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Caged black holes: Black holes in compactified spacetimes. II. 5D numerical implementation

Evgeny Sorkin,* Barak Kol,† and Tsvi Piran‡

Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
~Received 21 October 2003; published 25 March 2004!

We describe the first convergent numerical method to determine static black hole solutions~with an S3

horizon! in 5D compactified spacetime. We obtain a family of solutions parametrized by the ratio of the black
hole size and the size of the compact extra dimension. The solutions satisfy the demanding integrated first law.
For small black holes our solutions approach the 5D Schwarzschild solution and agree very well with new
theoretical predictions for the small corrections to thermodynamics and geometry. The existence of such black
holes is thus established. We report on thermodynamical~temperature, entropy, mass and tension along the
compact dimension! and geometrical measurements. Most interestingly, for large masses~close to the Gregory-
Laflamme critical mass! the scheme destabilizes. We interpret this as evidence for an approach to a physical
tachyonic instability. Using extrapolation we speculate that the system undergoes a first order phase transition.

DOI: 10.1103/PhysRevD.69.064032 PACS number~s!: 04.70.Bw, 04.50.1h
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I. INTRODUCTION

In backgrounds with additional compact dimensions th
may exist several phases of black objects, including bl
holes and black strings. The phase transition between t
phases raises puzzles and touches fundamental issues s
topology change, uniqueness and cosmic censorship.

Consider for concreteness a background with a sin
compact dimension–Rd22,13S1. We denote the coordinat

along the compact dimension byz and the period byL̂. The
problem is characterized by a single dimensionl

parameter,1 e.g., the dimensionless mass,m5GNM /L̂d23,
whereGN is thed-dimensional Newton constant andM is the
~asymptotic! mass. Gregory and Laflamme~GL! @1,2# dis-
covered that a uniform black string—thed21 Schwarzs-
child solution times a line—becomes classically unsta
below a certain critical valuemGL . They interpreted this in-
stability as a decay of the string to a single localized bla
hole. Their discovery has initiated intensive research2 @3–17#
that attempted to trace out the fate of the unstable GL str
whether it settles at another intermediate stable phase a
vocated in@3,4#, or whether it really decays to a single blac
hole. By now there is mounting direct evidence against
former possibility@8,9#, together with additional circumstan
tial evidence@5,6#, and @15# which we also regard as ev
dence against the stable non-uniform black string phase3

Here, motivated by@8#, we take another route; namely, w
address the following question: what happens to a smal
calized black hole as its mass increases~by, e.g., absorption
of an interstellar dust!? Such a black hole grows and naive
one expects that there is a moment when its ‘‘north’’ a

*Email address: sorkin@phys.huji.ac.il
†Email address: barak_kol@phys.huji.ac.il
‡Email address: tsvi@phys.huji.ac.il
1Later we will use another parameterx defined in Eq.~4!.
2Related research includes@18–22#.
3Note, however, that the authors of@15# did not interpret their

results either as supporting or as countering the conjecture.
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‘‘south’’ poles touch. Whether this is the case or not is yet
be established, but it is clear that some sort of instability w
show up when the poles are getting closer. Put differently
there a maximal mass, beyond which the black hole ‘‘do
not fit into the circle’’ and there are no stable black hole
This maximal mass would be analogous to the GL criti
mass, and would correspond to a perturbative, tachyonic
stability. Yet another kind of instability may occur before th
maximal mass is reached. Once the entropy of a black h
equals the entropy of a uniform black stringwith the same
mass, a transition between both phases will be allowed
quantum tunneling, or by thermal fluctuations. This first o
der phase transition is slower than the classical perturba
instability due to tunneling suppression.

No analytical solution for a black hole is known. More
over, even though one can expect approximate analytic s
tions to exist for very small black holes, the phase transit
physics happens when the size of the black hole is com
rable to the size of the compact dimension. Hence, in
work we take the numerical avenue.

In our first paper@23# we considered the theoretical bac
ground for the staticd-dimensional quasi-spherical blac
holes ~BHs!. There we outlined the goals of the numeric
study. Prime among these goals is to establish the very e
tence of the static black hole solutions. To our knowled
there is no direct evidence in the literature that such BHs
exist4 though there are positive indications for that@14#.
Among other goals is the study of such BH solutions
various regimes and dimensions. The ultimate and the m
interesting aim is of course to determine the point of ph
transition.

Based on recent progress@9,21# we develop a numerica

4Arguments such as ‘‘in the limit when the radius of a BH is sm
compared to the compactification radius the equivalence princ
implies that the black hole must be similar to the 5D Schwar
child solution,’’ while intuitive, are not rigorously sufficient. In
fact, this argument fails in 4D with one of the space-like directio
being curled to a circle, as there is no stable configuration o
periodic array of point-like sources.
©2004 The American Physical Society32-1
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scheme that allows us to find static axisymmetric BH so
tions. Our scheme is dimension independent, provided
d.4. As a first step, in this paper we apply it to the 5D ca
which is the example with the lowest dimension5 among
spacetimes with extra dimensions. In 5D we construct
merically a family of static BHs, parametrized byx, which is
the ratio of the size of the black hole to the size of t
compact dimension, see Eq.~4!. For small values ofx the
horizon region of our solutions approaches the 5D Schwa
child solution which can be considered as the ‘‘zeroth or
in a perturbative expansion’’ in powers ofx. Moreover, in
this limit our solutions satisfy the theoretical expectations
some next order corrections in this perturbative analysis@24#,
thereby allowing a confirmation of a new theoretical meth
through a numerical ‘‘experiment.’’ This establishes the e
istence of static higher-dimensional BHs and shows that
Schwarzschild solution is the smooth limit of these solutio
for x→0.

We succeed in controling the accuracy of our solutions
to x&x1.0.20 ~corresponding tom1.0.047). Above this
limit, up to the last valuex2.0.25 ~corresponding tom2
.0.074), for which our solutions do not diverge, the co
vergence rate was very slow and the numerical errors w
not small. These values ofm should be compared with th
critical GL massmGL.0.070. The slowdown of convergenc
and eventual divergence is mainly seen on one of our me
functions. By examining the equations of motion for our sy
tem we observe a ‘‘wrong’’ sign in one of the equations~just
like the plus sign in the following harmonic oscillator equ
tion, c91vo

2c50), which is an indication of the presence
the tachyon. One could expect that the tachyonic behavio
suppressed for smallx values and it is manifest for largex
values, for which there are no static BH solutions.6,7 How-
ever, the tachyonic behavior influences the numerics e
before that criticalx value and slows down the convergenc
We believe that the problematic variable is coupled to
tachyonic mode, and hence when the latter drives the for
to behave pathologically, it is an indication that the system
close to the phase transition point.

In @23# we derived thed-dimensional Smarr formula, als
known as the integrated first law, for the geometry un
study~see also@16#!. It is a relation between thermodynam
quantities at the horizon and those at infinity, relying on
generalized Stokes formula and the validity of the equati
of motion in the interior. This naturally suggests using th
formula to estimate the ‘‘overall numerical error’’ in our nu
merical implementations. This method comes in addition

5This is maybe the lowest dimensional example, but because
very slow asymptotic decay, it is certainly not the simplest to so
numerically@5#. We discuss this in detail later on.

6Consider a tachyon in a box: the mode can materialize only i
inverse mass is not less than the dimension of the box; otherw
the mode is suppressed.

7This is a classical ‘‘revolutionary situation’’: a ‘‘poor’’ tachyon i
suppressed until the black hole becomes too fat. Then the tac
rises, gets strong and destroys the black hole, heading to a
future ~to another phase!.
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the standard numerical tests, such as convergence rate,
straint violation, etc. While it is possible that this is a luck
coincidence~though we believe it is not!, for our solutions
the Smarr formula is satisfied with 3–4 % accuracy. Mo
over, it is intriguing enough that the Smarr formula is sat
fied with the same 4% accuracy even for the problema
solutions forx*0.20. This has to do with the fact that th
formula relates only three variables of the four thermod
namical variables, characterizing the system. It turns out
the fourth variable is somewhat decoupled from the ot
three. However, as the inaccuracy in determining this fou
variable grows withx, this slows down and ultimately ruin
the convergence. We believe that this is the variable whic
coupled to the tachyonic mode.

Even though the Smarr formula is satisfied to a good
curacy, we do have some larger inaccuracies in the soluti
One of the fields suffers from a certain convergence probl
and its asymptotic behavior departs by some 30% from sm
x predictions. This is exactly the ‘‘fourth’’ asymptotic charg
that does not appear in Smarr’s formula. Due to its appro
mate decoupling itis plausible that we indeed have goo
accuracy for all other measurements. Even better, we h
indications that this field is reliable for a sub-range ofx:
0.08&x&0.15.

One can question what information can be extracted fr
knowledge of only three parameters for the entire seque
of BHs (x&0.25), and from knowledge of the fourth one fo
a smaller range (0.08&x&0.15). In particular, we show tha
the last black hole that we find~at x.0.25) deviates only
slightly from being spherical, and moreover, its poles a
quite distant from each other.

In addition, one can ask whether there is a first ord
phase transition. We cannot establish this with certain
since the entropy of our last black hole~at x2.0.25) is still
larger than the entropy of the corresponding uniform bla
string. A naive extrapolation of our data to larger values ox
indicates that the entropies will become equal just above
maximal BH that we find, namely atx3.0.26, which corre-
sponds tom3.0.082. It is rather suggestive thatmGL ,m2
and m3 are all very close each to another. Since, all t
numbers in the system are expected to be of the same o
this fact may be regarded as an indication that we have fo
a real phase transition. Note that sincem2.mGL we come
close to a first demonstration of a failure of higher dime
sional uniqueness with twostablephases.8 Finally we note,
that generally in a first order phase transition one expe
mGL<m3<m2. This remains to be tested numerically.

