center of the distribution moves

the asymptotic region.

One gets a better insight for the constraints’ accuracy

toward unity, though very slowly.
It is intriguing that the Smarr formula is satisfied with

from examining theelative errors in them. These are defined good accuracy foall our solutions, including those with a
similarly to Eq.(53) and plotted in Fig. 11. One learns that problematicb. Even forx>0.20 when the b dominance”
the relative errors in the polar patch are indeed very smalliriggered convergence problems this highly nontrivial for-
being less than 1%, even though the absolute value of theula continued to hold; see Fig. 12. Together with Fig. 8 this

60
1 o .ﬁ
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< L
159 ;
1585
0 2 . 4 6
0.32 g
wy
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0.28 ‘m
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0.26 _ "
1 2 grd 3 4
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N
..
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1 2 3 4
grid

- e P8
-
& - {0.45
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0.4
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grid 0.1
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FIG. 8. Four measurables and two asymptotics as a function of grid numberfoil2. While the 3-areas anda converge nicely for

all the x’s that we relaxedb does not. The absolute variation of the variables is small, however. Note, though that the asymptotic charges

w and 7 converge as well.
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FIG. 9. The normalized error in the elliptic equations e+ 1/9. This errors defined in EG53). It is encouraging that the maximal error
is less then 0.02%. We plotted here errors in both patches.

suggests that despite the fact that we could not determine thstence of static black holes in a non-maximally symmetric
scalar charge accurately, the other three measurables are dggher-dimensional spacetime. We constructed a family of
termined with good accuracy. Our working assumption will solutions parametrized by, defined in Eq(4). The horizon
be that these measurables are trustable, ever>d).20 up region of the solutions in this branch tend to the 5D
to the last convergent solution, &=0.25, though in this  gchwarzschild solution in the—0 limit and become un-
regime the assumption becomes somewhat speculative.  giape forx—0.25. Even before that, at=0.20, numerical

Let us discuss one more aspect of the froblem.” As  ¢orq \vere not small anymore. Our analysis is not capable of
we nqted before even for smagllb did not reaIIy.conve_rge, settling with certainty what has destabilized the algorithm.
see Fig. 8. In addition, assuming positive tensier,0 im- We tend to interpret this as originating from a physical ta-

lies b=<a/2, and the equality is obtained for small black . o
Eoles that have vanishir? tenysion Sifce 0 for a uniform chyo.nlc instability, thou_gh currently we are not able to de-
) : termine the exact location of the transition point.

string this suggests that for smaxll b/a should. equak-1/2 The geometry of the black holeket us examine the
‘1”d ShOLGl/d d((a)creast()e to zerOfsireasesidnlﬁg. 1hS we'plot spacetime structure of a typical member of our family of
the r;.t'o_ba' dne 0 SderIE’St ?]t orhsma( aueds Lze ;?omts solutions, withx~1/7. In Fig. 14 we use contour plots to
are distributed aroun rather than aroun - N 8CCOWig 1alize the behavior of the metric functions and gain some
dance with our working assumpti@nis calculated correctly, . __.
h . hat th fitEalculati insight for the geometry.
sﬁtﬁ?gswgoiftlg?tgr:\aalllt :/a?uae(;ciéagﬁq[he otzlé?trlgr:gou/-e The functionA vanishes at the horizon and it approaches
0 . . .
' ; ; ’ unity asymptotically. The functionB and C decay smoothl
have seen that for intermediate 0s08<0.15, b does con- y asymp y Y Y

I H . he ratida i diod from a finite value at the horizon to zero at infinity. One
Verge well. Hence, since the ratoa is expec'Fe t_o ECrease gpserves as well that tredependence disappears fast as one
asx increases, the measured valuétd~ 0.3 in thisx range

gets away from a black hole. In addition, one learns that the
can be trusted. contours intersect all the boundaries at an angle of 90°: the
periodic atz=L, the reflecting az=0, and ther =0 axis.
This shows that the numerical scheme performs well at the
One of the most important results of this work is that ourboundaries.
numerical solutions are the first strong evidence for the ex- The proper deformation or eccentricity of the horiZ84)

