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Vacuum solutions of the gravitational field equations in the brane world model
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We consider some classes of solutions of the static, spherically symmetric gravitational field equations in the
vacuum in the brane world scenario, in which our Universe is a three-brane embedded in a higher dimensional
space-time. The vacuum field equations on the brane are reduced to a system of two ordinary differential
equations, which describe all the geometric properties of the vacuum as functions of the dark pressure and dark
radiation termgthe projections of the Weyl curvature of the bulk, generating nonlocal brane sjre3sesral
classes of exact solutions of the vacuum gravitational field equations on the brane are derived. In the particular
case of a vanishing dark pressure, the integration of the field equations can be reduced to the integration of an
Abel type equation. A perturbative procedure, based on the iterative solution of an integral equation, is also
developed for this case. Brane vacuums with particular symmetries are investigated by using Lie group
techniques. In the case of a static vacuum brane admitting a one-parameter group of conformal motions, the
exact solution of the field equations can be found, with the functional form of the dark radiation and pressure
terms uniquely fixed by the symmetry. The requirement of the invariance of the field equations with respect to
the quasihomologous group of transformations also imposes a unique, linear proportionality relation between
the dark energy and dark pressure. A homology theorem for the static, spherically symmetric gravitational field
equations in the vacuum on the brane is also proven.
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[. INTRODUCTION Due to the correction terms coming from the extra dimen-
sions, significant deviations from the Einstein theory occur in
The idea, proposed ifL], that our four-dimensional Uni- brane world models at very high energigs5]. Gravity is
verse might be a three-brane, embedded in a fivelargely modified at the electroweak scale 1 TeV. The cosmo-
dimensional space-timgghe bulk, has attracted considerable logical implications of the brane world theories have been
interest in the past few years. According to the brane-worldextensively investigated in the physical literat{iég. Gravi-
scenario, the physical fieldelectromagnetic, Yang-Mills, tational collapse can also produce high energies, with the five
etc) in our four-dimensional Universe are confined to thedimensional effects playing an important role in the forma-
three-brane. These fields are assumed to arise as fluctuatiotisn of black holeq7].
of branes in string theories. Only gravity can freely propa- For standard general relativistic spherical compact objects
gate in both the brane and bulk space-times, with the gravithe exterior space-time is described by the Schwarzschild
tational self-couplings not significantly modified. This model metric. In the five dimensional brane world models, the high
originated from the study of a single 3-brane embedded irenergy corrections to the energy density, together with the
five dimensions, with the 5D metric given bygs®  Weyl stresses from bulk gravitons, imply that on the brane
=e ) 70X dX”+ dy?, which, due to the appearance of the exterior metric of a static star is no longer the Schwarz-
the warp factor, could produce a large hierarchy between thechild metric[8]. The presence of the Weyl stresses also
scale of particle physics and gravity. Even if the fifth dimen-means that the matching conditions do not have a unique
sion is uncompactified, standard 4D gravity is reproduced ogolution on the brane; the knowledge of the five-dimensional
the brane. Hence this model allows the presence of large, aeyl tensor is needed as a minimum condition for unique-
even infinite noncompact extra dimensions. Our brane isiess. Static, spherically symmetric exterior vacuum solutions
identified to a domain wall in a 5-dimensional anti—de Sitterof the brane world models have been proposed first by
space-time. Dadhichet al.[8] and Germani and Maartef@]. The first of
The Randall-Sundrum model was inspired by superstringhese solutions, obtained i], has the mathematical form of
theory. The ten-dimensiond&lgxX Eg heterotic string theory, the Reissner-Nalstrom solution, in which a tidal Weyl pa-
which contains the standard model of elementary particlesameter plays the role of the electric charge of the general
could be a promising candidate for the description of the reatelativistic solution. The solution has been obtained by im-
Universe. This theory is connected with an eleven-posing the null energy condition on the 3-brane for a bulk
dimensional theoryM theory, compactified on the orbifold having nonzero Weyl curvature. The solution can be matched
R10x S'/Z, [2]. In this model we have two separated ten-to the interior solution corresponding to a constant density
dimensional manifolds. For a review of dynamics and geombrane world star. A second exterior solution, which also
etry of brane Universes s¢8]. matches a constant density interior, has been derivéfl]in
Two families of analytic solutions of the spherically sym-
metric vacuum brane world model equatiofwith g
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rameterB, have been obtained by Casadio, Fabri and Maz- Suppose that from some static, spherically symmetric so-
zacurati[10]. Nonsingular black-hole solutions in the brane lution of the vacuum gravitational field equations on the
world model have been considered[itl], by relaxing the brane we have obtained we want to construct other physical
condition of the zero scalar curvature but retaining the nulisolutions of the field equations by means of scale transfor-
energy condition. The “on brane” 4-dimensional Gauss andmations. The process of constructing a new physical model
Codazzi equations for an arbitrary static spherically symmetDy applying scale changes to the given initial model is re-
fic star in a Randall-Sundrum type Il brane world have beerf€rred to as a *homology transformatiori14]. The homol-
completely solved by Visser and Wiltshifd2]. The on- 09y properties of stars _have been intensively mvesugated in
brane boundary can be used to determine the fu|pstrophy_3|cs, and families of stars constructed in such a way
5-dimensional space-time geometry. The procedure can JEOM @ given star are called homologous stars. For Newton-
generalized to solid objects such as planets. A method t&N homologous stars in equilibrium, the |qd|V|duaI members
extend into the bulk asymptotically flat static spherically @re related to each other by transformations of the form
symmetric brane-world metrics has been proposed by Casa-r=ar, p—p=bp and M—M=cM, with a,b,c con-
dio and Mazzacurafil3]. The exact integration of the field stants. Chandrasekhilr4] refers to this change of scale as a
equations along the fifth coordinate was done by using théhomologous transformation,” and the homology theorem of
multipole (1f) expansion. The results show that the shape ofChandrasekhalr14] states that if6(¢) is a solution of the
the horizon of the brane black hole solutions is very likely astellar structure equations then so @G'"~Vg(C¢) also,
flat “pancake” for astrophysical sources. whereC is an arbitrary constant and<In<5. By analyzing

