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Observer dependence for the phonon content of the sound field living on the effective curved
space-time background of a Bose-Einstein condensate
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We demonstrate that the ambiguity of the particle content for quantum fields in a generally curved space-
time can be experimentally investigated in an ultracold gas of atoms forming a Bose-Einstein condensate. We
explicitly evaluate the response of a suitable condensed matter detector, an “atomic quantum dot,” which can
be tuned to measure time intervals associated with different effective acoustic space-times. It is found that the
detector response related to laboratory, “adiabatic,” and de Sitter time intervals is finite in time and nonsta-
tionary, vanishing, and thermal, respectively.
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[. INTRODUCTION depends on the detector setting, we construct a condensed
matter detector tuned to time intervals in effective laboratory

The feat of reproducing certain features of the physics ofnd de Sitter space-times, respectivelg|. We show that
relativistic quantum fields on curved space-time background§1e detector response is strongly different in the two cases,
[1,2], in the laboratory, now seems closer than ever before2nd associated with the corresponding effective space-time.

Because of the realization of the fact that phonons or genef-urthermore, we describe a system of space-time coordinates

ally “relativistic” quasiparticles, propagating in a nonrelativ- " which there is no particle detection whatsoever taking

istic background fluid, experience an effective curved spaceP!ace. which we will call the “adiabatic” basis, and which

time [3-7], various exotic phenomena of the physics ofsir_nply corresponds to a detector at rest in thenforma)
classical as well as quantum fields in the curved space-time'g'nkowSkl vacuum.
of gravity are getting within the reach of laboratory scale Il. HYDRODYNAMICS IN AN EXPANDING

experimentg8]. . _ CIGAR-SHAPED BEC
The particle content of a quantum field state in curved or

flat space-time depends on the motional state of the observer. It recently became apparent that among the most suitable
A manifestation of this observer dependence is the UnruhSystems for the simulation of quantum phenomena in effec-

Davies effect, which consists in the fact that a constantlyiV® Space-times are Bose-Einstein condens&ECs [14—

accelerated detector in the Minkowski vacuum responds as #0- 1hey offer the primary advantages of dissipation-free

it were placed in a thermal bath with temperature propor_s,uperflow, high controllability, with atomic precision, of the

tional to its acceleratiohl,2]. This effect has eluded obser- physical parameters involved, and thg acceSS|b|I|§y of ul
. . tralow temperature§19,20. Even more importantly in the
vation so far: The value of the Unruh temperatign,un : ; :
—[#/(2mkgc,)Ja=4 KX a[ 107 herea is the accel context under consideration here, the theory of phononic
[7/(2mkec,)] xal107g: ], w ! . quasiparticles in the spatially and temporally inhomogeneous
eration of the detector in Minkowski spacg( is the gravity

) BEC is kinematically identical to that of a massless scalar
acceleration on the surface of the Eartindc, the speed of a4 hropagating on the background of curved space-time in
light, makes it obvious that an observation of the effect is

- : @ +1 dimensions.
less than trivial undertaking. Proposals for a measurement |; \vas shown by Unruh that the action of the phase fluc-

with ultraintense short pulses of electromagnetic radiation ,ations® in a moving inhomogeneous superfluid may be

have been put forward in, e.g., RefS,10. written in the form[3,4] (we sethz=m=1, wherem is the

In the following, we shall argue that the observer depel_"n—maSS of a superfluid constituent particle

dence of the particle content of a quantum field state in

curved space-time, related to the familiar nonuniqueness of 0+1. 1 d 2 ) 5
canonical field quantization in Riemannian spagks, can :f d 29|~ 7P VO | +c(VO)

be experimentally demonstrated in the readily available ul-

tralow temperature condensed matter system Bose-Einstein 1( 501 ,

condensate(BEC). More specifically, we argue that the EEJ d®*1x\ - gg**9,0a,0. (1)

