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This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity.
We analyze under what conditions the conformally flat quasiequilib@FQE approach can generate “as-
trophysically relevant” initial data, by developing an analysis that determines the violation of the CFQE
approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE
assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations
nearly double that of the innermost stable circular ofBE2BCO) separation, thus calling into question the
astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical
simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein
equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and
analyze the stringent requirements on resolution and size of the computational domain for an accurate simu-
lation of the system.
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I. INTRODUCTION fects (e.g., from Newtonian gravity, to post-Newtonian, to
full general relativity. Based on insights from point particle
The analysis of general relativistic binary neutron starmechanics in general relativity and orbits of finite size bodies
processes is an important, yet challenging, endeavor. Thi@ Newtonian gravity, one expects that the early part of the
importance of understanding these processes is rooted in olmspiral process will be quasistationary, with the sectilar
servational astronomy, both in gravitational wave astronomyn time scales larger than the orbital time stalerinkage of
and high-energy electromagnetic wave astronomy. Neutrothe orbit driven by gravitational radiation. When the orbit
star binaries could be the central engines for some classes slfirinks to a small enough radidsut before touching there
gamma-ray bursts, and they are definitely strong candidatesay or may not exist an innermost stable ofl#O) beyond
as sources of gravitational radiation detectable by the up andthich dynamical processes drive the quasistationary inspiral
coming generation of gravitational wave detectors such agito a plunge phase. Whether there is, in fact, a “phase
the Laser Interferometric Gravitational Wave Observatorychange” from quasistationary inspiral to a plunge phase in
(LIGO) VIRGO, TAMA, GEO, and Laser Interferometer the fully relativistic theory, and whether or not this happens
Space AntenndLISA). The challenge of understanding bi- before any othethydrodynamicaldynamical instabilities, is
nary neutron star processes is rooted in the complexity oan unsolved problem in full general relativitgee, e.g.[1]
both the nonlinear Einstein field equations and the physicalor answers in the Newtonian case
properties of the super-nuclear density matter which make up A recent approach for the investigation of the later part of
the neutron stars. the neutron star inspiral which has been studied in detail
Because of the complexity of the binary neutron star sysf2—11] has drawn much attention. This treatment, which we
tem, various levels of approximation have been employedefer to as the conformally flat quasiequilibrillGFQE) ap-
(with various levels of succegas aids in understanding the proach, is a procedure for constructing general relativistic
details of the different stages of the inspiral of comparableconfigurations that correspond to compact, equal mass binary
mass binary neutron stars, from the quasistationary inspiraleutron stars in a quasiequilibrium, circular orbit. These in-
stage through to the plunge and merger of the binary stars tdividual configurations, which we refer to as “CFQE con-
the ring-down of the final merged object. These range fronfigurations,” are by themselves solutions to the constraints of
the approximation of the structure of the neutron stars themgeneral relativity in 3-1 form, i.e., the Hamiltonian and mo-
selves(e.g., from point particle to finite sized perfect fluid mentum constraints. For a given equation of state, each equal
models and the equations of state with different physical apmass binary CFQE configuration can be characterized by
proximationg to the approximation of general relativistic ef- two parameters: the separation of the two neutron stars and
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the baryonidres) mass of each of the neutron stéane only  of astrophysical neutron star binaries. In order for the results
consider equal mass, corotating binary configurations)hereof the numerical evolutions to be relevant to observations,
Taking the CFQE approximation one step further, one car.g., the gravitational waves emitted in actual neutron star
construct an entire 4-dimensional spacetime by “gluing” coalescences, we have to make sure that the initial data ac-
these configurations together as a time sequence of differetually corresponds to a configuration in an astrophysically
CFQE configurations. This construction, which we will refer realistic inspiral. It is not straightforward how one can go
to as a CFQE sequence, produces a spacetime that solvesfout evaluating the usefulness of the CFQE approach in
of the Einstein field equation&} constraint equations and approximating astrophysically relevant phenomena. We note
trace of the extrinsic curvature equatid®,5]. Since the to- that while the CFQE approach leads to solutions of the con-
tal baryonic mass will be constant during the inspiral, thestraint equations, the CFQE-sequence approactoison-
CFQE approach takes constant baryonic CFQE sequences sistent with the full set of Einstein equations.
a representation of the evolutionary sequence of the binary This paper is divided into four main sections. In Sec. I,
neutron star inspiral process; secular evolution of the orbitve describe our fully consistent general relativistic hydrody-
due to gravitational radiation brings one equilibrium configu-namics code used in this paper. We describe in detail the
ration into another with the same rest mass, forming the8+1 formulation of the Einstein field equations that we
CFQE sequenci,5,10,11. couple to the relativistic hydrodynamics equations, along
In this CFQE-sequence approach, one finds that for avith details of the gauge conditions and discretization tech-
corotational neutron star binary systéwhich is the focus of niques used.
this papey, the Arnowitt-Deser-MisnefADM ) mass of each In Sec. lll, we describe the CFQE-sequence approxima-
of the individual CFQE configurations decreases along dion, whose individual configurations will be used as initial
constant rest mass CFQE sequence as the separation betwelata for our fully consistent general relativistic calculations.
the binary stars decreases until a minimum is attained, afteMe demonstrate that the CFQE-sequence definition of the
which the ADM mass increases as the separation decreask3CO for corotating neutron star binaries may not be a rel-
further. Using turning point theorems for exact equilibrium evant concept by showing that if one takes into account the
configurations in general relativity3,12,13, this minimum  spin energy of the neutron stars when constructing the effec-
point signals a secular instability in the evolutionary se-tive binding energy in the CFQE-sequence approximation,
guence, and is commonly referred to as the innermost stabtben there is no longer a minimum in the effective binding
circular orbit(ISCO) configuration. In the Newtonian case, it energy.
has been shown that this secular instability point is encoun- In Sec. IV, we analyze the key assumptions of the CFQE-
tered in the evolutionary procebsforeany dynamical insta- sequence approximation by comparing them with fully gen-
bility is reached 14]. eral relativistic simulations using CFQE configurations as
While it is reasonable to assume that the CFQE approxiinitial data. We focus on the question of how well the CFQE-
mation holds reasonably well for highly separated neutrorsequence approximation for corotating neutron stars approxi-
stars, it is not clear at which point along the evolutionarymates full general relativity. This is done by comparing the
sequence the CFQE approximation breaks down. It is cefassumptions in building the CFQE-sequence to fully consis-
tainly not clear whether or not the CFQE-sequence approxitent general relativistic calculations using CFQE configura-
mation is good for all neutron star separations larger than thgons as initial data to our numerical evolution code. Specifi-
ISCO separation, due to the fact that one main assumption ically, we analyze the conformal flathess assumption and the
the turning-point theoremg3,12,13 used to interpret these assumption of the existence of a Killing vector field. We
CFQE sequences is the assumption of exact equilibriumdevise a number of invariant measures of these assumptions,
While CFQE configurations are very close to equilibrium forand monitor them in our fully consistent, general relativistic
large neutron star separations, they become less so as thienulations. We find that, as expected, the accuracy of the
separation decreases. Unfortunately, it is exactly the smallFQE-sequence approximation increases for increasing neu-
separation regime, i.e. near the ISCO configuration, in whicliron star separation. We present a general algorithm for
these theorems are being applied. Also, the CFQE-sequenesaluating whether or not any CFQE configuration can be
approximation to full general relativity does not provide anthought of as astrophysically realistic initial data by analyz-
estimate of the error of its solutions, unlike, e.g., the posting how much the CFQE-sequence approximation violates
Newtonian approach where one can compute the next ordé¢ne Einstein field equations. We demonstrate this method by
post-Newtonian terms to estimate the error of any postshowing that, for any given tolerance, one can find a CFQE
Newtonian approximation. configuration whose subsequent evolution in full general
The fact that each CFQE configuration satisfies the conrelativity will not violate the Einstein field equations within a
straints of general relativity suggests the use of these corsmall fraction of an orbit.
figurations as initial data to full general relativistic calcula- In Sec. V, we analyze the long time scdlee. multiple
tions. The setting of initial data is obviously an important orbits of the binary systepmumerical evolutions of CFQE
issue in numerical general relativistic astrophysical simulainitial data configurations using our general relativistic hy-
tions. While all initial data configurations satisfying the con- drodynamics code. In particular, we use a CFQE configura-
straints of general relativityi.e., the Hamiltonian and mo- tion which has a 15% larger proper separation than that of
mentum constrainjsare in principle legitimate initial data the ISCO CFQE configuration. We analyze the orbital decay
sets, they may not be acceptable for the study of coalescencate on multiple orbit time scales. Using care in estimating
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the numerical truncation error as well as the errors intro- A. The Einstein equations in 3+1 form

duced by placing the computational boundaries at a finite |, order to numerically solve the Einstein field equations,
distance from the neutron star binaries, we find that while th@q. (1), we must cast the equations as an initial value prob-
computational resources at our disposal are sufficient to getgm. n order to facilitate this, we introduce a foliation of the
reasonable handle on the truncation error, the errors intr(gpacetime into spacelike hypersurfaces where the coordinate
duced by the placement of the boundary of the computationallabels each spacial hypersurface. We furthermore introduce
domain can have a significant impact on the dynamics of th€artesian coordinates on each spacelike hypersurface. The
neutron star inspiral. We demonstrate that this is true even ifne element can now be written as

the linear dimensions of the computational domain are as 5 o . o

large as one half the size of the gravitational waves being ds’=(B*—a®)dt*+ 2B, dtdX + y;;dxX dxX  (4)
emitted, which is a fairly large computational domain by \here the shift vectog' is a 3-vector defined on each space-
today’s numerical relativity standards. We conjecture tha; o hypersurface is the lapse function, and;; is the
presently available computational resources will not allow ' ;

=>Sently availe , HIOW 83 metric. We denotey as the inverse of the 3-metrig; ,
unigrid finite difference code to decrease the dlscretlzatlorguch thaty'l 7,'k=5L-

parameterAx suffic_iently and simuitaneously in_crease the_ There are many ways to formulate the Einstein equations
g|starc11ce fron;f_th_e b'l”"’?fy s;(/jstem to the compL;]tatmr?all dgmalgq an initial value, 3-1 form. The standard “ADM” 3+1
oundary sufficiently in order to guarantee that the indUCeG,  jation [15] writes the six space-space components of

numerical errors will not significantly affect the details of the the Einstein equations, E(L), as 12 equations that are first
inspiral process. Mesh refinement techniques and/or bette} jor in time ' '

outer boundary conditions will be needed in order to accu-

rately simulate the physics on the length scales of the com- Liyij=—2aKij+ L3y (5)
pact object as well as the length scales of the gravitational
radiation. LiKjj=a ®R; - 2aK! K+ aKKj, ()
—DichH—E[;Kij—a(“)Rij , (7)
Il. FORMULATION AND DISCRETIZATION
OF THE EINSTEIN EQUATIONS COUPLED whereKj; is the extrinsic curvature of a spacelike hypersur-
TO A PERFECT FLUID face. Here L is the Lie derivative operatot; is the cova-