Stellar structure in brane worlds is very different from thatthe homology transformation properties of the gravitational
in ordinary general relativity. An exact interior uniform- field equations on the static vacuum brane, by using Lie
density stellar solution on the brane has been fourj@jinin ~ group theory techniques, we shall show that the requirement
this model the general relativistic upper bound for the massef the invariance of the field equations with respect to an
radius ratio,M/R<4/9, is reduced by 5-dimensional high- infinitesimal generatoKX fixes in a unique way the relation
energy effects. The existence of brane world neutron stargetween the dark pressure and the dark radiation terms. We
leads to a constraint on the brane tension, which is strongexiso prove the homology theorem for the gravitational field
than the big-bang nucleosynthesis constraint, but weakerquations in vacuum on the brane.
than the Newton-law experimental constraif@$ The present paper is organized as follows. The basic equa-

It is the purpose of the present paper to systematicallyions describing the spherically symmetric gravitational field
consider spherically symmetric space-times in vacuum ormquations in the vacuum on the brane are derived in Sec. Il.
the brane. As a first step we derive the two basic ordinanBome particular classes of solutions for vacuum branes are
differential equations for the dark radiation and dark pres-obtained in Sec. Ill. In Sec. IV we consider vacuum brane
sure, describing the geometry of the vacuum on the branespace-times admitting a one parameter group of conformal
By means of some appropriate transformations these equaiotions. Homology properties of the gravitational field
tions take the form of an autonomous system of two ordinangequations are investigated in Sec. V. We conclude and dis-
differential equations. Some simple integrability cases areuss our results in Sec. VI.
considered, leading to some already known or new vacuum
solutions on the brane. The very important case correspond-
ing to a vanishing dark pressure term is considered in detail.
The integration of the gravitational field equations in the
vacuum on the brane is reduced to the integration of an Abel On the 5-dimensional space-timghe bulk), with the
type equation. Since this equation does not satisfy the knownegative vacuum energys and brane energy-momentum as
integrability conditions, the solution is obtained in terms ofthe source of the gravitational field, the Einstein field equa-
perturbative series obtained by solving the integral equatiotions are given by
associated to this problem.