While we expect that the instability we found correspon
to a physical one we stress that we cannot rule out the c
servative possibility that it is a manifestation of imperfe
tions of the numerics. Since our numerical scheme is in
pendent of the dimensionality of the problem providedd
.4, the immediate aim for the future work would be i
application to higher dimensions,d>6, where the

f a
e

s
e,

on
ew8Although we did not demonstrate that we assume that our B
solutions are stable.
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FIG. 1. A spacelike slice of the black-hole spacetime.~a! In the $r ,z% plane the black hole’s horizon is a curve with a sphericalS3

topology.~b! There is a conformal freedom to transform the domain to$(r ,z):uzu<L, r 21z2>rh
2%. By fixing rh /L the domain is uniquely

specified@21#.
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asymptotic fall off is faster and the solutions might be mo
stable.9

In Sec. II we describe our system. We employ the ‘‘co
formal ansatz’’ and derive the equations of motion and
boundary conditions. A short excursion into theoretical ba
ground~summarized from@23#! is made in Sec. III. Our nu-
merical implementation is described in detail in Sec.
where we also describe various tests. The results are liste
Sec. V. We outline future directions in the final Sec. VI.
Appendix A we derive thed-dimensional field equations an
boundary conditions for the cylinderRd22,13S1. In Appen-
dix B we consider the asymptotic behavior of the equatio
We also refer the reader to independent work by Kudoh
Wiseman who performed recently related calculations in
@25#.

II. FORMULATION

In this section we focus on the five-dimensional case—
derive the field equations and discuss the boundary co
tions ~b.c.!. Equations and b.c. on a generald-cylinder are
discussed in Appendix A. The fifth spatial direction is d
noted byz and it is compact with a periodL̂, i.e., z and z

1L̂ are identified. We consider static localized BHs with
S3 horizon topology. We assume spherical symmetry@SO(3)
isometry# of the three extended spatial dimensions and
denote the 4D radial coordinate byr.

A. Choice of coordinates

We consider a static axisymmetric metric which is bu
out of three functions. We adopt a conformal~in the $r ,z%
plane! ansatz of the form

ds252A2dt21e2B~dr21dz2!1e2Cr 2dV2
2 , ~1!

9In fact the preliminary results show that the picture that we fi
in 5D is qualitatively unchanged ford>6.
06403
-
e
-

,
in

s.
d

e
i-

-

e

whereA,B and C are functions ofr ,z only anddV2
25du2

1sin2udf2.
To describe a BH it is convenient to transform to po

coordinates, defined by

r 5r sinx, z5r cosx, ~2!

since the BH horizon is represented by a closed curve in
$r ,z% plane. The metric in these coordinates reads now

ds252A2dt21e2B~dr21r2dx2!1e2Cr2sin2xdV2
2 .

~3!

To simplify the numerical procedure it is desirable that t
boundaries of the integration domain10 lie along the coordi-
nate lines. Note that by choosing the ansatz~1! or ~3! we still
did not fix the gauge completely. There is still a freedom
move the boundaries of the integration domain by a con
mal transformation. It was shown in@21# that using this con-
formal freedom the horizon boundary could be set at a c
stant radiusrh , leaving the periodic boundaries alongz
5const lines. Thus the domain is$(r ,z):uzu<L, r 21z2

>rh
2%, where for future use we define the half-periodL

5L̂/2 of the compact circle, see Fig. 1. In addition, by fixin
the ratio of the radius of the horizon to the period of t
circle

xª
rh

L
, ~4!

all residual gauge freedom is eliminated. In our implemen
tion, we setrh51, without a loss of generality, and genera
different solutions by varyingL.

The fact thatx cannot be changed freely for a given sol
tion implies thatx is a characteristic parameter analogous

10What we call here the ‘‘domain of integration’’ could be calle
alternatively the ‘‘domain of definition,’’ the ‘‘domain of relax-
ation,’’ etc. By this term we refer to the region of space-time whe
we solve our equations.
2-3
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SORKIN, KOL, AND PIRAN PHYSICAL REVIEW D69, 064032 ~2004!
the~normalized! total mass or the temperature even thoug
does not have a clear physical meaning. For example, if
enforces the horizon of a BH to be at a fixed radius set
some givenx, it would be excessive to specify also the tem
perature. Conversely, specifying the temperature one d
not have the freedom to constrain the location of the hori
@21#.

In polar coordinates the reflecting boundary of the co
pact circle,z50, is at x5p/2, but the periodic boundary
z5L, does not lie along a coordinate line in the$r,x% plane.
The treatment of this irregular boundary introduces a cer
complication in the numerical scheme as described in S
IV A. Nevertheless, we believe that it is preferable to wo
in polar coordinates~2! and to have an irregular boundary
z5L, rather than work in rectangular coordinates$r ,z% and
have an irregular boundary at the horizon. Intuitively, this
because we expect that the region near the horizon w
become the region of the ‘‘activity’’ asx increases.

For numerical reasons it would be convenient to use
other angular coordinate

j5cos~x!. ~5!

The benefit of using this coordinate is twofold. First, t
irregular z5L boundary has a particularly simple represe
tation,r5L/j. Second, as we explain shortly, the coordina
singularity at the axis,r 50, becomes first order instead o
second order.

B. Equations of motion

Our basic equations are the five-dimensional tim
independent vacuum Einstein equations. There are five e
tions in 5D: two are equations of motion forA,C, while
variation with respect to the metric in the (r ,z) plane yields
three additional equations. In the conformal ansatz one
them is an equation of motion forB while the other two
result from gauge fixing. The equations can be combined
way that three of them will take the form of elliptic equ
tions, which we call the interior equations. The other tw
combinations that contain a hyperbolic differential opera
will be termed ‘‘the constraints.’’ These constraint equatio
are not independent as they are related to the interior e
tions via the Bianchi identities.

In order to obtain the interior equations we can follow t
general procedure described in Appendix A, or alternativ
use a suitable symbolic math application, e.g., GRTen
@28# to evaluate the relevant quantities. In either route o
obtains the interior equations which are the following co
binations of the components of the Einstein tensor:G u

u

11/2G x
x11/2G r

r22G t
t , 2G u

u22G x
x22G r

r1G t
t and G u

u1G x
x

1G r
r2G t

t . They can be written, respectively, as

nA1
2]jA

r2 @2j1~12j2!]jC#12]rAS 1

r
1]rCD50,

~6!
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nB1
2]jA~j2~12j2!]jC!

Ar2
1

2]jCFj2
1

2
~12j2!]jCG

r2

2
2]rC

r
2~]rC!22

2]rA

A S 1

r
1]rCD2

12e2B22C

r2~12j2!
50,

~7!

nC2
]jA@j2~12j2!]jC#

Ar2
2

4]jCFj2
1

2
~12j2!]jCG

r2

1
4]rC

r
12~]rC!21

]rA

A S 1

r
1]rCD1

12e2(B2C)

r2~12j2!
50.

~8!

Here we used the variablej instead ofx and the Laplacian

becomesn[]r
21(1/r)]r1(1/r2)A12j2]j(A12j2]j).

The constraint equations expand to

G r
j[

A12j2

r2
H ]jAS 1

r
1]rBD
A

2
2j~]rB2]rC!

12j2

1
2]jB

r
12]jC]rB12]jB]rC22]jC]rC

1
]jB]rA2]rjA

A
22]rjCJ 50 ~9!

G r
r2G j

j[2
]jA@j22~12j2!]jB#

Ar2
1

4j~]jB2]jC!

r2

2
2~12j2!~2]jB2]jC!]jC

r2
1

~12j2!]j
2A

Ar2

1
2@2j]jC1~12j2!]j

2C#

r2
1

]rAS 1

r
12]rBD
A

12~2]rB2]rC!S 1

r
1]rCD2

]r
2A

A
22]r

2C50.

~10!

Assuming that the interior equations are satisfied, the Bi
chi identitiesG a

b
;b50, imply @9# the following relations be-

tween the constraint equations:

]zU1]jV50,

]zV2]jU50, ~11!
2-4
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where z5 logr, and we define the rescaled constraintsU
5rA2g(G r

r2G j
j)/2V5r2A2gG r

j with g[detgab .
A nice feature follows@9#. The constraintsU andV satisfy

the Cauchy-Riemann~11! relations and hence each one
them is a solution of the Laplace equation. Hence, if one
the constraints is satisfied at all boundaries and the other
single point along some boundary these constraints mus
satisfied everywhere inside the domain. This fact will be
ferred hereafter as the ‘‘constraint rule.’’ In our implemen
tion, following the choice in@9# we imposedV50 along all
boundaries andU50 in the asymptotic region. It is importan
to check and confirm that the constraintU andV are satisfied
everywhere for our numerical solutions, as we describe
Sec. IV B.

C. Boundary conditions and constraints

The interior elliptic equations~6!–~8! are subject to
boundary conditions. In this section we describe the bou
ary conditions that define the problem completely. The in
gration domain is defined by$(r ,z):0<z<L, r 21z2

>rh
2%, designated by the thick dashed line in Fig. 1. T

boundary conditions are specified on the axis, at the horiz
in the asymptotic region and at the reflecting and perio
boundariesz5L andz50.

1. The zÄ0 and zÄL boundaries

On the reflecting,z50, and the periodic,z5L, bound-
aries we impose

]zc50, c5A,B,C. ~12!

While at the reflecting boundary this condition is simply]j

50, at the periodic boundary its implementation is not
rect, see Sec. IV A 1.

2. The rÄ0 axis

Regularity of the metric on the axis~absence of a conica
singularity! requires

B5C. ~13!

We use this equation as a Dirichlet condition forB. Equation
~7! is not solved at the axis but it is only monitored there. F
A andC the boundary conditions are automatic—on axis
~interior! equations for these functions become first order
derivatives normal to the boundary and have precisely
form of a b.c. Namely these equations already incorpo
b.c. and these do not need to be additionally specified.
term this an ‘‘automatic boundary condition.’’ This occu
because of our particular choice of the angular coordin
we usej instead ofx. The axial symmetry of the problem
dictates the] r50 condition for the metric functions, which
translates to]x50 in spherical coordinates andA12j2]j

50 in our coordinates. But on axisj51 and hence this
condition need not be imposed in our coordinates. While
coordinate singularity at the axis is quadratic,;sin(x)22

when usingx, it becomes linear;(12j)21 when usingj.
With this advantage there is, however, a drawback: the m
06403
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ric functions are not differentiable atj51. This requires a
modification of the numerical scheme there, replacing
second order normal derivative of the interior equations b
first order one due to the considerations above as descr
in Sec. IV A.