V. RESULTS
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is depicted in Fig. 15. Belowx=0.05 the values that we tained (with x=0.25) is only slightly deformed, withe
obtain are randomly distributed around zero with magnitudes=6.5x 10" 3. Comparing with the theoretical quantitative
of 107%, hence we concluded that the black hole is sphericaprediction(40), where$ (4)=2.89, we see that the numeri-
to better then 10° at this regime. The main tendency to be cal “experiment” agrees exactly. Moreover, the axis intersec-
noted in the figure is that>0. This means that asgrows tion value —3.5x 10 ° agrees with the expected zero up to
the black hole becomes prolate along the axis, tending to the numerical errors; see Table I. We note that although the
string-like form, as one could expect intuitively. Another in- agreement looks “too good,” a fairly good agreement per-
teresting feature is that the last black hole that we have obsists also for fits on smaller neighborhoodsxef0.

1 . . .

relative error in U 0.01

0.005
0
FIG. 11. The relative errors in the constraints
107 in the polar patch. These errors are small, being
1 . T . 4 less than 2%, even though the absolute values of
(ot in vV 12 the constraints plotted in Fig. 10 are not.
relative errorin V| 10
g
8
4
2
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— : ¥ Y S FIG. 12. Testing the Smarr formula for two
é 0.98 . ;.....‘.‘. f’ i @ values of rg.. The formula predicts
& "i‘aﬁ’ FUY : ¢ * e Azk/(8maL)=1. The mean value for distribu-
T 0.96F ‘;} : ‘ ¢ * - - tion of a point designated by diamonds is .967
£ ® : * ¢ Tma200 with a standard deviation of .017. The same for
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The (normalized inter-polar distancg43) is plotted in  up to x=0.25, while the fourth ondthe tension is some-
Fig. 16. One observes thétdecreases so that the “north” what less consistent and fa0.20 its behavior is strange.
and the “south” poles of the black hole approach each otherThis is in agreement with our observations in Sec. IV B. We
This decrease, however, is slow, such that just before the labtave argued, based on the success of the Smarr formula, that
x=0.25, ¢ is still very far from vanishing. This suggests the three prime measurables;,T,a are robust, while the
several possibilities(1) Our numerical solution crashes due fourth variable b, has an uncertainty of about 30% based on
to uncontrollable errors, and hencexat0.25 there is not convergence problems and disagreement for smallhis
really a tachyonic instability. In this case the possibility thatrather large error is presumably confinedbtalue to an ap-
¢ will shrink to zero and the phase transition will be smoothproximate decoupling of equations in the asymptotic region;
is not precluded by our analysi®) The pointx=0.25 is in  see Appendix B. Moreover, it is this decoupling that allows
the vicinity of the real phase transition afiddoes not drop the success of Smarr’s formula. Due to different relative
to zero, signaling a non-smooth phase transition. This possiweights that the asymptotias and b have in the mass and
bility was advocated ifi8]. It is interesting to note that such the tension calculation, see E@9), u appears smooth in
features as the finiteness ©find the smallness of the eccen- Fig. 17, while 7 does not.
tricity, just before the transition, were obtained [it4] for For smallx<1 one can consider a Taylor expansion of
momentary-static black hole solutions. The smatlehavior  the thermodynamical variables in powers>ofWe can at-
of ¢ is surprising. Neglecting the effect of the black hole ontempt to extract the expansion coefficients by fitting the mea-
the spacetime metric one would expect a linear decreassurables with polynomials. We applied a fitting procedure for
However, as the figure shows the decrease is much sidwerthe first 8 to 10 solutions for whick<0.11. The expansion
This phenomena is not understood yet. It looks as if the massoefficients together with the numerical errors are given in
of the BH expands space in such a way that it compensategable I, as well as the expansion coefficient6f, defined
almost exactly for its size. This effect can be called anin Eq.(31) and plotted in Fig. 18.