Next we consider vacuum space-times on the brane that G;=Kk2T,;,
are related to some particular Lie groups of transformations.
As a first group of admissible transformations for the
vacuum on the brane we shall consider spherically symmet-
ric and static solutions of the gravitational field equations
that admit a one-parameter group of conformal motions, i.ewith A, the vacuum energy on the brane ag¢=87Gs. In
the metric tensolg,, has the property.g,,=¢(r)g,., this space-time a brane is a fixed point of fesymmetry.
where the left-hand side is the Lie derivative of the metricln the following, capital Latin indices run in the range
tensor, describing the gravitational field on the vacuun®, ... ,4,while Greek indices take the values.O. ,3.
brane, with respect to the vector fied¢t, and ¢ is an arbi- Assuming a metric of the form ds’=(n/n,
trary function of the radial coordinate With this assumption +g,;)dx'dx’, with n,dx'=dy the unit normal to they
the gravitational field equations describing the static vacuum= const hypersurfaces and,; the induced metric ony
brane can be integrated in Schwarzschild coordinates, and anconst hypersurfaces, the effective four-dimensional gravi-
exact simple solution, corresponding to a brane admitting &ational equations on the brafthe Gauss equatigriake the
one-parameter group of motions, can be obtained. form [4,5]

Il. STATIC, SPHERICALLY SYMMETRIC VACUUM
FIELD EQUATIONS ON THE BRANE

Tiy=—Asgiy+ 8(Y)[ = Npgiy+ T, (1)
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G,,= —AQ,, + KT, +kiS,,~E,,, ) ds’=—e'dt?+edr?+r¥(de?+sifed4?).  (7)
whereS,, is the local quadratic energy-momentum correc- Then the gravitational field equations and the effective
tion energy-momentum tensor conservation equation in the

vacuum take the form

1 1_ ., 1 B 5

Suv=15 1 ™ 7 Tu Trat 579u(3T Tap=T), A( 1 x’) , L _481G ®
PR [l ,
©) r2 o r r2 kN,

andE,, is the nonlocal effect from the free bulk gravita-

tional field, the transmitted projection of the bulk Weyl ten-

sor Ciajs, E;3=Ciajen”nB, with the property E,,

—E,,8/'6; asy—0. We have also denotéd=87G, with 9

G the usual four-dimensional gravitational constant.
The four-dimensional cosmological constant, and the

four-dimensional coupling constank,, are given byA e M v+ ?+ —

(U=P),
=k3(As+kEN2/6)/2 and ki=kiN,/6, respectively. In the ' 2 KNy 10
limit )\gl—>0 we recover standard general relativity.
The Einstein equation in the bulk and the Codazzi equa- U’'+2p’ 6P
tion also imply the conservation of the energy-momentum v'=- - (11

tensor of the matter on the brarie,T,”=0, whereD, de- 2Uu+P  r(2U+P)

notes the brane covariant derivative. Moreover, from thewhere’:d/dr. Equation(8) can immediately be integrated
contracted Bianchi identities on the brane it follows that the, give

projected Weyl tensor should obey the constrdnE ,”

_ 14 v
_k5D”S'“ ) . . . e—le_&_w (12
The symmetry properties &, imply that in general we r r’
can decompose it irreducibly with respect to a chosen
4-velocity fieldu* as[3] whereC; is an arbitrary constant of integration, and we de-
noted
1
E,.=—kUlu,u,+ §hw +P,,+2Qu, |, (4 487G [,

Q(r)= N reu(r)dr. (13

where k=ks/ky, h,,=g,,+u,u, projects orthogonal to

u#, the “dark radiation” termU = — k4EMu“uV is a scalar, The functionQ is the gravitational mass corresponding to

Q.= k4hZEaﬁ a spatial vector andP,,=— k“[hE‘th)B the dark radiation ternthe dark mass ForU=0 the metric

