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Observer dependence for the phonon content of the sound field living on the effective curve
space-time background of a Bose-Einstein condensate
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We demonstrate that the ambiguity of the particle content for quantum fields in a generally curved space-
time can be experimentally investigated in an ultracold gas of atoms forming a Bose-Einstein condensate. We
explicitly evaluate the response of a suitable condensed matter detector, an ‘‘atomic quantum dot,’’ which can
be tuned to measure time intervals associated with different effective acoustic space-times. It is found that the
detector response related to laboratory, ‘‘adiabatic,’’ and de Sitter time intervals is finite in time and nonsta-
tionary, vanishing, and thermal, respectively.

DOI: 10.1103/PhysRevD.69.064021 PACS number~s!: 04.62.1v, 03.75.Kk, 04.70.Dy
o
nd
r

ne
-
c
o
m
le

o
rv
uh
tl
s
o
r-

s
e
io

en
i

s

u
ste
e
li-
a

on

nsed
ory

es,
ime.
ates
ing
h

able
ec-

ee
e
ul-

nic
ous
lar
in

c-
be
I. INTRODUCTION

The feat of reproducing certain features of the physics
relativistic quantum fields on curved space-time backgrou
@1,2#, in the laboratory, now seems closer than ever befo
Because of the realization of the fact that phonons or ge
ally ‘‘relativistic’’ quasiparticles, propagating in a nonrelativ
istic background fluid, experience an effective curved spa
time @3–7#, various exotic phenomena of the physics
classical as well as quantum fields in the curved space-ti
of gravity are getting within the reach of laboratory sca
experiments@8#.

The particle content of a quantum field state in curved
flat space-time depends on the motional state of the obse
A manifestation of this observer dependence is the Unr
Davies effect, which consists in the fact that a constan
accelerated detector in the Minkowski vacuum responds a
it were placed in a thermal bath with temperature prop
tional to its acceleration@1,2#. This effect has eluded obse
vation so far: The value of the Unruh temperatureTUnruh

5@\/(2pkBcL)#a54 K3a@1020g% #, wherea is the accel-
eration of the detector in Minkowski space (g% is the gravity
acceleration on the surface of the Earth! andcL the speed of
light, makes it obvious that an observation of the effect i
less than trivial undertaking. Proposals for a measurem
with ultraintense short pulses of electromagnetic radiat
have been put forward in, e.g., Refs.@9,10#.

In the following, we shall argue that the observer dep
dence of the particle content of a quantum field state
curved space-time, related to the familiar nonuniquenes
canonical field quantization in Riemannian spaces@11#, can
be experimentally demonstrated in the readily available
tralow temperature condensed matter system Bose-Ein
condensate~BEC!. More specifically, we argue that th
Gibbons-Hawking effect@12#, a curved space-time genera
zation of the Unruh-Davies effect, can be observed in
expanding BEC. To explicitly show that particle detecti
0556-2821/2004/69~6!/064021~9!/$22.50 69 0640
f
s

e.
r-

e-
f
es

r
er.
-

y
if

r-

a
nt
n

-
n
of

l-
in

n

depends on the detector setting, we construct a conde
matter detector tuned to time intervals in effective laborat
and de Sitter space-times, respectively@13#. We show that
the detector response is strongly different in the two cas
and associated with the corresponding effective space-t
Furthermore, we describe a system of space-time coordin
in which there is no particle detection whatsoever tak
place, which we will call the ‘‘adiabatic’’ basis, and whic
simply corresponds to a detector at rest in the~conformal!
Minkowski vacuum.

II. HYDRODYNAMICS IN AN EXPANDING
CIGAR-SHAPED BEC

It recently became apparent that among the most suit
systems for the simulation of quantum phenomena in eff
tive space-times are Bose-Einstein condensates~BECs! @14–
18#. They offer the primary advantages of dissipation-fr
superflow, high controllability, with atomic precision, of th
physical parameters involved, and the accessibility of
tralow temperatures@19,20#. Even more importantly in the
context under consideration here, the theory of phono
quasiparticles in the spatially and temporally inhomogene
BEC is kinematically identical to that of a massless sca
field propagating on the background of curved space-time
D11 dimensions.