) ] o ___riant derivative operator compatible with the 3-metyi¢, K
Our code numerically solves the Einstein field equationss the trace of the extrinsic curvatur€)R; is the 3-Ricci
coupled to a relativistic perfect fluid. The gravitational de‘tensor, while(“)Rij are the components of the 4-Ricci tensor
grees of freedom are geometrically encoded in the 4-metrignat represent the perfect fluid source terms to the Einstein
9., Which are governed by the Einstein field equations  equations. The remaining four Einstein equations are the
constraint equations, which are analytically satisfied on each
G,,=87T,,, (1) of the spacelike hypersurfaces as long as they are satisfied on

the initial slice. The Hamiltonian and momentum constraints

whereG ,, is the Einstein tensor ari,, is the stress-energy &€
tensor of the perfect fluid, given as BR+K2- Kij Kii—242Gt=0 (8)

T,,=phu,u,+Pg,,. ) DKl - DK—-aG'=0. 9

While one could base a numerical evolution code on the
Here, we have set the gravitational const@rdnd the speed ApM equations, recent resulioth empirical[16,17 and
of light ¢ to be identically 1. The 4-velocity of the perfect gnalytical studies18—20) indicate that a more suitable
fluid is denoted a8, , andp, P, andh are the baryonic mass choice would be the so-called BSSN formulat{d,17,21.
density, pressure, and specific enthalpy, respectively, of thene feature of this formulation of the Einstein equations is

fluid. The equations of motion governing the perfect fluid arethat the 3-metric is decomposed into a conformal fagtor
the conservation of stress-energy and baryonic mass and a conformal 3-metri5/ij as

vV, T#"=0 i =€, (10
® where the determinant of the conformal 3—meﬁ7ipis iden-
tically 1. Similarly, the extrinsic curvature is decomposed
into its trace and trace-free parts

These represent five equations governing the five degrees of
freedom of the perfect fluidthe mass density, energy den-
sity, and velocity. The entire system of equations is closed
by choosing an equation of state for the pressiras a -
function of the baryonic mass density and internal energyvhereA;; is referred to as the conformal trace-free extrinsic
density of the fluid. curvature, such thak;y"!=0. In addition to the decompo-

V,(put)=0.

Kij=§7in+e4¢'~°~ij, (11
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sition of the traditional ADM variables, a key ingredient in ~ The general relativistic hydrodynamics equations, B.
the BSSN formulation is the introduction of three new can be written in first order, flux conservative form as
evolved variables, namely the three conformal connection

functionsI

Ti=-g/y. (12)

The final form of the evolution equations which we use in

AU+ o,F' =S8, (20)

where the conservative hydrodynamical _variali)?eme writ-
ten in terms of the primitive variabldg,v', €} as

the numerical evolution of the Einstein field equations is D \/;Wp

given as U=\ S |= VyphWoy, . (21)
i 1 1 T Vy(phW2— P —Wp)
o= ekt ng,Bk (13

Ko o1
E=aAJAij+§aK _’)/J’DiDjCE"r‘EEK

+2a%G"— a ™R (14)
ayi - 2. -
a_t”: —2ah— §7’ijDkﬂk+ e Ly (19
IA;

1 - ([~ ~ 2 ~
_ 4¢3 kI 2
T—Cle ¢( )Rij—ga'yij(AHA _§K +aKAij

~ ~ 1.
- 2aAikAJk— ei4¢DiD]‘ a+ §yi-Dkaa

J

~ 2 2 -
+ e_4¢£é(e4¢Aij ) —§A”Dkﬂk—§a3yij Gtt

1 -
—ae_4¢(4)Rij + gay”(“)RE (16)

d ~ 4 . ~
——=—2A"Dja— §a7'JD]-K+12aA”DJ-¢

I B ~ o~
_(9] e4¢£éy”+§y”yk|£/§yk| +2a1—‘|jkAJk

—2a%e*Glt, (17

B. General relativistic hydrodynamics

We also perform a 31 decomposition of the hydrody-
namics equations, Eq3). Note that the 4-velocity,, is
normalizedu*u,= —1, so that its components can be writ-

ten in terms of the three spatial velocity componaritsis

W : :
(= —{Lav'— g1}, a8

whereW is the Lorentz factoW=1/\1— vy;ju'v!. The spe-

cific enthalpy,h, is given as

h=1+¢e+Plp, (19

wheree is the specific internal energy density.

The flux vectorF' is written as
a(v'=B'la)D
Fi=| a((v'=B1a)S+\yP3) |, (22)
a((vi—Bi/a)T+ \/;viP)

and the source vect@® is written as

0
S= a ,yTMVg VU'F U,uj . (23)
a\/;(T'”t(?Ma— aT‘“TtW,)

C. Discretization techniques
We discretize each of the 3 spatial coordinate variables
{x,y,z} using a constant spacifd\x,Ay,Az}, e.g.,

Xj=Xo+tiAx, i=0,...n,—1 (24)

We discretize the time coordinates
thy=t,+At (25)

where we sefA\t=0.25Ax for all dynamical simulations per-
formed in this paper.

Due to the fundamental differences in the phenomena be-
ing described by the Einstein field equations, Bg, and the
relativistic hydrodynamics equations, E@), the discretiza-
tion methods that we employ for the two sets of equations
are very different. In the case of the Einstein field equations,
we expect the dynamical degrees of freedom to remain
smooth and continuous. In the case of the relativistic hydro-
dynamical equations, we know that shockisscontinuitie$
can easily form in the physical degrees of freedom. Thus, the
discretization method used for the hydrodynamical equations
will be more complicated in order to allow for the accurate
treatment of shock propagation. The approach we use will be
based on a finite differencing scheme employing high reso-
lution shock capturingHRSQ techniques. In order to use
these techniques, a complete knowledge of the characteristic
information is needed. We therefore require the eigenstruc-

ture of the Jacobian matrices in E&0), namelydF'/dif for
the flux vectorF' defined in Eq.(22). This is not a straight-

forward task, since the fluk' is expressed as a function of
both the primitive and evolved hydrodynamical variables.

064026-4



TOWARDS A REALISTIC NEUTRON STAR BINARY . ..

What we require are a complete set of eigenvec[tar]sand
corresponding eigenvaluas such that

(26)

[?—Fxl ril=\ilril, i=1,...,5
5)[] [ri]— i[ri], 1=1,...,0.

(here, we present the spectral decomposition forxticem-

PHYSICAL REVIEW D69, 064026 (2004

istic applicationgsee, e.g/[,25]), this is the first fully general
relativistic application of the method. The discretization of
the flux terms in Eq(20) are written

(9_|Ex: (F)i s 20— (F9)i 12
dx AX

+O(AX?). (34)

ponent of the Jacobian, since the decomposition for the other . . . .
two spatial components of the Jacobian can be obtained by'Q order to update the discretized hydrodynamical variables,

straightforward permutation of the spatial

coordinatesVe simply perform a two-step predictor-corrector method, in

[x,y,2}). It turns out that the spectral decomposition Con_order that the entire hydrodynamical update is done in a fully

tains a triply degenerate eigenvalue

)\1:)\2:)\3:C¥UX_IBX. (27)

second order manner iboth space and timémodulo the

points where the hydrodynamical variables obtain local ex-
trema, where the accuracy of the spatial derivatives drop
down to first order in space. This is a well known property of

A set of linearly independent vectors that span this degenethe so-called Godunov schemes; see, €2f)).

ate space is given by

- K K

[{=|——————5,0y,Uy,U ,1_—
Y hWk—pcd) YT Wk —pe?d) 8
28

F2=[Woy ,h(yyy+ 2W20,0,),h( vy, +2W20,0,),

h('yyz-l— 2W2vaZ)yUyW(2Wh— 1)]T, (29
FSZ [Wo,,h(yy,+ 2VVZUXU 2,N( Yyzt ZWZUyU 2)
h(7z2+2W20 0,),0 W(2Wh-1)]". (30)

The other two eigenvalues are given by

(44

. {v(1-c?)
l—vzci

+ 21— y*(1-v%d) —vv(1—cD) ]} - B,

(31
with corresponding eigenvectors
- X— )\++ X/
Fo= 1,hW<vX— Ot Bl a ) Wo, .
YO v (N + B e
hW XX__ X X T
hWo,, mvv) -1|, (32
Y=o (N + B a

where the relativistic speed of sound in the flaidis given
by (see, e.9.[22])

x P«
==+ — . (33
s h p2h

We have sey=dP/dp|. andk=3dP/Jde|,. S is the entropy

As previously stated, since the fields describing the gravi-
tational degrees of freedom are expected to remain smooth,
we simply perform centered-in-space discretizing of the spa-
tial derivatives in Eqs(13)—(17). For discrete time evolu-
tion, we use the iterated Crank-Nicholson methad]. In
order to achieve a completely second order method in both
space and time for the coupled system of equatitmes Ein-
stein field equations and the relativistic hydrodynamics equa-
tion), we use the time stepping method described in Fig. 1.

D. Gauge choices and boundary conditions

In the 3+1 initial value formulation of general relativity,
one is free to specify the slicing and spatial coordinate con-
ditions by specifying the lapse and shiftg', respectively.
The code described in the previous subsections has been
written allowing for an arbitrary choice of these gauge vari-
ables. As described in the next section, each configuration in
the CFQE-sequence approximation has a vanishing trace of
the extrinsic curvatur&. As we would like to compare our
full general relativistic simulations to the CFQE-sequence
approximation in an invariant manner, it is desirable to use
the same slicing condition during the full numerical simula-
tion as that of the CFQE-sequence approximation. To this
end, we would like to select the lapse functiansuch that
the trace of the extrinsic curvatukeremains 0. Notice that if
one setsK/9t=0 in Eq.(14), then the equation becomes an
elliptic equation for the lapse functiow. We have thus
implemented a multigrid solver28] for efficiently solving
this equation, also known as the maximal slicing condition
[29]. However, solving an elliptic equation at every time step
can be numerically expensive. We therefore also implement a
variant of the so-called “*log” slicing condition for the
lapse,

(35

per particle and is the total rest energy density which in our Note that this is a completely local condition, and is there-
case isE=p+pe. We use the above characteristic informa-fore computationally inexpensive. We use both the maximal

tion to calculate the numerical fluxesf*)* using the
piecewise-parabolic methoPPM), described in[23,24].

slicing condition and the “*log” slicing condition for
simulations presented in this paper. For each result, we indi-

While the PPM method has been extended to special relativcate which slicing condition is used.
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o where we set the constant;=C,=0.8 for all numerical
simulations in this paper. We find that the Gamma-freezing
condition in this modified form, despite its simplicity, results
in enhanced stability for the type of problems studied in this
paper, and was also very computationally efficient.
The problem of boundary conditions in numerical relativ-
.,,_ ity is only now gaining the attention it deservg31-35.
: At Here, we implement a simple, yet empirically stable, bound-
{ ary condition for the fields describing the gravitational de-
grees of freedom, Eq$13)—(17), due to Alcubierrd 30]. Let
f(t,x,y,2z) represent a field on which we wish to impose this
boundary condition in, say, theface of our computational
boundary(they andz face are similar; averaging this method
yields boundary conditions for the edge and corner points of
the computational boundaryWe take as an ansatz the form