— %hwhaﬁ]Eaﬁ a spatial, symmetric and trace-free tensor. coefficient given by Eq(12) must tend to the standard gen-
In the case of the vacuum state with=p=0, T,,=0  eral relativistic Schwarzschild metric coefficient, which

and consequentl, ,=0. Therefore, by neglecting the ef- givesC,=2GM, whereM = const is the mass of the gravi-

fect of the cosmological constant, the field equations describtating body. In the following we also denotex

ing a static brane take the form =167G/k*\. By substitutingy’ given by Eq.(11) into Eq.
(9) and with the use of Eq(12) we obtain the following
Ru,,=—EL., 5 system of differential equations satisfied by the dark radia-

tion term U, the dark pressur® and the dark mas®, de-

with R, =0=Ej,. In the vacuum casE ,, satisfies the con-  scribing the vacuum gravitational field, exterior to a massive
straintD ,E,,”=0. In an inertial frame at any point on the pody, in the brane world model:

brane we haves“= &y andh,,=diag(0,1,1,1). In a static

vacuumQ, =0 and the constraint fd ,, takes the form du_ (2U+P)[2GM+Q+a(U+ 2P)r?]
dr 2GM Q
1 4 rz( 1— —
§DMU+§UAH+D”PW+A”PW=O, (6) r r
dP 6P
whereD , is the projection(orthogonal tou”) of the covari- - ZW T (14
ant derivative andh ,=u”D,u, is the 4-acceleration. In the
static spherically symmetric case we may chookg dQ 5
1 o
=A(r)r, and P,,=P(r)(r,r,—3h,,), where A(r) and gy ~3ar<u. (15
P(r) (the “dark pressure) are some scalar functions of the
radial distance, andr , is a unit radial vector. The system of Eqg14) and(15) can be transformed to an
We chose the static spherically symmetric metric on theautonomous system of differential equations by means of the

brane in the form transformations
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_2GM+Q

— p=3ar?P, #=Inr.

(16)

q w=3ar?u,

With the use of the new variable given by E@s6), Egs.
(14) and (15) become

dq_ 1
1
d (2u+p)| g+ §(M+2P)
4= e —255+21=2p.
(18

Equations(14) and (15), or, equivalently, Eqs(17) and
(18), may be called the structure equations of the vacuum o
the brane.

Ill. CLASSES OF VACUUM SOLUTIONS ON THE BRANE

The system of structure equatiofis), (15) is not closed
until a further condition is imposed on the functiddandP.

By choosing some particular forms of these functions, sev-

eral classes of static vacuum solutions can be generated

the framework of the brane world model. As a first case we

consider that the dark radiatidd and the dark pressure
satisfy the constraint

2U+P=0. (19
Then Eq.(14) takes the form
dp P
ar = e (20
with the general solution given by

where Py is an arbitrary constant of integration. Equation
(15 immediately gives the dark mass as

_ 3C¥PO
C2r

Q (22

0

whereQq is a constant of integration. Therefore the metric
on the brane is

2GM+Q, 3aP,
r 2r2

e’=e *=1— (23

This form of the metric has been first obtained by
Dadhichet al.[8].
A second class of solutions of the system of EQ{l),
(15) can be obtained by assuming that
U+2P=0. (29
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Then Eq.(14) is transformed into an algebraic equation,
which gives

2 2GM
§I’ .

Q= (25

Hence the metric coefficients of the vacuum brane line
element become

e’=Cqr?, e = (26)

3
where C, is a constant of integration arel’ has been ob-

tained by integrating Eq11). For this class of solutions the
projections of the Weyl bulk tensor are given by

n

U=-2P=

(27)

9ar?

In the case of a vanishing dark radiatidd=0, which
also implies a vanishing dark ma§s=0, the dark pressure
P satisfies a Bernoulli type equation, given by

dP 3P P(GM+ardP)

- W+ . + 2( ZGM) =0, (28
r<{1—
r
with the general solution
1
P= , (29
2GM  «
r3{c,\/1- -—
r GM

where C; is an arbitrary constant of integration. Equation
(12) gives v'=—2P'/P—6Ir, or expl)=C,/P%5 Hence
for U=0 the metric tensor components are given by

gl 57

2GM —-1/212

1——-
r

2GM
r

a

1'GMm

e’= Cz(

e M=1-

r (30

Sincea/GM is very small, for a zero dark radiatiok)
=0, the deviations from the Schwarzschild geometry are
very small. The standard general relativistic result is recov-
ered fora—0, which givesC3C,=1.

Next we consider the case of a vanishing dark pressure
P=0. The dark radiation and the dark mass can be obtained
by solving the following system of coupled differential equa-
tions, which immediately follows from Eq$17) and (18):

dqg
du 3-60—u 32

46 - 3-q)

0-4
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By eliminating u between Eqs(31) and (32) we obtain  object, in which the functiong(r) andu(r) take the values
the following second order differential equation for the func-q(ro) =[2GM+ Q(ro)1/ro and u(ro) =3ar3U(r,), respec-
tion q: tively.