Gibbons-Hawking effecf12], a curved space-time generali-
zation of the Unruh-Davies effect, can be observed in arHere, v(x,t) is the superfluid background velocitg(x,t)
expanding BEC. To explicitly show that particle detection =/gpy(X,t) is the velocity of sound, wherg is a constant
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atomic collisions in thedilute) BEC. In our cylindrical 3D
b-L X \/t_ trap, we have for the initial central density
(6waw| 25
Pm= 32
Atomic \/gﬂ'g

Q:! Quantum Dot The condition that the TF approximation be valid implies

that u>w|,w, . The solution(2) of the Gross-Pitaevski
mean-field equations becomes exact in this TF limit, inde-
boct pendent of the ratia|/w, . However, the solution becomes
_ _ S exact also in the limit thato, /wj—0, independent of the
FIG. 1. Expansion of a cigar-shaped Bose-Einstein condensatgidity of the TF limit, the system then acquiring an effec-
The stationary horizon surfaces are located-a,, respectively. tjyely two-dimensional charact¢23,24. We will see below
The _thlck dark lines represent lasers creating an optical potentlatlhat in the opposite limit oqu/wl—>0 there is an “adiabatic
well in the center. basis” in which no axial excitations are created during the

" _ . ) _ _expansion, i.e., with respect to that basis there are, in particu-
describing the interaction between the constituent particles Ifar, no unstable solutions possible, implying the stability of

the superfluid (1 is the compressibility of the fluid and o expanding gas against perturbations.

po(X,1) is the background density. In the second line(bf According to(2), the condensate density evolves as
the conventional hydrodynamic action is identified with the

action of a minimally coupled scalar field in an effective ,JTF(rZ/b2 ,2%/b?)

curved space-time. Furthermore, the velocity potential of the po(r,z,t)= > : (4)
sound perturbations in the BEC satisfies the canonical com- bib

mutation relations of a relativistic scalar fidlth]. We there- 54 the superfluid velocity

fore have the exact mapping, on the level of kinematics, of

the equation of motion for phononic quasiparticles in a non- b, b

relativistic superfluid, to quantized massless scalar fields v=b—fer+ Bzez )
propagating on a curved space-time background with local +

Lorentz invariance. is the gradient of the condensate phase in(Bg.It increases

To model curved space-times, we will consider the evodinearly to the axial and radial boundaries of the condensate.
lution of the BEC if we change the harmonic trapping fre-  The excitations in the limit|/w, —0 were first studied
guencies with time. For a description of the expansion in Ref.[25]. The description of the modes is based on an
contraction of a BEC, the so-called scaling solution ap- adiabatic separation for the axial and longitudinal variables
proach is conventionally usd@1]. One starts from a cigar- of the phase fluctuation field:
shaped BEC containing a large number of constituent par-
ticles, i.e., which is in the so-called Thomas-FefiiF) limit _

[22]. According to Ref.[21], the evolution of a Bose- o(r.zt) ; $n(N)xn(2,0), ©
condensed atom cloud under temporal variation of the trap- . , i i
ping frequenciesw;(t) and w, (t) (in the axial and radial where ¢, (r) is the radial wave function characterized by the

directions, respectivelycan then be described by the follow- duantum numben (we consider only zero angular momen-
ing solution for the condensate wave function tum modeg The above ansatz incorporates the fact that for

strongly elongated traps the dynamics of the condensate mo-
W b2 b2 tion separates into a fast radial motion and a slow axial mo-
Y= 1F eXF{—iJ’ 9po(X=0,1)dt+i = +i ——|. tion, which are essentially independent. Thez,t) are the
b, \/5 2b 2b, mode functions for traveling wave solutions in thdirection
2 (plane waves for a condensate at rest rggdexd —ie,t
+kz]). The radial motion is assumed to be “stiff” such that
Here,b, andb are the scaling parameters describing thethe radial part is effectively time independent, because the
condensate evolution in the radial)(and axial ) direc- radial time scale for adjustment of the density distribution
tions (cf. Fig. 1). The initial (b=Db, =1) mean-field conden- after a perturbation is much less than the axial oscillation
sate density is given by the usual TF expression time scales of interest. The ans&6 works independent of
the ratio of healing length and radial size of the BEC cigar.
In the limit that the healing length is much less than the