It was shown by Unruh that the action of the phase flu
tuationsF in a moving inhomogeneous superfluid may
written in the form@3,4# ~we set\5m51, wherem is the
mass of a superfluid constituent particle!:

S5E dD11x
1

2g F2S ]

]t
F2v•“F D 2

1c2~“F!2G
[

1

2E dD11xA2ggmn]mF]nF. ~1!

Here, v(x,t) is the superfluid background velocity,c(x,t)
5Agr0(x,t) is the velocity of sound, whereg is a constant
©2004 The American Physical Society21-1
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describing the interaction between the constituent particle
the superfluid (1/g is the compressibility of the fluid!, and
r0(x,t) is the background density. In the second line of~1!,
the conventional hydrodynamic action is identified with t
action of a minimally coupled scalar field in an effectiv
curved space-time. Furthermore, the velocity potential of
sound perturbations in the BEC satisfies the canonical c
mutation relations of a relativistic scalar field@14#. We there-
fore have the exact mapping, on the level of kinematics
the equation of motion for phononic quasiparticles in a n
relativistic superfluid, to quantized massless scalar fie
propagating on a curved space-time background with lo
Lorentz invariance.

To model curved space-times, we will consider the e
lution of the BEC if we change the harmonic trapping fr
quencies with time. For a description of the expansion~or
contraction! of a BEC, the so-called scaling solution a
proach is conventionally used@21#. One starts from a cigar
shaped BEC containing a large number of constituent p
ticles, i.e., which is in the so-called Thomas-Fermi~TF! limit
@22#. According to Ref. @21#, the evolution of a Bose-
condensed atom cloud under temporal variation of the tr
ping frequenciesv i(t) and v'(t) ~in the axial and radial
directions, respectively! can then be described by the follow
ing solution for the condensate wave function

C5
CTF

b'Ab
expF2 i E gr0~x50,t !dt1 i

ḃz2

2b
1 i

ḃ'r 2

2b'
G .

~2!

Here, b' and b are the scaling parameters describing
condensate evolution in the radial (r̂ ) and axial (ẑ) direc-
tions ~cf. Fig. 1!. The initial (b5b'51) mean-field conden
sate density is given by the usual TF expression

uCTFu25rTF~r ,z!5rmS 12
r 2

R'
2

2
z2

Ri
2D . ~3!

Here,rm is the maximum density~in the center of the cloud!
and the squared initial TF radii areRi

252m/v i
2 and R'

2

52m/v'
2 . The initial chemical potentialm5rmg, whereg

54pas , and as is the scattering length characterizin

FIG. 1. Expansion of a cigar-shaped Bose-Einstein condens
The stationary horizon surfaces are located at6zH , respectively.
The thick dark lines represent lasers creating an optical pote
well in the center.
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atomic collisions in the~dilute! BEC. In our cylindrical 3D
trap, we have for the initial central density

rm5S 6Nv'
2 v i

A8pg3/2D 2/5

.

The condition that the TF approximation be valid impli
that m@v i ,v' . The solution~2! of the Gross-Pitaevski�
mean-field equations becomes exact in this TF limit, ind
pendent of the ratiov i /v' . However, the solution become
exact also in the limit thatv' /v i→0, independent of the
validity of the TF limit, the system then acquiring an effe
tively two-dimensional character@23,24#. We will see below
that in the opposite limit ofv i /v'→0 there is an ‘‘adiabatic
basis’’ in which no axial excitations are created during t
expansion, i.e., with respect to that basis there are, in part
lar, no unstable solutions possible, implying the stability
the expanding gas against perturbations.

According to~2!, the condensate density evolves as

r0~r ,z,t !5
rTF~r 2/b'

2 ,z2/b2!

b'
2 b

, ~4!

and the superfluid velocity

v5
ḃ'

b'

rer1
ḃ

b
zez ~5!

is the gradient of the condensate phase in Eq.~2!. It increases
linearly to the axial and radial boundaries of the condens

The excitations in the limitv i /v'→0 were first studied
in Ref. @25#. The description of the modes is based on
adiabatic separation for the axial and longitudinal variab
of the phase fluctuation field:

F~r ,z,t !5(
n

fn~r !xn~z,t !, ~6!

wherefn(r ) is the radial wave function characterized by t
quantum numbern ~we consider only zero angular mome
tum modes!. The above ansatz incorporates the fact that
strongly elongated traps the dynamics of the condensate
tion separates into a fast radial motion and a slow axial m
tion, which are essentially independent. Thexn(z,t) are the
mode functions for traveling wave solutions in thez direction
~plane waves for a condensate at rest readxn}exp@2ien,kt
1kz#). The radial motion is assumed to be ‘‘stiff’’ such tha
the radial part is effectively time independent, because
radial time scale for adjustment of the density distributi
after a perturbation is much less than the axial oscillat
time scales of interest. The ansatz~6! works independent of
the ratio of healing length and radial size of the BEC cig
In the limit that the healing length is much less than t
radial size, TF wave functions are used, in the opposite lim
a Gaussian ansatz for the radial part of the wave func
fn(r ) is appropriate.