“Archimedes law for caged black holes.” For completeness, the corresponding data €ds also

In an inset in Fig. 16 we plotted a possible extrapolationadded to that table. Everywhere the numerical coefficients
of the measured. If this extrapolation is correct then the are given with the estimated error. This is defined here by the
poles will touch forx~0.4. variation of the coefficients of the fitting functions, while

Thermodynamical variable®ur prime thermodynamical allowing the fit to vary within the 95% confidence range,
variables are depicted in Fig. 17. which is illustrated in Fig. 18.

We see that in the smalHimit all variables tend to their We can compare now the expansion coefficients to the
Schwarzschild values, designated by the thick dashed lingheoretical predications that are summarized in Sec. lll. The
The uncompactified Schwarzschild solution appears to be kading expansion coefficients, which are listed in the last
smooth limit of the near horizon region of the caged blackcolumn of Table I, are confirmed with a good confidence,
holes under discussion. One notes that three of the four theaside for the masg, for which the numeric and the theoret-
modynamical variables have a smooth behavior all the wayjcal numbers differ by about 20%. This is the imprint of the

poorb behavior, sinced is a part of the formuld29) for the
mass. The higher order correctionse¢@nd A() match per-

19t is hard to fit but seems quadric. fectly with new theoretical resul{f4,23. Other coefficients

0.5 T T T A S
§ 1 i a8
0.45F e S SRR G 4 FIG. 13. The ratidb/a is expected to start at
; ! b A A * 0.5 for x<1 and decrease for larger Sinceb
0.4y e AU o % R P =0 for a uniform black string, one might specu-
e ;* - ,Q;K*; ¥ 3 late thatb/a—0 asx increases. Here we see a
0.35p A A *% kK : o \ - 800 ' different behavior. ThisE behavior is not reliable
03-9%2%%‘**% ............. S - rmax~500 since b is problematic(at 30% level even at
¥ \ ‘ ; * 'max smallx.
Il 1 1 L
0'250 0.05 01 X 015 0.2 0.25
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contours of A atic b affectsu, but it is even more influential in the tension
calculation, see EJ29). The latter is depicted in Fig. 17. In
this plot the demarcation line correspondste0.20. In our
numerical relaxation we observed a slow down of conver-
gence and a loss of accuracy when approachisd.20.
This fact finds its vivid representation in the tension plot.
The points beyond the demarcation line drop suddenly and
the tension vanishes at=0.221°

Based on the success of the integrated first law our work-
ing assumption is that the entropy, temperature and the nu-
merical asymptoti@ are robust, not only for smaX but for
all the solutions, up t&=0.25; see the discussion at the end
of Sec. IV B. Moreover, one may observe that even though
the mass evaluation is very sensitivettthe main contribu-

tor is still a2 w=(a—b/2)/L. Hence, as long ab<a/2,
which is the case here, see Fig. 13, one may assume that the
mass calculation is accurate within 20—25 % limits. This will
be our second, more speculative, assumption. Using it, one
can question what additional information can be extracted
from out data. In addressing this question we ask: is there
phase transition?

We interpret the instability of the numerics as a manifes-
tation of a real physical tachyonic instability, which slows
down our scheme fax=x,=0.20, and which finally ruins it
completely at x,=0.25. Examining the(dimensionless