2 2

|16 ?=p1e(r,2)=pm| 1— r_2 - 2—2 . (3 radial size, TF wave functions are used, in the opposite limit,
Rl R a Gaussian ansatz for the radial part of the wave function
¢n(r) is appropriate.
Here,py, is the maximum densitgin the center of the cloyd For axial excitations characterized by a wavelenath
and the squared initial TF radii al®f=2u/wf and R?  =2x/k exceeding the radial siz@, of the condensate, we

=2ulw? . The initial chemical potentigh=p,g, Wwhereg  havekR, <1, and the dispersion relation reads, in the TF
=4mag, and ag is the scattering length characterizing limit for the radial wave functiori25]
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2 ll. THE 1 +1D DE SITTER METRIC IN THE
erx=20in(n+1)+ - (kR)? CONDENSATE CENTER

We identify the action8) with the action of a minimally
=2w?n(n+1)+c3k?, (7)  coupled scalar field in41D, according to Eq(1). Remark-
ably, such an identification is possible only close to the cen-
wherec,=\/u/2. Observe that the central speed of sougd ter z=0. The contravariant £1D metric may generally be
is reduced by a facto2 from the well-established value Wwritten as[4]
Jgpm=/u for an infinitely extended liquidi25].

Equationg6) and(7) can be generalized for an expanding 1 (-1 ~Uz
condensate. Substituting in E@) the rescaled radial wave AC2 '
function ¢,=¢,(r/b,), and inserting the result into the ac-
tion (l) |ntegratlng over the radial coordinates, we find theWhereAC is some arbitrarYspace and time dependkfﬂctor

foI(Ij(_)V\I/mg effective ak():tlc?n for the axial modes of a given 5n4c=¢(z=0). Inverting this expression to get the covari-
radial quantum numben: ant metric, we obtain

(2) —(c*-vd) -
S,= fdtd [ = (Xn— 209+ CA(2) (9yxn)? ngAc( (c*=vz) UZ). (15

14
-v, Cc?—vl 4

—v, 1

+Mi(2)xnl, 8 N . ,
(2] ® The term+/—gg*” contained in the actiofil) gives the fa-
where the common “conformal” facto€,,(z) is given by miliar conformal invariance in a£1D space-time, i.e., the
conformal factorA; drops out from the action and thus does
5 . not influence the classical equations of motion. We therefore
Cn(Z)If dr oy, (9 leave outA, in the formulas to follow, but it needs to be
r<r . . . .
m borne in mind that the metric elements are defined always up
to the factorA..

The integration limits are fixed by tredependent radial size
g y P The actions(1) and (8) can be made consistent if we

of the cigarr;=R?b? (1—z%/Rfb?). The averaged speed of

sound reads renormalize the phase field accordingdte- Z® and require
that
z,t)= 2r pop? 10 b2 Cy(0 1
iz )= b2 -, Erpod] (10 : go( ) ot .
c

and the(space and time dependgmffective mass term is, . _
for a given radial mode, obtained to be holds. The factoiZ does not influence the equation of mo-

tion, but does influence the response of a dete(see Sec.
g IV A below). In other words, it renormalizes the coupling of
M2(zt)= — d?r pol d, dnl?. (11)  our “relativistic field” ® to the laboratory frame detector.
n\& 2 PolL 9 Pn L
Cpbt Jr<rm More explicitly, Eq.(16) leads to

