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Towards a realistic neutron star binary inspiral: Initial data and multiple orbit evolution
in full general relativity
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This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity.
We analyze under what conditions the conformally flat quasiequilibrium~CFQE! approach can generate ‘‘as-
trophysically relevant’’ initial data, by developing an analysis that determines the violation of the CFQE
approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE
assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations
nearly double that of the innermost stable circular orbit~ISCO! separation, thus calling into question the
astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical
simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein
equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and
analyze the stringent requirements on resolution and size of the computational domain for an accurate simu-
lation of the system.
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I. INTRODUCTION

The analysis of general relativistic binary neutron s
processes is an important, yet challenging, endeavor.
importance of understanding these processes is rooted in
servational astronomy, both in gravitational wave astrono
and high-energy electromagnetic wave astronomy. Neu
star binaries could be the central engines for some class
gamma-ray bursts, and they are definitely strong candid
as sources of gravitational radiation detectable by the up
coming generation of gravitational wave detectors such
the Laser Interferometric Gravitational Wave Observat
~LIGO! VIRGO, TAMA, GEO, and Laser Interferomete
Space Antenna~LISA!. The challenge of understanding b
nary neutron star processes is rooted in the complexity
both the nonlinear Einstein field equations and the phys
properties of the super-nuclear density matter which make
the neutron stars.

Because of the complexity of the binary neutron star s
tem, various levels of approximation have been emplo
~with various levels of success! as aids in understanding th
details of the different stages of the inspiral of compara
mass binary neutron stars, from the quasistationary insp
stage through to the plunge and merger of the binary sta
the ring-down of the final merged object. These range fr
the approximation of the structure of the neutron stars th
selves~e.g., from point particle to finite sized perfect flu
models and the equations of state with different physical
proximations! to the approximation of general relativistic e
0556-2821/2004/69~6!/064026~21!/$22.50 69 0640
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fects ~e.g., from Newtonian gravity, to post-Newtonian,
full general relativity!. Based on insights from point particl
mechanics in general relativity and orbits of finite size bod
in Newtonian gravity, one expects that the early part of
inspiral process will be quasistationary, with the secular~i.e.
on time scales larger than the orbital time scale! shrinkage of
the orbit driven by gravitational radiation. When the orb
shrinks to a small enough radius~but before touching!, there
may or may not exist an innermost stable orbit~ISO! beyond
which dynamical processes drive the quasistationary insp
into a plunge phase. Whether there is, in fact, a ‘‘pha
change’’ from quasistationary inspiral to a plunge phase
the fully relativistic theory, and whether or not this happe
before any other~hydrodynamical! dynamical instabilities, is
an unsolved problem in full general relativity~see, e.g.,@1#
for answers in the Newtonian case!.

A recent approach for the investigation of the later part
the neutron star inspiral which has been studied in de
@2–11# has drawn much attention. This treatment, which
refer to as the conformally flat quasiequilibrium~CFQE! ap-
proach, is a procedure for constructing general relativis
configurations that correspond to compact, equal mass bi
neutron stars in a quasiequilibrium, circular orbit. These
dividual configurations, which we refer to as ‘‘CFQE co
figurations,’’ are by themselves solutions to the constraints
general relativity in 311 form, i.e., the Hamiltonian and mo
mentum constraints. For a given equation of state, each e
mass binary CFQE configuration can be characterized
two parameters: the separation of the two neutron stars
©2004 The American Physical Society26-1
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
the baryonic~rest! mass of each of the neutron stars~we only
consider equal mass, corotating binary configurations he!.
Taking the CFQE approximation one step further, one
construct an entire 4-dimensional spacetime by ‘‘gluin
these configurations together as a time sequence of diffe
CFQE configurations. This construction, which we will ref
to as a CFQE sequence, produces a spacetime that sol
of the Einstein field equations~4 constraint equations an
trace of the extrinsic curvature equation! @2,5#. Since the to-
tal baryonic mass will be constant during the inspiral, t
CFQE approach takes constant baryonic CFQE sequenc
a representation of the evolutionary sequence of the bin
neutron star inspiral process; secular evolution of the o
due to gravitational radiation brings one equilibrium config
ration into another with the same rest mass, forming
CFQE sequence@2,5,10,11#.

In this CFQE-sequence approach, one finds that fo
corotational neutron star binary system~which is the focus of
this paper!, the Arnowitt-Deser-Misner~ADM ! mass of each
of the individual CFQE configurations decreases along
constant rest mass CFQE sequence as the separation be
the binary stars decreases until a minimum is attained, a
which the ADM mass increases as the separation decre
further. Using turning point theorems for exact equilibriu
configurations in general relativity@3,12,13#, this minimum
point signals a secular instability in the evolutionary s
quence, and is commonly referred to as the innermost st
circular orbit~ISCO! configuration. In the Newtonian case,
has been shown that this secular instability point is enco
tered in the evolutionary processbeforeany dynamical insta-
bility is reached@14#.

While it is reasonable to assume that the CFQE appr
mation holds reasonably well for highly separated neut
stars, it is not clear at which point along the evolutiona
sequence the CFQE approximation breaks down. It is
tainly not clear whether or not the CFQE-sequence appr
mation is good for all neutron star separations larger than
ISCO separation, due to the fact that one main assumptio
the turning-point theorems@3,12,13# used to interpret thes
CFQE sequences is the assumption of exact equilibri
While CFQE configurations are very close to equilibrium f
large neutron star separations, they become less so a
separation decreases. Unfortunately, it is exactly the sm
separation regime, i.e. near the ISCO configuration, in wh
these theorems are being applied. Also, the CFQE-sequ
approximation to full general relativity does not provide
estimate of the error of its solutions, unlike, e.g., the po
Newtonian approach where one can compute the next o
post-Newtonian terms to estimate the error of any po
Newtonian approximation.

The fact that each CFQE configuration satisfies the c
straints of general relativity suggests the use of these c
figurations as initial data to full general relativistic calcul
tions. The setting of initial data is obviously an importa
issue in numerical general relativistic astrophysical simu
tions. While all initial data configurations satisfying the co
straints of general relativity~i.e., the Hamiltonian and mo
mentum constraints! are in principle legitimate initial data
sets, they may not be acceptable for the study of coalesc
06402
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of astrophysical neutron star binaries. In order for the res
of the numerical evolutions to be relevant to observatio
e.g., the gravitational waves emitted in actual neutron s
coalescences, we have to make sure that the initial data
tually corresponds to a configuration in an astrophysica
realistic inspiral. It is not straightforward how one can g
about evaluating the usefulness of the CFQE approach
approximating astrophysically relevant phenomena. We n
that while the CFQE approach leads to solutions of the c
straint equations, the CFQE-sequence approach isnot con-
sistent with the full set of Einstein equations.

This paper is divided into four main sections. In Sec.
we describe our fully consistent general relativistic hydrod
namics code used in this paper. We describe in detail
311 formulation of the Einstein field equations that w
couple to the relativistic hydrodynamics equations, alo
with details of the gauge conditions and discretization te
niques used.

In Sec. III, we describe the CFQE-sequence approxim
tion, whose individual configurations will be used as initi
data for our fully consistent general relativistic calculation
We demonstrate that the CFQE-sequence definition of
ISCO for corotating neutron star binaries may not be a
evant concept by showing that if one takes into account
spin energy of the neutron stars when constructing the ef
tive binding energy in the CFQE-sequence approximati
then there is no longer a minimum in the effective bindi
energy.

In Sec. IV, we analyze the key assumptions of the CFQ
sequence approximation by comparing them with fully ge
eral relativistic simulations using CFQE configurations
initial data. We focus on the question of how well the CFQ
sequence approximation for corotating neutron stars appr
mates full general relativity. This is done by comparing t
assumptions in building the CFQE-sequence to fully con
tent general relativistic calculations using CFQE configu
tions as initial data to our numerical evolution code. Spec
cally, we analyze the conformal flatness assumption and
assumption of the existence of a Killing vector field. W
devise a number of invariant measures of these assumpt
and monitor them in our fully consistent, general relativis
simulations. We find that, as expected, the accuracy of
CFQE-sequence approximation increases for increasing
tron star separation. We present a general algorithm
evaluating whether or not any CFQE configuration can
thought of as astrophysically realistic initial data by analy
ing how much the CFQE-sequence approximation viola
the Einstein field equations. We demonstrate this method
showing that, for any given tolerance, one can find a CF
configuration whose subsequent evolution in full gene
relativity will not violate the Einstein field equations within
small fraction of an orbit.

In Sec. V, we analyze the long time scale~i.e. multiple
orbits of the binary system! numerical evolutions of CFQE
initial data configurations using our general relativistic h
drodynamics code. In particular, we use a CFQE configu
tion which has a 15% larger proper separation than tha
the ISCO CFQE configuration. We analyze the orbital dec
rate on multiple orbit time scales. Using care in estimat
6-2



ro
nit
th
e
tr
n
th
n
a

in
by
ha

tio
he
a

ce
e
t

cu
om
n

n
e
tri

y

t
s
th
r

s
n-
ed

rg

s,
ob-
e
nate
uce
he

e-

ons

of
t

ur-

or
tein
the
ach
d on
nts

the

e

is

ed

sic
-

TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
the numerical truncation error as well as the errors int
duced by placing the computational boundaries at a fi
distance from the neutron star binaries, we find that while
computational resources at our disposal are sufficient to g
reasonable handle on the truncation error, the errors in
duced by the placement of the boundary of the computatio
domain can have a significant impact on the dynamics of
neutron star inspiral. We demonstrate that this is true eve
the linear dimensions of the computational domain are
large as one half the size of the gravitational waves be
emitted, which is a fairly large computational domain
today’s numerical relativity standards. We conjecture t
presently available computational resources will not allow
unigrid finite difference code to decrease the discretiza
parameterDx sufficiently and simultaneously increase t
distance from the binary system to the computational dom
boundary sufficiently in order to guarantee that the indu
numerical errors will not significantly affect the details of th
inspiral process. Mesh refinement techniques and/or be
outer boundary conditions will be needed in order to ac
rately simulate the physics on the length scales of the c
pact object as well as the length scales of the gravitatio
radiation.

II. FORMULATION AND DISCRETIZATION
OF THE EINSTEIN EQUATIONS COUPLED

TO A PERFECT FLUID

Our code numerically solves the Einstein field equatio
coupled to a relativistic perfect fluid. The gravitational d
grees of freedom are geometrically encoded in the 4-me
gmn , which are governed by the Einstein field equations

Gmn58pTmn , ~1!

whereGmn is the Einstein tensor andTmn is the stress-energ
tensor of the perfect fluid, given as

Tmn5rhumun1Pgmn . ~2!