3. The horizon

The horizon in our construction is located atrh51. For
static solutions various notions of the horizon coincide—
event horizon~globally marginally trapped!, the apparent ho-
rizon ~the outermost boundary of locally trapped surfac!
and the Killing horizon are all the same. The latter char
terizes the horizon as a surface where

A[0. ~14!

This implies that along the horizon

]jA5]j
2A50. ~15!

Even though the horizon normally is not singular~in curva-
tures! our equations do become singular there as the func
A vanishes. Now we describe how the physical regularity
the equations at the horizon gives boundary conditions
our functions.11 Expanding Eqs.~7!, ~8! at the horizon we
obtain the condition

]rC521. ~16!

We still need a condition forB. We obtain this condition
from the zeroth law of the black-hole mechanics~or thermo-
dynamics!, namely that for static solutions the surface gra
ity must be constant along the horizon~see, for example,
@26#!. The surface gravity along the horizon reads

k5e2B]rA, ~17!

and the derivative ofk along the horizon vanishes

]jk;]jB2
]rjA

]rA
50, at r5rh . ~18!

The upshot is that the boundary condition forB can be ob-
tained in one of the forms: either

B5Cj511 log
~]rA

]rAj51
U

rh

, ~19!

from Eqs.~17! and~13!, or by integrating Eq.~18! outwards
from the axis along the horizon. In our implementation w
used the former form. However, we have checked tha
corresponding solution obtained by using the other opt
differs only slightly from our original one. Note that cond
tion ~18! implies that Eq.~9! ~or V50) is guaranteed along
the horizon, and vice versa.

11We assume hereafter that]rAurh
Þ0, i.e., the horizon is not de

generate.
2-5
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SORKIN, KOL, AND PIRAN PHYSICAL REVIEW D69, 064032 ~2004!
We can get a different condition forB as well. Examining
Eq. ~10! (U50), one obtains the condition

]rB521, ~20!

which is necessary to ensure regularity of that equation al
the horizon.

Altogether we now have too many conditions at the ho
zon: four boundary conditions~14!, ~16!, ~19!, ~20! for the
three metric functions. However, as explained in@9# it is
unnecessaryto impose both constraints (U50 andV50) at
the same boundary, and actually it isnecessary notto impose
both in order to protect the problem from being over co
strained.

Out of ~19!, ~20! we choose to impose~19!. The condition
~20! is satisfied for these solutions. The error becom
smaller with grid refinement and reaches 2% for our fin
grid. For the sake of completeness we also obtained solut
using ~20! instead of~19!. However, these solutions do no
have a manifestly constant surface gravity. The variation ok
along the horizon is small for smallx, but can reach as muc
as 15% for largerx values. The overall difference betwee
the two solutions is maximal near the horizon, being of
same 15% magnitude. This difference fades off asympt
cally and the constraints are still satisfied~with the same
accuracy!. We conclude that, in principle, it is possible to u
the condition~20! to generate solutions, though the numer
should be refined further to reach an acceptable accurac

4. The asymptotic boundary

Performing a Kaluza-Klein~KK ! reduction one observe
that thez dependence of all fields is carried by massive K
modes and hence fades off exponentially for larger. Thus, in
the asymptotic region we can rewrite Eqs.~6!–~8! retaining
only the r dependence. Defining for conveniencez[ log(r),
we get

A91A812A8C850,

B92B822C82~C8!22
2A8

A
~C811!211e2B22C50,

C913C812~C8!21
A8

A
~C811!112e2B22C50.

~21!

Here the derivatives are calculated with respect toz.
Asymptotic flatness atr→` requiresA215B5C50.

Linearizing the above equations we can solve them ana
cally ~see Appendix B! with these boundary conditions ob
taining

A512
a

r
1OS log2r

r 2 D , ~22!

B5
b

r
1OS 1

r 2D , ~23!
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C5
c log~r !

r
1OS 1

r D , ~24!

where we also included the order of the corrections. Note
logarithmic term inC. This log-behavior is specific to 5D
and indicates a very slow asymptotic falloff. At leading ord
the coefficients in~22! are related by@23#

a22b1c50. ~25!

In the numerical solution one can impose the simplest
richlet conditions: A215B5C50 at the asymptotic
boundary. However, since in our numerical implementat
the ‘‘infinity’’ boundary is located at a finiter this option
appears to be too crude. One can improve that by goin
the next order in the expansion~22! and using~25! to get the
refined conditions

d

dr
~Ar !51, ~26!

d~Br !

dr
50, ~27!

C5~211A12B!log~r !. ~28!

Here we have rewritten the conditions in a form conveni
for a numerical implementation.

Unfortunately, we discovered that these linear conditio
do not lead to a convergent scheme. To understand this,
serve that the function with the slowest decay isC. In 5D, to
resolve the difference between the first two terms in
asymptotic expansion with just 10% accuracy one has to
to r;exp(10)rh—the logarithm strikes hard. When th
maximalr is not extremely large~which is the case here fo
practical reasons! the non-linear corrections appear to be im
portant for stabilizing the scheme@9#.

Recall the ‘‘constraint rule’’ which will help us to derive
more subtle b.c. forC. In accordance with it we choose t
enforceV50 along all boundaries. The rationale behind it
that this constraint is satisfied trivially at the axis and at
reflecting boundaries, asymptotically it decays exponentia
fast, and only at the horizon this constrain is not trivial a
yields~19!. The second constraint must not be imposed at
horizon. At the axis it vanishes. Along the reflecting,z50,
and the periodic,z5L, boundaries this constraint does n
carry any new information as it is just a linear combinati
of the interior equations. Hence, we are left with t
asymptotic boundary. This boundary can be potentially d
gerous since on one hand (G r

r2G j
j) decays here and on th

other hand the measurerA2g blows up. This competitive
behavior can result in an unpredictableU. Thus, to guarantee
that the constraint is satisfied, the natural and unique plac
imposeU is the infinity.

The upshot is that instead of the linear condition~28! we
computeC at the asymptotic boundary using the constra
equationU50. By doing so we stabilize our algorithm an
satisfy the ‘‘constraint rule.’’ Note that at leading order th
vanishing ofU is consistent with the linear condition~28!.
2-6
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III. THERMODYNAMICAL AND GEOMETRICAL
VARIABLES

In this section we briefly summarize the results from o
previous paper@23# with a particular focus on the 5D cas
Hereafter we work in units such thatG451.

At infinity. As stated in@23# ~see also@16#! there are two
energy-momentum charges that asymptotically characte
our configuration. These are the total massm ~or the dimen-
sionless massmªm/L̂), and what we called the tension. Th
latter is what an observer at infinity interprets as the tens
of an imaginary string stretched along the compact circ
These charges can be calculated in terms of the nume
asymptotics@23#

L̂Fm

t G5
1

2 F 2 21

1 22GF a

bG . ~29!

The asymptotic mass can be calculated also in a direct w
using the free energy or the Hawking-Horowi
prescription12 @27# which gives the same result. In the line
regime, using the relation~25! in the above formulas one ca
express the physical charges in terms of any two of the
merical asymptotics.

At the horizon.The characteristic quantities at the horiz
are the surface gravity~the temperature! and the area~the
entropy! of the horizon. We have already defined the surfa
gravity in Eq.~17!, and the temperature is proportional to
T5k/2p. The entropy is related to the surface area by
famous Bekenstein-Hawking formulaSBH5(A/4GN). In our
coordinates the surface area reads

A354prh
3E

21

1

eB12CA12j2dj

54p~2L !3x3E
21

1

eB12CA12j2dj. ~30!

Out of these thermodynamical variables a single dimens
less quantity can be formed

A(k)
ªA3k3. ~31!

In addition to the 3-area it is useful to define a pair of 2-ar
of horizon sections. The equatorial 2-area section is given

Ai54prh
2e2C. ~32!

The 2-area of the section of the horizon along the axis is

A'52prh
2E

21

1

eB1Cdj. ~33!

12The Hawking-Horowitz mass coincides with the ADM ma
when both are applicable.
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With these 2-areas we define the eccentricity13 or the ‘‘defor-
mation’’ of the horizon as

e5
A'

Ai
21. ~34!

Finally we define ‘‘the inter-polar distance’’ which is th
proper distance between the ‘‘north’’ and the ‘‘south’’ pole
of the black hole calculated along the axis. This distan
reads

Lpoles52E
rh

L

dzeB at r 50. ~35!

Small black holes.For small black holes (x!1) the tension
should vanish,t.0, according to Myers@19#. In this case
we have

F a

bG.F 4/3

2/3Gm. ~36!

In addition, in this limit we have

m.
3p

8
x2. ~37!

Small black holes are expected to resemble a 5D Schwa
child black hole for which we have

A3
Sch516p2rh

3 , A2
Sch516prh

2 , k5
1

2rh
. ~38!

More generally, the dimensionless variables can be expan
in a Taylor series as a function ofx. It can be shown@24# that
this expansion forA(k) takes the form

A(k)52p2@123•z~2!x21 . . . #, ~39!

wherez(2)5p2/6 is the Riemann zeta function.
The analogous expansion for the eccentricity reads

e5
8

3
z~4!x41 . . . . ~40!

Thus the prediction is thate is positive, i.e., the black hole
becomes prolate along the axis. This agrees with the intui
expectation that the black hole should approach a st
shape as it grows.

Other dimensionless quantities are the 3-area

A3ª
A3

L̂3
52p2x31 . . . , ~41!

the surface gravity and the temperature

k̄ªkL̂5x211 . . . and T̄52px211 . . . . ~42!

and the polar distance

13This definition differs from the standard definition of an ellipse
eccentricity. It is analogous toa/b215(12e2)21/2.110.5e2,
wheree is the conventionally defined eccentricity.
2-7
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,ªLpoles/L̂. ~43!