The solution of the integral equatidi37) can be easily
2 obtained by using the method of successive approximations,
+2q(79-3)=0. or the method of iterations. In this way we can generate the
(33 solution to any desired degree of accuracy. Taking as an ini-
tial approximation the general solution of the linear part of

By means of the successive transformatioig/dg  the differential equatiori33), the general solution of the in-

=1/, v=w(1—-q) %3 Eq.(33) can be transformed to the tegral equatiorf37) can be expressed in the first, second and

d’q dq dq
3(1—Q)@+(13q—3)d—0+2(

de

following, Abel type, first order differential equation: mth order approximationme N, as follows:
dw 13g-3 0 d? d
T (1—q)~%w? :j _ 9% 4, 9%
dq 3 a.(6) (JOF(H X)| 3o = 13005
2q9(3—7
L2679 q)(1—q)*7’3w3:o. (34) dgo\® |
3 —2| 5| —14a3|dx-+do(6), (40)
It is a matter of simple calculations to check that E2f)
has a particular solution of the form
W= F(1-g)% (35) 0 d’q dq
. -1 -1
a qm(e>=f F(0=%)| 3Am-1— 5 —13n-1—,
6o dx X
By introducing a new variablep=(1—q) %3 q=1
-3 2
— 7~ °, EQ.(34) can be further transformed to dgn,_
2| =g | —14ah 1 |dxrana(6), (4D
dw 107°*-13 2(p—1)(7T-47°
O 7 WA (v )(3 7 )w3=0. (36)
7 Ui Ui q(0)=lim gu(6). (42)

m— o

Therefore we have reduced the problem of the integration

of the gravitational field equations for the vacuum on the The zeroth order approximation to the solution of the
brane in the case of a vanishing dark pressure tBrm0, to  static spherically symmetric gravitational field equations in
the problem of the integration of an Abel type equation.the vacuum on the brane is given by

However, Eq.(36) does not satisfy the standard integration

conditions for Abel type equationi45], and an exact analyti- Co p
cal solution of this equation seems to be difficult to obtain. e”z—zCO\/A , (43
Hence, in order to find some explicit solutions for the Ju 2

vacuum gravitational field on the brane, we have to use some

perturbative methods. .
By using the Laplace transform and the convolution theo- e =11 A7 (44)

rem, the differential equatiof83) is equivalent to the follow-

ing integral equation:

U=—, (45)

d’q d

q _[(da\* _
3(]&—13(]&—2(&) —14q dx

4
Q(0)=L F(6—x)
0

whereC, is an arbitrary constant of integration.

+0o(6), (37) The first order approximation to the solution is given by
where arg r
eV:CO T > P y
1 Az(ro_r)[A1+A2r0r+A2r0r ]
F(G—X)Z §[82(0—x)_e—(0—x)], (38) (46)
A oAb 20 A2 (415) A r3+A
QO( 0)_Ale +AZe ’ (39) e_>\= 1+ 2 0[( 20 1] —3A1A2I‘
and we denotedA;=[3q(6y) — n(6o)]exp@y)/3 and A,
= u(0p)exp(26y)/3. 6,=Inrqis an arbitrary point, like, for _onl 2A rz_ﬁ 124 EAZr“ (47)
example, the vacuum boundary of a compact astrophysical 2 20 g 572
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2A5(ro—=1)[Ar+Agror(ro+r)] 1 ¢2 2 ¢
U= aror . (48) §F+§TZQ(U_P)' (54)
Therefore the general solution to the static gravitational
field equations on the vacuum brane can be obtained in an
order of approximation.

We can formally solve the field equatiof&3) and(54) to
xpresdJ andP as

IV, STATIC VACUUM BRANES Uo | AP L E(;,,z (55
ADMITTING A ONE-PARAMETER GROUP 3a|c2z r r2 c? ’
OF CONFORMAL MOTIONS
In the present section we are going to consider a special _ 112 ¢9’ +£ 1o 2, 56
class of static vacuum brane solutions, which have as a group T 3« c2 r2 C2 ¢ (56)

of admissible transformations the conformal motions.