Here, we have set the gravitational constantG and the speed
of light c to be identically 1. The 4-velocity of the perfec
fluid is denoted asum , andr, P, andh are the baryonic mas
density, pressure, and specific enthalpy, respectively, of
fluid. The equations of motion governing the perfect fluid a
the conservation of stress-energy and baryonic mass

¹mTmn50
~3!

¹m~rum!50.

These represent five equations governing the five degree
freedom of the perfect fluid~the mass density, energy de
sity, and velocity!. The entire system of equations is clos
by choosing an equation of state for the pressureP as a
function of the baryonic mass density and internal ene
density of the fluid.
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A. The Einstein equations in 3¿1 form

In order to numerically solve the Einstein field equation
Eq. ~1!, we must cast the equations as an initial value pr
lem. In order to facilitate this, we introduce a foliation of th
spacetime into spacelike hypersurfaces where the coordi
t labels each spacial hypersurface. We furthermore introd
Cartesian coordinatesxi on each spacelike hypersurface. T
line element can now be written as

ds25~b22a2!dt212b i dt dxi1g i j dxi dxj ~4!

where the shift vectorb i is a 3-vector defined on each spac
like hypersurface,a is the lapse function, andg i j is the
3-metric. We denoteg i j as the inverse of the 3-metricg i j ,
such thatg i j g jk5dk

i .
There are many ways to formulate the Einstein equati

in an initial value, 311 form. The standard ‘‘ADM’’ 311
formulation @15# writes the six space-space components
the Einstein equations, Eq.~1!, as 12 equations that are firs
order in time

Ltg i j 522aKi j 1LbW g i j ~5!

LtKi j 5a (3)Ri j 22aK i
k K jk1aKKi j ~6!

2DiDja1LbW Ki j 2a (4)Ri j , ~7!

whereKi j is the extrinsic curvature of a spacelike hypers
face. Here,L is the Lie derivative operator,Di is the cova-
riant derivative operator compatible with the 3-metricg i j , K
is the trace of the extrinsic curvature,(3)Ri j is the 3-Ricci
tensor, while(4)Ri j are the components of the 4-Ricci tens
that represent the perfect fluid source terms to the Eins
equations. The remaining four Einstein equations are
constraint equations, which are analytically satisfied on e
of the spacelike hypersurfaces as long as they are satisfie
the initial slice. The Hamiltonian and momentum constrai
are

(3)R1K22Ki j K
i j 22a2Gtt50 ~8!

D jK
j
i2DiK2aG i

t 50. ~9!

While one could base a numerical evolution code on
ADM equations, recent results~both empirical@16,17# and
analytical studies@18–20#! indicate that a more suitabl
choice would be the so-called BSSN formulation@16,17,21#.
One feature of this formulation of the Einstein equations
that the 3-metric is decomposed into a conformal factorf

and a conformal 3-metricg̃ i j as

g i j 5e4fg̃ i j , ~10!

where the determinant of the conformal 3-metricg̃ i j is iden-
tically 1. Similarly, the extrinsic curvature is decompos
into its trace and trace-free parts

Ki j 5
1

3
g i j K1e4fÃi j , ~11!

whereÃi j is referred to as the conformal trace-free extrin
curvature, such thatÃi j g̃

i j 50. In addition to the decompo
6-3
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
sition of the traditional ADM variables, a key ingredient
the BSSN formulation is the introduction of three ne
evolved variables, namely the three conformal connec

functionsG̃ i

G̃ i52] j g̃
i j . ~12!

The final form of the evolution equations which we use
the numerical evolution of the Einstein field equations
given as

]f

]t
52

1

6
aK1

1

6
D kb

k ~13!

]K

]t
5aÃi j Ãi j 1

1

3
aK22g i j DiDja1LbW K

12a3Gtt2a (4)Ri
i ~14!

]g̃ i j

]t
522aÃi j 2

2

3
g̃ i j D kb

k1e24fLbW g i j ~15!

]Ãi j

]t
5ae24f (3)Ri j 2

1

3
ag̃ i j S ÃklÃ

kl2
2

3
K2D1aKÃi j

22aÃikÃj
k2e24fDiDja1

1

3
g̃ i j DkD ka

1e24fLbW ~e4fÃi j !2
2

3
Ãi j D kb

k2
2

3
a3g̃ i j G

tt

2ae24f (4)Ri j 1
1

3
ag̃ i j

(4)Rk
k ~16!

]G̃ i

]t
522Ãi j Dja2

4

3
ag̃ i j DjK112aÃi j Djf

2] j S e4fL bW g i j 1
1

3
g̃ i j gklLbW gklD12aG̃ i

jkÃjk

22a2e4fGit . ~17!

B. General relativistic hydrodynamics

We also perform a 311 decomposition of the hydrody
namics equations, Eq.~3!. Note that the 4-velocityum is
normalizedumum521, so that its components can be wr
ten in terms of the three spatial velocity componentsv i as

$um%5
W

a
$1,av i2b i%, ~18!

whereW is the Lorentz factorW51/A12g i j v
iv j . The spe-

cific enthalpy,h, is given as

h511e1P/r, ~19!

wheree is the specific internal energy density.
06402
n

The general relativistic hydrodynamics equations, Eq.~3!,
can be written in first order, flux conservative form as

] tUW1] iFW
i5SW , ~20!

where the conservative hydrodynamical variablesUW are writ-
ten in terms of the primitive variables$r,v i ,e% as

UW5F D

Sj

t
G5F AgWr

AgrhW2v j

Ag~rhW22P2Wr!
G . ~21!

The flux vectorFW i is written as

FW i5F a~v i2b i /a!D

a~~v i2b i /a!Sj1AgPd j
i !

a~~v i2b i /a!t1Agv i P!
G , ~22!

and the source vectorSW is written as

SW 5F 0

aAgTmngnsGs
m j

aAg~Tmt]ma2aTmnG t
mn!

G . ~23!

C. Discretization techniques

We discretize each of the 3 spatial coordinate variab
$x,y,z% using a constant spacing$Dx,Dy,Dz%, e.g.,

xi5x01 iDx, i 50, . . . ,nx21. ~24!

We discretize the time coordinatet as

tn115tn1Dt ~25!

where we setDt50.25Dx for all dynamical simulations per
formed in this paper.

Due to the fundamental differences in the phenomena
ing described by the Einstein field equations, Eq.~1!, and the
relativistic hydrodynamics equations, Eq.~3!, the discretiza-
tion methods that we employ for the two sets of equatio
are very different. In the case of the Einstein field equatio
we expect the dynamical degrees of freedom to rem
smooth and continuous. In the case of the relativistic hyd
dynamical equations, we know that shocks~discontinuities!
can easily form in the physical degrees of freedom. Thus,
discretization method used for the hydrodynamical equati
will be more complicated in order to allow for the accura
treatment of shock propagation. The approach we use wil
based on a finite differencing scheme employing high re
lution shock capturing~HRSC! techniques. In order to us
these techniques, a complete knowledge of the character
information is needed. We therefore require the eigenstr
ture of the Jacobian matrices in Eq.~20!, namely]FW i /]UW for
the flux vectorFW i defined in Eq.~22!. This is not a straight-
forward task, since the fluxFW i is expressed as a function o
both the primitive and evolved hydrodynamical variable
6-4
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
What we require are a complete set of eigenvectors@rW i # and
corresponding eigenvaluesl i such that

F ]FxW

]UW G @rW i #5l i@rW i #, i 51, . . . ,5. ~26!

~here, we present the spectral decomposition for thex com-
ponent of the Jacobian, since the decomposition for the o
two spatial components of the Jacobian can be obtained
straightforward permutation of the spatial coordina
$x,y,z%). It turns out that the spectral decomposition co
tains a triply degenerate eigenvalue

l15l25l35avx2bx. ~27!

A set of linearly independent vectors that span this dege
ate space is given by

rW15F k

hW~k2rcs
2!

,vx ,vy ,vz,12
k

hW~k2rcs
2!

GT

,

~28!

rW25@Wvy ,h~gxy12W2vxvy!,h~gyy12W2vyvy!,

h~gyz12W2vyvz!,vyW~2Wh21!#T, ~29!

rW35@Wvz ,h~gxz12W2vxvz!,h~gyz12W2vyvz!,

h~gzz12W2vzvz!,vzW~2Wh21!#T. ~30!

The other two eigenvalues are given by

l65
a

12v2cs
2
$vx~12cs

2!

6Acs
2~12v2!@gxx~12v2cs

2!2vxvx~12cs
2!#%2bx,

~31!

with corresponding eigenvectors

rW65F1,hWS vx2
vx2~l61bx!/a

gxx2vx~l61bx!/a
D ,hWvy ,

hWvz ,
hW~gxx2vxvx!

gxx2vx~l61bx!/a
21GT

, ~32!

where the relativistic speed of sound in the fluidcs is given
by ~see, e.g.,@22#!

cs
25

]P

]E U
S
5

x

h
1

P

r2

k

h
. ~33!

We have setx5]P/]rue andk5]P/]eur . S is the entropy
per particle andE is the total rest energy density which in o
case isE5r1re. We use the above characteristic inform
tion to calculate the numerical fluxes (fW* )x using the
piecewise-parabolic method~PPM!, described in@23,24#.
While the PPM method has been extended to special rela
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istic applications~see, e.g.,@25#!, this is the first fully general
relativistic application of the method. The discretization
the flux terms in Eq.~20! are written

]FW x

]x
5

~ fW* ! i 11/22~ fW* ! i 21/2

Dx
1O~Dx2!. ~34!

In order to update the discretized hydrodynamical variab
we simply perform a two-step predictor-corrector method,
order that the entire hydrodynamical update is done in a fu
second order manner inboth space and time~modulo the
points where the hydrodynamical variables obtain local
trema, where the accuracy of the spatial derivatives d
down to first order in space. This is a well known property
the so-called Godunov schemes; see, e.g.,@26#!.

As previously stated, since the fields describing the gra
tational degrees of freedom are expected to remain smo
we simply perform centered-in-space discretizing of the s
tial derivatives in Eqs.~13!–~17!. For discrete time evolu-
tion, we use the iterated Crank-Nicholson method@27#. In
order to achieve a completely second order method in b
space and time for the coupled system of equations~the Ein-
stein field equations and the relativistic hydrodynamics eq
tion!, we use the time stepping method described in Fig.