FIG. 14. Contours of the metric functions for=1/7. The black masses corresponding to the above ww@lues, we find that
hole is located at the left bottom corner. The vertical periodic direc-y,=0.047 andu,=0.074 are not that far from the GL criti-
tion marked byz. Note the change of the topology of the contours. cal massug =0.070. Sincea priori, the various instability
Near the horizon they are spherical while far away the contoursnasses in the system are expected to be of the same order,
b_e_come cylindrical, indicating translation invariance alaaf in- this coincidence is rather suggestive. This is another evi-
finity. dence to our assumption that we are approaching the real

physical instability.
have a somewhat greater uncertaifggmetimes tens of per- ~ The existence of a maximal mass designates perturbative,
cents. Since we do not have a theoretical insight, and bec|assical instability. On the other hand, once the entropies of
cause of the large numerical errors, we regard them as tefhe two solutions are equal for a given mass, a first order
tative. phase transition between the two phases can take place. This

We conclude that in the smatlregime most of our mea- transition will occur either by quantum mechanical tunneling
surables are very robust. We argue as well that the problenyy py thermal fluctuations. In Fig. 19 we depict the logarithm

of the dimensionless area$ for the two phases: the black
x 107 hole and the black string, whetdgg is computed forthe
' ' ' ' same massu= u(x). Our data do not show a crossing of the
areas. However, a naive extrapolation of the data points,
£=-3.310"° +2.89 x* marked by the solid lines in Fig. 19, indicates an intersection
. just above our last BH, namely, @&=0.26. For this value the
mass isu3=0.082, which is also of order of the critical GL
mass.

Note that the extrapolated; is slightly larger than our
instability massu,, while the opposite is expected for a
. first-order phase transition. However, this inequality is not
numerically significant: due to the high degree of uncertain-
ties near the instability point we cannot estimate well the
critical massu,. In addition one cannot expect that is
evaluated accurately, since its value will depend strongly on

6 8 10 1
r contours of Ig

6 8 10 1 é
r contours of

0 2 4 6 8 10 12
r

0.05 0.1 0.15 0.2
X

FIG. 15. Eccentricity or deformation of the horizon. It stays %We expect that the tension, much like the mass, is always posi-
very small up tox=0.25, where our code becomes unstable. Thetive [32,33 so we regard this behavior af as fictions resulting
coefficient of proportionality agrees exactly wit#h0). from the loss of accuracy in the measurable
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TABLE I. The numerically computed expansion coefficients of the thermodynamical and geometric
variables. Theoretical predictions for the leading terms are listed in the last column.

Fitting formula fi=6f, fox 6f, Theoreticalf,
o fx2+fx3 1.48+ .07 —1.3+0.6 37/8=1.18
Az f 3+ fox? 19.54+ .08 5.6-1.0 27%=19.74
T fox+ fx? 6.25+.05 2.0-.12 27=6.28
AW(272) i+ fx2 .99+.004 —5.18+.4 f,=1, f,~—4.93
€ fi+fox —(3.3+4.8)x10°° 2.89+.06 f,=0, f,=2.89

several(not very accuratefinal points in Fig. 19.
It is important to determine whether,< g, . If so there

bers. In order to improve the accuracy near the axis we could
use as an angular coordinate the angleinstead of &

must be a third stable phase to which the black hole decayss cos(y). The benefit is that the axis is approached faster in

for instance the stable non-uniform strifig]. However, we
eXpeCtILL2> MGL -

VI. FUTURE DIRECTIONS

We conclude by pointing out some future directions

the y coordinates, and so there are more grid points near it.
The drawbackgas we explained in the texare that the
coordinate singularity would be second order and the peri-
odic boundaryz=L, would lose its particularly simple rep-
resentatiorp=_L/&.

Another choice of coordinate$he metric ansatz that we

Higher dimensions @ 5. In this paper we presented a 5D ysed here contains three functions. It would be interesting to
numerical implementation of the ideas outlined in our previ-try and implement the coordinates suggestefi7inand sub-

ous papef23]. In principle, after some slight modifications stantiated in[10,17). In these coordinates the number of

the code can be applied to a higher-dimensional problenynctions reduces to two and, moreover, they interpolate
While we expect that the instability, being physical, would smoothly between spherical coordinates in the horizon re-
still be present there, we hope to improve the accuracy of thgion and cylindrical ones asymptotically, thus eliminating the

critical mass estimation. o o need for the two coordinate patches.
We hope that the accuracy will improve in this case due to

faster asymptotic decay. In addition, as we described in Sec.
IV A 4 faster asymptotic decay implies smallgf,,, hence a
smaller number of grid points and therefore a faster opera- It is a pleasure to thank J. Bahcall for suggesting this
tion of the code, which is now frustratingly lori@—2 day$.  collaboration. B.K. thanks T. Wiseman and D. Gorbonos for