1
" for f asr—oo
u(r—t) w(r+t)
A f(t,x,y,z)—f.+ e (37
_ Taking the derivative of this expression with respect émd
_*_ s 172 X, and eliminatingu andu’ yields
x of 07f+Xf . _1H ag
rat ox rz( =)= r2 (38)
S a2

where the functiorH =2xw’. Equation(39) is finite differ-
enced in a second order fashion to obtain a boundary condi-
tion on the fieldf, where we have interpolated the functidn
from interior points, assuming a falloff of 1/r2 for H. We
--GR UPDATE --HYDRO UPDATE adopt this boundary condition for all of the fields describing
the gravitational degrees of freedom. The boundary condition

FIG. 1. A representation of the coupling between the hydrody-used for the hydrodynamical variables is a simple outflow
namic predictor-corrector schenteircles and the iterated Crank- boundary condition. Note that all of the hydrodynamical
Nicholson method used for the integration of the Einstein fieldfields are trivially small at the computational boundditye
equations(squares STEP 1: Simultaneous update of the general atmosphere has a baryonic mass density that ¥stibes
relativity and hydrodynamic equations via a Euler-predictor stepsmaller than the central baryonic mass density of the neutron
(first order in time¢ to the half time stem+ 1/2. STEP 2 through  starg, thus the boundary conditions used for these fields are
M: Update of the general relativity equations via an iterative Crank+elativity unimportant.

Nicholson schemésecond order accurate in tign® then+ 1 time
step, then compute a corrected-1/2 state by averaging the
+1 andn statesSTEP M+1: Simultaneous update of the general
relativity equations via a leapfrog stégpecond order in timebased
on then andn+ 1/2 states, and the hydrodynamics equations via the The mathematical assumptions that go into the confor-
second half of the Euler-predictor stéfrst half applied in step)l  mally flat, quasiequilibrium approximation to general relativ-
using a method of lineSTEP M+2: Update of the hydrodynamic ity for binary, corotating neutron stars are as folloffce the
equations to a virtuah+2 time step via afirst order in time physical motivation behind the assumptions, see, E29).,

Euler-corrector step using method of liIn&TEP M+3: A second The physical 3-metricy;; is assumed to be conformally
order (in time) hydrodynamics update is obtained by averaging theflat 4

corrected quantities of stelgl +2 at leveln+2 and the original
variables at leveh.
Y= . (39

n

IIl. THE CONFORMALLY FLAT, QUASIEQUILIBRIUM
(CFQE) APPROXIMATION

For the conditions on the shift, we use a slight modifica-
tion of the “Gamma-freezing” shift equatiof30]. Specifi-
cally, we implement the first integral form of the hyperbolic
Gamma driver(Eq. (46) of Ref.[30]), Loy y;)=0. (40)

The Lie derivative of the conformal metri«gz“‘yij with
respect to the time variablels identically zero:

Z LT i
W—Clr —-C,B, (36

The trace of the extrinsic curvature and its time derivative
vanishes:
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K=0 (41) T

=
-
-

L(K)=0. (42)

There exists an approximate timelike helical Killing vec-
tor field &+

—— ADM mass 1
--- baryonic mass

sun

= 1 -
—[2) a2 2y =
for some constanf). e ]
The 4-velocity of the fluidu# is proportional to the ap- L .
proximate Killing vector field&*: | | | |
00 I 2 I 4 I 6 I 8 I 10
Uk~ g,u . (44) pcentral / pnuclem‘

From Eq.(40), the extrinsic curvatur&;; takes the form FIG. 2. The ADM mass and baryonic mas units ofM) as

a function of central densit§in units of nuclear densijyfor single,
1 2 . static neutron star configurations. All studies in this paper are done
Kij=54| DiBi+ DiBi= 3 7%iDwb" |- (45 with stars of baryonic mass 1.MB, (squar¢. The corresponding

ADM mass of this single static configuration is 14, (circle).
Using this, along with the assumptions of the conformally h2( a2 — A B —vQ) 2+ ( B+ 2 2\2
R o S - - xQ)“+
flat, quasiequilibrium approximation above, the Hamiltonian ("= (B -y (B )BT
constraint, Eq(8), and the momentum constraints, E¢(®), =const. (51
can be written as
A. CFQE configuration

i 1 . 5 _ We use the algorithm detailed j&], along with a parallel
e FK”K +2my(phW-P)=0  (46) multigrid solver, to simultaneously solve the algebraic Ber-
noulli integral equation, Eq51), and the five elliptic equa-
and tions corresponding to the Hamiltonian constraqtbg. (46)],
the three momentum constrairfft&gs. (47)], and the maxi-
2a _ mal slicing equatioriEq. (49)], for the conformal factogy,
—6> —16may*phWr' =0, the three components of the shift vecr the lapsex, and
¢ the matter fields, thus producing a single CFQE configura-
47 tion. In numerically solving these elliptic equations, we use
identical boundary conditions to those [ig]. We have also

respectively, where we define the conformal extrinsic curva- : .
~ assumed a polytropic equation of state,
tureK;; as

R R
daiB+ 598K,

P=(I'-1)pe=kp", (52

Rij=¢2Kij : (48) . . . . .
where k is the polytropic constant antl is the adiabatic
Using this form of the Hamiltonian constraint, the maximal index. The baryonic mass of each neutron star in a CFQE
slicing condition,£,K =0, can be written as configuration M, is defined as half of the total rest mass of
the configuration,

. 7o .
= = 1
o"'o"i(alr/l)—S—wEiKin'J+27T¢.4(2p(l+€)—3p—3phW2) MOZEJ d3x ypW. (53

=0. (490 In this paper, we sdf =2 andk=0.0445¢?/p,)), wherep,
is nuclear density(approximately 2.% 10 g/cn?). For
Since the quasiequilibrium approximation assumes the eXishese values of parameters, a single static neutron star con-
tence of a timelike Killing vector, we can analytically find figuration that is stable has a maximum ADM mass of
fche _first integral of the relativistic Bernoulli equation, which 1. 79v, and a baryonic mass of 187, (Mg is 1 solar
is simply mas$. For the studies in this paper, we use neutron stars with
. a baryonic mass of 1.48, each, which is approximately
u_ 75% that of the maximum stable configuration. The ADM
— =const. (50 . X . ) S
mass of a single static neutron star for this configuration is
1AM (see Fig. 2
Along with the normalization condition for the 4-velocity, Once the baryonic mass of each of the stars is fixed, the
uu,=—1, this equation can be explicitly written as only remaining degree of freedom in the specification of a
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FIG. 3. Contours of the baryonic mass density for two CFQE configurations, taken in the equatei®gl jlane. The ADM mass of
each neutron star in isolation is M4, . The value of the mass density for the first contour is 0.9 that of the maximum mass density of the
star, with the others decreasing by a factor of 0.5 each. The CFQE configuration in the left panel has a geodesic separatidy of
=23.44(which is 51.70 kn, and the configuration in the right panel has a geodesic separatién, 0 ,=35.72 (which is 79.00 kn
These configurations represent the smallest and largest separation CFQE configurations that are used as initial data for the fully consistent
general relativistic numerical calculations done in this paper.

CFQE corotating configuration is the separation of the twoCFQE configurations representing the smallest and largest
stars. A natural invariant way of specifying the separation ofseparations used as initial data for the 3D numerical simula-
the two neutron stars is to calculate the geodesic distance dions performed in this paper.

the constant hypersurface between the points in each of the

neutron stars that corresponds to the maximum baryonic B. The CFQE-sequence approximation

mass density. Specifically, i), and x),, are the spatial
coordinates of the points of maximum baryonic mass densit
in the first and second star, respectively, then the geodes
whose length will represent thespatially invariant separa-
tion of the neutron stars is the curve

A CFQE sequence is constructed by stringing together
everal constant baryonic mass CFQE configurations, each
configuration differing in only the separation of the neutron
stars. The idea is that, due to the fact that the time scale of
the gravitational radiation, and thus, that of the orbital decay,
is much longer than the orbital time scales, the binary neu-

1
X'(A), hel01], (54 tron stars are considered to be in “quasiequilibrium.” Thus,
at any particular time, a binary neutron star system can be
where described by one particular CFQE configuration; the effect of
. . . , the gravitational radiation is, over the time scales of one
X'(N=0)=xy1, X (A=1)=Xyo, (55 orbit, to alter the configuration to a new CFQE configuration
with a slightly smaller separation.
such that It is typical in CFQE approximation studies to calculate
an effective binding energy for each configuration. Follow-
d2xi . dX dXxk ing [2], we define thegdimensionlesseffective binding en-
e +F'jkﬁ an =0. (56)  ergy Ey, of a single configuration to be
_ Mapm—2Mys:-
The geodesic distandg, , between the two stars is now de- b™ Mo (58)
fined as
where M py is the ADM mass of the configuration, and
=1 dX' dx! Mys- IS the ADM mass of a single static neutron star in
€1,2:f S d\ \/ 7ij an dhe (57) isolation with rest mas$/1,. The usual expression for the
ADM mass of an asymptotically flat spatial slice is
We use a relaxation technique for numerically solving the 1 J )
geodesic ODE, E(56), and then use a standard quadrature M apy= I|m E (ﬂ_ ﬂ) NI, (59
formula for evaluating the integral fof,,, Eq. (57). We 16w, . =1 X! j

choose the discretization for solving E§6) and Eq.(57) to
be 10 times as fine as the 3D discretization, and use a thirghereN' is the unit outward normal to the sphere of constant
order accurate interpolator to calculate the Christoffel sym+adiusr, which is the domain of integration. Using the fact
bols I",k from the 3D grid. The maximum baryonic mass that the CFQE configurations are conformally flat, the ADM
points,x},; andx},,, are located by finding the maximum of mass of any configuration reduces to the volume integral
a 3D third order accurate interpolation polynomial, the inter-
polation being centered on the discrete point on the 3D grid M _ if d*x(3'd ) (60)
that has the largest value of the baryonic mass density in ADM i)
each star.