D. Gauge choices and boundary conditions

In the 311 initial value formulation of general relativity
one is free to specify the slicing and spatial coordinate c
ditions by specifying the lapsea and shiftb i , respectively.
The code described in the previous subsections has b
written allowing for an arbitrary choice of these gauge va
ables. As described in the next section, each configuratio
the CFQE-sequence approximation has a vanishing trac
the extrinsic curvatureK. As we would like to compare ou
full general relativistic simulations to the CFQE-sequen
approximation in an invariant manner, it is desirable to u
the same slicing condition during the full numerical simu
tion as that of the CFQE-sequence approximation. To
end, we would like to select the lapse functiona such that
the trace of the extrinsic curvatureK remains 0. Notice that if
one sets]K/]t50 in Eq.~14!, then the equation becomes a
elliptic equation for the lapse functiona. We have thus
implemented a multigrid solver@28# for efficiently solving
this equation, also known as the maximal slicing conditi
@29#. However, solving an elliptic equation at every time st
can be numerically expensive. We therefore also impleme
variant of the so-called ‘‘11log’’ slicing condition for the
lapse,

]a

]t
522aK. ~35!

Note that this is a completely local condition, and is the
fore computationally inexpensive. We use both the maxim
slicing condition and the ‘‘11log’’ slicing condition for
simulations presented in this paper. For each result, we i
cate which slicing condition is used.
6-5
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
For the conditions on the shift, we use a slight modific
tion of the ‘‘Gamma-freezing’’ shift equation@30#. Specifi-
cally, we implement the first integral form of the hyperbo
Gamma driver„Eq. ~46! of Ref. @30#…,

]b i

]t
5C1G̃ i2C2b i , ~36!

FIG. 1. A representation of the coupling between the hydro
namic predictor-corrector scheme~circles! and the iterated Crank
Nicholson method used for the integration of the Einstein fi
equations~squares!. STEP 1: Simultaneous update of the gener
relativity and hydrodynamic equations via a Euler-predictor s
~first order in time! to the half time stepn11/2. STEP 2 through
M: Update of the general relativity equations via an iterative Cra
Nicholson scheme~second order accurate in time! to then11 time
step, then compute a correctedn11/2 state by averaging then
11 andn states.STEP M¿1: Simultaneous update of the gener
relativity equations via a leapfrog step~second order in time! based
on then andn11/2 states, and the hydrodynamics equations via
second half of the Euler-predictor step~first half applied in step 1!
using a method of lines.STEP M¿2: Update of the hydrodynamic
equations to a virtualn12 time step via a~first order in time!
Euler-corrector step using method of lines.STEP M¿3: A second
order~in time! hydrodynamics update is obtained by averaging
corrected quantities of stepM12 at level n12 and the original
variables at leveln.
06402
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where we set the constantsC15C250.8 for all numerical
simulations in this paper. We find that the Gamma-freez
condition in this modified form, despite its simplicity, resul
in enhanced stability for the type of problems studied in t
paper, and was also very computationally efficient.

The problem of boundary conditions in numerical relat
ity is only now gaining the attention it deserves@31–35#.
Here, we implement a simple, yet empirically stable, boun
ary condition for the fields describing the gravitational d
grees of freedom, Eqs.~13!–~17!, due to Alcubierre@30#. Let
f (t,x,y,z) represent a field on which we wish to impose th
boundary condition in, say, thex face of our computationa
boundary~they andz face are similar; averaging this metho
yields boundary conditions for the edge and corner points
the computational boundary!. We take as an ansatz the for
for f as r→`

f ~ t,x,y,z!→ f `1
u~r 2t !

r
1

w~r 1t !

r
. ~37!

Taking the derivative of this expression with respect tot and
x, and eliminatingu andu8 yields

x

r

] f

]t
1

] f

]x
1

x

r 2
~ f 2 f `!5

1

r 2
H ~38!

where the functionH52xw8. Equation~38! is finite differ-
enced in a second order fashion to obtain a boundary co
tion on the fieldf, where we have interpolated the functionH
from interior points, assuming a falloff of;1/r 2 for H. We
adopt this boundary condition for all of the fields describi
the gravitational degrees of freedom. The boundary condi
used for the hydrodynamical variables is a simple outfl
boundary condition. Note that all of the hydrodynamic
fields are trivially small at the computational boundary~the
atmosphere has a baryonic mass density that is 109 times
smaller than the central baryonic mass density of the neu
stars!, thus the boundary conditions used for these fields
relativity unimportant.

III. THE CONFORMALLY FLAT, QUASIEQUILIBRIUM
„CFQE… APPROXIMATION

The mathematical assumptions that go into the con
mally flat, quasiequilibrium approximation to general relati
ity for binary, corotating neutron stars are as follows~for the
physical motivation behind the assumptions, see, e.g.,@2#!.

The physical 3-metricg i j is assumed to be conformall
flat

g i j 5c4d i j . ~39!

The Lie derivative of the conformal metricc24g i j with
respect to the time variablet is identically zero:

Lt~c24g i j !50. ~40!

The trace of the extrinsic curvature and its time derivat
vanishes:

-

p

-

e

e
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K50 ~41!

Lt~K !50. ~42!

There exists an approximate timelike helical Killing ve
tor field jm

j5S ]

]t D1VS ]

]f D ~43!

for some constantV.
The 4-velocity of the fluidum is proportional to the ap-

proximate Killing vector fieldjm:

um;jm. ~44!

From Eq.~40!, the extrinsic curvatureKi j takes the form

Ki j 5
1

2a S Dib j1Djb i2
2

3
g i j D kb

kD . ~45!

Using this, along with the assumptions of the conforma
flat, quasiequilibrium approximation above, the Hamiltoni
constraint, Eq.~8!, and the momentum constraints, Eqs.~9!,
can be written as

] i] ic1
1

8c7
K̃ i j K̃

i j 12pc5~rhW22P!50 ~46!

and

] j] jb
i1

1

3
] i] jb

j2K̃ i j ] j S 2a

c6 D 216pac4rhW2v i50,

~47!

respectively, where we define the conformal extrinsic cur
ture K̃ i j as

K̃ i j 5c2Ki j . ~48!

Using this form of the Hamiltonian constraint, the maxim
slicing condition,LtK50, can be written as

] i] i~ac!2
7a

8c8
K̃ i j K̃

i j 12pc4
„2r~11e!23P23rhW2

…

50. ~49!

Since the quasiequilibrium approximation assumes the e
tence of a timelike Killing vector, we can analytically fin
the first integral of the relativistic Bernoulli equation, whic
is simply

ut

h
5const. ~50!

Along with the normalization condition for the 4-velocity
umum521, this equation can be explicitly written as
06402
-

l

s-

h2~a22c4~bx2yV!21~by1xV!21~bz!2!

5const. ~51!

A. CFQE configuration

We use the algorithm detailed in@2#, along with a parallel
multigrid solver, to simultaneously solve the algebraic B
noulli integral equation, Eq.~51!, and the five elliptic equa-
tions corresponding to the Hamiltonian constraint@Eq. ~46!#,
the three momentum constraints@Eqs. ~47!#, and the maxi-
mal slicing equation@Eq. ~49!#, for the conformal factorc,
the three components of the shift vectorb i , the lapsea, and
the matter fields, thus producing a single CFQE configu
tion. In numerically solving these elliptic equations, we u
identical boundary conditions to those in@2#. We have also
assumed a polytropic equation of state,

P5~G21!re5krG, ~52!

where k is the polytropic constant andG is the adiabatic
index. The baryonic mass of each neutron star in a CF
configuration,M0, is defined as half of the total rest mass
the configuration,

M05
1

2E d3xAgrW. ~53!

In this paper, we setG52 andk50.0445(c2/rn), wherern
is nuclear density~approximately 2.331014 g/cm3). For
these values of parameters, a single static neutron star
figuration that is stable has a maximum ADM mass
1.79M ( and a baryonic mass of 1.97M ( (M ( is 1 solar
mass!. For the studies in this paper, we use neutron stars w
a baryonic mass of 1.49M ( each, which is approximately
75% that of the maximum stable configuration. The AD
mass of a single static neutron star for this configuration
1.4M ( ~see Fig. 2!.

Once the baryonic mass of each of the stars is fixed,
only remaining degree of freedom in the specification o

FIG. 2. The ADM mass and baryonic mass~in units of M () as
a function of central density~in units of nuclear density! for single,
static neutron star configurations. All studies in this paper are d
with stars of baryonic mass 1.49M ( ~square!. The corresponding
ADM mass of this single static configuration is 1.4M ( ~circle!.
6-7
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FIG. 3. Contours of the baryonic mass density for two CFQE configurations, taken in the equatorial (z50) plane. The ADM mass of
each neutron star in isolation is 1.4M ( . The value of the mass density for the first contour is 0.9 that of the maximum mass density
star, with the others decreasing by a factor of 0.5 each. The CFQE configuration in the left panel has a geodesic separation o,1,2/M0

523.44 ~which is 51.70 km!, and the configuration in the right panel has a geodesic separation of,1,2/M0535.72 ~which is 79.00 km!.
These configurations represent the smallest and largest separation CFQE configurations that are used as initial data for the fully
general relativistic numerical calculations done in this paper.
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CFQE corotating configuration is the separation of the t
stars. A natural invariant way of specifying the separation
the two neutron stars is to calculate the geodesic distanc
the constantt hypersurface between the points in each of
neutron stars that corresponds to the maximum baryo
mass density. Specifically, ifxM1

i and xM2
i are the spatial

coordinates of the points of maximum baryonic mass den
in the first and second star, respectively, then the geod
whose length will represent the~spatially! invariant separa-
tion of the neutron stars is the curve

Xi~l!, lP@0,1#, ~54!

where

Xi~l50!5xM1
i , Xi~l51!5xM2

i , ~55!

such that

d2Xi

dl2
1G i

jk

dXj

dl

dXk

dl
50. ~56!

The geodesic distance,1,2 between the two stars is now de
fined as

,1,25E
l50

l51

dlAg i j

dXi

dl

dXj

dl
. ~57!

We use a relaxation technique for numerically solving
geodesic ODE, Eq.~56!, and then use a standard quadratu
formula for evaluating the integral for,1,2, Eq. ~57!. We
choose the discretization for solving Eq.~56! and Eq.~57! to
be 10 times as fine as the 3D discretization, and use a t
order accurate interpolator to calculate the Christoffel sy
bols G i

jk from the 3D grid. The maximum baryonic mas
points,xM1

i andxM2
i , are located by finding the maximum o

a 3D third order accurate interpolation polynomial, the int
polation being centered on the discrete point on the 3D g
that has the largest value of the baryonic mass densit
each star.