Smarr’s formula.The Smarr formula, also known as the i
tegrated first law, is a relation between the thermodynam
variables of the problem both at the horizon and at infinity
can be obtained either from the~differential! first law to-
gether with scale invariance, or by computing the Gibbo
Hawking free energy and combining it with the express
for the mass.14 We find @23#

A35
8p

k
aL. ~44!

This formula relates the horizon characteristicsA3 and k
with the asymptotic variablea, together with the dimension
ful parameterL̂. This formula is an important test for ou
numerical solutions.

A phase transition.One of the most important question
that we aim to answer is whether there is a maximal~dimen-
sionless! mass of the black hole phase as anticipated in@8#.
This is analogous to the minimal massmGL of the uniform
black string below which the string is classically unstab
What happens to a black hole more massive than the cri
black hole is unknown and constitutes one of the puzzle
this system. The appearance of a critical mass should
signaled in the numerics by a very slow convergence
ultimately no convergence.

Given the asymptotic mass~29! of the black hole we can
calculate the area of the corresponding black string of
same mass

ABS54p~2G4m!2L̂ ~45!

or in a dimensionless form

ABSª
ABS

L̂3
516pm2. ~46!

While the existence of a maximal mass designates a pe
bative ~tachyonic! instability, the solution withABS5A3
designates the point of the first order transition between
black hole and the black string phases. This transition
occur quantum mechanically, via tunneling, or by therm
fluctuations.

Summary.In our problem we define four thermodynam
measurable quantities, namely, the horizon 3-area, the
face gravity, the asymptotic mass, and the tension, as we
two geometric quantities, the eccentricity of the horizon a
the inter-polar distance. The thermodynamic ones are rel
by the very non-trivial Smarr formula~44!. The validity of
this formula for our measurables is one of the most import
tests for the numerics~in addition to the usual numerica
tests of convergence, constraint violation, etc.!. This is be-
cause the Smarr formula relates horizon variables, w
asymptotic ones. Hence the degree of violation of this f
mula can serve as an indication of the global accuracy of

14See@29# for the appearance of the scalar charge in the first l
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numerical method. Another important task is to che
whether the measurables have the smallx asymptotics as
expected/derived theoretically. We use dimensionless m
surables: in this form the relations between them remain
same, regardless of whetherrh or L are varied.15

IV. NUMERICAL IMPLEMENTATION

In this section we describe our numerical algorithm f
solving the system of partial non-linear elliptic equatio
~6!–~8!. We estimate the rate of convergence of the nume
and check that the numerical errors are small and the c
straints are satisfied. All our simulations were written in F
tran. The typical run time on a 2 GHz Pentium4 PC took
about 1–2 days. The output of the code was analyzed
visualized using Matlab.

A. The scheme

The numerical technique that is often implemented
solve partial elliptic equations is an iterative method, cal
‘‘Relaxation,’’ see, e.g.@30,31#. In this method the solutions
are iteratively corrected, starting from some initial guess,
til a desired accuracy is reached. For non-linear equation
modification is needed. Often an iterative Newton proced
is combined with relaxation to find solutions of non-line
equations@30,31#.

1. Numerical lattice and discretization

Near the horizon we employ polar coordinates$r,j%. As-
ymptotically, however, cylindrical coordinates are the natu
choice. In order to use both we choose to divide our integ
tion domain into two parts:~i! ‘‘The nearby region’’ near the
horizon is covered by polar coordinates.~ii ! ‘‘The asymptotic
region’’ is glued to the nearby domain from the outer, far si
and is covered by cylindrical coordinates. The two patch
overlap in order to exchange information about the functio
during the relaxation.

We discretize our equations on a lattice that covers
domain of the integration. We employ the finite differen
approximation~FDA! in which one replaces derivative op
erators by their discrete counterparts. The discrete opera
are obtained by a formal Taylor expansion of functions at
grid points. We use a FDA which is second order in the g
spacing. For example, ifh is the stepsize in, say, ther direc-
tion, which is sampled by indexj, then the first and the
second derivatives of a functionc at the lattice point (k, j )
are written to second order as

]rck, j5
ck, j 112ck, j 21

2h
1O~h3!,

]r
2ck, j5

ck, j 1122ck, j1ck, j 21

h2
1O~h3!. ~47!

.

15For a fixed numerical lattice spacing it is not the same to varyrh

or L.
2-8
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Analogous expressions can be found for all other derivativ
Our second order FDA incorporates a 5-point compu

tion molecule in the interior. Obviously, it would be nice
have the same feature also at the boundaries. In fact,
retain this feature at all boundaries but the axis through
introduction of false grid points. For the functions that ha
a Dirichlet boundary condition we solve inside the doma
using data at the boundaries. This is the method forA andB
on the horizon and forC asymptotically. To implement a
Neumann condition we introduce false grid points loca
one stepsize outside the real boundaries. Since the no
derivative is given at the real boundary we define the fu
tion at the false grid points using the corresponding in
points. For example, at the horizon:]rC5(Ck, j h11

2Ck, j h21)/2Dr521, where j h51 is the location of the

horizon rh ; at the false point (k, j h21) we haveCk, j h21

5Ck, j h1112Dr. Now we solve the equation on the re
boundary just as for an interior point, using data at the fa
grid points. This is the method forC on the horizon and for
A, B and C on the equator. The mixed Neumann-Dirichl
conditions forA andB, which are written in the form~26!,
~27!, are imposed in the same fashion. At the axis we h
‘‘automatic conditions’’ forA andC. Since the functions are
not differentiable here in thej direction we use one-side
~first-order! j derivatives. Here our FDA becomes 4 poi
and not completely second order as Eq.~47!; see also the
discussion in Sec. II C 2.

The boundaryz5L is rather complicated in polar coord
nates while being very simple in cylindrical ones. This brin
us to a closer examination of the coordinate patches.

The nearby region:$r,j% - patch.The lattice that covers
this domain, see Fig. 2, has nodes atk51, . . . ,Kmax,Kmax
11, in thej direction, and nodes atj 50,1, . . . ,Jin(k) in the
r direction. HereJin(k) is the coordinate of the last poin
that lieswithin the boundaryz5L, which is represented by
the curver5L/j. The false grid points here are introduce
by the requirement that for each inner point there will
outer points that allow the implementation of the regu
5-point second order FDA scheme. This implies that at e
k the outer points occupyJin(k), j <Jout(k) whereJout(k)

FIG. 2. ‘‘The nearby region’’ of the integration domain covere
by the polar coordinatesr,j. The thin dashed lines mark the loca
tion of the false grid points used for numerical implementation
the Neumann or mixed Neumann-Dirichlet boundary conditions
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5Jin(k11). During the relaxation we sweep the lattice fro
k51 to k5Kmax and from j 50 to j 5Jin(k). At a given ray
k we correct the outer points atk21 when we reachj
.Jin(k21) using the reflection b.c. To this end, for ea
outer point,O, we find the corresponding inner point,I,
which is its mirror reflection with respect to the bounda
@(r ,z)→(r ,2L2z)#. The functions at the inner point are ob
tained by a two-dimensional interpolation from the surroun
ing points and then the corresponding outer point is upda
The important practical note is that the inner mirror poin
should be calculated only once prior to relaxation.

We choose fixed lattice spacings both inr and j direc-
tions. In ther direction the grid is truncated at a finitercutoff .
For a specificj stepsize,Dj, the maximalr is

rcutoff5
L

Dj
. ~48!

The Dj step is chosen such thatrcutoff@L ~usually we took
rcutoff;10L.! Note that there are only two grid points on th
far boundary in thex direction for rcutoff : one is atKmax
21 and the other is atKmax; see Fig. 2. Here the secon
patch of the integration begins.

The asymptotic region:$r ,z% - patch.This patch begins a
r 5r min,rcutoff and extends up tor 5r max. Note that there is
a ‘‘buffer zone’’ where both patches overlap; see Fig. 3. T
variation of the functions in this portion of the integratio
domain is expected to be small provided thatrcutoff@L.
Thus, the lattice covering this portion does not need to
very dense. The grid has a simple rectangular geometry w
uniform grid spacings. There are two false boundaries az
50,z5L. At the near boundary,r min , all functions have Di-
richlet b.c., the values being received from the ‘‘near
patch.’’ At the far boundary,r max,we implement the mixed
Dirichlet-Neumann conditions~26!, ~27! for A and B and
evaluateC from the constraintU50. Since for practical rea-
sons we were obligated to take finite, not too larger max @we
usually choser max;O(1000)rh] the use of the non-linea
condition forC is essential.

f FIG. 3. The asymptotic region is glued to the ‘‘nearby patch
The two patches overlap in order to exchange information about
functions during relaxation.
2-9
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SORKIN, KOL, AND PIRAN PHYSICAL REVIEW D69, 064032 ~2004!
The equations are relaxed on both patches one after
other. First we sweep the lattice of the nearby region a
then the lattice of the asymptotic region. Then the sweeps
iterated. The patches communicate. When sweeping the
patch we use the information from the far patch to sup
boundary conditions atrcutoff . For example, see Fig. 3, th
green point atrcutoff can be obtained by, e.g., a bi-line
interpolation from the points marked by crosses. Wh
sweeping the far patch the boundary condition along
stitch at r min come from the near patch. For example, t
yellow point at r min is obtained from the points marked b
stars by a bi-linear interpolation.

To relax the equations we used a scheme which inco
rates Newton iteration. To this end, at each grid point (k, j ),
any functionc5A,B,C is updated according to

cnew~k, j !5cold~k, j !2v
Ec~k, j !

]Ec /]c~k, j ! U
old

, ~49!

whereEc(k, j ) is the FDA equation of motion for thisc, and
v is a numerical factor.

The basic Gauss-Seidel algorithm usesv51 and it leads
to a very slow convergence.16 One way to speed up the pe
formance is to use successive over relaxation~SOR!. The
name originates from the fact that unlike the Gauss-Se
scheme where the functions are corrected by exactly w
they should be from the equations, in the SOR algorithm
correction is larger. The over-relaxation is managed by
relaxation parameter 1,v,2. Sometimes, for non-linea
equations it is better to use under-relaxation. In this cas
,v,1 and the functions are under-corrected. The casv
.1 (v,1) can be imagined as a sort of acceleration~fric-
tion!. We implemented the SOR algorithm for our proble
and found that the convergence rate is still unsatisfactory
dense grids.