Improving the performance of the methdhe can try to  discussions and collaboration on related issues. The authors
improve further the algorithm by, e.g. using the full multigrid are supported in part by the Israeli Science Foundation.
technique that incorporates motion up and down grid num-

APPENDIX A: EQUATIONS OF MOTION AND BOUNDARY
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1 , : -
[ w”“ CONDITIONS ON A DIMENSIONAL-CYLINDER
0.835r . 2 In this appendix we derive the equations of motion on a
0.99} 9. . d-dimensional cylinderR9~2*x St and the corresponding
@ e A
o boundary conditions. The most general ansatz, which is time-
0.985¢ O 1  independent, time-reversal symmetiitstatic’) and with
008 TSIy : ] axial SO(3) symmetry, is
5 S . Y A .
B e I e S 1 1 ds?= —exp(2A)dt?+do¥(r,z) +exp2C)dQ 2 5
0.97F 0.8 i }\-\-. ----------- 1 (A1)
= > F \ \v -
0.965F 0.4f wvicrvvvirinnn. T gy 1 wherezandz+L are identified dQ3_,, is thed— 3 sphere,
Z o E \ & - A A
0.96F gobeiiioveei b i, e o L A,C are functions of (,z) anddo?(r,2) is an arbitrary met-
0,955 ' _ P b o ¢ ric in the (r,z) plane. Note that we dropped for now the
' gl 55 55 ; o:‘; prefagtor in front of exp(@). f:lassically the problem scales
0.95% 05 o1 015 02 0.25 with L, and so we can sdt=27 and it can always be

restored by dimensional analysis.

FIG. 16. The normalized inter-polar proper distance starts at 1 We need the expression for the Ricci scalar of a fibration.

for small x and decreases asgrows. Note the surprisingly small Fqr d52=d5>2<+ exp(zz(x))d§ one has
rate of decrease. The inset contains a specula&ieapolation If

the latter is correct, the “north” and the “south” poles of the black
hole will touch atx=0.4. The two extrapolation lines correspond to
a spline(dash-dottefand to an 8° polynomialdashedl

R=Ry+exp —2F)Ry—dy(dy+1)(dF)%2—2dyA(F)
(A2)
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FIG. 17. The dimensionless mass, tension, 3-area and the temperature along the found branch. The dashed line designates the corre
sponding variables for the 5D Schwarzschild solution. The shown equations are an approximation fot, gimeatioefficients with the
fitting error are given in Table. I.

where  the  Laplacian is given by A(F) While deriving this formula one has to be careful to consider
=det(g) ~*%9,[g*"det(@)"?3,F], grad squazed is F)°  theA, C fibration step-wise, and thereby get the cross term
=9""9,F0,F and dy=dim(X), dy=dim(Y) (we normal-  _5q_3)(54)(4C) in addition to—2A[A+(d—3)C].
ized the Ricci scalar bR=R;;;; so thatRg=d(d—1)). The gravitational action is

The d-dimensional Ricci scalar is

Ry=R,—2(dA)2—2AA+(d—3)(d—4)e 2C _ D
167Gy,

J dtdv, eAt(@-3CR, | (A%)
—(d—3)(d—2)(aC)2—-2(d—3)AC

—2(d—3)(3A)(aC). (A3) ~1[ A Black Strings

V¥ Black Holes

AP S U S S S O R YO -2
' : : A®)(27?)=0.99-5.18 x>

: »
0.96r g . ,
NA v 8 57 Is there intersection T
& 0.95F > at x=0.26 and . ;=0.082
= :  _pf J
* -
= 0.94 :
0.93F dion s @ -7t T
0.92+ 8 _8¢t <
: . . 4
2] e i I R S A R i R ol A ]
0.9fwwrireoe S S I ST S S 0.05 01 015 0.2 0.05
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 X
X