In Fig. 3, we plot logarithmically spaced contours of t
baryonic mass density in the equatorial (z50) plane for two
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CFQE configurations representing the smallest and lar
separations used as initial data for the 3D numerical sim
tions performed in this paper.

B. The CFQE-sequence approximation

A CFQE sequence is constructed by stringing toget
several constant baryonic mass CFQE configurations, e
configuration differing in only the separation of the neutr
stars. The idea is that, due to the fact that the time scal
the gravitational radiation, and thus, that of the orbital dec
is much longer than the orbital time scales, the binary n
tron stars are considered to be in ‘‘quasiequilibrium.’’ Thu
at any particular time, a binary neutron star system can
described by one particular CFQE configuration; the effec
the gravitational radiation is, over the time scales of o
orbit, to alter the configuration to a new CFQE configurati
with a slightly smaller separation.

It is typical in CFQE approximation studies to calcula
an effective binding energy for each configuration. Follo
ing @2#, we define the~dimensionless! effective binding en-
ergy Eb of a single configuration to be

Eb5
MADM22MNS̀

M0
~58!

where MADM is the ADM mass of the configuration, an
MNS̀ is the ADM mass of a single static neutron star
isolation with rest massM0. The usual expression for th
ADM mass of an asymptotically flat spatial slice is

MADM5
1

16p
lim
r→`

(
i , j 51

3 R dAS ]g i j

]xi
2

]g i i

]xj D Nj , ~59!

whereNi is the unit outward normal to the sphere of consta
radiusr, which is the domain of integration. Using the fa
that the CFQE configurations are conformally flat, the AD
mass of any configuration reduces to the volume integra

MADM52
1

2pE d3x~] i] ic!. ~60!

In Fig. 4, we plot the effective binding energyEb as a
function of the angular velocity parameterV, for a constant
6-8
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
baryonic mass CFQE sequence~each star has a baryon
mass of 1.49M (). The highest value ofV for each of our
calculated CFQE sequences corresponds to a CFQE con
ration where the neutron stars are touching. The config
tion corresponding to the minimum effective binding ener
Eb is the ISCO configuration. It is this point along th
CFQE-sequence approximation where the quasiequilibr
configuration goes secularly unstable; the subsequent ev
tion of the system is thought to enter a ‘‘plunge phas
where the neutron stars coalesce within an orbital timesc

Of course, when using a computer code to solve differ
tial equations, results produced at one single resolution
meaningless due to the fact that we have no way of know
how big the numerical errors are. It is always important
make numerical calculations at different resolutions, in or
to be able to assess the numerical errors that are inhere
any discretization. Not only do we have the usual truncat
errors~which are due to the fact that higher order terms
the Taylor expansion of functions have been dropped in
finite difference approximation! of any finite difference ap-
proximation, we also have boundary errors, as we are sol
a set of 5 coupled elliptic equations to arrive at any CF
configuration. Therefore, we must make at least three
merical experiments in order to assess the effect of both r
lution and boundary placement on the numerical results.
show our CFQE configuration results for three combinatio
of resolution and outer boundary placement, alongside
results obtained by Baumgarteet al. @2#. Our CFQE se-
quence results are in fairly good agreement with those of@2#,
considering the two terms that are subtracted in the const
tion of Eb , Eq. ~58!, are the same to the first two or thre
significant digits. The resolution used in the two studies
comparable. However, in@2#, the number of gridpoints
across the neutron star was kept fixed. We, on the other h
keep~for each sequence calculated! the boundary fixed, and
thus have different numbers of gridpoints across the sta

FIG. 4. The effective binding energyEb as a function of the
orbital angular velocity parameterV for constant baryonic mas
CFQE sequences. The baryonic mass of each of the neutron st
1.49M ( . Shown are results for our CFQE configuration solver
different resolutions and outer boundary placements. Tables IV
and VI of Ref. @2# were interpolated to obtain the results fro
Baumgarteet al.
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each sequence. Notice that, as we both increase the re
tion and increase the distance from the center of mass to
boundary of the computational domain, the shape of
curves in Fig. 4 remain roughly the same. In fact, we c
perform a Richardson extrapolation on our numerical res
by fitting each point on the curve to an error function. F
example, we can use the error function

~Eb!numerical5~Eb!exact1C1~Dx!21
C2

r id
2

, ~61!

where (Eb)numerical is the numerical value for the bindin
energyEb obtained using a specific discretizationDx and
coordinate distance from the center of mass to the o
boundaryr id ~we user id to denote this distance in solvin
the elliptic equations for the CFQE configurations, and
will use r b to denote the coordinate distance from the cen
of mass to the outer boundary of the computational dom
used during the dynamical evolutions. Of course, we alw
haver id>r b). Note that the first nonzero term for the expa
sion of the boundary error does not contain a 1/r id term. This
is due to that fact that the boundary conditions we use
solving the elliptic equations for the CFQE configuration
which are identical to those used in@2#, are exact to this
order. (Eb)exact is the binding energy in the limit asDx
→0 andr id→`, i.e. that given by an exact solution to th
differential equations. Of course, it is (Eb)exact that we are
interested in. We use our three CFQE sequences show
Fig. 4 to solve for the three unknowns (Eb)exact, C1, andC2
from Eq. ~61!. A generous estimate of the total error, whic
will be used for the size of the error bars, is

error5maxH uC1~Dx!2
bestu,U C2

r id
2

best
U ,

UC1~Dx!2
best1

C2

r id
2

best
UJ . ~62!

The results are plotted in Fig. 5.

C. Neutron star spin corrections to the CFQE-sequence
approximation

Note in Fig. 5 that the effective binding energy attains
minimum as the separation between the neutron stars
creases. As explained in the introduction, the CFQ
sequence approximation thus predicts a secular instabilit
this orbital separation, at which point the evolution of t
system will change from quasistationary into a plunge pha
where the neutron stars would merge on timescales of
orbital period. Several types of arguments have been use
support this claim@2,3#. On the one hand, it is intuitively
clear that, in the presence of a dissipation mechanism~gravi-
tational waves are slowly dissipating the binding energy
the binary system!, if the binding energy would increase wit
decreasing separation, this would energetically be an
stable situation. There are also turning point theore
@3,12,13# in full nonlinear general relativity which state tha

s is
t
V,
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
if a sequence of equilibrium configurations attain a minimu
in the ADM mass energy, then this equilibrium configurati
is secularly unstable. Hence, to the accuracy of the CF
sequence approximation, the minimum in Fig. 5 is often
ferred to as the innermost stable circular orbit~ISCO! con-
figuration.

One problem with the view that these CFQE-sequen
somehow approximate fully consistent solutions to the E
stein equations coupled to the relativistic hydrodynam
equations has to do with the spin of the individual neutr
stars. Note that in each of the CFQE configurations,
4-velocity of the fluid is assumed proportional to the timeli
helical Killing vector field. The neutron stars are thus sp
ning at the exact same frequency as the orbital frequencyV.
The neutron stars are said to be corotating with the orb
motion. However, it has been known for some time that
alistic binary neutron stars cannot be tidally locked dur
the late stages of inspiral~i.e., less than 1000 orbits until th
final plunge! @36#.

This raises a question: if a CFQE configuration is used
initial data, should we expect the subsequent solution to
Einstein equations to follow the CFQE-sequence approxi
tion, and keep the stars tidally locked as the stars slo
inspiral? In light of the results of@36#, the answer must be
no. To first order, we would expect the stars to retain
proximately the same spin during the dynamical evolutio
as is given in the CFQE configuration that was used as in
data.

The resolution of this first question presents a seco
what is the status of the ISCO? If the stars donot, in fact,
stay tidally locked during dynamical evolution, will this a
fect the location and/or existence of a turning point in t
binding energy curve, i.e. the CFQE ISCO configuratio
One can gain insight into this question by comparing the s
kinetic energy of relativistic, uniformly rotating neutron sta
to the energy scales involved in calculating the binding

FIG. 5. The effective binding energyEb as a function of the
orbital angular velocity parameterV. The data in this plot were
obtained by using Richardson extrapolation from the data in Fig
The form of the truncation and boundary error are given by
~61!. The error bars were computed using Eq.~62!. These results
represent what one would obtain in the limit as bothDx→0 and the
location of the outer boundary goes tò.
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ergy, Eq.~58!. To this end, we define a new effective bindin
energy that explicitly takes the spin kinetic energy of t
neutron stars into account:

Eb85
MADM22MNS̀ 22DMRNS̀ ~V!

M0
~63!

whereDMRNS̀ (V) is the difference between the ADM mas
of an isolated stationary neutron star with baryonic massM0
uniformly rotating with angular velocityV and the ADM
mass of an isolated static nonrotating neutron star with ba
onic massM0. Thus, DMRNS̀ (V) represents the spin ki
netic energy of a uniformly rotating neutron star rotati
with an angular velocityV. We plot this new effective bind-
ing energyEb8 in Fig. 6. As can be seen, the binding ener
where the spin kinetic energy of each of the neutron stars
been manually factored out no longer attains a minimum~the
data point with the highest value ofV corresponds to the
CFQE configuration in which the two stars are touchin!.
This indicates that the secular stability of very close bina
neutron stars could depend very sensitively on the spin-o
coupling of the binary system. The two extreme cases, tha
tidally locked neutron stars and nonrotating neutron stars,
depicted by Figs. 5 and 6, respectively. The fact that
expect a weak spin-orbit coupling suggests that, in the fu
consistent general relativistic hydrodynamics simulatio
where we do not expect the neutron stars to remain tid
locked, there may be no turning point and that there may
in fact, be any ISCO configuration.

IV. COMPARING NUMERICAL EVOLUTION IN FULL
GENERAL RELATIVISTIC THEORY WITH THE

CFQE-SEQUENCE APPROXIMATION

Using our numerical evolution code described in Sec.
along with the CFQE configurations described in Sec. III
initial data, we analyze to what degree the CFQE configu
tions actually correspond to quasiequilibrium configuratio

4.
.