For axial excitations characterized by a wavelengthl
52p/k exceeding the radial sizeR' of the condensate, we
have kR'!1, and the dispersion relation reads, in the
limit for the radial wave function@25#

te.

ial
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en,k
2 52v'

2 n~n11!1
v'

2

4
~kR'!2

52v'
2 n~n11!1c0

2k2, ~7!

wherec05Am/2. Observe that the central speed of soundc0

is reduced by a factorA2 from the well-established valu
Agrm5Am for an infinitely extended liquid@25#.

Equations~6! and~7! can be generalized for an expandin
condensate. Substituting in Eq.~6! the rescaled radial wav
function fn[fn(r /b'), and inserting the result into the ac
tion ~1!, integrating over the radial coordinates, we find t
following effective action for the axial modes of a give
radial quantum numbern:

Sn5E dtdz
b'

2 Cn~z!

2g
@2~ ẋn2vz]z!

21 c̄n
2~z!~]zxn!2

1Mn
2~z!xn

2#, ~8!

where the common ‘‘conformal’’ factorCn(z) is given by

b'
2 Cn~z!5E

r ,r m

d2rfn
2 . ~9!

The integration limits are fixed by thez dependent radial size
of the cigarr m

2 5R'
2 b'

2 (12z2/Ri
2b2). The averaged speed o

sound reads

c̄n
2~z,t !5

g

Cnb'
2 Er ,r m

d2rr0fn
2 ~10!

and the~space and time dependent! effective mass term is
for a given radial mode, obtained to be

Mn
2~z,t !5

g

Cnb'
2 Er ,r m

d2rr0@] rfn#2. ~11!

The phonon branch of the excitations corresponds to the
lessn50 solution of Eq.~7!. In this case the radial wav
function f0 does not depend on the radial variabler @25#,
and the mass term vanishes,M050. We then obtain the
following expressions,

C0~z!5pR'
2 S 12

z2

b2Ri
2D , ~12!

and for thez dependent speed of sound (c̄[ c̄n50):

c̄2~z,t !5
c0

2

b'
2 b

S 12
z2

b2Ri
2D . ~13!

We will see below that we need these expressions in the l
z→0 only, because only in this limit we obtain the exa
mapping of the phonon field to a quantum field propagat
in a 111D curved space-time.
06402
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III. THE 1 ¿1D DE SITTER METRIC IN THE
CONDENSATE CENTER

We identify the action~8! with the action of a minimally
coupled scalar field in 111D, according to Eq.~1!. Remark-
ably, such an identification is possible only close to the c
ter z50. The contravariant 111D metric may generally be
written as@4#

gmn5
1

Acc
2 S 21 2vz

2vz c22vz
2D , ~14!

whereAc is some arbitrary~space and time dependent! factor
andc5 c̄(z50). Inverting this expression to get the cova
ant metric, we obtain

gmn5AcS 2~c22vz
2! 2vz

2vz 1
D . ~15!

The termA2ggmn contained in the action~1! gives the fa-
miliar conformal invariance in a 111D space-time, i.e., the
conformal factorAc drops out from the action and thus do
not influence the classical equations of motion. We theref
leave outAc in the formulas to follow, but it needs to b
borne in mind that the metric elements are defined always
to the factorAc .

The actions~1! and ~8! can be made consistent if w

renormalize the phase field according toF5ZF̄ and require
that

b'
2 C0~0!

g
Z25

1

c̄
~16!

holds. The factorZ does not influence the equation of m
tion, but does influence the response of a detector~see Sec.
IV A below!. In other words, it renormalizes the coupling
our ‘‘relativistic field’’ F to the laboratory frame detecto
More explicitly, Eq.~16! leads to

b'
Ab 58Ap

2

1

Z2
Armas

3S v'

m
D 2

[B5const. ~17!