2. Multigrid technique

The algorithm that we found to work well is what w
loosely term here a multigrid algorithm; see, e.g.@31#. In the
current simplified version of this method we solve the eq
tions on several successive grids with doubled density.
basic idea of the multigrid technique is simple—relax pert
bations of different wavelengths on suitable lattices. Clea
relaxation of a long-wave perturbation on a very fine g
will require many iterations, while if we first relax the pe
turbation on a course grid and use the solution as an inpu
the fine grid there is a chance to converge faster. Ano
advantage of using the multigrid method is that there i
natural measure of accuracy. We can compare the solut
on different grids and see whether and how the differen
decrease, indicating convergence and scaling of the tru
tion error. We used four successive grids with halved st
sizes. Our implementation of the multigrid method was ve
simple. We just improved the solution going in one directio

16In fact, in our case this method is so slow that we could not in
that it converges at all.
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namely, passing from a coarse grid to a finer one. The or
nal multigrid technique@31# incorporates motion in both di
rections, allowing newly excited modes to relax on suita
grids. This two-directional method is expected to be mu
more effective and fast~but difficult to program.!

The multigrid technique was implemented only on t
nearby patch. The asymptotic patch was chosen to have fi
grid spacings. This is because the variation of the fields
relatively small at larger and there is no need for very dens
grids. Note also that by decreasing the grid spacings in
nearby patchrcutoff scales according to Eq.~48!. Thus for
each more dense gridrcutoff is doubled. We, however, chos
to keep the truncation radius constant, defined by the co
est grid. In this case when the grid spacings were halved
number of the points on the boundary atr5rcutoff was
doubled.

In most of our simulations typical grid spacings in th
asymptotic patch wereDz.0.2521.0, and Dr .0.075
20.25. The typical grid spacings in the near patch w
Dr.0.120.25 andDj.0.0820.12 for thecoarsestgrid.
One can estimate the size of the lattice, taking typicaL
;10rh , rcutoff ,r min;10L and r max;10rcutoff;100L
;1000rh . In this case, the size,Nj3Nr , of the coarsest
polar grid is 1031000, while the finest grid is 160
316000. The size,Nz3Nr , of the asymptotic grid would
have been 1031000, if the grid spacing in ther direction
were uniform.

3. Extracting measurables

Once we have a solution the horizon variables such
k,A3 ,A2 are calculated in a straightforward way from Eq
~17!, ~30!, and~32!, ~33! respectively. In order to obtain th
asymptotic mass and the tension~29! we have to expand the
metric functions asymptotically. We use fitting functions of
suitable form to obtain those coefficients. For example,
find b we need a quadratic fit inr 21 for B in the asymptotic
region. To finda a linear fit is usually sufficient for a good
result. ForC we used a fit of the formc1log(r)/r1c2 /r. How-
ever, we were unable to find a reliable fitting forC. We
associate this with the slow logarithmic decay.

4. Further developments

There are always compromises in numerics between
computation time and the accuracy of the calculation. T
has to do with the grid density. Large grids mean small st
sizes and hence better accuracy provided that the FDA
stable, i.e. it converges as a stepsize decreases. On the
hand, even if there were unlimited memory resources to s
large arrays, such dense grids would result in extended C
time that would be needed to sweep such large lattices.
tried different tricks to find a reliable compromise for th
‘‘CPU time vs accuracy’’ issue.

A non-uniform asymptotic grid.Originally we imple-
mented the asymptotic boundary conditions atr max, that is
30–50L, or about 300–500rh . However, we found that
those values ofr max are not large enough to determine th
mass with sufficient accuracy, especially for large values
x. Since in 5D the asymptotic fall-off is slow,~22!, imple-

r

2-10
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menting the asymptotic boundary conditions at theser max
values is not accurate enough. Naturally, one would like
extend the grid to the largerr max. One way to do so is to add
more points to the grid. However, in order to reachr max
larger by a certain factor than the originalr max the number of
grid points must increase by the same factor. The sam
true for the increase in the CPU time. Since we needr max of
order exp(10)rh , this makes the mere increase in the num
of points absolutely impractical.

We used another technique—a non-uniform grid spaci
in the r direction. The stepsizes were scaled in the followi
fashion:

Dr i 115~11e!Dr i , i 51,2, . . . ,Nr . ~50!

Heree is a small number that we usually took as 0.01–0.
In this case the coordinates of the mesh points in ther direc-
tion form a geometric progression and it is possible to re
quite large values ofr max with a relatively small number o
the mesh points. The discretized equations are now mod
and the truncation error at a grid pointi scales asO(eDr i)
1O(Dr i

2) rather than justO(Dr i
2), which is the case for a

uniform grid with the spacingDr i . Providede is small this
modification is not that different from a uniform FDA an
does not cause problems. In thez directions stepsizes wer
left uniform and hence the corresponding FDA derivat
operators remained unchanged.

Keeping e in the above range, in order to reach lar
enoughr @of order exp(10)rh] the grid turns out to be large
enough to slow down the convergence notably. In pract
we could reach onlyr max.500–800rh . The logarithm
strikes again.

Additional relaxation near the horizon.This is needed in
order to increase the accuracy of the calculation ofk and the
area of the horizon and its sections~30!–~33!. Especially, the
eccentricity~34! is sensitive to the accuracy of the area me
surement. This relaxation operates over a finite portion of
mesh in the vicinity of the horizon. The boundary conditio
along the horizon, axis and the equator are the same as
fore but along the outer boundary one uses just the Diric
boundary conditions that come from the main relaxation.

Over this region the metric functions were relaxed on t
additional finer grids. One could suspect that the relaxa
over a finite region would produce a mismatch along
stitch, which can be imagined as a kink or a ‘‘ripple’’ in th
metric fields. However, we have checked that this is not
case, but rather the behavior of the functions was smo
The maximal change in the functions relative to the previo
grids occurred over a few mesh points near the horizon.

In addition, in a couple of runs we relaxed the equatio
over theentire integration domain on an additional fifth grid
When the area and the surface gravity, obtained in this c
were compared to the ones obtained in the relaxation o
only a small region near the horizon, we found that the d
ference in both results is less than 0.1%. The gain in com
tation time was, however, dramatic—hours vs days.

The over- (under-) relaxation parameterv. There is no
universal algorithm to find the optimalv that speeds up the
convergence. Except for a few very simple elliptic equatio
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with simple boundaries there is no analytical prescription
pick such an optimalv. Often empirical estimates are th
only way to find it. In our case the estimation of an optim
v is even harder, since we need an omega for each of
three functions for both patches.

While we cannot be confident that thev ’s we have used
in our computations are the optimal ones, we can estim
the range ofv outside which the code slowed down or d
verged. The choicevA5121.2, vC5121.1, vB5.521 in
the nearby region andvA5vC5121.2, vB5.0220.1 in
the cylindrical patch usually gave a reasonable converge
rate. Some of these values depend onx. The most influential
v is vB in the asymptotic region: a slight deviation of i
value from the narrow range ruins the convergence.

B. Testing the numerics

As usual in numerics one has to convince oneself tha
particular numerical method produces trustable results.
fore discussing our findings, we present in this section
evidence that our method performs well. We show that
numerical errors decrease sufficiently fast, indicating a g
bal convergence of the scheme and that the residual erro
the equations are small. In addition, in GR one has to ens
that the constraint equations are satisfied. We show that
are satisfied to a good extent. However, this ceases to be
case whenx is ‘‘too large.’’ For x above a certain valuex1
.0.20, the convergence is slowed down, the constraints
violated significantly and the errors are not small for t
results to be reliable. Additional accuracy estimates co
from the Smarr formula, which our solutions satisfy wi
very good accuracy.

Numerical tests. We relax the equations on four grids wit
increasing density. For the first and coarsest grid we g
some initial guess while when moving to a finer grid we st
with the solution relaxed on the previous grid. The first thi
that a good method must satisfy is independence of the in
guess. To achieve faster convergence we regularly use
the initial guess the uncompactified 5D Schwarzschild so
tion restricted touzu<L. However, we checked that othe
initial guesses, such as flat spacetime glued to the hori
etc., relax to the same final solution. As an indicator of t
accuracy during the relaxation we use the accumulative
sidual error defined as

Rescª
1

4n21 (
k, j

unck, j2Srcck, j u with c5A,B,C,

~51!

wheren is the grid number (n51 is the coarsest! and the
factor 4n21 roughly compensates for the increase in the to
number of grid points. The iterations on a particular g
were stopped when the residuals were reduced by a de
factor relative to some number, that we usually took as
initial residual calculated before relaxation on that grid.
Fig. 4 we depict the residuals on each grid. Their behav
suggests convergence.

Note that the decrease of residuals is not monotonic
the way down. This implies that there are modes that
2-11
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continuously excited and then decay. For small values ox
these modes are harmless, but have an imprint on the re
als’ decay—the oscillations. For largerx values these mode
are not suppressed—the oscillation increases their ampli
and then they finally diverge; see Fig. 5.

In addition to the convergenceper grid we can use the
benefits of the multigrid technique and check the conv
gence whenmoving between grids. We examine how much
the solution is corrected when relaxed on different grids.
this end in Fig. 6 we depict thedifferencesbetween the so-
lution on thenth grid and the solution obtained on then
21, coarser grid. Since we used four grids there are th
such pairs. We observe that the solution is corrected les
finer grids, as expected for a convergent method. Most of
corrections occur in the regions near the horizon and nea
axis. In fact, this is the sort of behavior that allowed us
perform further relaxation with confidence even on fin
grids in the vicinity of the horizon as described in the pre
ous section.

We can also estimate therate of convergence. Assuming
that the solution converges to somef ! in the limit when the
grid spacing goes to zero, we can write for thenth grid

f !5 f n1O~hn
p!, ~52!