FIG. 6. The effective binding energyEb8 , Eq. ~63!, as a function
of the orbital angular velocity parameterV. The method for obtain-
ing the data and error bars in this plot are equivalent to those u
in producing Fig. 5.
6-10
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
in full general relativity. We do this by computing fully con
sistent general relativistic evolutions numerically usi
CFQE configurations as initial data, and comparing the
sulting solution of the Einstein field equations with th
spacetime obtained by the CFQE approximation. Recall
one major assumption in the CFQE approximation metho
that the change of the binary separation is small on t
scales less than one orbital period. If the solution to the E
stein equations obtained by using any particular CFQE c
figuration as initial data deviates significantly from th
CFQE-sequence spacetime on suborbital time scales,
that particular CFQE configuration cannot be thought of
representing a quasiequilibrium configuration. Of course,
quasiequilibrium approximation becomes better as the s
ration of the neutron stars increases. The question then
comes: how close can the neutron stars be before the C
approximation breaks down? In this section, we describ
generic method that we subsequently use to answer
question. In short, we use CFQE configurations of differ
initial separation as initial data for our fully consistent ge
eral relativistic code, and compare the resulting solutions
the Einstein field equations to the CFQE-sequence space
in a coordinate independent fashion. The magnitude of th
differences, which we find to decrease as the initial sep
tion of the neutron stars increases~as expected!, will there-
fore quantify the degree of failure of the CFQE configu
tions to be truly quasiequilibrium configurations in fu
general relativity.

Recall that the CFQE-sequence approximation is don
a maximally sliced (K50) coordinate system. In order t
facilitate a meaningful comparison between the fully gene
relativistic calculation and the CFQE-sequence approach
adopt this slicing condition for all numerical computatio
done in this section. Thus, we determine the lapse functioa
by solving the maximal slicing condition, which is the ellip
tic equation obtained by setting]K/]t to 0 in Eq. ~14!. In
order to decrease the computational cost involved in solv
this elliptic equation, we only solve the maximal slicing co
dition every eight time steps. We use ‘‘11log’’ evolution, Eq.
~35!, for the lapsea for the timesteps where we do not solv
the maximal slicing condition. We have performed seve
numerical tests where we do, in fact, solve the maximal s
ing condition for every time step, and have seen only a n
ligible affect on the results~in fact, the measures of the vio
lation of the Einstein equations by the CFQE approximat
that we find in this section slightlyincreasewhen we solve
the maximal slicing condition for the lapsea at every time
step!.

In order to meaningfully compare our fully consiste
general relativistic simulations with the CFQE-sequence
proximation, we must compare quantities that are indep
dent of our choice of coordinates. Since we are using
same slicing condition as that assumed by the CFQ
sequence approximation~namely, maximal slicing!, we must
compare our numerical results with the CFQE-sequence
proximation using quantities that are either fully 4-invaria
quantities, or 3-invariant quantities~quantities that are in-
variant under spatial coordinate transformations!. In the fol-
lowing, we will construct measures for comparing our n
06402
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merically constructed spacetime with the CFQE-seque
spacetime based on both the conformal flatness assum
and the assumption of the existence of a timelike heli
Killing vector field. Both of these measures will be exact
zero for the CFQE-sequence spacetime, but will not nec
sarily be zero for the full solution to the Einstein field equ
tions using CFQE configurations as initial data. The mag
tude of these measures will thus quantify the magnitude
the CFQE configuration’s failure to correspond to a true q
siequilibrium configuration in full general relativity. In Tabl
I, we show the parameters for the CFQE configurations t
are used as initial data for the simulations done in this s
tion.

A. The Killing vector field assumption
of the CFQE-sequence approximation

Recall from Sec. III that one assumption of the CFQ
sequence approximation is the existence of an approxim
timelike helical Killing vector field, Eq.~43!. As we are as-
suming a corotating matter field, the 4-velocity of the flu
must be proportional to this Killing vector field, Eq.~44!.
Here, we monitor this quasiequilibrium~QE! assumption in
our fully consistent general relativistic numerical calcu
tions.

That the 4-velocityua be proportional to a Killing vector
field is equivalent to the vanishing of a symmetric, type-~0,2!
4-tensorQab

Qab[¹aub1¹bua1uaab1ubaa ~64!

whereaa[ub¹bua is the 4-acceleration of the fluid (¹a de-
notes the covariant derivative operator compatible with
4-metricgab). Notice that the quantityQabu

a vanishes iden-
tically. We can thus monitor the space-space component
Qab during our simulations as a way of monitoring how we
the 4-velocityua stays proportional to a Killing vector field
DefineQi j as the projection ofQab onto the constantt spatial
slice:

Qi j 5P i
a P j

b Qab5QabS ]

]xi D aS ]

]xj D b

~65!

where Pab5gab1nanb is the projection operator onto th
constantt spatial slices. The unit normal to these spat
slices isna5ata1ba. In our Cartesian coordinatesxi for the
spatial slices, the components ofQi j form a 333 matrix.

TABLE I. CFQE configuration parameters used as initial da
for fully consistent general relativistic simulations in Sec. IV. F
reference, the ISCO configuration has a proper geodesic separ
of ,1,2524.0M0.

Config. M0 /M ( ,1,2/M0 J/M0
2 MADM /M0 VM0

NS-1 1.490 23.44 3.770 1.857 0.01547
NS-2 1.490 25.94 3.762 1.857 0.01296
NS-3 1.490 29.78 3.812 1.858 0.01022
NS-4 1.490 35.72 3.934 1.859 0.00746
6-11
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The norm of this matrix, which itself is a coordinate
independent quantity, is the square root of the largest eig
value of Qi j Q

j
k , where we have raised and lowere

3-indices with the 3-metric. In our case,Qi j is symmetric,
and the matrix norm reduces to the largest eigenvalue ofQi j
itself. We denote this coordinate-independent value of
norm of Qi j as uQi j u. Note that if the 4-velocity is propor
tional to an exact Killing vector,uQi j u will be exactly zero.
Of course, in the fully consistent general relativistic tre
ment,uQi j u will not vanish. What is required is a sense of t
relative size ofuQi j u. Notice that in Eq.~64!, Qab is con-
structed out of only two separate~symmetric! parts, the¹W uW

part and theuW aW part. We can therefore naturally normaliz
uQi j u by the norms of these two principle parts. If we defi

Q1ab[¹aub1¹bua ~66!

Q2ab[uaab1ubaa , ~67!

then a naturally normalized scalar fieldQ which denotes the
deviation from the 4-velocityua being proportional to a Kill-
ing vector field is

Q5
uQi j u

max$uQ1i j u,uQ2i j u%
. ~68!

This normalization provides a measure for the deviation
the 4-velocityua from being proportional to a Killing vecto
field ~the QE assumption of the CFQE approach!; a value of
Q50 signifies that the 4-velocity of the fluid is exactly pr
portional to a timelike Killing vector, while a value ofQ of
order unity would signify a significant violation of the Q
assumption. The monitoring ofQ during a fully consistent
general relativistic simulation is then a quantitative meas
of the accuracy of the QE approximation. SinceQ is mean-
ingful only inside the fluid bodies, a natural global measu
of the magnitude ofQ is its baryonic mass weighted integra
denoted bŷ Q&:

^Q&5

E d3xuQuAgrW

E d3xAgrW

, ~69!

where the integrals are taken to be over the entire sp
slice.

In Fig. 7, we plot^Q& as a function of time for a smal
fraction of an orbit in the fully consistent general relativis
numerical simulations. Configuration NS-1 was used as
tial data~see Table I!. Various resolutions were used, alon
with different numbers of gridpoints for the computation
domain. As stated in the section where we numerica
solved for the CFQE configurations, Sec. III B, it is impo
tant to run any simulation at multiple resolutions and bou
ary placements, in order to assess the magnitude of
boundary error and the finite difference truncation error
the numerical results.

Notice in Fig. 7 that the value of̂Q& appears to be con
verging to a curve that attains a maximum value of appro
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mately ^Q&50.26 after 1.5% of an orbit (2p/V is approxi-
mately 1 orbital period!. This is quite a fast growth, and
~perhaps unexpectedly! large value attained in such a sho
time. Recall that̂ Q& is normalized such that a value of^Q&
of order unity represents a significant failure of th
4-velocity ua to be proportional to a Killing vector. One
reason for this rapid growth has been discussed in Sec. II
there is no mechanism in the actual evolution to spin up
neutron stars in order that they remain in corotation with
orbital motion. This corotation condition is ‘‘force-fed’’ into
the CFQE configurations. Of course, one expects that
CFQE-sequence approximation should become better as
separation between the two neutron stars increases. Th
bital angular velocity, and thus, the spin of the neutron sta
decreases with increasing separation. Hence, both the g
tational radiation reaction and the error introduced by
artificial spin-up of the individual stars due to the corotati
assumption are lessened. These two factors will increase
validity of CFQE approximation for increased neutron s
separations.

In Figs. 8, 9, and 10, we plot^Q& as a function of time for
increasing neutron star binary separations. Notice that,
each separation, the shape of the curves appear to be
verging to something that is qualitatively similar to that
Fig. 7: a quick increase to a maximum value. Also note t
this maximum value is, as expected, decreasing for incre
ing neutron star separation. The best resolution for the m
mum initial neutron star separation~NS-4! in Fig. 10 ~the
solid line! has^Q& attaining a maximum value that is alread
lower than 0.2. A natural question then arises: can one
dict how far the initial separation of the neutron stars sho
be in order that the maximum value of^Q& obtained in a
short time scale in the consistent general relativistic the
be bounded by some number, say,^Q&50.1? One problem is
in the details of the numerical simulations: as the neut
star separation increases, the computational resources
manded by the problem become larger. In other words, fo
given fixed amount of computational resources, the ability
resolve each neutron star~e.g., the number of discrete grid

FIG. 7. We plot the quantitŷQ& @Eq. ~69!# as a function of time
for fully consistent general relativistic numerical calculations, us
CFQE configuration NS-1 as initial data~see Table I!. A variety of
discretization parametersDx are used.
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
points across each star! is diminished as the initial separatio
of the neutron stars is increased. This can be seen dire
when comparing the resolutions used for the simulations
formed for Figs. 7, 8, 9, and 10; as the initial neutron s
separation is increased in going from CFQE configurat
NS-1 to NS-4, the resolution necessarily decreases. T
effects can be seen directly in the size of the error bars
Fig. 11, where the maximum value of^Q& obtained in the
short term general relativistic simulations is plotted as
function of the initial geodesic separation,1,2. For each data
point, we use the maximum value attained by the high
resolution curve~solid line! in each of Figs. 7–10. As al
ways, it is important to estimate the truncation and bound
errors in any numerical calculation. Here, we use an e
estimate of the form

~^Q&max!numerical5~^Q&max!exact1C1~Dx!

1C2~Dx!21
C3

r b
2

. ~70!

FIG. 8. We plot the quantitŷQ& @Eq. ~69!# as a function of time
for fully consistent general relativistic numerical calculations, us
CFQE configuration NS-2 as initial data~see Table I!. A variety of
discretization parametersDx are used.