According to the above relation, we have to impose that
expansion of the cigar in the perpendicular direction p
ceeds like the square root of the expansion in the axial
rection. The constant quantityB can be fixed externally~by
the experimentalist!, choosing the expansion of the clou
appropriately by adjusting the time dependence of the tr
ping frequenciesv i(t) and v'(t), according to the scaling
equations@21,26#

b̈1v i
2~ t !b5

v i
2

b'
2 b2

5
v i

2

B2b3
,

~18!

b̈'1v'
2 ~ t !b'5

v'
2

b'
3 b

5
v'

2

B3b5/2
.

1-3
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Since bothC0 and c̄ depend onz, an effective space-time
metric for the axial phonons can be obtained only close
the center of the cigar-shaped condensate cloud. This is
lated to our averaging over the physical perpendicular dir
tion, and does not arise if the excitations are considere
the full D-dimensional situation, where this identification
possible globally. Also note that the action~8! does not con-
tain a curvature scalar contribution of the for
}xn

2A2g R@gmn(x)#, i.e., that it only possesses trivial con
formal invariance@27#.

We now impose, in addition, the requirement that the m
ric is identical to that of a 111D universe, with a metric of
the form of the de Sitter metric in 311D @12,28#. We first
apply the transformationc0d t̃5c(t)dt to the line element
defined by~15!, connecting the laboratory timet to the time
variable t̃ . Defining vz /c5ALz5(Bḃ/c0)z ~note that the
dot onb and other quantities always refers to ordinary lab
ratory time!, this results, up to the conformal factorAc , in
the line element

ds252c0
2~12Lz2!d t̃222c0zALd t̃dz1dz2. ~19!

We then apply a second transformationc0dt5c0d t̃
1zALdz/(12Lz2), with a constantL. We are thus led to
the 111D de Sitter metric in the form@12#

ds252c0
2~12Lz2!dt21~12Lz2!21dz2. ~20!

The transformation betweent and the de Sitter timet ~on a
constantz detector, such thatd t̃5dt), is given by

t

t0
5exp@Bḃt#, ~21!

where the unit of laboratory timet0;v i
21 is set by the initial

conditions for the scaling variablesb andb' . The tempera-
ture associated with the effective metric~20! is the Gibbons-
Hawking temperature@12#

TdS5
c0

2p
AL5

B

2p
ḃ. ~22!

The ‘‘surface gravity’’ on the horizon has the valueaH

5c0
2AL5c0Bḃ, and the stationary horizon~s! are located at

the constant values of thez coordinate

z56zH56RiA v i
2

2mL
. ~23!

Combining ~22! and ~23!, we see thatzH /Ri is small if
v i /TdS!4p. Therefore, the de Sitter temperature needs
be at least of the order ofv i for the horizon location~s! to be
well inside the cloud. The latter condition then justifies n
glecting thez dependence inC0 and c̄ in Eq. ~16!. Though
there is no metric ‘‘behind’’ the horizon, i.e., at largez, this
should not affect the low-energy behavior of the quant
vacuum ‘‘outside’’ the horizon.
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IV. DETERMINING THE PARTICLE CONTENT OF THE
QUANTUM FIELD

The particle content of a quantum field state depends
the observer@1,2,11#. To detect the Gibbons-Hawking effec
in de Sitter space, one has to set up a detector that mea
frequencies in units of the inverse de Sitter timet, rather
than in units of the inverse laboratory timet. We will show
that the de Sitter time intervaldt5dt/bB5dt/Abb' can be
effectively measured by an atomic quantum dot~AQD!
@29,30#. The measured quanta can then, and only then
accurately interpreted to be particles coming from
Gibbons-Hawking type process with a constant de Si
temperature~22!. We then use the tunability for other tim
intervals feasible with our detector scheme, and contrast
de Sitter result with what the detector ‘‘sees’’ if tuned
laboratory and ‘‘adiabatic’’ time intervals.