The phonon branch of the excitations corresponds to the gap- T 1 w, |2

lessn=0 solution of Eq.(7). In this case the radial wave bL\/B=8 ——\/pmag(—) =B=const. (17)
function ¢, does not depend on the radial variabl¢25], 272 K

and the mass term vanished,;=0. We then obtain the

following expressions, According to the above relation, we have to impose that the
expansion of the cigar in the perpendicular direction pro-
22 ceeds like the square root of the expansion in the axial di-
Co(2)= wa 1- ﬁ) , (12 rection. The constant quanti® can be fixed externallyby
bR the experimentali$t choosing the expansion of the cloud
o appropriately by adjusting the time dependence of the trap-
and for thez dependent speed of sounc=c,_q): ping frequenciesy|(t) and w, (t), according to the scaling
equationg 21,26
2 2
Az,t)= ZO (1 2 ) (13) o2
bib| " b*Rf b+ wf(tb= o= — L,
b2 b2 B2b®
We will see below that we need these expressions in the limit (18
z—0 only, because only in this limit we obtain the exact w2 w2
mapping of the phonon field to a quantum field propagating bi-i—wi(t)biz TLz 3 LS/Z.
in a 1+1D curved space-time. bib B°b
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Since bothC, andc depend org, an effective space-time V- DETERMINING THE PARTICLE CONTENT OF THE
metric for the axial phonons can be obtained only close to QUANTUM FIELD
the center of the cigar-shaped condensate cloud. This is re- the particle content of a quantum field state depends on
lated to our averaging over the physical perpendicular direcg,g observef1,2,11). To detect the Gibbons-Hawking effect

tion, and does not arise if the excitations are considered iﬂ.l de Sitter space, one has to set up a detector that measures
the full D-dimensional situation, where this identification is frequencies in un’its of the inverse de Sitter timerather

possible globally. Also note that the acti®8) does not con-  han in units of the inverse laboratory timeWe will show
tamz a_ curvature _scalar .contr|but|on of th? form ypat the de Sitter time intervalr=dt/bB=dt/\bb, can be
“xnV— 9 RG,,(X)], i.€,, that it only possesses trivial con- eftectively measured by an atomic quantum d8QD)
formal invariancg27]. _ [29,30. The measured quanta can then, and only then, be
We now impose, in addition, the requirement that the met'accurately interpreted to be particles coming from a
ric is identical to that of a £ 1D universe, with a metric of Gibbons-Hawking type process with a constant de Sitter
the form of the de Sitter metric in-B1D [12,28. We first  temperature22). We then use the tunability for other time
apply the transformatior,dt=c(t)dt to the line element intervals feasible with our detector scheme, and contrast this
defined by(15), connecting the Iabor_atory timeto the time  de Sitter result with what the detector “sees” if tuned to
variablet. Defining v,/c=+/Az=(Bblcy)z (note that the laboratory and “adiabatic” time intervals. _
dot onb and other quantities always refers to ordinary labo- The AQD can be made in a gas of atoms possessing two

ratory time, this results, up to the conformal factdy, in  hyperfine ground states and 8. The atoms in stater rep-
the line element resent the superfluid cigar, and are used to model the expand-

ing universe. The AQD itself is formed by trapping atoms in
ds?= —c3(1- AZH)dt?—2coz/Adtdz+dZ2. (19  statep in a tightly confining optical potentiaV,,. The in-
teraction of atoms in the two internal levels is described by a
We then apply a second transformatiocpdr=codt  Set of coupling parameterg.q=4macy (c,d={a.B}),

+2JAdZ/(1—AZ?), with a constant\. We are thus led to where a.q are thes-wave scattering lengths characterizing
the 1+1D de Sitter metric in the forrfl2] short-range intra- and interspecies collisiogs; =9, a,.
=a,. The on-site repulsion between the atof the dot

ds?=—c3(1-AZA)dr2+(1-AZ%) " dZ2. (200 isU~gge/I® wherel is the characteristic size of the ground
state wave function of atomg localized in V. In the
The transformation betweenand the de Sitter time (on a  following, we consider the collisional blockade limit of large
dot. This assumes that is larger than all other relevant
t ) frequency scales in the dynamics of both the AQD and the
o exd Bbr], (21)  expanding superfluid. As a result, the collective coordinate of
the AQD is modeled by a pseudo-spin-1/2, with the spin-up/
spin-down state corresponding to occupation by a single
atom/no atom in statg.