In Fig. 3, we plot logarithmically spaced contours of the In Fig. 4, we plot the effective binding enerdy, as a
baryonic mass density in the equatoriaH0) plane for two  function of the angular velocity paramet@r, for a constant
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0015 X - T . | - each sequence. Notice that, as we both increase the resolu-
' tion and increase the distance from the center of mass to the
boundary of the computational domain, the shape of the
curves in Fig. 4 remain roughly the same. In fact, we can
perform a Richardson extrapolation on our numerical results
by fitting each point on the curve to an error function. For
example, we can use the error function

- *—* 256", Ax = A2

-0.0155 —

-0.016 —

E_b

00165 C,
hee (Eb)numerica (Eb)exact™ Cl(AX)2+r2_y (62)
id

o017 where €p)numerical IS the numerical value for the binding

: I : L : I : energy E, obtained using a specific discretizatidrx and
0.01 0.012 0.014 0.016 M .
OM coordinate distance from the center of mass to the outer
0 boundaryr;qy (we user;y to denote this distance in solving
FIG. 4. The effective binding energf, as a function of the the elliptic equations for the CFQE configurations, and we
orbital angular velocity paramete for constant baryonic mass Will usery, to denote the coordinate distance from the center
CFQE sequences. The baryonic mass of each of the neutron starsq§ mass to the outer boundary of the computational domain
1.49M . Shown are results for our CFQE configuration solver atused during the dynamical evolutions. Of course, we always
different resolutions and outer boundary placements. Tables IV, \haver;q=r,). Note that the first nonzero term for the expan-
and VI of Ref.[2] were interpolated to obtain the results from sion of the boundary error does not contain igglterm. This
Baumgarteet al. is due to that fact that the boundary conditions we use in

, . solving the elliptic equations for the CFQE configurations,
baryonic mass CFQE sequenteach star has a baryonic \yhich are identical to those used [a], are exact to this

mass of 1.4®1). The highest value of) for each of our _order. €p)exact is the binding energy in the limit adx
calculated CFQE sequences corresponds to a CFQE configus andr,g—, i.e. that given by an exact solution to the
ration where the neutron stars are touching. The configuragiferential equations. Of course, it I€£) . ac; that we are

tion corresponding to the minimum effective binding energy;nerested in. We use our three,CFQE esxeac;uences shown in
E, is the ISCO configuration. It is this point along the Fig. 4 to solve for the three unknownEy) s, C1, andC,

CFQE-sequence approximation where the quasiequilibriunyo £q (61). A generous estimate of the total error, which
configuration goes secularly unstable; the subsequent evolys pe used for the size of the error bars. is

tion of the system is thought to enter a “plunge phase”

where the neutron stars coalesce within an orbital timescale. C
Of course, when using a computer code to solve differen- error= max{ |C1(AX)%peql, TZ '
tial equations, results produced at one single resolution are I'id bes
meaningless due to the fact that we have no way of knowing
how big the numerical errors are. It is always important to 2 C,
make numerical calculations at different resolutions, in order CalAX) pestt ridzbesH ' (62)

to be able to assess the numerical errors that are inherent to
any discretization. Not only do we have the usual truncationrpe results are plotted in Fig. 5.
errors(which are due to the fact that higher order terms in
the Taylor expansion of functions have been dropped in our
finite difference approximationof any finite difference ap-
proximation, we also have boundary errors, as we are solving
a set of 5 coupled elliptic equations to arrive at any CFQE Note in Fig. 5 that the effective binding energy attains a
configuration. Therefore, we must make at least three numinimum as the separation between the neutron stars de-
merical experiments in order to assess the effect of both resereases. As explained in the introduction, the CFQE-
lution and boundary placement on the numerical results. Weequence approximation thus predicts a secular instability at
show our CFQE configuration results for three combinationghis orbital separation, at which point the evolution of the
of resolution and outer boundary placement, alongside theystem will change from quasistationary into a plunge phase,
results obtained by Baumgargt al. [2]. Our CFQE se- where the neutron stars would merge on timescales of the
guence results are in fairly good agreement with thod@lpf  orbital period. Several types of arguments have been used to
considering the two terms that are subtracted in the construsupport this claim2,3]. On the one hand, it is intuitively
tion of E,,, Eq. (58), are the same to the first two or three clear that, in the presence of a dissipation mecharigawvi-
significant digits. The resolution used in the two studies ardational waves are slowly dissipating the binding energy of
comparable. However, if2], the number of gridpoints the binary system if the binding energy would increase with
across the neutron star was kept fixed. We, on the other handecreasing separation, this would energetically be an un-
keep(for each sequence calculajettie boundary fixed, and stable situation. There are also turning point theorems
thus have different numbers of gridpoints across the star if3,12,13 in full nonlinear general relativity which state that

C. Neutron star spin corrections to the CFQE-sequence
approximation
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FIG. 5. The effective binding energl, as a function of the FIG. 6. The effective binding enerds;, , Eq.(63), as a function
orbital angular velocity parametéd. The data in this plot were of the orbital angular velocity paramet@r. The method for obtain-

obtained by using Richardson extrapolation from the data in Fig. 4ing the data and error bars in this plot are equivalent to those used
The form of the truncation and boundary error are given by Edin producing Fig. 5.

(61). The error bars were computed using E62). These results
represent what one would obtain in the limit as bath— 0 and the

: ergy, Eq.(58). To this end, we define a new effective binding
location of the outer boundary goes«o

energy that explicitly takes the spin kinetic energy of the

. _ , . . - neutron stars into account:
if a sequence of equilibrium configurations attain a minimum

@n the ADM mass energy, then this equilibrium configuration , Mapu—2Mys.—2AMgys.(Q)
is secularly unstable. Hence, to the accuracy of the CFQE- Ep= M
sequence approximation, the minimum in Fig. 5 is often re- 0
ferred to as the innermost stable circular oi®8CO) con- ) )
figuration. whereAMgys.(Q2) is the difference between the ADM mass
One problem with the view that these CFQE-sequence§f an isolated stationary neutron star with baryonic mdss
somehow approximate fully consistent solutions to the Einuniformly rotating with angular velocitf) and the ADM
stein equations coupled to the relativistic hydrodynamicmass of an isolated static nonrotating neutron star with bary-
equations has to do with the spin of the individual neutrononic massMg. Thus, AMgys:(£2) represents the spin ki-
stars. Note that in each of the CFQE configurations, thé€tic energy of a uniformly rotating neutron star rotating
4-velocity of the fluid is assumed proportional to the timelike With an angular velocity). We plot this new effective bind-
helical Killing vector field. The neutron stars are thus spin-ing energyE, in Fig. 6. As can be seen, the binding energy
ning at the exact same frequency as the orbital frequécy, Wwhere the spin kinetic energy of each of the neutron stars has
The neutron stars are said to be corotating with the orbitabeen manually factored out no longer attains a miningtira
motion. However, it has been known for some time that re-data point with the highest value & corresponds to the
alistic binary neutron stars cannot be tidally locked duringCFQE configuration in which the two stars are touching
the late stages of inspiréile., less than 1000 orbits until the This indicates that the secular stability of very close binary
final plunge [36]. neutron stars could depend very sensitively on the spin-orbit
This raises a question: if a CFQE configuration is used agoupling of the binary system. The two extreme cases, that of
initial data, should we expect the subsequent solution to th#idally locked neutron stars and nonrotating neutron stars, are
Einstein equations to follow the CFQE-sequence approximadepicted by Figs. 5 and 6, respectively. The fact that we
tion, and keep the stars tidally locked as the stars slowlgxpect a weak spin-orbit coupling suggests that, in the fully
inspiral? In light of the results df36], the answer must be consistent general relativistic hydrodynamics simulations,
no. To first order, we would expect the stars to retain apwhere we do not expect the neutron stars to remain tidally
proximately the same spin during the dynamical evolutiondocked, there may be no turning point and that there may not,
as is given in the CFQE configuration that was used as initiain fact, be any ISCO configuration.
data.

Th(_a resolution of this first question presents. a second: |, COMPARING NUMERICAL EVOLUTION IN FULL
what is the status of the ISCO? If the starsr, in fact, GENERAL RELATIVISTIC THEORY WITH THE
stay tidally Iopked during dynam|cal evoluthn, WI||.thI'S af- CFQE-SEQUENCE APPROXIMATION
fect the location and/or existence of a turning point in the
binding energy curve, i.e. the CFQE ISCO configuration? Using our numerical evolution code described in Sec. I,
One can gain insight into this question by comparing the spimlong with the CFQE configurations described in Sec. Il as
kinetic energy of relativistic, uniformly rotating neutron stars initial data, we analyze to what degree the CFQE configura-
to the energy scales involved in calculating the binding entions actually correspond to quasiequilibrium configurations

(63
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in full general relativity. We do this by computing fully con- TABLE |. CFQE configuration parameters used as initial data
sistent general relativistic evolutions numerically usingfor fully consistent general relativistic simulations in Sec. IV. For
CFQE configurations as initial data, and comparing the releference, the ISCO configuration has a proper geodesic separation
sulting solution of the Einstein field equations with the of £1,,=24.0Mo.
spacetime obtained by the CFQE approximation. Recall tha ) N
one major assumption in the CFQE approximation method islconf'g' Mo/Mo C12/Mo  JIMy Maou/Mo  2Mo
that the change of the binary separation is small on time NS-1 1.490 23.44  3.770 1.857 0.01547
scales less than one orbital period. If the solution to the Ein- NS-2 1.490 2594  3.762 1.857 0.01296
stein equations obtained by using any particular CFQE con- Ns-3 1.490 2078 3.812 1.858 0.01022
figuration as initial data deviates significantly from the Ns-4 1.490 3572 3.934 1.859 0.007460
CFQE-sequence spacetime on suborbital time scales, then
that particular CFQE configuration cannot be thought of as
representing a quasiequilibrium configuration. Of course, thenerically constructed spacetime with the CFQE-sequence
quasiequilibrium approximation becomes better as the sepapacetime based on both the conformal flatness assumption
ration of the neutron stars increases. The question then bend the assumption of the existence of a timelike helical
comes: how close can the neutron stars be before the CFQfilling vector field. Both of these measures will be exactly
approximation breaks down? In this section, we describe aero for the CFQE-sequence spacetime, but will not neces-
generic method that we subsequently use to answer thisarily be zero for the full solution to the Einstein field equa-
question. In short, we use CFQE configurations of differingtions using CFQE configurations as initial data. The magni-
initial separation as initial data for our fully consistent gen-tude of these measures will thus gquantify the magnitude of
eral relativistic code, and compare the resulting solutions tehe CFQE configuration’s failure to correspond to a true qua-
the Einstein field equations to the CFQE-sequence spacetingfequilibrium configuration in full general relativity. In Table
in a coordinate independent fashion. The magnitude of these we show the parameters for the CFQE configurations that
differences, which we find to decrease as the initial separaare used as initial data for the simulations done in this sec-
tion of the neutron stars increas@s expected will there-  tion.
fore quantify the degree of failure of the CFQE configura-
tions to be truly quasiequilibrium configurations in full
general relativity.