FIG. 9. We plot the quantitŷQ& @Eq. ~69!# as a function of time
for fully consistent general relativistic numerical calculations, us
CFQE configuration NS-3 as initial data~see Table I!. A variety of
discretization parametersDx are used.
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Note that we now include a term that is linear in the discre
zation parameterDx. This is due to the fact that, although w
are using second order methods for the discretization of
Einstein equations, the HRSC methods used for solving
relativistic hydrodynamics equations~described in Sec. II C!
are only first order~in space! accurate at points where th
hydrodynamical variables obtain a local extrema. Also, wh
we expect the outer boundary condition on general dyna
cal simulations to be better represented by a 1/r b error term,
we note that in these short time scale simulations, the n
tron stars are not even causally connected to the outer bo
ary. The only boundary error in the calculation is that due
the initial data CFQE configuration solve, whose bound
error decreases as 1/r b

2 . The error bars used in Fig. 11 ar
computed using the 4 numerical results obtained by vary
the resolution and boundary placement for each configu
tion, and solving Eq.~70! for the constants (^Q&max)exact,
C1 , C2, andC3. The size of the error bar is then set equal

FIG. 10. We plot the quantitŷQ& @Eq. ~69!# as a function of
time for fully consistent general relativistic numerical calculation
using CFQE configuration NS-4 as initial data~see Table I!. A va-
riety of discretization parametersDx are used.

FIG. 11. The maximum value of^Q& @Eq. ~69!# obtained in our
fully consistent general relativistic simulations using different init
CFQE configurations with initial separations,1,2. The error bars
are computed using the error function Eq.~70!.
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
the largest of the absolute value of each individual error te
in Eq. ~70!. With this generous estimate of the error of t
maximum value of̂ Q&, we can put a lower bound on th
initial geodesic separation of the CFQE configuration t
must be used as initial data in fully general relativistic sim
lations such that the Killing vector field assumption is val
e.g., ^Q&,0.1. While the value of 0.1 may be somewh
arbitrary ~one may desire an even more stringent criterio!,
the method we use to analyze the CFQE data is quite g
eral. In Fig. 11, we fit a reciprocal power law,a1 /(,1,2)
1a2 /(,1,2)

21a3 /(,1,2)
31a4 /(,1,2)

4, to both the maximum
value obtained in our fully consistent general relativistic c
culations, as well as to the lower bound of the estima
error in our calculation. We can see that one would have
use a CFQE configuration initial data set with a geode
separation between the neutron stars of at least,1,2
546.8M0 in order for the subsequent solution to the fu
Einstein field equations to satisfy the Killing field assum
tion of the CFQE-sequence approximation to 1 part in
~this separation parameter could actually be as low as,1,2
541.2M0, taking into account the errors of our calculation
see Fig. 11!. This separation corresponds to roughly twi
that of the ISCO separation.

B. The conformal flatness assumption of the
CFQE-sequence approximation

One other assumption in the CFQE-sequence approx
tion is that of conformal flatness~CF!. It is often argued that
this assumption is, in some sense, equivalent to assum
that there is no gravitational radiation in the configuratio
However, the statement that conformally flat configuratio
have zero gravitational radiation content is very questi
able, especially in the case of the CFQE-sequence app
mation which is not even consistent with the full set of E
stein equations. Here, we analyze this CF assumption in
general relativity. We start with a CFQE configuration
initial data, and perform fully consistent general relativis
numerical evolutions, monitoring the conformal flatness
the spatial slices. As we are using the same slicing condi
~maximal slicing! as that of the CFQE-sequence approxim
tion, we only require a 3-invariant that will allow us to mon
tor the conformal flatness assumption during the simulati
in a coordinate independent way. The 3-Bach tensor is
such 3-invariant. It is defined on the spatial slice as

Bi jk52D[ i S (3)Rj ]k2
1

4
g j ]k

(3)RD , ~71!

and can be shown to vanish if and only if the 3-metricg i j is
conformally flat. The Cotton-York tensor,Hi j , is related to
the 3-Bach tensor by

Hi j 5emn
jBmni , ~72!

wheree i jk is the natural volume element 3-form. We defi
the scalarH as the matrix norm of the Cotton-York tenso
normalized by the size of the covariant derivative of t
3-Ricci tensor:
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uHmnu

AD i
(3)RjkD i (3)Rjk

, ~73!

where, just as in the previous section,uHi j u denotes the ma-
trix norm of the components ofHi j in our Cartesian coordi-
nates. Note thatH vanishes on conformally flat spatial slice
and is normalized to provide a local measure for determin
how much the spatial slice is deviating from conformal fla
ness. For a global measure, we define the baryonic den
weighted norm denoted as^H&r ,

^H&r5

E d3xuHuAgrW

E d3xAgrW

, ~74!

where the integrals are taken to be over the entire spa
slice.

In Fig. 12, we analyze the CF assumption of the CFQ
sequence approximation by plotting^H&r as a function of
time for fully consistent general relativistic simulations. W
use for initial data the CFQE configuration NS-1~see Table
I!. As it is always imperative to run a numerical code
multiple resolutions and boundary placements to assess
numerical errors, we use a variety of discretizations and g
sizes. Using this measure of the violation of the conform
flatness assumption in the CFQE-sequence approxima
we see that the assumption holds to roughly 1 part in 20,
this initial data. We can also see that this measure, as c
pared to the measure for the QE assumption@Eq. ~69!, Fig.
7#, is not as sensitive to resolution. In other words, the n
merical truncation error for this particular measure is not
large.

Again, we would expect that the CF assumption to
better for larger initial neutron star separation. In Figs 13,
and 15, we plot the measure of the violation of the conform
flatness assumption̂H&r , Eq. ~74!, in our general relativis-
tic simulations using CFQE configurations NS-2, NS-3, a

FIG. 12. We plot the quantitŷH&r @Eq. ~74!# as a function of
time for fully consistent general relativistic numerical calculation
using CFQE configuration NS-1 as initial data~see Table I!. A va-
riety of discretization parametersDx are used.
6-14
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
NS-4, respectively, as initial data~see Table I!. We can see
that the violation of the conformal flatness assumption do
in fact, decrease with increasing initial neutron star sepa
tion. As with the QE assumption, we can use the results
Figs. 12–15 to predict the initial neutron star separation
would need for a CFQE configuration to satisfy the CF
sumption to some prescribed tolerance. For example,
may want to start our general relativistic calculations w
initial data that corresponds to a CFQE configuration s
that the error in the CF assumption is below one part in 1
as measured by the quantity^H&r @Eq. ~74!#. In Fig. 16, we
plot the maximum value of quantitŷH&r as a function of
initial geodesic separation,1,2 attained in our fully consisten
general relativistic numerical simulations using the fo
CFQE configurations from Table I as initial data~see Figs.
12–15!. Again, we use Eq.~70! and the method described i
Sec. IV A to compute the numerical errors~both truncation
errors and boundary errors! made in the calculation. We fit a
inverse power series functiona1 /(,1,2)1a2 /(,1,2)

2

FIG. 13. We plot the quantitŷH&r @Eq. ~74!# as a function of
time for fully consistent general relativistic numerical calculation
using CFQE configuration NS-2 as initial data~see Table I!. A va-
riety of discretization parametersDx are used.

FIG. 14. We plot the quantitŷH&r @Eq. ~74!# as a function of
time for fully consistent general relativistic numerical calculation
using CFQE configuration NS-3 as initial data~see Table I!. A va-
riety of discretization parametersDx are used.
06402
s,
a-
f
e
-
e

h
0,

r

1a3 /(,1,2)
31a4 /(,1,2)

4 to the four data points, as well a
to the lower bound of the error, in Fig. 16. As can be se
one would have to use initial data corresponding to a CF
configuration with neutron star geodesic separation of
proximately 46.7M0 or greater in order for̂H&r to be 0.01
or less in the subsequent solution to the Einstein field eq
tions coupled to the hydrodynamics equations. Recall fr
the previous section that this separation would also sat
the Killing field assumption of the CFQE-sequence appro
mation to 10%.

V. LONG-TERM GENERAL RELATIVISTIC
NUMERICAL SIMULATIONS

In the previous section, we performed many short tim
scale ~suborbital! general relativistic simulations usin
CFQE configurations as initial data. There, the focus was
determining the intrinsic error in using the CFQE configu
tions as initial data to model astrophysical neutron star bi

,

,

FIG. 15. We plot the quantitŷH&r @Eq. ~74!# as a function of
time for fully consistent general relativistic numerical calculation
using CFQE configuration NS-4 as initial data~see Table I!. A va-
riety of discretization parametersDx are used.

FIG. 16. The maximum value of^H&r @Eq. ~74!# obtained in our
fully consistent general relativistic simulations using different init
CFQE configurations with initial separations,1,2. The error bars
are computed using the error function Eq.~70!.
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MILLER, GRESSMAN, AND SUEN PHYSICAL REVIEW D69, 064026 ~2004!
ries. Here, we study the long time scale~i.e., multiple orbital
time scale! evolution of the system in order to investigate t
stability and accuracy of long term fully general relativis
numerical integrations of the neutron star binary system.

There are several reasons why it is extremely difficult
study large separation binary neutron stars on time sc
longer than the orbital period in full numerical relativity i
an accurate fashion. One basic reason is apparent from
dynamics of two Newtonian point masses in circular motio
The orbital periodTorb increases as the separationDsep of
the masses as

Torb;~Dsep!
3/2. ~75!

Thus, any simulation of neutron stars with larger separa
will naturally have to be run to longer times in order
capture a single orbital period. Also, from the standard qu
rapole formula, the energy in gravitational wavesEg emitted
per unit time for particles in circular motion decreases w
increasing separationDsep as

dEg

dt
;~Dsep!

25. ~76!

Obviously, the time for any simulation to track the orbit
motion of compact binaries through the plunge phase to
final merger will be extremely sensitive to the initial sepa
tion.