We first describe the AQD response to the condensate
fluctuations in the Lagrangian formalism, most familiar in a
field theoretical context. The detector Lagrangian takes the
form

where the unit of laboratory timg~ w”’l is set by the initial
conditions for the scaling variablésandb, . The tempera-
ture associated with the effective met(0) is the Gibbons-
Hawking temperaturgl2]

¢~ B,
Tos=5_VA=5_b. (22 |
Laoo=i| —7* | n—[—A+ 01)+ dp)]7*
The “surface gravity” on the horizon has the valug, AQD (dtn )7’ : GpPol O1)+0p) ™ 7
=c3\A=cyBb, and the stationary horiz¢s) are located at

t
the constant values of tlecoordinate -Q po(o,t)|3( ex;{ —iJ gpo(0t")dt’ +i54 n*
0

2
a)” t
7= iZHZiRH ﬂ (23) +exp{if ng(O,t’)dt’—i5¢
0

77) . (24

Combining (22) and (23), we see thatzy /R is small if  Here, A is the detuning of the laser light from resonance,
w|/Tygs<4m. Therefore, the de Sitter temperature needs tq, (z=0t) is the central mean-field part of the bath density,
be at least of the order @f; for the horizon locatiofs) to be  andl is the size of the AQD ground state wave function. The
well inside the cloud. The latter COﬂdition then jUStiﬁes Ne-detector Variab|e7 is an anticommuting Grassmann variable
glecting thez dependence i€, andc in Eqg. (16). Though representing the effective spin degree of freedom of the
there is no metric “behind” the horizon, i.e., at largethis ~ AQD. The second and third lines represent the coupling of
should not affect the low-energy behavior of the quantumhe AQD to the surrounding superfluid, wheté and p are
vacuum “outside” the horizon. the fluctuating parts of the condensate phase and density at
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z=0, respectively. The laser intensity and the effective tranone can change,, and therefore probe the response of the
sition matrix element combine into the Rabi frequerfdy  detector for various phonon frequencies. Note that,if is
below we will make use of the fact thét can easily experi- very close tog, to obtain the correct perturbation potential,
mentally be changed as a function of laboratory tiney  higher order terms in the density fluctuations have to be
changing the laser intensity with taken into account in the Rabi term (6).

the equations of motioii8) for the phase fluctuations, and

_ t then evaluate the conjugate density fluctuations. The equa-
n— ﬂexl{ =i fogpo(O,t’)dt’ +idep|. (25 tion of motion S,/ 8x,=0 is, for time independer, given
by

The above transformation amounts to absorbing the superflu- d , 1 _
id’s chemical potential and the fluctuating phag into the szza(bz)(o)— mé’zb[cz(zb)co(zb) 2,01 =0,
wave function of the AQD, and does not change the occupa- 01 %b (29)
tion numbers of the two AQD states. The transformati2m)
gives the detector Lagrangian the form wherez,=z/b is the scaling coordinate. Apart from the fac-

tor Cy(z,), stemming from averaging over the perpendicular

d direction, this equation corresponds to the hydrodynamic

LAQD:i(_;* 7= Qpo(ON)I3(n+ 7*) equation of phase fluctuations in inhomogeneous superfluids
dt [31]. At t— —o, the condensate is in equilibrium and the

d quantum vacuum phase fluctuations close to the center of the

—[—A+(g 5~ 9)po(01) +gapdp+ — 8¢ 7* 7. condensate can be written in the following form:
“ ’ “ dt '
~ g ~ . .
(26) Xo0= \/makeXQ—leovktﬂkZHH.c.,

The laser couplingsecond term in the first linescales as (30

—12-1 : . S e L

b~ *, and hence like the de Sitter time interval in units wherea, ,a, are the annihilation and creation operators of a

gf the Iabboratory t'mg mte}:vak;jr/dt(.j We Zuggejt th‘;’}t the  phonon. The initial quantum state of phonons is the ground
etector be operated at the time dependent detuni(ty state of the superfluid and is annihilated by the operatprs