Recall that the CFQE-sequence approximation is done in .
a maximally sliced K=0) coordinate system. In order to ~ Recall from Sec. Il that one assumption of the CFQE-
facilitate a meaningful comparison between the fully generaf€duence approximation is the existence of an approximate
relativistic calculation and the CFQE-sequence approach, wiémelike helical Killing vector field, Eq(43). As we are as-
adopt this slicing condition for all numerical computations SUMiNg & corotating matter field, the 4-velocity of the fluid
done in this section. Thus, we determine the lapse funetion MUusSt be proportional to this Killing vector field, E¢44).
by solving the maximal slicing condition, which is the ellip- Here, we monitor this quasiequilibriuQE) assumption in
tic equation obtained by setting/at to 0 in Eq.(14). In our fully consistent general relativistic numerical calcula-
order to decrease the computational cost involved in solving/ons- . , .
this elliptic equation, we only solve the maximal slicing con- _1hat the 4-velocity® be proportional to a Killing vector
dition every eight time steps. We use-+1og” evolution, Eq. field is equivalent to the vanishing of a symmetric, ty(pe2
(35), for the lapsex for the timesteps where we do not solve 4-1€NS0MQap
the maximal slicing condition. We have performed several
numerical tests where we do, in fact, solve the maximal slic-
ing condition for every time step, and have seen only a negg e sa—

liaible affect on th it6n fact. th £ the vi =uPV,u? is the 4-acceleration of the fluidV§ de-
igible affect on the resultéin fact, the measures of the vio- o5 the covariant derivative operator compatible with the
lation of the Einstein equations by the CFQE approximatio

n . . . . .
o : . o 4-metric . Notice that the quantit®,,u? vanishes iden-
that we find in this section slightlincreasewhen we solve Gap) g Rap

th imal slici dition for the | i " tically. We can thus monitor the space-space components of
Stgpmamma slicing condition for the lapse at every ime Qap during our simulations as a way of monitoring how well

. . the 4-velocityu? stays proportional to a Killing vector field.
In order to meaningfully compare our fully consistent y yS prop g

general relativistic simulations with the CFQE-sequence apggg.]eQ” as the projection oQ,, onto the constartispatial
proximation, we must compare quantities that are indepen- "~

dent of our choice of coordinates. Since we are using the PALYRFRY

same slicing condition as that assumed by the CFQE- Qij:Painanb:Qab(_') (—) (65
sequence approximatignamely, maximal slicing we must ox' ax!

compare our numerical results with the CFQE-sequence ap-

proximation using quantities that are either fully 4-invariantwhere P,,=g.,+ NaNp is the projection operator onto the
quantities, or 3-invariant quantitigguantities that are in- constantt spatial slices. The unit normal to these spatial
variant under spatial coordinate transformatjoms the fol-  slices isn?= at®+ 2. In our Cartesian coordinatesfor the
lowing, we will construct measures for comparing our nu-spatial slices, the components Qf; form a 3x3 matrix.

A. The Killing vector field assumption
of the CFQE-sequence approximation

Q.= Vaup+ Vyu,+ U ap+uya, (64)
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The norm of this matrix, which itself is a coordinate- 04 y T - T - T
independent quantity, is the square root of the largest eigen L
value of Q;;Q'y, where we have raised and lowered T T T T e
3-indices with the 3-metric. In our cas®;; is symmetric, 031 P e SN .
and the matrix norm reduces to the largest eigenvalu@; of R
itself. We denote this coordinate-independent value of the I 7 e |
norm of Q;; as|Qj;|. Note that if the 4-velocity is propor-  «Qs .| ,,'/ ............... i
tional to an exact Killing vectorQ; j| will be exactly zero. e, .
Of course, in the fully consistent general relativistic treat- i /'/' — NS-1, Ax=0.09580 M, 515" gridpoints
ment,|Q;;| will not vanish. What is required is a sense of the ol T NS-1, Ax = 0.1277 M,, 387 gridpoints )
relative size of|Q;;|. Notice that in Eq.(64), Q,p is con- AFZ -==-- NS-1, Ax = 0.1916 M, 387" gridpoints
structed out of only two separateymmetrig parts, theVu 728 P NS-1, Ax = 0.2555 M, 387’ gridpoints
part and theua part. We can therefore naturally normalize o . I s | . |
|Qij| by the norms of these two principle parts. If we define 0 o tQ/(Z%)Z o
Q1ap=Valp+ VU, (66) FIG. 7. We plot the quantityQ) [Eq. (69)] as a function of time
for fully consistent general relativistic numerical calculations, using
Q2ap=Uadp+ Upay, (67) CFQE configuration NS-1 as initial dataee Table)l. A variety of

) . . discretization parametersx are used.
then a naturally normalized scalar figQdwhich denotes the

deviation from the 4-velocity® being proportional to a Kill- mately(Q)=0.26 after 1.5% of an orbit (&/() is approxi-
ing vector field is mately 1 orbital period This is quite a fast growth, and a
(perhaps unexpectedlyarge value attained in such a short
- Q] . (68) time. Recall tha{ Q) is normalized such that a value @®)
max{|Qqjj|,| Qaij |} of order unity represents a significant failure of the
. o . o 4-velocity u? to be proportional to a Killing vector. One
This normalization provides a measure for the deviation ofea50n for this rapid growth has been discussed in Sec. Il C:
the 4-velocityu® from being proportional to a Killing vector  here is no mechanism in the actual evolution to spin up the
field (the QE assumption of the CFQE appropehvalue of e\ tron stars in order that they remain in corotation with the
Q=0 signifies that the 4-velocity of the fluid is exactly pro- orpjtal motion. This corotation condition is “force-fed” into
portional to a timelike Killing vector, while a value & of e CFQE configurations. Of course, one expects that the
order unity would signify a significant violation of the QE crQE-sequence approximation should become better as the
assumption. The monitoring d during a fully consistent  geparation between the two neutron stars increases. The or-
general relativistic simulation is th_en a quan_tltat_we measUrta| angular velocity, and thus, the spin of the neutron stars,
of the accuracy of the QE approximation. Sif@és mean-  jecreases with increasing separation. Hence, both the gravi-
ingful only inside the fluid bodies, a natural global measurejaiional radiation reaction and the error introduced by the
of the magnitude oQ is its baryonic mass weighted integral, gificial spin-up of the individual stars due to the corotation
denoted by Q): assumption are lessened. These two factors will increase the
validity of CFQE approximation for increased neutron star
fd3X|Q|\/;pW separations. _ _
69 InFigs. 8, 9, and 10, we pldQ) as a function of time for
3 increasing neutron star binary separations. Notice that, for
J d*x\ypW each separation, the shape of the curves appear to be con-
verging to something that is qualitatively similar to that of
where the integrals are taken to be over the entire spati@#ig. 7: a quick increase to a maximum value. Also note that
slice. this maximum value is, as expected, decreasing for increas-
In Fig. 7, we plot{Q) as a function of time for a small ing neutron star separation. The best resolution for the maxi-
fraction of an orbit in the fully consistent general relativistic mum initial neutron star separatidiNS-4) in Fig. 10 (the
numerical simulations. Configuration NS-1 was used as inisolid line) has(Q) attaining a maximum value that is already
tial data(see Table). Various resolutions were used, along lower than 0.2. A natural question then arises: can one pre-
with different numbers of gridpoints for the computational dict how far the initial separation of the neutron stars should
domain. As stated in the section where we numericallybe in order that the maximum value ¢®) obtained in a
solved for the CFQE configurations, Sec. Il B, it is impor- short time scale in the consistent general relativistic theory
tant to run any simulation at multiple resolutions and boundbe bounded by some number, s&9,=0.1? One problem is
ary placements, in order to assess the magnitude of thi@ the details of the numerical simulations: as the neutron
boundary error and the finite difference truncation error orstar separation increases, the computational resources de-
the numerical results. manded by the problem become larger. In other words, for a
Notice in Fig. 7 that the value qfQ) appears to be con- given fixed amount of computational resources, the ability to
verging to a curve that attains a maximum value of approxivesolve each neutron stée.g., the number of discrete grid-

Q

(Q)=
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FIG. 10. We plot the quantityQ) [Eqg. (69)] as a function of
time for fully consistent general relativistic numerical calculations,
using CFQE configuration NS-4 as initial dd&ee Table)l A va-
riety of discretization parametersx are used.

FIG. 8. We plot the quantityQ) [Eq. (69)] as a function of time
for fully consistent general relativistic numerical calculations, using
CFQE configuration NS-2 as initial dataee Table)l A variety of
discretization parametersx are used.

points across each sjas diminished as the initial separation njgte that we now include a term that is linear in the discreti-
of the neutron stars is incr(_eased. This can b_e seen directarion parametehx. This is due to the fact that, although we
when comparing the resolutions used for the simulations pels;e |;sing second order methods for the discretization of the
fs(zargergtig)r: Ii:slgifw.cZe'aié g i(’r:ngoilnog; ?ri) ;:‘ec"?ggl Qoerﬁg%?a?itgrEinstein equations, the HRSC methods used for solving the
rFglativistic hydrodynamics equatioridescribed in Sec. Il C

NS-1 to NS-4, the resolution necessarily decreases. Thes e only first order(in space accurate at points where the
effects can be seen directly in the size of the error bars of y P P

Fig. 11, where the maximum value 6©) obtained in the hydrodynamical variables obtain a local extrema. Also, while
short term general relativistic simulations is plotted as aVe €XPect the outer boundary condition on general dynami-
function of the initial geodesic separatién,. For each data cal simulations to be better represented byrg &fror term,
point, we use the maximum value attained by the highest'® note that in these short time scale simulations, the neu-
resolution curve(solid line in each of Figs. 7—10. As al- tron stars are not even causally connected to the outer bound-
ways, it is important to estimate the truncation and boundar§’y- The only boundary error in the calculation is that due to
errors in any numerical calculation. Here, we use an errof€ initial data CFQE configuration solve, whose boundary
estimate of the form error decreases asr}?. The error bars used in Fig. 11 are
computed using the 4 numerical results obtained by varying

((Q)max) numerica™ ({Q)max) exactt C1(AX) the resolution and boundary placement for each configura-
c tion, and solving Eq(70) for the constants{(Q)max exact:
5 . .
+Cy(AX)2+ =, (70) C,, C,, andC,. The size of the error bar is then set equal to
Mo
I T T ' T I T T
04 T T . T T T — T =
L e PRt 0T i : reciprocal power series fit
.’_/' 025 ™\ |-=--- reciprocal power series fit to error | _|
03 5o e o :
./ //’— = S~ L
F K e 4
2, ki
<Qo2l 4 S e et e o
//// . \ |
L ./.,, ’_~' 3 ]
i o/ |—— NS-3,Ax=0.1100 M, 515’ gridpoints o
0.1 —,;7 P P NS-3, Ax = 0.1467 M,, 387" gridpoints . :
i' ---- NS-3, Ax = 0.2201 M, 387 gridpoints ] -
----- NS-3, Ax = 0.2034 M,, 387" gridpoints
s . . : : : . : s 0.1
% 0,005 001 0015 0.02 0025 2 30 ! 3/5M 40 4
tQ/(2n) 127
FIG. 9. We plot the quantityQ) [Eq. (69)] as a function of time FIG. 11. The maximum value ¢RQ) [Eqg. (69)] obtained in our

for fully consistent general relativistic numerical calculations, usingfully consistent general relativistic simulations using different initial
CFQE configuration NS-3 as initial dafaee Table)l A variety of CFQE configurations with initial separatiolfs ,. The error bars
discretization parametersx are used. are computed using the error function Eg0).
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the largest of the absolute value of each individual error term
in Eq. (70). With this generous estimate of the error of the
maximum value ofQ), we can put a lower bound on the
initial geodesic separation of the CFQE configuration that
must be used as initial data in fully general relativistic simu-
lations such that the Killing vector field assumption is valid,

e.g.,(Q)<0.1. While the value of 0.1 may be somewhat <H>_ |

arbitrary (one may desire an even more stringent criterion
the method we use to analyze the CFQE data is quite gen
eral. In Fig. 11, we fit a reciprocal power lawy, /(€ )
+ay/(€19%+ag/ (€)% +a,4/(€1)* to both the maximum
value obtained in our fully consistent general relativistic cal-