FIG. 4. A log-log plot of the normalized residuals, Resc vs the
number of iterations forx51/7, implying convergence.
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wherehn is the grid spacing for this mesh. The rate of co
vergence is defined by the powerp. If p51 one speaks abou
linear convergence; ifp52 there is a quadratic convergenc
and so on. Taking differences between solutions on differ
grids and considering the fraction of these differences
value ofp can be estimated. Of course, the value ofp may
vary at different points of the numerical lattice. Howeve
one can calculate theminimalconvergence rate by taking th
minimum of thosep. We find that in the asymptotic regio
the minimal convergence rates arepA;3, pB;2, pC;3 for
the three metric functions. In the nearby region the conv
gence rate is also found to be at least quadratic for all fu
tions. In the above estimates ofp we used only the three
finest grids. The reason not to include the first grid is simp
its prime role is to perform a rough adjustment of the init
guess to the given boundary conditions. Hence, one exp
that the solution on this grid is only a very crude approxim
tion to the final solution. To guide the reader we plot in F
7 the metric functions in the asymptotic region at the equa
for four grids. The nice convergence there can be easily s
When this is the picture we infer that our method converg
nicely.

Convergence of this kind occurred for intermediate valu
of x, roughly for 0.08&x&0.15. Outside this range the ra
of convergence is still very good for all measurables but o
To envisage our point it is more convenient to use the
merical asymptoticsa andb, instead of our ‘‘physical’’ mea-
surables, the asymptotic mass and tension.17 The typical be-
havior for our measurables as a function of the grid spac
is depicted in Fig. 8. WhileA3 ,k anda are observed to reac
their asymptotic values,b is special—it does not seem t
converge to a definite value. Note that the asympto
chargesm and t seem to settle to definite values as we

17Note thatb does have a physical meaning—it is the scalar~or
dilatonic! charge.

FIG. 5. A log-log plot of the normalized residuals vs the numb
of iterations forx.0.20. After an initial convergence the solutio
diverges.
2-12
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FIG. 6. The corrections~or differences! in the elliptic equations when relaxed on different grids forx50.1. One can see that the finer th
grid, the less the solution is corrected.
r
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Moreover, even thoughb does not behave monotonically, fo
small x its value is limited to be within a narrow range; s
Fig. 8. We will see below that the real problems of conv
gence begin when the fluctuations ofb are not small any-
more. We refer to these fluctuations and the lack of accur
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a
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in the measurements ofb as the ‘‘theb problem.’’
To get an idea of the overall accuracy of the numerics

the final solution, i.e. after relaxation on all four grids, w
plot in Fig. 9 the normalized error in our elliptic equation
This error is defined at each mesh point (k, j ) as
dck, j[
nck, j1Src ck, j

U]r
2ck, j1

1

r
]rck, jU1U 1

r2
A12j2]j~A12j2]jc!k, jU1uSrc ck, j u

. ~53!
lar
lls
en

ccu-
in
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any
One observes that the relative errors are very small, be
less then 0.02%. Asx approaches 0.20 the errors grow to
level of a few percent.

Constraint equations. Additional insight into the accuracy
of the method can be gained by studying the behavior of
constraint equations. It is clear that these must be satis
for the actual solution of the Einstein equations. In Fig.
we plot the absolute value of the constraints on both g
patches. The figure shows that the constraints are not s
in the far region of the polar patch. We believe that this lo
g

e
ed

d
all
s

of accuracy is due to the geometric pathology of the po
coordinates in the asymptotic region: the uniform grid ce
in polar coordinates become very thin and prolonged wh
viewed in Cartesian coordinates. This causes a loss of a
racy, since asymptotically there are very few mesh points
the polar patch. Hence, an attempt to compute derivative
the z direction that are required from the physical point
view gives an inaccurate result. When we passed from g
to grid the constraints were satisfied better. When evalua
the constraints in the Cartesian patch we did not observe
2-13
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pathologies. The constraints were small and decreased fa
the asymptotic region.

One gets a better insight for the constraints’ accur
from examining therelativeerrors in them. These are define
similarly to Eq. ~53! and plotted in Fig. 11. One learns th
the relative errors in the polar patch are indeed very sm
being less than 1%, even though the absolute value of

FIG. 7. A run withx50.12. Values of the functions at the equ
tor in the asymptotic region for four grids. There is clear conv
gence.
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constrains is not small. Thus, both Figs. 10 and 11 are c
plimentary and bring to light different aspects of the co
straints behavior. The relative errors in the Cartesian pa
are difficult to calculate because of the small absolute val
of the constraints there. The absolute errors are small th
and vary slowly; see Fig. 10. Hence an attempt to evalu
the relative accuracy according to Eq.~53! fails, producing
unpredictable results because of roundoff errors.

The fast convergence, small errors and small constr
violation are all attributes of the smallx runs. For certainx
the convergence rate became noticeably slower and the
rors became uncontrollable. This was thex when the ‘‘prob-
lematic’’ asymptoticb started to dominate. Even though w
may expect positive tensiont.0, namelyb,a/2 in 5D, b
reacheda/2 and continued to grow for largerx. This desig-
nated the maximalx for which we could fully trust our re-
sults, which is aboutx.0.20.

Applications of Smarr’s formula. Aside from numerical
tests the Smarr formula~44! provides an important theoreti
cal constraint. We found thatSmarr’s formula is satisfied
within 3–4 %; see Fig. 12. We find a small systematic err
when evaluatingA3k/(8paL), which should equal unity, we
find that the mean value of the numerical points is about 0
with a mean spread of less then 2%. This shows that
numerics produces systematically under-estimated va
with a relatively narrow spread. In addition, there is a slig
increase in accuracy when the asymptotic boundary is mo
farther away. In this case the center of the distribution mo
toward unity, though very slowly.

It is intriguing that the Smarr formula is satisfied wit
good accuracy forall our solutions, including those with a
problematicb. Even for x.0.20 when the ‘‘b dominance’’
triggered convergence problems this highly nontrivial fo
mula continued to hold; see Fig. 12. Together with Fig. 8 t

-

charges

FIG. 8. Four measurables and two asymptotics as a function of grid number forx51/12. While the 3-area,k anda converge nicely for

all the x’s that we relaxed,b does not. The absolute variation of the variables is small, however. Note, though that the asymptotic
m andt converge as well.
2-14
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FIG. 9. The normalized error in the elliptic equations forx51/9. This errors defined in Eq.~53!. It is encouraging that the maximal erro
is less then 0.02%. We plotted here errors in both patches.
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suggests that despite the fact that we could not determine
scalar charge accurately, the other three measurables ar
termined with good accuracy. Our working assumption w
be that these measurables are trustable, even forx.0.20 up
to the last convergent solution, atx2.0.25, though in this
regime the assumption becomes somewhat speculative.

Let us discuss one more aspect of the ‘‘b problem.’’ As
we noted before even for smallx b did not really converge;
see Fig. 8. In addition, assuming positive tension,t.0 im-
plies b<a/2, and the equality is obtained for small blac
holes that have vanishing tension. Sinceb50 for a uniform
string this suggests that for smallx, b/a should equal;1/2
and should decrease to zero asx increases. In Fig. 13 we plo
the ratiob/a. One observes that for smallx values the points
are distributed around 1/3 rather than around 1/2. In ac
dance with our working assumptiona is calculated correctly,
hence we estimate that the accuracy of theb calculation con-
stitutes 30%, for small values ofx. On the other hand, we
have seen that for intermediate 0.08&x&0.15, b does con-
verge well. Hence, since the ratiob/a is expected to decreas
asx increases, the measured value ofb/a;0.3 in thisx range
can be trusted.

V. RESULTS

One of the most important results of this work is that o
numerical solutions are the first strong evidence for the
06403
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r
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istence of static black holes in a non-maximally symmet
higher-dimensional spacetime. We constructed a family
solutions parametrized byx, defined in Eq.~4!. The horizon
region of the solutions in this branch tend to the 5
Schwarzschild solution in thex→0 limit and become un-
stable forx→0.25. Even before that, atx.0.20, numerical
errors were not small anymore. Our analysis is not capabl
settling with certainty what has destabilized the algorith
We tend to interpret this as originating from a physical
chyonic instability, though currently we are not able to d
termine the exact location of the transition point.

The geometry of the black holes. Let us examine the
spacetime structure of a typical member of our family
solutions, withx;1/7. In Fig. 14 we use contour plots t
visualize the behavior of the metric functions and gain so
insight for the geometry.

The functionA vanishes at the horizon and it approach
unity asymptotically. The functionsB andC decay smoothly
from a finite value at the horizon to zero at infinity. On
observes as well that thez dependence disappears fast as o
gets away from a black hole. In addition, one learns that
contours intersect all the boundaries at an angle of 90°:
periodic atz5L, the reflecting atz50, and ther 50 axis.
This shows that the numerical scheme performs well at
boundaries.