The AQD can be made in a gas of atoms possessing
hyperfine ground statesa andb. The atoms in statea rep-
resent the superfluid cigar, and are used to model the exp
ing universe. The AQD itself is formed by trapping atoms
stateb in a tightly confining optical potentialVopt. The in-
teraction of atoms in the two internal levels is described b
set of coupling parametersgcd54pacd (c,d5$a,b%),
where acd are thes-wave scattering lengths characterizin
short-range intra- and interspecies collisions;gaa[g, aaa
[as . The on-site repulsion between the atomsb in the dot
is U;gbb / l 3, wherel is the characteristic size of the groun
state wave function of atomsb localized in Vopt. In the
following, we consider the collisional blockade limit of larg
U.0, where only one atom of typeb can be trapped in the
dot. This assumes thatU is larger than all other relevan
frequency scales in the dynamics of both the AQD and
expanding superfluid. As a result, the collective coordinate
the AQD is modeled by a pseudo-spin-1/2, with the spin-
spin-down state corresponding to occupation by a sin
atom/no atom in stateb.

We first describe the AQD response to the condens
fluctuations in the Lagrangian formalism, most familiar in
field theoretical context. The detector Lagrangian takes
form

LAQD5 i S d

dt
h* Dh2@2D1gab~r0~0,t !1dr!#h* h

2VAr0~0,t !l 3S expF2 i E
0

t

gr0~0,t8!dt81 idfGh*

1expF i E
0

t

gr0~0,t8!dt82 idfGh D . ~24!

Here, D is the detuning of the laser light from resonanc
r0(z50,t) is the central mean-field part of the bath densi
andl is the size of the AQD ground state wave function. T
detector variableh is an anticommuting Grassmann variab
representing the effective spin degree of freedom of
AQD. The second and third lines represent the coupling
the AQD to the surrounding superfluid, wheredf anddr are
the fluctuating parts of the condensate phase and densi
1-4
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z50, respectively. The laser intensity and the effective tr
sition matrix element combine into the Rabi frequencyV;
below we will make use of the fact thatV can easily experi-
mentally be changed as a function of laboratory timet, by
changing the laser intensity witht.

To simplify ~24!, we use the canonical transformation

h→h̄ expF2 i E
0

t

gr0~0,t8!dt81 idfG . ~25!

The above transformation amounts to absorbing the supe
id’s chemical potential and the fluctuating phasedf into the
wave function of the AQD, and does not change the occu
tion numbers of the two AQD states. The transformation~25!
gives the detector Lagrangian the form

LAQD5 i S d

dt
h̄* D h̄2VAr0~0,t !l 3~ h̄1h̄* !

2F2D1~gab2g!r0~0,t !1gabdr1
d

dt
dfG h̄* h̄.

~26!

The laser coupling~second term in the first line! scales as
b21/2b'

21 , and hence like the de Sitter time interval in un
of the laboratory time interval,dt/dt. We suggest that the
detector be operated at the time dependent detuningD(t)
5(gab2g)r0(0,t)5(gab2g)rm /(ḃ2B2t2), which then
leads to a vanishing of the first two terms in the squ
brackets of~26!.

We now reintroduce the wave function of the AQD ste
ming from a Hamiltonian formulation,c5cbub&1caua&.
An ‘‘effective Rabi frequency’’ may be defined to bev0

52VArml 3; at the detuning compensated point, we th
obtain a simple set of coupled equations for the AQD am
tudes

i
dcb

dt
5

v0

2
ca1dVcb , i

dca

dt
5

v0

2
cb , ~27!

wheret is the de Sitter time.
We have thus shown that the detector equations~27! are

natural evolution equations in de Sitter timet, if the Rabi
frequencyV is chosen to be a constant, independent of la
ratory timet. We will see in Sec. IV B that, adjustingV in a
certain time dependent manner, within the same dete
scheme, we can reproduce time intervals associated to
ous other effective space-times.

The coupling of the AQD to fluctuations in the superflu
is described by the potential

dV~t!5~gab2g!Bb~t!dr~t!. ~28!

Neglecting the fluctuations in the superfluid, the level se
ration implied by~27! is v0, and the eigenfunctions of th
dressed two level system areu6&5(ua&6ub&)/A2. The
quantityv0 therefore plays the role of a frequency standa
of the detector. By adjusting the value of the laser intens
06402
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one can changev0, and therefore probe the response of t
detector for various phonon frequencies. Note that ifgab is
very close tog, to obtain the correct perturbation potentia
higher order terms in the density fluctuations have to
taken into account in the Rabi term of~26!.