0.05

0.04

0.03
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0.02 —

0.01

3 L, -
—— NS-1, Ax = 0.09580 Mo’ 515" gridpoints
3L
------- NS-1, Ax=0.1277 Mo’ 387" gridpoints
3.
—===- NS-1, Ax=0.1916 M, 387" gridpoints |-

----- NS-1, Ax = 0.2555 M, 387" gridpoints

culations, as well as to the lower bound of the estimated . | | |
error in our calculation. We can see that one would have to % ' 001 ' 0.02 ' 0.03
use a CFQE configuration initial data set with a geodesic tQ/(2m)

separation between the neutron stars of at leégh

2.46,('8.\/' of_lr;dorder tf_or thte su?seq?hentKSI?Iutl(:_n I(EO the full time for fully consistent general relativistic numerical calculations,
instein field equations to satisfy the Killing fie assump'using CFQE configuration NS-1 as initial dgtee Table)l A va-

tion of the CFQE-sequence approximation to 1 part in 10riety of discretization parametesx are used.
(this separation parameter could actually be as low as
=41.2M, taking into account the errors of our calculations,
see Fig. 11 This separation corresponds to roughly twice
that of the ISCO separation.

FIG. 12. We plot the quantityH), [Eq. (74)] as a function of

M
VDGR, DI ORI ’

(73

where, just as in the previous sectigh;;| denotes the ma-
trix norm of the components dfl;; in our Cartesian coordi-

nates. Note thatl vanishes on conformally flat spatial slices,

. O_ne r(])the:( ass?mpticl)r;l in the CFQE_-sef(zuence a%prr(])ximaofnd is normalized to provide a local measure for determining
tion is that of conformal flatned€P). It is often argued that 4, mych the spatial slice is deviating from conformal flat-

this assumption s, in SOME Sense, equivalent to_ assUmiNgbgs For a global measure, we define the baryonic density
that there is no gravitational radiation in the conflguratlon.weighted norm denoted 4#1)
p L

However, the statement that conformally flat configurations

B. The conformal flathess assumption of the
CFQE-sequence approximation

have zero gravitational radiation content is very question-

able, especially in the case of the CFQE-sequence approxi- f d3X|H|\/;’PW

mation which is not even consistent with the full set of Ein- <H>p=—, (74)
stein equations. Here, we analyze this CF assumption in full f d3x\/ypW

general relativity. We start with a CFQE configuration as

initial data, and perform fully consistent general relat|V|st|cWhere the integrals are taken to be over the entire spatial

numerical evolutions, monitoring the conformal flatness o slice

E?r? )S(Fr?t'fll ﬁ“icneg& Air\:\/? a{?husgg trllze samensllcmg (:ro?(?rlrflon In Fig. 12, we analyze the CF assumption of the CFQE-
aximal slicing as that of the CFQE-sequence appro a'sequenc:e approximation by plottiq¢d), as a function of

:I(;)rnt,hvgecgrr#)érrriglljIfrlztijslsméiggrr:ptzgrt]Véﬂrﬁ:g)%gssf%mg&n“me for'fL.JI.Iy consistent general rglativistic simulations. We
in a coordinate independent way. The 3-Bach tensor is onElse for_ |q|t|al data t_he CFQ.E configuration NS_Sbe Table
such 3-invariant. It is defined on ihe spatial slice as ﬁ AS It s alwz_iys imperative to run a numerical code at

' multiple resolutions and boundary placements to assess the
numerical errors, we use a variety of discretizations and grid
sizes. Using this measure of the violation of the conformal
flathess assumption in the CFQE-sequence approximation,
we see that the assumption holds to roughly 1 part in 20, for
this initial data. We can also see that this measure, as com-
pared to the measure for the QE assumpfigq. (69), Fig.
7], is not as sensitive to resolution. In other words, the nu-
merical truncation error for this particular measure is not as
large.

Again, we would expect that the CF assumption to be
wheree;;i is the natural volume element 3-form. We define better for larger initial neutron star separation. In Figs 13, 14,
the scalaH as the matrix norm of the Cotton-York tensor, and 15, we plot the measure of the violation of the conformal
normalized by the size of the covariant derivative of theflatness assumptiofH),, Eq.(74), in our general relativis-
3-Ricci tensor: tic simulations using CFQE configurations NS-2, NS-3, and

1
Bijk=2Dy; (B)Rj]k_Z')’j]k(S)R : (71

and can be shown to vanish if and only if the 3-metyicis
conformally flat. The Cotton-York tensok];; , is related to
the 3-Bach tensor by

Hij=€™"Bmni, (72

064026-14



TOWARDS A REALISTIC NEUTRON STAR BINARY . .. PHYSICAL REVIEW D69, 064026 (2004
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) . FIG. 15. We plot the quantityH), [Eq. (74)] as a function of
FIG. 13. We plot the quantityH), [Eq. (74)] as a function of time for fully consistent general relativistic numerical calculations,

time for fully consistent general relativistic numerical calculations, . 8 . L

. ! . ’ CFQE li tion NS-4 tial d Table)l A va-

using CFQE configuration NS-2 as initial dg&ee Table)l A va- using .Q configuration as initial dfsee Table)l A va
riety of discretization parametersx are used.

riety of discretization parametersx are used.

: N +a3/(€1,2)3+ as/(€1,)" to the four data points, as well as
NS-4, respectively, as initial dataee Table )l We can see to the lower bound of the error, in Fig. 16. As can be seen,

Fhat the violation of .the. conformal .f't”‘.t”ess assumption doesC)ne would have to use initial data corresponding to a CFQE
in fact, decrease with increasing initial neutron star separ

. . . configuration with neutron star geodesic separation of ap-
tion. As with the QE assumption, we can use the results o 9 9 P P

Figs. 12-15 to predict the initial neutron star separation on roximately 46., or greater in order fo(H), to be 0.01

. . . r less in the subsequent solution to the Einstein field equa-
would_need for a CFQE c_onf|gurat|on to satisfy the CF 3SYions coupled to the hydrodynamics equations. Recall from
sumption to some prescribed tolerance. For example, wi

may want to start our general relativistic calculations withFhe previous section thgt this separation would also sat|s'fy
o ; . the Killing field assumption of the CFQE-sequence approxi-
initial data that corresponds to a CFQE configuration Sucr}nation to 10%
that the error in the CF assumption is below one part in 100, '
as measured by the quantitid), [Eq. (74)]. In Fig. 16, we
plot the maximum value of quantityH), as a function of
initial geodesic separatiofy, , attained in our fully consistent
general relativistic numerical simulations USing the four In the previous Section' we performed many short time
CFQE configurations from Table | as initial datsee Figs. scale (suborbita] general relativistic simulations using
12-15. Again, we use Eq(70) and the method described in CFQE configurations as initial data. There, the focus was on
Sec. IV A to compute the numerical errafisoth truncation  determining the intrinsic error in using the CEQE configura-
errors and boundary erroniade in the calculation. We fit an tjons as initial data to model astrophysical neutron star bina-
inverse power series functiona1/(€1'2)+a2/(€l,2)2

V. LONG-TERM GENERAL RELATIVISTIC
NUMERICAL SIMULATIONS

0.05 . T T T T T T

0.03 T T T T T T T T
I 27 =-1.§\ | reciprocal power series fit
0.025— 2 N |e—--- reci 1 ies fit t
[1%7] procal power series fit to error | _|
L N\
o N S S L g H
P A 003 '91 -
0.015|- % e
001 —— NS-3,Ax=0.1100 M,, 515" gridpoints P
3o 0o02i- 38 .
------- NS-3, Ax = 0.1467 M, 387 gridpoints| 1 =
L=
0.005 --=-- NS-3, Ax = 0.2201 M, 387" gridpoints| ] 3 5%. .
----- NS-3, Ax = 0.2934 M, 387" gridpoints| | =
. | . . : . : . . 0.01
00 0.005 0.01 0.015 0.02 0.025 5 30 l 35M 40 45
tQ/(2m) 12/ 0
FIG. 14. We plot the quantityH), [Eq. (74)] as a function of FIG. 16. The maximum value ¢H), [Eq. (74)] obtained in our

time for fully consistent general relativistic numerical calculations, fully consistent general relativistic simulations using different initial
using CFQE configuration NS-3 as initial ddtee Table)l A va- CFQE configurations with initial separatiolfs ,. The error bars
riety of discretization parametersx are used. are computed using the error function Eg0).
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ries. Here, we study the long time scéle., multiple orbital TABLE Il. The computational domain configurations used for
time scalé evolution of the system in order to investigate thethe large time scale binary neutron star general relativistic simula-
stability and accuracy of long term fully general relativistic tions. All large time scale simulations are performed using initial
numerical integrations of the neutron star binary system. data corresponding to a CFQE configuration characterized by an
There are several reasons why it is extremely difficult toorbital angular velocity oflM(=0.01204, where the geodesic

study large separation binary neutron stars on time scale§paration of the neutron starsig,=27.5M,. The gravitational

longer than the orbital period in full numerical relativity in Walvelength Ngw corresponding to this configuration i,
(27/Q)=260.M,. r, denotes thécoordinate distance from

an accurate fashion. One basic reason is apparent from thez M _
dynamics of two Newtonian point masses in circular motion.the center of the orbiting binary to the boundary of the computa-

The orbital periodT,,, increases as the Separati@ep of tional domaln.rid_ _deno_tes thelcoordinate distance between t_he
the masses as center of the orbiting binary to the boundary of the computational

domain used in solving for the CFQE initial data configuration.