=(9ap—9)Po(04) =(gup—9)pm/(D’B?t?), which then  ith these initial conditions, the solution €29) is
leads to a vanishing of the first two terms in the square

brackets of(26). - / g - (tdt'egy .
We now reintroduce the wave function of the AQD stem- X0~ 4C0—(0)R|\50kakex -, B2 +ikz,|+H.c.

ming from a Hamiltonian formulationyy= 4| B) + | ). (31)

An “effective Rabi frequency” may be defined to be, . . _ _
=20p,% at the detuning compensated point, we thent he solution for the canonically conjugate density fluctua-

obtain a simple set of coupled equations for the AQD ampliioNS: consequently, is

tudes 5 _\/Tk . ,J’tdt’éo,k+.k
=1 — Y — | i) exp —1 1KZ
dy di, P 4Co(0)Ryg at | “* 0 Bb? °

wo o

"oy 2 VetV g e (@D

+H.c. (32

where is the de Sitter time. Equations(31) and (32) completely characterize the=0

We have thus shown that the detector equati@T$ are  evolution of the condensate fluctuations. Observe that the
natural evolution equations in de Sitter time if the Rabi  evolution proceeds without frequency mixing in the adiabatic
frequency() is chosen to be a constant, independent of labotime interval defined byd7,=dt/Bb? (the “scaling time”
ratory timet. We will see in Sec. IV B that, adjusting in a  interval dt/B?b? defined in Ref[26] is proportional to this
certain time dependent manner, within the same detectadiabatic time interval Therefore, in the “adiabatic basis,”
scheme, we can reproduce time intervals associated to vaffo frequency mixing occurs and thus no quasiparticle exci-

ous other effective space-times. tations are created. This hints at a hiddknw-energy sym-
The coupling of the AQD to fluctuations in the superfluid Metry, in analogy to the(exacy 2+1D Lorentz group
is described by the potential SQ2,1) for an isotropically expanding BEC disk, discussed
in Ref.[23].
oV(7)=(gap—9)Bb(7)5p(7). (28)

A. Detection in de Sitter time

Neglecting the fluctuations in the superfluid, the level sepa- The coupling operatosV causes transitions between the
ration implied by(27) is wo, and the eigenfunctions of the dressed detector states) and|—) and thus can be used to
dressed two level system afer)=(|a)=|B))/\2. The effectively measure the quantum state of the phonons. We

quantity o therefore plays the role of a frequency standardconsider the detector response to fluctuatior® pby going
of the detector. By adjusting the value of the laser intensitybeyond mean field and using a perturbation theorys%h
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There are two physically different situations. The detector is
either att=0 in its ground state,|@)+|8))/\2, or in its
excited state, |@)—|B))/v2. We defineP, andP_ to be
the probabilities that at late timdsthe detector is excited
respectively deexcited. Using second order perturbatiot
theory in 6V, we find that the transition probabilities for the
detector may be written

AT

g€0 k ( gaB 2 2
=D, —— -1 B T, 33
where the absolute square of the transition matrix elementi —Z2ZH ZH
given by | >
z
. : dr 2 \ SN
T. j f —— +iwyT
(34) FIG. 2. Typical trajectories of phonond$°=0) in the de Sitter

metric (20). The path taken by phonon I, which is at early times

Calculating the integrals, we obtain propagating near the horizon, is described in the text. The path
taken by phonon I, which approaches the horizon surfaeg at

Jup 2 gm Ng late times7, does not lead to an excitation of the de Sitter detector
P.=J|—— e (35  placed az=0.
9 2BbR|Cy(0) [1+ns,
. R d R
where the(formally divergent sum =3 Lo ”wOJ ok _ ”wo\/Kcof dr
k €x TCoJ €pk 0
o
J=> —, (36) _ R
¢ €ox 1By, (40
7TCO

and the factors - . . .