To describe the detector response, we first have to s
the equations of motion~8! for the phase fluctuations, an
then evaluate the conjugate density fluctuations. The eq
tion of motiondS0 /dx050 is, for time independentB, given
by

B2b2
d

dt
~b2ẋ0!2

1

C0~zb!
]zb

@ c̄2~zb!C0~zb!]zb
x0#50,

~29!

wherezb5z/b is the scaling coordinate. Apart from the fa
tor C0(zb), stemming from averaging over the perpendicu
direction, this equation corresponds to the hydrodynam
equation of phase fluctuations in inhomogeneous superfl
@31#. At t→2`, the condensate is in equilibrium and th
quantum vacuum phase fluctuations close to the center o
condensate can be written in the following form:

x̂05A g

4C0~0!Rie0,k
âkexp@2 i e0,kt1 ikz#1H.c.,

~30!

whereâk ,âk
† are the annihilation and creation operators o

phonon. The initial quantum state of phonons is the grou
state of the superfluid and is annihilated by the operatorsâk .
With these initial conditions, the solution of~29! is

x̂05A g

4C0~0!Rie0,k
âkexpF2 i E

0

t dt8e0,k

Bb2
1 ikzbG1H.c.

~31!

The solution for the canonically conjugate density fluctu
tions, consequently, is

dr̂5 iA e0,k

4C0~0!Rig

]

]t S âkH expF2 i E
0

t dt8e0,k

Bb2
1 ikzbG J D

1H.c. ~32!

Equations~31! and ~32! completely characterize then50
evolution of the condensate fluctuations. Observe that
evolution proceeds without frequency mixing in the adiaba
time interval defined bydta5dt/Bb2 ~the ‘‘scaling time’’
interval dt/B2b2 defined in Ref.@26# is proportional to this
adiabatic time interval!. Therefore, in the ‘‘adiabatic basis,
no frequency mixing occurs and thus no quasiparticle ex
tations are created. This hints at a hidden~low-energy! sym-
metry, in analogy to the~exact! 211D Lorentz group
SO~2,1! for an isotropically expanding BEC disk, discuss
in Ref. @23#.

A. Detection in de Sitter time

The coupling operatordV̂ causes transitions between th
dressed detector statesu1& and u2& and thus can be used t
effectively measure the quantum state of the phonons.
consider the detector response to fluctuations ofĈ, by going
beyond mean field and using a perturbation theory indV̂.
1-5
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There are two physically different situations. The detecto
either att50 in its ground state, (ua&1ub&)/A2, or in its
excited state, (ua&2ub&)/A2. We defineP1 and P2 to be
the probabilities that at late timest the detector is excited
respectively deexcited. Using second order perturba
theory indV̂, we find that the transition probabilities for th
detector may be written

P65(
k

ge0,k

4RiC0~0! S gab

g
21D 2

B2uT6u2, ~33!

where the absolute square of the transition matrix elemen
given by

uT6u25U E
0

` dt

b~t!
expF6 i e0,kE

0

t dt8

b~t8!
1 iv0tGU2

.

~34!

Calculating the integrals, we obtain

P65JS gab

g
21D 2

B2
gp

2BḃRiC0~0!
3H nB

11nB ,
~35!

where the~formally divergent! sum

J5(
k

v0

e0,k
, ~36!

and the factors

nB5
1

exp@v0 /TdS#21
~37!

are Bose distribution functions at the de Sitter tempera
~22!. We conclude that an expansion of the condensatez
direction, with a constant rate faster than the harmonic t
oscillation frequency in that direction, gives an effecti
space-time characterized by the de Sitter temperatureTdS.

We now show thatJ is proportional to the totalde Sitter
time of observation, so that the probability per unit time is
finite quantity@32#. At late times, the detector measures ph
non quanta coming, relative to its space-time perspect
from close to the horizon, at a distancedz5zH2z!zH
5L21/2. The trajectory of such a phonon in the coordina
of the de Sitter metric~20!, at late timest, is given by~cf.
Fig. 2!

lnF zH

dzG52ALc0t. ~38!

This implies that the central AQD detector measures qua
that originated at the horizon with large shifted frequency

e0,k5
v0

A2L1/4dz1/2
5

v0

A2
exp@c0tAL#. ~39!

Making use of the above equation, we rewrite the summa
over k in ~36! as an integral over detector time:
06402
s

n

is

re

p

-
e,

s

ta

n

J5(
k

v0

e0,k
5

Riv0

pc0
E de0,k

e0,k
5

Riv0

pc0
ALc0E dt

5
Riv0

pc0
Bḃt. ~40!