The proper deformation or eccentricity of the horizon~34!
2-15
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FIG. 10. Absolute value of the constrain
equations on both grid patches. While there is
loss of accuracy near the far boundary in the p
lar patch, both constraints are small in the Car
sian patch.
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is depicted in Fig. 15. Belowx.0.05 the values that we
obtain are randomly distributed around zero with magnitu
of 1026, hence we concluded that the black hole is spher
to better then 1026 at this regime. The main tendency to b
noted in the figure is thate.0. This means that asx grows
the black hole becomes prolate along the axis, tending
string-like form, as one could expect intuitively. Another i
teresting feature is that the last black hole that we have
06403
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tained ~with x.0.25) is only slightly deformed, withe
.6.531023. Comparing with the theoretical quantitativ
prediction~40!, where8

3 z(4).2.89, we see that the numer
cal ‘‘experiment’’ agrees exactly. Moreover, the axis interse
tion value23.531025 agrees with the expected zero up
the numerical errors; see Table I. We note that although
agreement looks ‘‘too good,’’ a fairly good agreement p
sists also for fits on smaller neighborhoods ofx50.
ts
ing

of
FIG. 11. The relative errors in the constrain
in the polar patch. These errors are small, be
less than 2%, even though the absolute values
the constraints plotted in Fig. 10 are not.
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FIG. 12. Testing the Smarr formula for tw
values of r max. The formula predicts
A3k/(8paL)51. The mean value for distribu
tion of a point designated by diamonds is .96
with a standard deviation of .017. The same f
the stars is .97 and .02 correspondingly.
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The ~normalized! inter-polar distance~43! is plotted in
Fig. 16. One observes that, decreases so that the ‘‘north
and the ‘‘south’’ poles of the black hole approach each oth
This decrease, however, is slow, such that just before the
x.0.25, , is still very far from vanishing. This sugges
several possibilities.~1! Our numerical solution crashes du
to uncontrollable errors, and hence atx.0.25 there is not
really a tachyonic instability. In this case the possibility th
, will shrink to zero and the phase transition will be smoo
is not precluded by our analysis.~2! The pointx.0.25 is in
the vicinity of the real phase transition and, does not drop
to zero, signaling a non-smooth phase transition. This po
bility was advocated in@8#. It is interesting to note that suc
features as the finiteness of, and the smallness of the ecce
tricity, just before the transition, were obtained in@14# for
momentary-static black hole solutions. The smallx behavior
of , is surprising. Neglecting the effect of the black hole
the spacetime metric one would expect a linear decre
However, as the figure shows the decrease is much slow18

This phenomena is not understood yet. It looks as if the m
of the BH expands space in such a way that it compens
almost exactly for its size. This effect can be called
‘‘Archimedes law for caged black holes.’’

In an inset in Fig. 16 we plotted a possible extrapolat
of the measured,. If this extrapolation is correct then th
poles will touch forx;0.4.

Thermodynamical variables. Our prime thermodynamica
variables are depicted in Fig. 17.

We see that in the small-x limit all variables tend to their
Schwarzschild values, designated by the thick dashed
The uncompactified Schwarzschild solution appears to b
smooth limit of the near horizon region of the caged bla
holes under discussion. One notes that three of the four t
modynamical variables have a smooth behavior all the w

18It is hard to fit but seems quadric.
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up to x.0.25, while the fourth one~the tension! is some-
what less consistent and forx*0.20 its behavior is strange
This is in agreement with our observations in Sec. IV B. W
have argued, based on the success of the Smarr formula
the three prime measurablesA3 ,T,a are robust, while the
fourth variable,b, has an uncertainty of about 30% based
convergence problems and disagreement for smallx. This
rather large error is presumably confined tob due to an ap-
proximate decoupling of equations in the asymptotic regi
see Appendix B. Moreover, it is this decoupling that allow
the success of Smarr’s formula. Due to different relat
weights that the asymptoticsa and b have in the mass and
the tension calculation, see Eq.~29!, m appears smooth in
Fig. 17, whilet does not.

For smallx!1 one can consider a Taylor expansion
the thermodynamical variables in powers ofx. We can at-
tempt to extract the expansion coefficients by fitting the m
surables with polynomials. We applied a fitting procedure
the first 8 to 10 solutions for whichx<0.11. The expansion
coefficients together with the numerical errors are given
Table I, as well as the expansion coefficients ofA(k), defined
in Eq. ~31! and plotted in Fig. 18.

For completeness, the corresponding data fore is also
added to that table. Everywhere the numerical coefficie
are given with the estimated error. This is defined here by
variation of the coefficients of the fitting functions, whil
allowing the fit to vary within the 95% confidence rang
which is illustrated in Fig. 18.

We can compare now the expansion coefficients to
theoretical predications that are summarized in Sec. III. T
leading expansion coefficients, which are listed in the l
column of Table I, are confirmed with a good confidenc
aside for the massm, for which the numeric and the theore
ical numbers differ by about 20%. This is the imprint of th
poor b behavior, sinceb is a part of the formula~29! for the
mass. The higher order corrections toe andA(k) match per-
fectly with new theoretical results@24,23#. Other coefficients
t

-
a
e

FIG. 13. The ratiob/a is expected to start a
0.5 for x!1 and decrease for largerx. Sinceb
50 for a uniform black string, one might specu
late thatb/a→0 as x increases. Here we see
different behavior. This behavior is not reliabl
since b is problematic~at 30% level! even at
small x.
2-17
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SORKIN, KOL, AND PIRAN PHYSICAL REVIEW D69, 064032 ~2004!
have a somewhat greater uncertainty~sometimes tens of per
cents!. Since we do not have a theoretical insight, and
cause of the large numerical errors, we regard them as
tative.

We conclude that in the smallx regime most of our mea
surables are very robust. We argue as well that the probl

FIG. 14. Contours of the metric functions forx51/7. The black
hole is located at the left bottom corner. The vertical periodic dir
tion marked byz. Note the change of the topology of the contou
Near the horizon they are spherical while far away the conto
become cylindrical, indicating translation invariance alongz at in-
finity.

FIG. 15. Eccentricity or deformation of the horizon. It sta
very small up tox.0.25, where our code becomes unstable. T
coefficient of proportionality agrees exactly with~40!.
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atic b affectsm, but it is even more influential in the tensio
calculation, see Eq.~29!. The latter is depicted in Fig. 17. In
this plot the demarcation line corresponds tox.0.20. In our
numerical relaxation we observed a slow down of conv
gence and a loss of accuracy when approachingx.0.20.
This fact finds its vivid representation in the tension pl
The points beyond the demarcation line drop suddenly
the tension vanishes atx.0.22.19

Based on the success of the integrated first law our wo
ing assumption is that the entropy, temperature and the
merical asymptotica are robust, not only for smallx but for
all the solutions, up tox.0.25; see the discussion at the e
of Sec. IV B. Moreover, one may observe that even thou
the mass evaluation is very sensitive tob the main contribu-

tor is still a: m5(a2b/2)/L̂. Hence, as long asb,a/2,
which is the case here, see Fig. 13, one may assume tha
mass calculation is accurate within 20–25 % limits. This w
be our second, more speculative, assumption. Using it,
can question what additional information can be extrac
from out data. In addressing this question we ask: is thera
phase transition?

We interpret the instability of the numerics as a manife
tation of a real physical tachyonic instability, which slow
down our scheme forx*x1.0.20, and which finally ruins it
completely at x2.0.25. Examining the~dimensionless!
masses corresponding to the above twox values, we find that
m1.0.047 andm2.0.074 are not that far from the GL criti
cal mass,mGL.0.070. Sincea priori, the various instability
masses in the system are expected to be of the same o
this coincidence is rather suggestive. This is another e
dence to our assumption that we are approaching the
physical instability.

The existence of a maximal mass designates perturba
classical instability. On the other hand, once the entropie
the two solutions are equal for a given mass, a first or
phase transition between the two phases can take place.
transition will occur either by quantum mechanical tunneli
or by thermal fluctuations. In Fig. 19 we depict the logarith
of the dimensionless areasA for the two phases: the blac
hole and the black string, whereABS is computed forthe
same mass, m5m(x). Our data do not show a crossing of th
areas. However, a naive extrapolation of the data poi
marked by the solid lines in Fig. 19, indicates an intersect
just above our last BH, namely, atx.0.26. For this value the
mass ism3.0.082, which is also of order of the critical G
mass.

Note that the extrapolatedm3 is slightly larger than our
instability massm2, while the opposite is expected for
first-order phase transition. However, this inequality is n
numerically significant: due to the high degree of uncerta
ties near the instability point we cannot estimate well t
critical massm2. In addition one cannot expect thatm3 is
evaluated accurately, since its value will depend strongly

19We expect that the tension, much like the mass, is always p
tive @32,33# so we regard this behavior oft as fictions resulting
from the loss of accuracy in the measurableb.
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TABLE I. The numerically computed expansion coefficients of the thermodynamical and geom
variables. Theoretical predictions for the leading terms are listed in the last column.

Fitting formula f 16d f 1 f 26d f 2 Theoreticalf 1

m f 1x21 f 2x3 1.486.07 21.360.6 3p/8.1.18
A3 f 1x31 f 2x4 19.546.08 5.661.0 2p2.19.74
T21 f 1x1 f 2x2 6.256.05 2.06.12 2p.6.28
A(k)/(2p2) f 11 f 2x2 .996.004 25.186.4 f 151, f 2.24.93
e f 11 f 2x4 2(3.364.8)31025 2.896.06 f 150, f 2.2.89
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several~not very accurate! final points in Fig. 19.
It is important to determine whetherm2,mGL . If so there

must be a third stable phase to which the black hole dec
for instance the stable non-uniform string@3#. However, we
expectm2.mGL .

VI. FUTURE DIRECTIONS

We conclude by pointing out some future directions
Higher dimensions d.5. In this paper we presented a 5

numerical implementation of the ideas outlined in our pre
ous paper@23#. In principle, after some slight modification
the code can be applied to a higher-dimensional probl
While we expect that the instability, being physical, wou
still be present there, we hope to improve the accuracy of
critical mass estimation.

We hope that the accuracy will improve in this case due
faster asymptotic decay. In addition, as we described in S
IV A 4 faster asymptotic decay implies smallerr max, hence a
smaller number of grid points and therefore a faster ope
tion of the code, which is now frustratingly long~1–2 days!.

Improving the performance of the method. One can try to
improve further the algorithm by, e.g. using the full multigr
technique that incorporates motion up and down grid nu

FIG. 16. The normalized inter-polar proper distance starts a
for small x and decreases asx grows. Note the surprisingly sma
rate of decrease. The inset contains a speculativeextrapolation. If
the latter is correct, the ‘‘north’’ and the ‘‘south’’ poles of the blac
hole will touch atx.0.4. The two extrapolation lines correspond
a spline~dash-dotted! and to an 8° polynomial~dashed!.
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bers. In order to improve the accuracy near the axis we co
use as an angular coordinate the anglex instead of j
5cos(x). The benefit is that the axis is approached faste
the x coordinates, and so there are more grid points nea
The drawbacks~as we explained in the text! are that the
coordinate singularity would be second order and the p
odic boundary,z5L, would lose its particularly simple rep
resentationr5L/j.