FIG. 19. The logarithm of the dimensionless area of the black
FIG. 18. AW/(27?) for smallx. The leading correction agrees hole .A; and black string4g s with the same mass. The continuous
well with Eq. (39). The confidence bounds are depicted. No otherlines show extrapolation of the data to largeralues, suggesting an
Taylor coefficients could be extracted reliably. intersection and a first order phase transitiox=ai0.26.
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where Gy is the d-dimensional Newton constangVV,  Solving for A(A),A(B),A(C) we obtain the equations of
=\=0(.»drdz, Qq4_3 is the area of the uniti—3 sphere, ~motion, which in{r,z} coordinates are
and from now on we wil drop the prefactor

Qd_316’7TGNfdt. ﬁrA
After integrating by parts we get AA+(d=3) ——+(d=3)(3Ad,C+d,Ad,C) =0,
. . . (A13)
— A+ (d—3)C _ o —-2C
I f dv, e [Ry+(d—3)(d—4)e (d—3)(d—4) 2
A o AB—farC F+arC
+(d—3)(d—4)(dC)?+2(d—3)(dA)(aC)]. (A5)

. . . (d=3) A
Now we need to fix the metric ansatz in the 2027) space. i d,C| (d—4)9,C+ ZT
One can use diffeomorphism invariance to put it in the con-
formal form aA (1 (d—4)(d—3) 1—e?8-2¢

. . R —(d=3)—|-+4,C|— 5
ds?= —exp(2A)dt2+exp(2B) (dr2+dz?) +exp 2C)d Q2. AT 2 r
(A6) =0, (Al4)
The formula for the Ricci scalar of a conformally trans-
formed metricg2?= exp(B)g?® reads[26] 2 9,A
) AC+(d—3)9,C T+ C|+0,C (d_3)‘9zC+T
Ry=e 2’[Ry—2(d—1)a,,B—(d—1)(d—2)4;Bs;B]. (A7)
gA (1 —e?872¢
Hence in 2D with the conformally flat metric we get + ;\ F+a,C) +(d—4)—2=0, (A15)
r

R,=—2e 28 B. (A8)
. _ o _ . where A:=g7+ 2. These equations can be transformed to
The action(without second derivatives after integration by polar coordinates{p, x}, where we have
parts is

a A
|=f drdz{(d—3)(d—4)eh+2B+@-5)C AA+(d—3)——+(d—3)3,A,C
p
L eAHA=3)Cr 29 A9 B+2(d—3) 3. Ag: € (d—3)d A
e [29;A9;B+2(d—3)d;Ad,C +—2X(<9XC+ctg(X))=O, 16
p

+2(d—3)9;Bg;C+(d—3)(d—4)9,Ca,C]}. (A9)

The equations of motion are fér, B andC, respectively, (d—3)(d—4) 2 2,C
AB— ————|9,C| —+9,C|+ —(4,C+2ct
. L (d=3)d-2) ., 2 {" p T[T ETEEN)
4;i[B+(d=3)C]+ f(ﬁiC)
(d-3) 1) A
- d.Al 9 C+—|+—(5,C+ctgx))
d—3)(d—4) , - o 9 2 (Jx
_ ( )2( )ezs—zc:(), (A10) P p

(d—4)(d—3) 1-e*®72¢ A1)