Therefore, the probabilities per unit detector time~de Sitter
time! read, where upper/lower entries refer toP1/P2 , re-
spectively:

dP6

dt
5S gab

g
21D 2

B2
gv0

2C0~0!c0
3H nB

11nB .
~41!

They are finite quantities in the limit thatt→`. In labora-
tory time, the transition probabilities evolve according to

P6~ t !5P0

v0

TdS
lnF t

t0
G3H nB

11nB ,
~42!

where, from relation~16!, P05Z2@(gab /g21)B#2/2. We
see that the detector response is, as it should be, proport
to Z2, the square of the renormalization factor of the pha
fluctuation field.

The absorption and emission coefficientsdP6 /dt satisfy
Einsteinian relations. Therefore, the detector approac
thermal equilibrium at a temperatureTdS on a time scale
proportional toZ22v0

21. Our de Sitter AQD detector thu
measures a stationary thermal spectrum, even though its
densed matter background, with laboratory timet, is in a
highly nonstationary motional state. SinceZ2

}Armas
3(v' /m)2, not-too-dilute condensates withv';m

~i.e., close to the quasi-1D regime@33#! are most suitable for
observing the Gibbons-Hawking effect.

The verification of the fact that a thermal detector st
has been established proceeds by the fact that the two hy

FIG. 2. Typical trajectories of phonons (ds250) in the de Sitter
metric ~20!. The path taken by phonon I, which is at early tim
propagating near the horizon, is described in the text. The p
taken by phonon II, which approaches the horizon surface2zH at
late timest, does not lead to an excitation of the de Sitter detec
placed atz50.
1-6
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fine statesa and b are spectroscopically different states
the same atom, easily detectable by modern quantum op
technology. When the optical potential is switched on,
atoms are in the emptya state originally, which is an equal
weight superposition ofu1&5(ua&1ub&)/A2 and u2&
5(ua&2ub&)/A2. The thermalization due to the Gibbon
Hawking effect takes place in the dressed state basis con
ing of the two detector states, i.e. of the statesu1& and
u2&, on a time scale given by the quantitiesP6 in Eq. ~42!.
For the laboratory observer, the Gibbons-Hawking therm
state will thus appear to cause damping of the Rabi osc
tions on the thermalization time scale, i.e., friction on t
coherent oscillating motion between the two detector sta
occurs, due to the thermal phonon bath perceived by
detector. The occupation of the detector states can be m
sured directly using atomic interferometry: Ap/2 pulse
brings one of them into the filled (b) and the other into the
empty (a) state. To increase the signal to noise ratio, o
could conceive of manufacturing a small array of AQDs in
sufficiently large cigar-shaped host superfluid, and mon
the total population ofb atoms in this array.

B. Detection in laboratory time

We contrast the above calculation with the response
AQD detector would see if tuned to laboratory time. This c
be realized if we allow V}t, such that VAr0(0,t)
5VArm/(Bbṫ)5const, in the Rabi term on the right-han
side of~26!, to be time independent. The detector has, the
fore, dt as its natural time interval in this setting. Th
Painlevé-Gullstrand metric~15! in pure laboratory frame
variables, assumingB2ḃ2@v i

2/b2 as in the derivation of the
de Sitter metric~20!, reads

ds252
c0

2

B2ḃ2t2
~12Lz2!dt22

2z

t
dzdt1dz2. ~43!

The metric~43! is asymptotically, for larget, becoming that
of Galilei invariant ordinary 1D laboratory space, i.e. it
just measuring length along thez direction, because the
speed of sound in the ever more dilute gas decreases likt
and the ‘‘phonon ether’’ becomes increasingly less stiff.

The transition probabilities for absorption respective
emission are now given byP̃65@ge0,k/4RiC0(0)#(gab /g
21)2uT̃6u2, where the matrix elements are, cf. Eq.~34!,

uT̃6u25U E
2`

` dt

Bb2
expF6 i e0,kE

2`

` dt8

Bb2
1 iv0tGU2

.

~44!

Substituting the adiabatic time intervaldta5dt/(Bḃ2t2)
leads for larget to

ta5t0s21/~Bḃ2t !, ~45!

wheret0a5*2`
1`dt/(Bḃ2t2). The transformation to adiabati

time mapstP@2`,1`# ontotaP@2`,t0a# and, by further
substitutingy5e0,k(ta2t0a), we have
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uT̃6u25
1

e0k
2 U E

0

`

dy expF i S y7
v0e0k

Bḃ2

1

yD GU2

. ~46!