Another choice of coordinates. The metric ansatz that we
used here contains three functions. It would be interestin
try and implement the coordinates suggested in@7# and sub-
stantiated in@10,17#. In these coordinates the number
functions reduces to two and, moreover, they interpol
smoothly between spherical coordinates in the horizon
gion and cylindrical ones asymptotically, thus eliminating t
need for the two coordinate patches.
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APPENDIX A: EQUATIONS OF MOTION AND BOUNDARY
CONDITIONS ON A DIMENSIONAL-CYLINDER

In this appendix we derive the equations of motion on
d-dimensional cylinder,Rd22,13S1 and the corresponding
boundary conditions. The most general ansatz, which is ti
independent, time-reversal symmetric~‘‘static’’ ! and with
axial SO(3) symmetry, is

ds252exp~2Â!dt21ds2~r ,z!1exp~2Ĉ!dVd23
2

~A1!

wherez andz1L̂ are identified ,dVd23
2 , is thed23 sphere,

Â,Ĉ are functions of (r ,z) andds2(r ,z) is an arbitrary met-
ric in the (r ,z) plane. Note that we dropped for now ther 2

prefactor in front of exp(2Ĉ). Classically the problem scale
with L̂, and so we can setL̂52p and it can always be
restored by dimensional analysis.

We need the expression for the Ricci scalar of a fibrati
For ds25dsX

21exp(2F(x))dsY
2 one has

R5RX1exp~22F !RY2dY~dY11!~]F !222dYn~F !

~A2!

1
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FIG. 17. The dimensionless mass, tension, 3-area and the temperature along the found branch. The dashed line designate
sponding variables for the 5D Schwarzschild solution. The shown equations are an approximation for smallx; the coefficients with the
fitting error are given in Table. I.
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rm

s
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ck
s

where the Laplacian is given by n(F)
5det(g)21/2]m@gmndet(g)1/2]nF#, grad squared is (]F)2

5gmn]mF]nF and dX5dim(X), dY5dim(Y) „we normal-
ized the Ricci scalar byR5Ri ji j so thatRSd5d(d21)….

The d-dimensional Ricci scalar is

Rd5R222~]Â!222nÂ1~d23!~d24!e22Ĉ

2~d23!~d22!~]Ĉ!222~d23!nĈ

22~d23!~]Â!~]Ĉ!. ~A3!

FIG. 18. A(k)/(2p2) for small x. The leading correction agree
well with Eq. ~39!. The confidence bounds are depicted. No ot
Taylor coefficients could be extracted reliably.
06403
While deriving this formula one has to be careful to consid
the Â, Ĉ fibration step-wise, and thereby get the cross te
22(d23)(]Â)(]Ĉ) in addition to22n@Â1(d23)Ĉ#.

The gravitational action is

I 5
Vd23

16pGN
E dtdV2 eÂ1(d23)ĈRd , ~A4!

r

FIG. 19. The logarithm of the dimensionless area of the bla
hole A3 and black stringABS with the same mass. The continuou
lines show extrapolation of the data to largerx values, suggesting an
intersection and a first order phase transition atx.0.26.
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where GN is the d-dimensional Newton constant,dV2

5A2g(r ,z)drdz, Vd23 is the area of the unitd23 sphere,
and from now on we will drop the prefacto
Vd2316pGN*dt.

After integrating by parts we get

I 5E dV2 eÂ1(d23)Ĉ@R21~d23!~d24!e22Ĉ

1~d23!~d24!~]Ĉ!212~d23!~]Â!~]Ĉ!#. ~A5!

Now we need to fix the metric ansatz in the 2D (r ,z) space.
One can use diffeomorphism invariance to put it in the c
formal form

ds252exp~2Â!dt21exp~2B̂!~dr21dz2!1exp~2Ĉ!dV2.
~A6!

The formula for the Ricci scalar of a conformally tran
formed metricgab5exp(2B̂)g̃ab reads@26#

Rd5e22B̂@R̃d22~d21!] i i B̂2~d21!~d22!] i B̂] i B̂#. ~A7!

Hence in 2D with the conformally flat metric we get

R2522e22B̂] i i B̂. ~A8!

The action~without second derivatives after integration b
parts! is

I 5E drdz$~d23!~d24!eÂ12B̂1(d25)Ĉ

1eÂ1(d23)Ĉ@2] i Â] i B̂12~d23!] i Â] i Ĉ

12~d23!] i B̂] i Ĉ1~d23!~d24!] i Ĉ] i Ĉ#%. ~A9!

The equations of motion are forÂ, B̂ andĈ, respectively,

] i i @B̂1~d23!Ĉ#1
~d23!~d22!

2
~] i Ĉ!2

2
~d23!~d24!

2
e2B̂22Ĉ50, ~A10!

] i i @Â1~d23!Ĉ#1~] i~Â1~d23!Ĉ!!2

2~d23!~d24!e2B̂22Ĉ50, ~A11!

] i i @Â1B̂1~d24!Ĉ#1~] i Â!21~d24!~] i Â!~] i Ĉ!

1
~d23!~d24!

2
~] i Ĉ!22

~d24!~d25!

2
e2B̂22Ĉ50,

~A12!

where the grad squared is defined herewithout a metric fac-
tor (] i Â)25(] i Â)(] i Â).

We find it convenient to redefine

B̂→B, eĈ→eCr and eÂ→A.
06403
-

Solving for n(A),n(B),n(C) we obtain the equations o
motion, which in$r ,z% coordinates are

nA1~d23!
] rA

r
1~d23!~] rA] rC1]zA]zC!50,

~A13!

nB2
~d23!~d24!

2
] rCS 2

r
1] rCD

2
~d23!

2
]zCS ~d24!]zC12

]zA

A D
2~d23!

] rA

A S 1

r
1] rCD2

~d24!~d23!

2

12e2B22C

r 2

50, ~A14!

nC1~d23!] rCS 2

r
1] rCD1]zCS ~d23!]zC1

]zA

A D
1

] rA

A S 1

r
1] rCD1~d24!

12e2B22C

r 2
50, ~A15!

wherenª] r
21]z

2 . These equations can be transformed
polar coordinates,$r,x%, where we have

nA1~d23!
]rA

r
1~d23!]rA]rC

1
~d23!]xA

r2 ~]xC1ctg~x!!50, ~A16!

nB2
~d23!~d24!

2
F ]rCS 2

r
1]rCD1 ]xC

r2 ~]xC12ctg~x!!G
2

~d23!

A
F ]rAS ]rC1

1

r
D 1

]xA

r2 ~]xC1ctg~x!!G
2

~d24!~d23!

2

12e2B22C

r2sin~x!2
50, ~A17!

nC1~d23!F ]rCS 2

r
1]rCD 1

]xC

r2 ~]xC12ctg~x!!G
1

1

A
F ]rAS ]rC1

1

r
D 1

]xA

r2 ~]xC1ctg~x!!G
1~d24!

12e2B22C

r2sin~x!2
50. ~A18!

Herenª]r
21(1/r)]r1(1/r2)]x

2 is the flat Laplacian in the
polar coordinates.
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These are elliptic equations, and as such they are sub
to boundary conditions. One can see that the boundary co
ditions are basically dimension independent. The only diff
ence will appear at the boundary at infinity, because of
different fall-off rate of the functions. Asymptotic flatnes
singles out natural radial coordinate at infinity,r
;r Schwarzschild. In @23# we found ford.5

12A5
a

r d24
1OS 1

r d23D ,

B5
b

r d24
1OS 1

r d23D ,

C5
c

r
1OS 1

r d24D . ~A19!

The feature to be noted is thatC is the slowest decaying
function, with the same rate for all dimensionsd.5. The
cased55 is somewhat special sinceC decays as log(r)/r at
the leading order.

APPENDIX B: ASYMPTOTIC BEHAVIOR

At infinity the equations become one dimensional, as az
dependence is washed out exponentially fast. Defining
conveniencezª log(r), and retaining in Eqs.~A13!–~A15!
only the r-dependent terms, we obtain

A91~d24!A81~d23!A8C850, ~B1!
06403
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B92B82
~d23!~d24!

2
C8~21C8!2~d23!

A8

A
~11C8!

2
~d24!~d23!

2
~12e2B22C!50, ~B2!

C92C81~d23!C8~21C8!1
A8

A
~11C8!

1~d24!~12e2B22C!50, ~B3!

where ( )8ªd/dz.
Linearizing these equations around flat space,A215B

5C50, one obtains

A91~d24!A850, ~B4!

B92B82~d23!~d24!C8

1~d24!~d23!~B2C!2~d23!A850, ~B5!

C912S d2
7

2DC812~d24!~C2B!1A850.

~B6!

One observes that the first equationdecouples20 from the
other two and it can be solved to yieldA.12ae2(d24)z

512a/r d24. In 5D the solutions to the other two equation
are B5b/r and C5c5log(r)/r together withc552a12b
@23#, which can be checked by explicit substitution.

For a stability analysis let us look for a solution of for
B,C;B0 ,C0•exp(ikr) to the other two equations. A tachy
onic mode would be one such that Im(k),0. After substitu-
tion in the homogeneous equations one gets the algeb
equations
due to
F 2k22 ik1~d23!~d24! 2 ik~d23!~d24!2~d23!~d24!

22~d24! 2k212S d2
7

2D ik12~d24! G F B0

C0
G50, ~B7!

which have a unique solution when the determinant of the matrix vanishes

i ~251d!~241d!k2~1127d1d2!k222i ~241d!k31k450. ~B8!

The solutions of this equation are

k150, k25 i ~d25!, k35 i ~d24!, k45 i . ~B9!

Since for all the modes, Im(k).0 there is no tachyon. Note that there is a massless modek150 ~in 5D k2 is massless as well!
that corresponds to the choiceC5B asymptotically. This massless mode can, in principle, become the unstable one
non-linear corrections or numerical errors, but we have no explicit indication for this.

20This effective decoupling ensures that the Smarr formula is satisfied very accurately even thoughb is somewhat less accurate.
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