- 312

Torb™ (Dsep ™™ (79) Configuration Grid size  Ax/Mg  Ty/hgw  Fig/Ngw
Thus, any simulation of neutron stars with larger separation  NS-A 643<643x325 0.2085  0.257 0.257
will naturally have to be run to longer times in order to NS-B 323<323x165 0.2085  0.129 0.257
capture a single orbital period. Also, from the standard quad- NS-C 313<313x160 0.2607 0.156 0.160
rapole formula, the energy in gravitational wagsemitted NS-D 250<259x133 0.2607  0.129 0.160
per unit time for particles in circular motion decreases with NS-E 163<163x85 04171 0.129 0.160
increasing separatioD e, as

dE ary at only 0.08,,). However, gravitational wave extrac-

~ 9 -5
dt (Dsep ™ (76) tion is just one aspect of our simulation requirements. Other

effects including spacetime dynamics and dynamics of the

Obviously, the time for any simulation to track the orbital binary may require the boundary to be even farther away.
motion of compact binaries through the plunge phase to th&hese facts, coupled with the complexities involved in solv-
final merger will be extremely sensitive to the initial separa-ing the full Einstein field equations by computer, render the
tion. problem of obtaining simulations accurate enough to probe

We can get some idea of the computational resourcethe details of large-separation orbiting binary neutron stars a
needed to accurately simulate binary neutron stars with inimost difficult one.
tial geodesic proper separations of betweeNgand 3M, In this section we analyze the numerical evolutions of one
(which corresponds to roughly Rys and 4.1y, where  particular CFQE initial configuration which has a larger geo-
Rys is the neutron star radiugrom the results of the previ- desic separatiofi, , than that of the CFQE ISCO configura-
ous section. In Sec. IV, we performed general relativistiction. Specifically, the angular orbital velocity of the CFQE
numerical calculations using roughly these separatisae  configuration we use exclusively in this section 8V,
Table |) for only several percent of one orbital period. It took =0.01204. This configuration has a geodesic separation of
numerical configurations of over 59@ridpoints in order to  ¢; ,=27.5M, and corresponds to the second smal@st
obtain resolutions high enough for a confident prediction ofdata point shown in Fig. 5. According to the study in Sec. 1V,
the error of the simulations. In order to perform simulationsthis configuration has a violation of the QE and CF assump-
on orbital time scales, we need to increase the simulatiotions at the 22% and 3% levels, respectively, soon after the
times by two orders of magnitude. While this is already quiteevolution starts. We numerically evolve this CFQE initial
difficult, the situation is even more demanding: such a simudata configuration using our fully consistent general relativ-
lation time is much greater than the light crossing time of ouristic treatment. The gauge conditions used for these simula-
computational domain. The neutron stars will no longer betions are the “}-log” equation for the lapser [Eq. (35)] and
causally disconnected from our dynamical boundary condiEq. (36) for the shift vectorg'. There is no need to use
tions as was the case in the short time scale simulationsiaximal slicing in this section as comparing to the CFQE
performed in the previous section. The computational boundsequence is no longer the point.
ary will therefore have a much greater affect on the simula- In Table I, we list the properties of the various computa-
tion results if put at the same spatial location. One may neetlonal domains, varying both the resolution and outer bound-
to greatly increase the distance from the center of mass of thery placement, used for our long time scale numerical evo-
system to the computational boundary, but one must be carédtions. Our numerical implementation allows us to use a
ful not to sacrifice the spatial resolution at the same time. different location for the outer boundary of the computa-

Preliminary results obtained if88,40-51 suggest that tional domain for our initial data solve of the CFQE configu-
waveforms calculated from a numerical relativity binary in- ration as that used for the dynamical evolution. We denote
spiral simulation can be done in an accurate fasii®mg., r;q as the shortest coordinate distance between the center of
with errors less than 10%@nly when the extraction radius is our computational domain and the computational boundary
approximately one gravitational wavelengtly away from  of our cubical domain used in solving the initial data prob-
the center of mass of the systdfor comparison, the NS-4 lem for the CFQE configuration. We denaigas the shortest
calculations from the previous section has the outer boundzoordinate distance between the center of our computational
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T ' pared to the other configurations. In fact, it is obvious from
; Fig. 17 that the NS-A configuration is qualitatively different
from the other configurations. Recall that all configurations
NS-A through NS-E use the same CFQE configuration as
initial data; note from Table Il that the only parameters that
differ in producing the results from Fig. 17 are the spatial
resolution of the discretized computational domain, the loca-
tion of the outer boundary of the computational domain dur-
ing numerical evolution where the dynamical boundary con-
ditions are imposed, and the location of the outer boundary
of the computational domain used in solving for the CFQE
initial data configuration. A cursory study of Table Il reveals

the major difference between computational domain configu-
B, L tion NS-A and the oth ly, the locati f th t

; = 0 w 0 0% ration NS-A and the others, namely, the location of the outer
t/M, boundaryr,, of the computational domain during numerical

evolution. The boundary distanag, of the computational
FIG. 17. We plot the evolution of the geodesic distance betweenjomain configuration NS-A is slightly larger than 1/4 of the
the maximum rest mass density of the two neutron stars as a fungyravitational wavelength w Characterized by the CFQE ini-
tion of coordinate time for various resolutions and outer boundaryia| data configuration, WhlIe all of the other configurations
placementgsee Table Il for configuration specifications haver ,<0.156\ 4,

We must always guantify the errors of any numerical cal-
domain and the computational boundary of our cubical do<ulation. Here, our numerical errors originate from two dis-
main used in our fully consistent general relativistic numeri-tinct sources. The first source of error is the truncation error
cal simulations. Note that in Table I, the number of grid associated with our discretization parameter, while the
points refers to that used in the full dynamical evolution. Forsecond source of error is induced by the outer boundary con-
those computational domains wherg>r,, we have used ditions imposed on our numerical calculation. While the be-
the same resolutioAx with a larger number of grid points to havior of the truncation error is well understo@tis a local
solve for the CFQE initial data configuration. error which scales as an integer power of the discretization

In Fig. 17, we plot the geodesic separatioy, as a func-  parametedx), the assessment of the effect of the boundary
tion of coordinate time using this initial data for the various conditions is not as straightforward. Theoretically, one could
computational domains listed in Table Il. Qualitatively, we place the outer boundary of the computational domain suffi-
observe a number of interesting features. First of all, noteiently far away so that the outer boundary condition would
that all of the simulations in Fig. 17 display an eccentricity innot be causally connected to the compact objects, and thus
the orbit. Some level of eccentricity is expected due to thevould have no effect on them during numerical evolution.
fact that the CFQE configuration is constructed with the exHowever, this is not a practical solution, due to the limita-
plicit assumption that the time derivative of the separatiortions of computational resourcésspecially for a unigrid
€1, exactly vanishes, as argued[B2-55. That is, the as- code; adaptive mesh refinement could be used in this direc-
sumption of the radial velocity of the binaries to be exactlytion). As our outer boundarys causally connected to the
zero instantaneouslgwhich is done by assuming the exis- neutron stars in our simulations, we must attempt to assess
tence of a timelike helical Killing vector field in the con- the errors introduced by the outer boundary conditions in our
struction of CFQE configurationgs not consistent with the numerical simulations. We assume that the error induced by
astrophysically relevant scenario of quasicircular binary evothe outer boundary conditions can be expanded in terms of
lution, where the magnitude of the radial velocity, while powers of 1¢,,, and that the error goes to 0 ag—0. We
small, never vanishes. One can obtain some idea regardirierefore assume an error function for the eccentrieits
the level of orbital eccentricity intrinsic to CFQE configura-
tions by analyzing the point-particle dynamics in the post- c. C
Newtonian approximatiof54]. In [54], it is shown in the €n=€exactt C1(AX) + Co(AX)2+ =4 —24_ (77)
context of the poSf-Newtonian approximation that if the g
assumption of circular motion is used to construct the initial

conditions(that is, the conditions=0 andr=0 are used to Wwheree, denotes the measured value of eccentricity from
specify the initial conditions then the resulting orbit will our numerical solution using discretization paramétgrand
have a nonzero eccentricity whose value depends on the inputer boundary locatiom,. Using the definition of eccen-
tial separation. tricity defined in[54] in which the eccentricity of the orbit is
Ideally, we would like to directly compare our general calculated from the orbital separation as a function of time,
relativistic results for the eccentricity of the orbits apparentwe compute the eccentricity associated with each simulation
in Fig. 17 with the post-Newtonian results [iB4]. The rea- shown in Fig. 17. We find that ef)ys-,=0.0124,
son we are unable to do this at the present time is obviouge,)ns-g=0.0327, €,)ns-c=0.0397, €,)ns-p=0.0434,
from Fig. 17. Note the large difference between the eccenand (e,)ns_g=0.0605. We can then solve for the unknown
tricity for computational domain configuration NS-A as com- quantitiesegyact, C1, Co, Cz, andC, in Eq. (77). We find
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that the Richardson extrapolated value of the eccentricity is
€exact= — 0.127, and that the leading error terms for the trun-
cation error and boundary error ai€;Ax=0.067 and
C;5/rp,=0.11, respectively. Above and beyond the fact that
the Richardson extrapolated value of the eccentrigify.;is
negative, the obvious sign that we are not in the convergenci

expansion of Eq.(77) are not relatively smallis that =

|€exaci—€n| is larger than the error terms in E(.7). As the
computational resources available at the present time do nc
currently allow us to use our unigrid code to simultaneously
decrease the discretization paramet&rfurther and increase
the distance, from the center of mass to the outer boundary,
we must admit that we can, at this time, make no definite
conclusion as to the inherent eccentricity in CFQE configu-
rations used as initial data in numerical relativity. However,

the prospect of being able to determine this point in the near,

future is good; we can expect both mesh refinement teché

niques and better outer boundary conditions to greatly aid il?i

28

j=]

regimeli.e., that the higher order terms neglected in the errorE

o~
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FIG. 18. The geodesic separatién, as a function of time.
own are the results from our fully consistent general relativistic
alculation NS-A and NS-Bsee Table Il. Also shown are predic-
ons from the CFQE-sequence approximation, i.e. the curve ob-

reducing the errors induced by the outer boundary in oug

numerical calculations.

A. Orbital decay rate

ained by numerically integrating Eq.79). The curve labeled
“CFQE sequence” was constructed using the standard definition of
binding energy, Eq(58) (see Fig. 3, and is terminated at the CFQE
ISCO point (1 ,/My=24.0). The curve labeled “CFQE sequence
ASys=0)" was constructed using the binding energy,, Eq.