Therefore, the probabilities per unit detector tifde Sitter
1 time) read, where upper/lower entries referRa/P_, re-
M= oxf wg/Tad — 1 (37  spectively:
are Bose distribution functions at the de Sitter temperature dP. <9aﬂ 1) B2 9@o Ne (41)
(22). We conclude that an expansion of the condensate in dr | g 2Co(0)cy [ 1+4ng.

direction, with a constant rate faster than the harmonic trap
oscillation frequency in that direction, gives an effective They are finite quantities in the limit that—<c. In labora-
space-time characterized by the de Sitter temperatyse tory time, the transition probabilities evolve according to
We now show thatl is proportional to the totadle Sitter
time of observation, so that the probability per unit time is a
finite quantity[32]. At late times, the detector measures pho-
non quanta coming, relative to its space-time perspective,
from close to the horizon, at a distanez=z,—z<z, Where, from relation(16), Po—Zz[(gaﬁlg 1)B]%/2. We
=A~Y2 The trajectory of such a phonon in the coordinatessee that the detector response is, as it should be, proportional
of the de Sitter metri¢20), at late timesr, is given by(cf. to Z2, the square of the renormalization factor of the phase
Fig. 2 fluctuation field.
The absorption and emission coefficiedt3.. /dr satisfy
Einsteinian relations. Therefore, the detector approaches
2\/—C07 (38) thermal equilibrium at a temperatuig;s on a time scale
proportional toZ™ wol Our de Sitter AQD detector thus
This implies that the central AQD detector measures quanteneasures a stationary thermal spectrum, even though its con-
that originated at the horizon with large shifted frequency densed matter background, with laboratory titnés in a
highly — nonstationary motional state.  SinceZ?

(39) O_C\/pmag(wl/,u)z, not—.too—dilut.e condensates wi.tbL~,u
(i.e., close to the quasi-1D regim@&3]) are most suitable for
observing the Gibbons-Hawking effect.
Making use of the above equation, we rewrite the summation The verification of the fact that a thermal detector state
overkin (36) as an integral over detector time: has been established proceeds by the fact that the two hyper-

Ng
1+ng,

X (42

t
P.(t)= P—In
%Tas Lto

wWq

o
fo’kzm = 2 exp coTVA].
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f q woegk 1
ex + . —

Y VB2 Y
The integral is a linear combination of Bessel functions. To
= ()~ |B>)/\/§ The thermalization due to the Gibbons- test its convergence properties, we are specifically interested

Hawking effect takes place in the dressed state basis COI‘\SIS? the largeeg limit. Performing a stationary phase approxi-
ing of the two detector statesi.e. of the stateg+) and Mmation for largeA= * woeg/Bb?, we have for positiveA
|—), on a time scale given by the quantities in Eq. (42). (absorpt|321 that the integral above becomed(A)
For the laboratory observer, the Gibbons-Hawking thermaf (7VA) “?exd —2\/A] and for negativeA (emission J(A)
state will thus appear to cause damping of the Rabi oscilla= (7 \[A]) % The final result then is

tions on the thermalization time scale, i.e., friction on the ®

coherent oscillating motion between the two detector states 5 _ [ 2¢F _ / L

occurs, due to the thermal phonon bath perceived by the Pa ( l) \/_ Pmas ( )

detector. The occupation of the detector states can be mea-

fine statese and B8 are spectroscopically different states of
the same atom, easily detectable by modern quantum optical |'~|'¢|2_
technology. When the optical potential is switched on, the 60k
atoms are in the empty state originally, which is an equal-
weight superposition of|+)=(|a)+|8))/V2 and |—)

2
’ . (46

sured directly using atomic interferometry: #/2 pulse Epy Wy extd — 4\ wnen /Bb2
brings one of them into the filledd) and the other into the X | degk —X H wo€ox/BD’]
empty (@) state. To increase the signal to noise ratio, one 0 €okBb

could conceive of manufacturing a small array of AQDs in a

sufficiently large cigar-shaped host superfluid, and monitor 25
the total population of3 atoms in this array. 2 2 2
a w
—(%—1> V27 pmas —] x )
B. Detection in laboratory time g9 H MEleo
We contrast the above calculation with the response the Bb?
AQD detector would see if tuned to laboratory time. This can (47)

be realized if we allow Q«t, such that Q+pg(0t)