We can get some idea of the computational resour
needed to accurately simulate binary neutron stars with
tial geodesic proper separations of between 25M0 and 35M0
~which corresponds to roughly 2.5RNS and 4.5RNS, where
RNS is the neutron star radius! from the results of the previ
ous section. In Sec. IV, we performed general relativis
numerical calculations using roughly these separations~see
Table I! for only several percent of one orbital period. It too
numerical configurations of over 5003 gridpoints in order to
obtain resolutions high enough for a confident prediction
the error of the simulations. In order to perform simulatio
on orbital time scales, we need to increase the simula
times by two orders of magnitude. While this is already qu
difficult, the situation is even more demanding: such a sim
lation time is much greater than the light crossing time of o
computational domain. The neutron stars will no longer
causally disconnected from our dynamical boundary con
tions as was the case in the short time scale simulat
performed in the previous section. The computational bou
ary will therefore have a much greater affect on the simu
tion results if put at the same spatial location. One may n
to greatly increase the distance from the center of mass o
system to the computational boundary, but one must be c
ful not to sacrifice the spatial resolution at the same time

Preliminary results obtained in@38,40–51# suggest that
waveforms calculated from a numerical relativity binary i
spiral simulation can be done in an accurate fashion~e.g.,
with errors less than 10%! only when the extraction radius i
approximately one gravitational wavelengthlg away from
the center of mass of the system~for comparison, the NS-4
calculations from the previous section has the outer bou
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ary at only 0.08lgw). However, gravitational wave extrac
tion is just one aspect of our simulation requirements. Ot
effects including spacetime dynamics and dynamics of
binary may require the boundary to be even farther aw
These facts, coupled with the complexities involved in so
ing the full Einstein field equations by computer, render t
problem of obtaining simulations accurate enough to pro
the details of large-separation orbiting binary neutron sta
most difficult one.

In this section we analyze the numerical evolutions of o
particular CFQE initial configuration which has a larger ge
desic separation,1,2 than that of the CFQE ISCO configura
tion. Specifically, the angular orbital velocity of the CFQ
configuration we use exclusively in this section isVM0
50.01204. This configuration has a geodesic separatio
,1,2527.57M0, and corresponds to the second smallestV
data point shown in Fig. 5. According to the study in Sec.
this configuration has a violation of the QE and CF assum
tions at the 22% and 3% levels, respectively, soon after
evolution starts. We numerically evolve this CFQE initi
data configuration using our fully consistent general rela
istic treatment. The gauge conditions used for these sim
tions are the ‘‘11log’’ equation for the lapsea @Eq. ~35!# and
Eq. ~36! for the shift vectorb i . There is no need to us
maximal slicing in this section as comparing to the CFQ
sequence is no longer the point.

In Table II, we list the properties of the various comput
tional domains, varying both the resolution and outer bou
ary placement, used for our long time scale numerical e
lutions. Our numerical implementation allows us to use
different location for the outer boundary of the compu
tional domain for our initial data solve of the CFQE config
ration as that used for the dynamical evolution. We den
r id as the shortest coordinate distance between the cent
our computational domain and the computational bound
of our cubical domain used in solving the initial data pro
lem for the CFQE configuration. We denoter b as the shortes
coordinate distance between the center of our computati

TABLE II. The computational domain configurations used f
the large time scale binary neutron star general relativistic sim
tions. All large time scale simulations are performed using init
data corresponding to a CFQE configuration characterized by
orbital angular velocity ofVM050.01204, where the geodes
separation of the neutron stars is,1,2527.57M0. The gravitational
wavelength lgw corresponding to this configuration islgw

5
1
2 (2p/V)5260.9M0 . r b denotes the~coordinate! distance from

the center of the orbiting binary to the boundary of the compu
tional domain.r id denotes the~coordinate! distance between the
center of the orbiting binary to the boundary of the computatio
domain used in solving for the CFQE initial data configuration.

Configuration Grid size Dx/M0 r b/lgw r id /lgw

NS-A 64336433325 0.2085 0.257 0.257
NS-B 32333233165 0.2085 0.129 0.257
NS-C 31333133160 0.2607 0.156 0.160
NS-D 25932593133 0.2607 0.129 0.160
NS-E 1633163385 0.4171 0.129 0.160
6-16
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TOWARDS A REALISTIC NEUTRON STAR BINARY . . . PHYSICAL REVIEW D69, 064026 ~2004!
domain and the computational boundary of our cubical
main used in our fully consistent general relativistic nume
cal simulations. Note that in Table II, the number of gr
points refers to that used in the full dynamical evolution. F
those computational domains wherer id.r b , we have used
the same resolutionDx with a larger number of grid points to
solve for the CFQE initial data configuration.

In Fig. 17, we plot the geodesic separation,1,2 as a func-
tion of coordinate timet using this initial data for the variou
computational domains listed in Table II. Qualitatively, w
observe a number of interesting features. First of all, n
that all of the simulations in Fig. 17 display an eccentricity
the orbit. Some level of eccentricity is expected due to
fact that the CFQE configuration is constructed with the
plicit assumption that the time derivative of the separat
,1,2 exactly vanishes, as argued in@52–55#. That is, the as-
sumption of the radial velocity of the binaries to be exac
zero instantaneously~which is done by assuming the exi
tence of a timelike helical Killing vector field in the con
struction of CFQE configurations! is not consistent with the
astrophysically relevant scenario of quasicircular binary e
lution, where the magnitude of the radial velocity, wh
small, never vanishes. One can obtain some idea regar
the level of orbital eccentricity intrinsic to CFQE configur
tions by analyzing the point-particle dynamics in the po
Newtonian approximation@54#. In @54#, it is shown in the
context of the post9/2-Newtonian approximation that if the
assumption of circular motion is used to construct the ini
conditions~that is, the conditionsṙ 50 andr̈ 50 are used to
specify the initial conditions!, then the resulting orbit will
have a nonzero eccentricity whose value depends on the
tial separation.

Ideally, we would like to directly compare our gener
relativistic results for the eccentricity of the orbits appare
in Fig. 17 with the post-Newtonian results in@54#. The rea-
son we are unable to do this at the present time is obv
from Fig. 17. Note the large difference between the ecc
tricity for computational domain configuration NS-A as com

FIG. 17. We plot the evolution of the geodesic distance betw
the maximum rest mass density of the two neutron stars as a f
tion of coordinate time for various resolutions and outer bound
placements~see Table II for configuration specifications!.
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pared to the other configurations. In fact, it is obvious fro
Fig. 17 that the NS-A configuration is qualitatively differe
from the other configurations. Recall that all configuratio
NS-A through NS-E use the same CFQE configuration
initial data; note from Table II that the only parameters th
differ in producing the results from Fig. 17 are the spat
resolution of the discretized computational domain, the lo
tion of the outer boundary of the computational domain d
ing numerical evolution where the dynamical boundary co
ditions are imposed, and the location of the outer bound
of the computational domain used in solving for the CFQ
initial data configuration. A cursory study of Table II revea
the major difference between computational domain confi
ration NS-A and the others, namely, the location of the ou
boundaryr b of the computational domain during numeric
evolution. The boundary distancer b of the computational
domain configuration NS-A is slightly larger than 1/4 of th
gravitational wavelengthlgw characterized by the CFQE ini
tial data configuration, while all of the other configuratio
haver b<0.156lgw .

We must always quantify the errors of any numerical c
culation. Here, our numerical errors originate from two d
tinct sources. The first source of error is the truncation er
associated with our discretization parameterDx, while the
second source of error is induced by the outer boundary c
ditions imposed on our numerical calculation. While the b
havior of the truncation error is well understood~it is a local
error which scales as an integer power of the discretiza
parameterDx), the assessment of the effect of the bound
conditions is not as straightforward. Theoretically, one co
place the outer boundary of the computational domain su
ciently far away so that the outer boundary condition wou
not be causally connected to the compact objects, and
would have no effect on them during numerical evolutio
However, this is not a practical solution, due to the limit
tions of computational resources~especially for a unigrid
code; adaptive mesh refinement could be used in this di
tion!. As our outer boundaryis causally connected to th
neutron stars in our simulations, we must attempt to ass
the errors introduced by the outer boundary conditions in
numerical simulations. We assume that the error induced
the outer boundary conditions can be expanded in term
powers of 1/r b , and that the error goes to 0 asr b→0. We
therefore assume an error function for the eccentricitye as

en5eexact1C1~Dx!1C2~Dx!21
C3

r b
1

C4

r b
2

. ~77!

where en denotes the measured value of eccentricity fro
our numerical solution using discretization parameterDx and
outer boundary locationr b . Using the definition of eccen
tricity defined in@54# in which the eccentricity of the orbit is
calculated from the orbital separation as a function of tim
we compute the eccentricity associated with each simula
shown in Fig. 17. We find that (en)NS2A50.0124,
(en)NS2B50.0327, (en)NS2C50.0397, (en)NS2D50.0434,
and (en)NS2E50.0605. We can then solve for the unknow
quantitieseexact, C1 , C2 , C3, andC4 in Eq. ~77!. We find

n
c-
y
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that the Richardson extrapolated value of the eccentricit
eexact520.127, and that the leading error terms for the tru
cation error and boundary error areC1Dx50.067 and
C3 /r b50.11, respectively. Above and beyond the fact th
the Richardson extrapolated value of the eccentricityeexact is
negative, the obvious sign that we are not in the converge
regime@i.e., that the higher order terms neglected in the er
expansion of Eq.~77! are not relatively small# is that
ueexact2enu is larger than the error terms in Eq.~77!. As the
computational resources available at the present time do
currently allow us to use our unigrid code to simultaneou
decrease the discretization parameterDx further and increase
the distancer b from the center of mass to the outer bounda
we must admit that we can, at this time, make no defin
conclusion as to the inherent eccentricity in CFQE confi
rations used as initial data in numerical relativity. Howev
the prospect of being able to determine this point in the n
future is good; we can expect both mesh refinement te
niques and better outer boundary conditions to greatly ai
reducing the errors induced by the outer boundary in
numerical calculations.