. - (
Recall from Secs. Ill B and 1l C that the binding energies (g3) "\yhere the neutron star spin remains constant throughout the

E, andE|, [Eqgs.(58) and(63), respectively shown in Figs.

entire CFQE sequendsee Fig. 6 and the discussion in Sec. IJ| C

5 and 6 represent the binding energy of each neutron staihd is terminated at the neutron star touching poify (M,
binary CFQE configuration as a function of geodesic separa=22.6).

tion €1, (the orbital angular velocity) is monotonically
increasing with decreasing geodesic separafipy). In the

Note that the standard CFQE-sequence prediction of the

CFQE-sequence approximation, this binding energy isevolution of the geodesic separatidn ,, labeled “CFQE
slowly converted to gravitational wave energy, and Figs. 5sequence” in Fig. 18, terminates at a neutron star geodesic
and 6 tell us how much gravitational radiation energy is proseparation ¢, ,=24.0M,, whereas the modified CFQE-
duced for changes in geodesic separation. We can approx¢éequence prediction, labeled “CFQE sequent&(s=0),”
mate the rate of energy loss at any specific point in thigerminates at a smaller geodesic separation {qf,

sequence using the standard quadrupole fornsee, e.g.,
[39]), which reduces to

dE,, 128
gw _ 2p40) 6
g = £ MR'Q (78)

for two point particles of mashl in circular orbit with radius

=22.6M,. This is due to the fact that the standard effective
binding energyE,, defined by Eq.(58) actually attains a
minimum before the neutron stars tousiee Fig. 5, whereas

the effective binding energy for the CFQE sequence where
the spin of the neutron stars do not charf&g defined by

Eq. (63)] is monotonically decreasing as the neutron star
separation decreases, right through to the point where the

R and orbital angular velocitf). We interpolate the data neutron stars are touchingee Fig. 6. Therefore, the first
represented in Figs. 5 and 6 with a cubic spline to obtain théCFQE-sequence” prediction in Fig. 18 terminates at this

effective binding energieg, [Eq. (58)] andE| [Eq. (63)] as

minimum point (defined as the ISCO configuration of the

a function of geodesic separatidn,. We can then easily Sequence whereas the second “CFQE sequenakS(s
find dE,/d(,, as a function of geodesic separation. An es-=0)" prediction in the figure terminates at the CFQE con-
timate of the time rate of change of geodesic separations #guration where the neutron stars are touching. One might

then

dfy, dEg,/dt
dt  dEp/dl,,’

(79

expect that a full solution to the Einstein equations using a
CFQE configuration as initial data might, in fact, have an
evolution of the geodesic separation of the neutron star bina-
ries €,, that would lie somewhere in between the two
CFQE-sequence approximations shown in Fig. 18. After all,
these two CFQE-sequence approximations represent the ex-

which can be numerically integrated to produce the geodesitteme cases of the evolution of the neutron star spin; the first
separation{; , as a function of time predicted from the represents complete tidal locking during the entire evolution,
CFQE-sequence approximation. We plot these functions ithe second represents absolutely no change in the spin state
Fig. 18, along with results from our fully consistent generalof the individual neutron stars during the entire evolution. Of
relativistic calculation NS-A and NS-B. course, the actual solution to the full Einstein equations
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would be expected to couple, to some amount, the increasinmomentum of each CFQE configuration at the level of sev-
orbital angular frequency of the binary neutron stars to theeral percent, in order to precipitate the binary merger more
spin of the individual stars. The magnitude of this couplingquickly. Complementary to that approach, we are trying to
would determine which of the two CFQE-sequence approxiuse numerical relativity as a tool to assess the fidelity of the
mations shown in Fig. 18 would be considered to be “more” CFQE-sequence approximation itself. We found that in order
correct. It is exactly this question which could be answeredg perform simulations of the neutron star binary systems
with our fully_ consistent genergl relativistic calgulations. compatible with realistic astrophysical scenarios, one must
However, in Fig. 18 we once again see the dramatic effect oferform simulations using initial data at a distance consider-

the outer boundary conditions on our numerical simulations, )y arger than the ISCO separation when using corotating
Note that computational domain configurations used in thetFQE configurations as initial data

calculations NS-A and NS-B have the same spatial resolution . 1-ve outlined a generic method for analyzing the re-

Ax=0.2089M, and outer boundary locationg=0.257 gy, . .- i Y
used for solving the CFQE initial data configuration. The9'Me of V?“d'ty. of the CFQE-sequence approximation and
have applied this method to the case of equal mass, corotat-

only difference between the configurations NS-A and sti?g binary neutron stars. We have found that, for corotating

evolution: the outer boundary of the computational domair'€utron stars, the violation of the timelike helical Killing

used during numerical simulation NS-A is twice as far awayvector field existence assumption was an order of magnitude

from the center of mass as that used in simulation NS-B. Onkrger than the violation of the assumption of conformal flat-
may be tempted to conclude that the calculation NS-A could'€SS. Specifically, we have demonstrated that initial data
be said to be “more correct” than NS-B, since the outersPecified by a CFQE configuration with neutron stars having
boundary is located farther away for the NS-A configuration.an initial geodesic separation of less tharMi7(which is
However, one must be careful when trying to apply physicaslightly more than 6 neutron star radii, or roughly twice the
intuition to numerical results that are not in the convergencdSCO configuration separatipmwould produce a solution to
regime. In this case, for instance, there is no reason to bdhe Einstein field equations that violates the Killing vector
lieve that the error induced by the outer boundary on oufield assumption by more than 1 part in 10; the conformal
calculation is a monotonic function of, (whereas, e.g., itis flatness assumption would be violated by more than 1 part in
true in general that the truncation error is monotonidinas  100. We thus conclude that, in the corotating case, the
Ax—0). Due to the wave nature of the gravitational radia-CFQE-sequence approximation for neutron star separations
tion being emitted by the binary neutron stars, the boundaryf 47M, and less violates the Einstein field equations at a
errors could have an oscillating component. This makes ifevel larger than 10%, and thus numerical simulations start-
even more difficult to try to do a Richardson extrapolationing with similar CFQE configurations as initial data cannot,
type of error analysis in realistic compact object simulationserefore, be considered as approximating a realistic neutron
in numerical relativity. star binary inspiral.

While it should be expected that the extraction of gravi- \\e note that the violations of the assumptions of the
tational ra_diation fo_r_a numerically_ generated SpacetimftFQE-sequence approximation that we observe in our gen-
could be highly sensitive to the location of the outer bound-grg) rejativistic calculations for the corotating binary systems
ary (see[38]), there have been, up to now, no results showing,ccyr on time scales that are two orders of magnitude shorter
what effect the outer boundary conditions can have on thehan the orbital time scale. We suspect that this may be due
details of the orbits of compact binaries on time scales largefy jnteractions between the spin assumption of the individual
than one orbital period. Here, we see that the dynamicgheytron stargthe corotating assumptipand the CFQE as-
outer boundary conditions can, and do, significantly affecsymptions. We have shown that the characteristic shape of
the orpital parameters of compact binaries during numericaje effective binding energy curve within the CFQE approxi-
evolution. mation is highly sensitive to the spin kinetic energy of the

individual neutron stars. We have shown that if we subtract
VI. CONCLUSIONS out th.e spin kinetic energy .of Fhe neutron stars in the'con—
struction of the effective binding energywhich approxi-

To date, the only fully general relativistic simulations of mates the case where the neutron star spin does not increase
corotating binaryl'=2 polytropes i§37]. The study if37]  as the orbital angular velocity increagethen the resulting
differs from the present study in several important ways. Ondinding energy curve will have no minimum, and thus the
basic difference is that while we focus on the capability of CFQE-sequence approximation would not predict the exis-
simulating astrophysical realistic neutron star binaries, Reftence of an ISCO configuration. We speculate that specifying
[37] focuses on the dynamics of the final merger of the twoneutron stars with irrotational spin states in the CFQE-
neutron stars. Thus, the initial data used &7] are CFQE sequence approximation may yield a smaller violation of the
configurations either at ISCO separation, or closer than ISC@&instein field equations for a fixed neutron star separation.
separationISCO separation here means simply the neutrorThe analysis we have developed in this paper can be used for
star separation of the unique configuration that corresponds detailed investigation of this effect. More interestingly, the
to a minimum of the binding energy in the constant rest masanalysis we have developed might provide a way to deter-
CFQE-sequence, e.g., in Fig). Also, in the study{37], it mine a spin state most consistent with the CFQE approxima-
was found necessary to manually decrease the orbital anguléons, and hence provide a more realistic set of initial data
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that can be used to start simulations at a smaller initial sepasimulations by a factor of two, keeping the outer boundgry

rations. fixed, we must use 16 times the amount of computational
We have shown that, for our specific neutron star modelsiesources to perform any particular simulation. Also, every

we require a resolution of approximatex=0.1M, in or-  time we increase the outer boundary distang®y a factor

der to adequately resolve the neutron st4aslequately re- Of two, we must use 8 times the amount of computational

solve” here refers to verifying that we are in the convergencdesources. Therefore, if we wanted to simultaneously in-

regime through an appropriate Richardson extrapolatiofease both the resolution and the outer boundary distance by

technique: this is a much more stringent condition than ha& factor of 2, we would require over two orders of magnitude
been typically used in numerical relativity studies to dateMore computational resources. While we have shown in this

involving neutron stars and black holesThis resolution paper that it is possible to track the details of finite sized

scale is over three orders of magnitude smaller than the chaf®MmPact objects in full numerical relativity, what remains is

acteristic wavelength of the gravitational radiation emitted!© be aé)lehto do soin sughba Wgy that all of Lhe dnumerlcal
during the last five to ten orbits of the neutron star inspiral©T0rs(Poth truncation and boundary errpsan be demon-
process. strated to be small over a time scale of several orbital peri-

We have also shown that the location of the outer bound®dS: This will be an extremely challenging task, given the
ary of the computational domain can have a significant im-current level of computational resources available. It may be
pact on the details of the evolution of the compact objects Olp_ecelssary”to fr?]plo);] mgsr; Leflnementf |fn oréjer tohaccurately
time scales of the orbital period. Specifically, we have seeryMu ate all of the physical degrees of freedom that we are

that changing the linear dimensions of our computational™erested in.
domain from 0.3, to 0.5y, can significantly impact the
dynamics of binary neutron stars during the first several or-
bits. This should serve as a warning to the numerical relativ- It is a pleasure to thank Abhay Ashtekar, Comer Duncan,
ity community studying simulations of compact binaries with David Garfinkle, Lee Lindblom, David Meier, Peter Miller,
the hope of extracting gravitational wave information: notThierry Mora, Masaru Shibata, Kip Thorne, and Clifford
only will the outer boundary inhibit the actual process of Will for useful discussions and comments. We also thank
extracting the gravitational waves, but they also directly af-Nikolaos Stergioulas for providing us with code for calculat-
fect the sources of the gravitational waves themselves. Whiling the ADM mass of stationary, uniformly rotating poly-
our dynamical boundary conditions are not the best choiceyopic stars. Our application code which solves the Einstein
and a more consistent treatment, e.g. constraint preservirgguations coupled to the relativistic hydrodynamic equations,
boundary conditions, would most likely improve the situa-along with our various multigrid elliptic solvers, uses the
tion, it may be that numerical relativists will be forced to cactus Computational Toolki56] for parallelization and
push the outer boundary of the computational domain to théigh performance I/O. Financial support for this research has
“local wave zone” (which in this case meang,=\y,) in  been provided by the ASC proje@ISF Phy 99-79986and
order to provide realistic gravitational waveforms suitablethe Jet Propulsion Laboratofgaccount 100581-A.C.02un-
for use as templates in gravitational wave detectors. der contract with the National Aeronautics and Space Ad-
Unfortunately, this makes the numerical study of orbitingministration. Computational resource support has been pro-
compact objects in numerical relativity particularly hard.vided by the NSF NRAC projects MCA02N022 and
Note that every time we increase the resolution in our 3DMCA93S025, and the NAS at Ames, NASA.
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