—Q\/E/(Bbt) const, in the Rabi term on the right-hand whereEp~ u is the ultraviolet cutoff in the integral for the

side of(26), to be time independent. The detector has, thereemission probability®_, the “Planck” scale of the super-
fore, dt as its natural time interval in this setting. The fluid. Because of the convergence of the absorption integral

PainleveGullstrand metric(15) in pure laboratory frame for P, , the total number of particles detected remains finite,
variables, assumin52b2>wH/b2 as in the derivation of the @and there are no particles detected by the effective laboratory

de Sitter metrig20), reads frame detector at late times. This is in contrast to the de
Sitter detector, which according {d1) still detects particles,
CZ in a stationary thermal state.
ds?=— T (1—-AZ%)dt>— —dzdt+ dZ2. (43 There is a detector setting that corresponds to a detector at

rest in the Minkowski vacuum. This setting is represented by
the adiabatic basis, with time interval defined oy,

The metric(43) is asymptotically, for large, becoming that — d/Bb?, realizable with the AQD by setting the Rabi fre-

of Galilei invariant ordinary 1D laboratory space, i.e. it is _
just measuring length along the direction, because the quencyQ«1/t. Then, no particles whatsoever are detected,

speed of sound in the ever more dilute gas decreases tike 1/e no frequency mixing of the positive and negative fre-
and the “phonon ether” becomes increasingly less stiff. quency parts of32) does take place. The associated space-

The transition probabilities for absorption respectivelytIme interval

emission are now given b = [9e0r/4RCo(0)1(9up /g d?=b—cidr2+dZ] (48)
—1)?|T-|?, where the matrix elements are, cf. Eg4),

, e odt
|T | = - @GX iIEO,k - @‘Hwot

is simply that of (conformally flat Minkowski space in

2 the spatial scaling coordinatg, and adiabatic time coordi-

nater,.
(44 V. SUMMARY AND CONCLUSIONS
Substituting the adiabatic time intervalr,=dt/(Bb%t?) We summarize the effective space-times considered in
leads for largd to this article, and the associated time intervals in Table |. The
- major observation of the present investigation is that the
7,= Tos— 1/(Bb%), (45 physical nature of the effective space-time considered in the

, condensed matter system reflects itself directly in the quasi-
wherery,= [ T-dt/(Bb??). The transformation to adiabatic particle (phonon content measured by a detector that has a
time maps e[ —%,+ %] onto T,e [ — %, 74] and, by further  natural time interval equal to the time interval of this particu-
substitutingy = eg( 74— 704, We have lar effective space-time. We have demonstrated that the no-
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TABLE I. Various time intervals effectively measuring laboratory, de Sitter, and adiabatic time#iB 1
BEC, respectively, wherb=Db(t), andB is independent of laboratory time. The third entry specifies if the
AQD detector, tuned to the given time interval, detects phonons. In the laboratory frame, the detector has a
small, nonthermal response for a finite amountioitial) laboratory timelcf. Eq. (47)].

Effective space Time interval Phonons detected
Laboratory dt Yes (nonthermal

de Sitter dr=dt/Bb Yes (therma)
Adiabatic dr,=dt/Bb? No

tion of observer dependence can be made experimentalfgcts of self-interaction between the phonons, induced by
manifest by aratomic quantum daoplaced at the center of a larger values of the gaseous parameter, can lead to decoher-
linearly expanding cigar-shaped Bose-Einstein condensatence and the relaxation of the phonon subsystem. The same
which has aunableeffective time interval. Thus a possibil- line of reasoning applies to the evolution of quantum fields
ity opens up to confirm experimentally, in an effective in the expanding universe. The interactions between quasi-
curved space-time setting, that, indeed, “a particle detectoparticle excitations and their connection to decoherence pro-
will react to states which have positive frequency with re-cesses in cosmological models of quantum field propagation
spect to the detector’s proper time, not with respect to anynd particle production are, therefore, important topics for

universal time”[1]. future work.
The Gibbons-Hawking effect in the BEC is intrinsically
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