A R A Avv2 - =0, AL7

a,,[A+(d_3)C]+((9|(A+(d_3)C)) 2 pZSin(X)Z
—(d—3)(d—4)e*®*"*¢=0, (A11)
2 3,C
GilA+B+(d—4)E1+ (A 2+ (d—4)(3A)(4,E) ACHA=3)19,C| ~+0,C [+~ 5 (9,CH2ctgx))
(d-3)(d—-4) ., (d=4)d-5) 5 = 1 1\ 9.A
(50 ————e* =0, A A CH +?(axc+ctg(x))
(A12)
1_eZB—2C
where the grad squared is defined heithouta metric fac- +(d—4)ﬁ=0. (A18)
tor (9.A)2=(4,A)(d;A). pesin(x)
We find it convenient to redefine
A . . Hel’eA==§§+(1/p)&p+(1/p2)&)2( is the flat Laplacian in the
B—B, e“—efr and e*—A. polar coordinates.
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These are elliptic equations, and as such they are subject (d—3)(d—4) A’
to boundary conditionsOne can see that the boundary con- B"~B'——————C"(2+C")~(d=3) - (1+C')
ditions are basically dimension independent. The only differ-
ence will appear at the boundary at infinity, because of the (d—4)(d—3) 2B 2C
different fall-off rate of the functions. Asymptotic flatness - f(l_ )=0, (B2)
singles out natural radial coordinate at infinity;

I'schwarzschid IN [23] we found ford>5 C/— G+ (d—3)C"(24C')+ %(1+C’)

_.@ 1 ) +(d—4)(1-e*®"2¢)=0 (B3)
1-A=——+0| —|, ,
pd—4 pd-3

where () :=d/d¢.

b 1 Linearizing these equations around flat spate,1=B
B=—=210| 4=/ =C=0, one obtains
r r
A"+(d—=4)A"=0, (B
C 1 "_p’'_ (A _ '
C=-+0 ﬁ) (A19) B'=B'—(d=3)(d-4)C
r

+(d—4)(d—3)(B—C)—(d—3)A'=0, (B5)

The feature to be noted is th&t is the slowest decaying "
function, with the same rate for all dimensiods-5. The C'+2
cased=5 is somewhat special sin€@decays as logj/r at (B6)
the leading order.

7
d—z C'+2(d—4)(C-B)+A'=0.

One observes that the first equatidecouple?’ from the
other two and it can be solved to yiell=1—ae (4-4)¢
APPENDIX B: ASYMPTOTIC BEHAVIOR =1—a/r% % In 5D the solutions to the other two equations
s . . ) are B=b/r and C=cslog(r)/r together withcs=—a+2b
At infinity the equations become one dimensional, ag all [23], which can be checked by explicit substitution.
dependence is washed out exponentially fast. Defining for rqr 4 stability analysis let us look for a solution of form
conveniencel:=log(r), and retaining in Eqs(A13)—(A15) B,C~By,Cy- explkr) to the other two equations. A tachy-

only ther-dependent terms, we obtain onic mode would be one such that k)& 0. After substitu-
tion in the homogeneous equations one gets the algebraic
A"+ (d—=4)A’+(d—3)A’'C’'=0, (B1)  equations

—k?—ik+(d—3)(d—4) —ik(d—3)(d—4)—(d—3)(d—4)

7 { ﬂ—o (B7)
-2(d—4) —k?+2 d—E)ik+2(d—4) Col

which have a unique solution when the determinant of the matrix vanishes
i(—=5+d)(—4+d)k—(11-7d+d?)k>—2i(—4+d)k3+k*=0. (B8)
The solutions of this equation are
ki=0, k,=i(d=5), kz=i(d—4), ky=i. (B9)

Since for all the modes, Ik >0 there is no tachyon. Note that there is a massless tkgd® (in 5D k, is massless as well
that corresponds to the choi€e=B asymptotically. This massless mode can, in principle, become the unstable one due to
non-linear corrections or numerical errors, but we have no explicit indication for this.

2OThis effective decoupling ensures that the Smarr formula is satisfied very accurately evenltisisgimewhat less accurate.
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