A. Orbital decay rate

Recall from Secs. III B and III C that the binding energi
Eb andEb8 @Eqs.~58! and ~63!, respectively# shown in Figs.
5 and 6 represent the binding energy of each neutron
binary CFQE configuration as a function of geodesic sep
tion ,1,2 ~the orbital angular velocityV is monotonically
increasing with decreasing geodesic separation,1,2). In the
CFQE-sequence approximation, this binding energy
slowly converted to gravitational wave energy, and Figs
and 6 tell us how much gravitational radiation energy is p
duced for changes in geodesic separation. We can app
mate the rate of energy loss at any specific point in t
sequence using the standard quadrupole formula~see, e.g.,
@39#!, which reduces to

dEgw

dt
5

128

5
M2R4V6 ~78!

for two point particles of massM in circular orbit with radius
R and orbital angular velocityV. We interpolate the data
represented in Figs. 5 and 6 with a cubic spline to obtain
effective binding energiesEb @Eq. ~58!# andEb8 @Eq. ~63!# as
a function of geodesic separation,1,2. We can then easily
find dEb /d,1,2 as a function of geodesic separation. An e
timate of the time rate of change of geodesic separation
then

d,1,2

dt
5

dEgw /dt

dEb /d,1,2
, ~79!

which can be numerically integrated to produce the geod
separation,1,2 as a function of time predicted from th
CFQE-sequence approximation. We plot these function
Fig. 18, along with results from our fully consistent gene
relativistic calculation NS-A and NS-B.
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Note that the standard CFQE-sequence prediction of
evolution of the geodesic separation,1,2, labeled ‘‘CFQE
sequence’’ in Fig. 18, terminates at a neutron star geod
separation ,1,2524.0M0, whereas the modified CFQE
sequence prediction, labeled ‘‘CFQE sequence (DSNS50),’’
terminates at a smaller geodesic separation of,1,2
522.6M0. This is due to the fact that the standard effecti
binding energyEb defined by Eq.~58! actually attains a
minimum before the neutron stars touch~see Fig. 5!, whereas
the effective binding energy for the CFQE sequence wh
the spin of the neutron stars do not change@Eb8 defined by
Eq. ~63!# is monotonically decreasing as the neutron s
separation decreases, right through to the point where
neutron stars are touching~see Fig. 6!. Therefore, the first
‘‘CFQE-sequence’’ prediction in Fig. 18 terminates at th
minimum point ~defined as the ISCO configuration of th
sequence!, whereas the second ‘‘CFQE sequence (DSNS
50)’’ prediction in the figure terminates at the CFQE co
figuration where the neutron stars are touching. One m
expect that a full solution to the Einstein equations usin
CFQE configuration as initial data might, in fact, have
evolution of the geodesic separation of the neutron star b
ries ,1,2 that would lie somewhere in between the tw
CFQE-sequence approximations shown in Fig. 18. After
these two CFQE-sequence approximations represent the
treme cases of the evolution of the neutron star spin; the
represents complete tidal locking during the entire evoluti
the second represents absolutely no change in the spin
of the individual neutron stars during the entire evolution.
course, the actual solution to the full Einstein equatio

FIG. 18. The geodesic separation,1,2 as a function of time.
Shown are the results from our fully consistent general relativi
calculation NS-A and NS-B~see Table II!. Also shown are predic-
tions from the CFQE-sequence approximation, i.e. the curve
tained by numerically integrating Eq.~79!. The curve labeled
‘‘CFQE sequence’’ was constructed using the standard definition
binding energy, Eq.~58! ~see Fig. 5!, and is terminated at the CFQE
ISCO point (,1,2/M0524.0). The curve labeled ‘‘CFQE sequenc
(DSNS50)’’ was constructed using the binding energyEb8 , Eq.
~63!, where the neutron star spin remains constant throughout
entire CFQE sequence~see Fig. 6 and the discussion in Sec. III C!,
and is terminated at the neutron star touching point (,1,2/M0

522.6).
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would be expected to couple, to some amount, the increa
orbital angular frequency of the binary neutron stars to
spin of the individual stars. The magnitude of this coupli
would determine which of the two CFQE-sequence appro
mations shown in Fig. 18 would be considered to be ‘‘mor
correct. It is exactly this question which could be answe
with our fully consistent general relativistic calculation
However, in Fig. 18 we once again see the dramatic effec
the outer boundary conditions on our numerical simulatio
Note that computational domain configurations used in
calculations NS-A and NS-B have the same spatial resolu
Dx50.2085M0 and outer boundary locationr id50.257lgw
used for solving the CFQE initial data configuration. T
only difference between the configurations NS-A and NS
is the outer boundary placement used during the dynam
evolution: the outer boundary of the computational dom
used during numerical simulation NS-A is twice as far aw
from the center of mass as that used in simulation NS-B. O
may be tempted to conclude that the calculation NS-A co
be said to be ‘‘more correct’’ than NS-B, since the ou
boundary is located farther away for the NS-A configuratio
However, one must be careful when trying to apply physi
intuition to numerical results that are not in the converge
regime. In this case, for instance, there is no reason to
lieve that the error induced by the outer boundary on
calculation is a monotonic function ofr b ~whereas, e.g., it is
true in general that the truncation error is monotonic inDx as
Dx→0). Due to the wave nature of the gravitational rad
tion being emitted by the binary neutron stars, the bound
errors could have an oscillating component. This make
even more difficult to try to do a Richardson extrapolati
type of error analysis in realistic compact object simulatio
in numerical relativity.

While it should be expected that the extraction of gra
tational radiation for a numerically generated spaceti
could be highly sensitive to the location of the outer boun
ary ~see@38#!, there have been, up to now, no results show
what effect the outer boundary conditions can have on
details of the orbits of compact binaries on time scales lar
than one orbital period. Here, we see that the dynam
outer boundary conditions can, and do, significantly aff
the orbital parameters of compact binaries during numer
evolution.

VI. CONCLUSIONS

To date, the only fully general relativistic simulations
corotating binary,G52 polytropes is@37#. The study in@37#
differs from the present study in several important ways. O
basic difference is that while we focus on the capability
simulating astrophysical realistic neutron star binaries, R
@37# focuses on the dynamics of the final merger of the t
neutron stars. Thus, the initial data used in@37# are CFQE
configurations either at ISCO separation, or closer than IS
separation~ISCO separation here means simply the neut
star separation of the unique configuration that correspo
to a minimum of the binding energy in the constant rest m
CFQE-sequence, e.g., in Fig. 5!. Also, in the study@37#, it
was found necessary to manually decrease the orbital ang
06402
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momentum of each CFQE configuration at the level of s
eral percent, in order to precipitate the binary merger m
quickly. Complementary to that approach, we are trying
use numerical relativity as a tool to assess the fidelity of
CFQE-sequence approximation itself. We found that in or
to perform simulations of the neutron star binary syste
compatible with realistic astrophysical scenarios, one m
perform simulations using initial data at a distance consid
ably larger than the ISCO separation when using corota
CFQE configurations as initial data.

We have outlined a generic method for analyzing the
gime of validity of the CFQE-sequence approximation a
have applied this method to the case of equal mass, cor
ing binary neutron stars. We have found that, for corotat
neutron stars, the violation of the timelike helical Killin
vector field existence assumption was an order of magnit
larger than the violation of the assumption of conformal fl
ness. Specifically, we have demonstrated that initial d
specified by a CFQE configuration with neutron stars hav
an initial geodesic separation of less than 47M0 ~which is
slightly more than 6 neutron star radii, or roughly twice t
ISCO configuration separation! would produce a solution to
the Einstein field equations that violates the Killing vect
field assumption by more than 1 part in 10; the conform
flatness assumption would be violated by more than 1 pa
100. We thus conclude that, in the corotating case,
CFQE-sequence approximation for neutron star separat
of 47M0 and less violates the Einstein field equations a
level larger than 10%, and thus numerical simulations st
ing with similar CFQE configurations as initial data cann
therefore, be considered as approximating a realistic neu
star binary inspiral.

We note that the violations of the assumptions of t
CFQE-sequence approximation that we observe in our g
eral relativistic calculations for the corotating binary syste
occur on time scales that are two orders of magnitude sho
than the orbital time scale. We suspect that this may be
to interactions between the spin assumption of the individ
neutron stars~the corotating assumption! and the CFQE as-
sumptions. We have shown that the characteristic shap
the effective binding energy curve within the CFQE appro
mation is highly sensitive to the spin kinetic energy of t
individual neutron stars. We have shown that if we subtr
out the spin kinetic energy of the neutron stars in the c
struction of the effective binding energy~which approxi-
mates the case where the neutron star spin does not inc
as the orbital angular velocity increases!, then the resulting
binding energy curve will have no minimum, and thus t
CFQE-sequence approximation would not predict the e
tence of an ISCO configuration. We speculate that specify
neutron stars with irrotational spin states in the CFQ
sequence approximation may yield a smaller violation of
Einstein field equations for a fixed neutron star separat
The analysis we have developed in this paper can be use
a detailed investigation of this effect. More interestingly, t
analysis we have developed might provide a way to de
mine a spin state most consistent with the CFQE approxi
tions, and hence provide a more realistic set of initial d
6-19
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that can be used to start simulations at a smaller initial se
rations.

We have shown that, for our specific neutron star mod
we require a resolution of approximatelyDx50.1M0 in or-
der to adequately resolve the neutron stars~‘‘adequately re-
solve’’ here refers to verifying that we are in the convergen
regime through an appropriate Richardson extrapola
technique; this is a much more stringent condition than
been typically used in numerical relativity studies to da
involving neutron stars and black holes!. This resolution
scale is over three orders of magnitude smaller than the c
acteristic wavelength of the gravitational radiation emitt
during the last five to ten orbits of the neutron star insp
process.

We have also shown that the location of the outer bou
ary of the computational domain can have a significant
pact on the details of the evolution of the compact objects
time scales of the orbital period. Specifically, we have s
that changing the linear dimensions of our computatio
domain from 0.3lgw to 0.5lgw can significantly impact the
dynamics of binary neutron stars during the first several
bits. This should serve as a warning to the numerical rela
ity community studying simulations of compact binaries w
the hope of extracting gravitational wave information: n
only will the outer boundary inhibit the actual process
extracting the gravitational waves, but they also directly
fect the sources of the gravitational waves themselves. W
our dynamical boundary conditions are not the best cho
and a more consistent treatment, e.g. constraint preser
boundary conditions, would most likely improve the situ
tion, it may be that numerical relativists will be forced
push the outer boundary of the computational domain to
‘‘local wave zone’’ ~which in this case meansr b>lgw) in
order to provide realistic gravitational waveforms suitab
for use as templates in gravitational wave detectors.

Unfortunately, this makes the numerical study of orbiti
compact objects in numerical relativity particularly har
Note that every time we increase the resolution in our
nd

nd

. D

n

. D
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simulations by a factor of two, keeping the outer boundaryr b
fixed, we must use 16 times the amount of computatio
resources to perform any particular simulation. Also, ev
time we increase the outer boundary distancer b by a factor
of two, we must use 8 times the amount of computatio
resources. Therefore, if we wanted to simultaneously
crease both the resolution and the outer boundary distanc
a factor of 2, we would require over two orders of magnitu
more computational resources. While we have shown in
paper that it is possible to track the details of finite siz
compact objects in full numerical relativity, what remains
to be able to do so in such a way that all of the numeri
errors~both truncation and boundary errors! can be demon-
strated to be small over a time scale of several orbital p
ods. This will be an extremely challenging task, given t
current level of computational resources available. It may
necessary to employ mesh refinement in order to accura
simulate all of the physical degrees of freedom that we
interested in.
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