The integral is a linear combination of Bessel functions.
test its convergence properties, we are specifically intere
in the largee0k limit. Performing a stationary phase approx
mation for largeA56v0e0k /Bḃ2, we have for positiveA
~absorption! that the integral above becomesJ(A)
5(pAA)1/2exp@22AA# and for negativeA ~emission! J(A)
5(pAuAu)1/2. The final result then is

P̃65S gab

g
21D 2

A2pArmas
3S v'

m
D 2

3E
0

EPl
de0kA v0

e0kBḃ2
3H exp@24Av0e0k /Bḃ2#

1

5S gab

g
21D 2

A2prmas
3S v'

m D 2

35
.

1

2

A4EPlv0

Bḃ2

,

~47!

whereEPl;m is the ultraviolet cutoff in the integral for the
emission probabilityP̃2 , the ‘‘Planck’’ scale of the super-
fluid. Because of the convergence of the absorption inte
for P̃1 , the total number of particles detected remains fin
and there are no particles detected by the effective labora
frame detector at late times. This is in contrast to the
Sitter detector, which according to~41! still detects particles,
in a stationary thermal state.

There is a detector setting that corresponds to a detect
rest in the Minkowski vacuum. This setting is represented
the adiabatic basis, with time interval defined bydta
5dt/Bb2, realizable with the AQD by setting the Rabi fre
quencyV}1/t. Then, no particles whatsoever are detect
i.e., no frequency mixing of the positive and negative fr
quency parts of~32! does take place. The associated spa
time interval

ds25b2@2c0
2dta

21dzb
2# ~48!

is simply that of ~conformally! flat Minkowski space in
the spatial scaling coordinatezb and adiabatic time coordi
nateta.

V. SUMMARY AND CONCLUSIONS

We summarize the effective space-times considered
this article, and the associated time intervals in Table I. T
major observation of the present investigation is that
physical nature of the effective space-time considered in
condensed matter system reflects itself directly in the qu
particle ~phonon! content measured by a detector that ha
natural time interval equal to the time interval of this partic
lar effective space-time. We have demonstrated that the
1-7
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TABLE I. Various time intervals effectively measuring laboratory, de Sitter, and adiabatic time in a 111D
BEC, respectively, whereb5b(t), andB is independent of laboratory time. The third entry specifies if
AQD detector, tuned to the given time interval, detects phonons. In the laboratory frame, the detecto
small, nonthermal response for a finite amount of~initial! laboratory time@cf. Eq. ~47!#.

Effective space Time interval Phonons detected

Laboratory dt Yes ~nonthermal!
de Sitter dt5dt/Bb Yes ~thermal!
Adiabatic dta5dt/Bb2 No
ta
a
a

l-
e

ct
re
an

ly
on

b
ng
n
t

by
oher-
ame
lds
asi-
pro-
tion
for

ani
us-
tion
ey

am
tion of observer dependence can be made experimen
manifest by anatomic quantum dotplaced at the center of
linearly expanding cigar-shaped Bose-Einstein condens
which has atunableeffective time interval. Thus a possibi
ity opens up to confirm experimentally, in an effectiv
curved space-time setting, that, indeed, ‘‘a particle dete
will react to states which have positive frequency with
spect to the detector’s proper time, not with respect to
universal time’’@1#.

The Gibbons-Hawking effect in the BEC is intrinsical
quantum: The signal contains a ‘‘dimensionless Planck c

stant,’’ i.e. the gaseous~loop expansion! parameterArmas
3.

This implies that a reasonable signal-to-noise ratio can
achieved only by using initially dense clouds with stro
interparticle interactions. On the other hand, the phono
quasiparticles of the superfluid can be regarded as nonin

acting only in a first approximation inArmas
3!1. The ef-
d

in
ar
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fects of self-interaction between the phonons, induced
larger values of the gaseous parameter, can lead to dec
ence and the relaxation of the phonon subsystem. The s
line of reasoning applies to the evolution of quantum fie
in the expanding universe. The interactions between qu
particle excitations and their connection to decoherence
cesses in cosmological models of quantum field propaga
and particle production are, therefore, important topics
future work.
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