For a sphericall)_/ symmetric gnd static vacuum on the \yith the use of Eqs(52) and (55) it follows that the
brane the assumption ,Of the exilstence of a Onefparametﬁﬁnction ¢ satisfies the first order differential equation
group of conformal motions requires that the condition

Lfg,u,V: f}L;V+§V;/.L:¢(r)gMV (49)

hold for the metric tensor components, where the left-hand
side is the Lie derivative of the metric tensor, describing the
vacuum brane gravitational field, with respect to the vector’
field &*, and ¢(r) is an arbitrary function of the radial co-
ordinater. We shall further restrict the fiel@#* by demanding
§"u,=0. Then as a consequence of the spherical symmetry
we haveé?=£3=0. This type of symmetry has been inten-

sively used to describe the interior of neutral or charged genyhereB>0 is a constant of integration. Therefore the gen-
eral relativistic stellar-type objecf46]. With the assumption eral solution of the static gravitational field equations on the

(49) the gravitational field equations describing the spheriyrane for space-times admitting a one-parameter group of
cally symmetric static vacuum brane can be integrated igonformal motions is given by

Schwarzschild coordinates and an exact solution can be ob-

3 , 1 1 3 , .
&(ﬁ(ﬁ =7 §¢ : (57
ith the general solution given by

; (58)

r2

tained. Moreover, the requirement of the conformal invari- 1 B
ance of the static brane uniquely fixes the functional form of e’=A%r2, e r=—|1+—|, (59
the projections of the bulk Weyl tensor componekhkér) 3 r2
andP(r).
Using the line element7), Eq. (49) explicitly reads 1 B
. — o2 ( _2) ’ (60
v =¢, &=C=const, Qar r
Lo dEt 1 [4B
&= N&+25-=¢. (50) P:9ar2 r—2—1 . (61)

Equations(50) have the general solution given
a 50 9 9 bye) In the caseB=0 we recover the solution given by Egs.

s o _ or (26), satisfying the conditiold +2P=0. For this case the
e'=AT", ¢=Ce ", #=C&+di—5, (B function ¢=C/\3 is a constant.

with A andC arbitrary constants of integration. V. HOMOLOGY PROPERTIES OF THE STATIC
Hence the requirement of the existence of conformal mo- GRAVITATIONAL FIELD EQUATIONS
tions imposes strong constraints on the form of the metric IN VACUUM ON THE BRANE
tensor coefficients of the static vacuum brane. Substituting
Egs.(51) into the field equation$8)—(10) we obtain Let us assume that a solution of the field equati(8)s
(11) is known. Then it seems reasonable to require that a
1 $? 2 ¢¢’ family of solutions should exist, whose individual members
1 et §T=3QU, (52 are related by more general transformations of the form
—r(r), U=U(U), P—P(P) andQ—Q(Q) [18]. We shall
1 »? call a set of solutions of the vacuum gravitational field equa-
_< 1_3_) = —a(U+2P), (53  fions on the brane related by transformations of this form a
r2 2 homologous family of solutions.
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In order to obtain the homology properties of the structurearbitrary functional relationrP=P(U). Then, by denoting
equationg14) and(15), it is necessary first to close the sys- y(U)=P(U)/U anddP/dU=P’(U)=c,, the basic equa-
tem of equations. We shall do this by assuming that the darkions describing the vacuum gravitational field on the brane
pressureP and the dark radiatiok) terms are related by an take the form

(62

(66)

dU  ¢(U)U [1+2y (U){2GM+Q+ar’[1+2y(U)]U}+6r —6(2GM+Q)
dr 1+ 2c 2GM Q) ’
21— - =
r r
|
dQ ) transformations of the fornxﬂf(x), yJHW(yi) we have
W_%’r uU. (63 {={(x) and »'=7!(y"). As a result Eq(65) becomes
A system of ordinary differential equations d74(y%)  dZ(x) )
dyk dyk - dX _X(In|f |)|
—=fXxy), k=12,...m, (64)
dx .
with no sum ovek.
with y=(y,y2, ... y™ is invariant under the action of the 10 analyze the homologous behavior of E@2) and(63)

infinitesimal generatorX = £(x,y)(d/9x) + 5*(x,y) (d/ ay*)

if and only if [L,X]=rX, where[ ] denotes the Lie bracket,
L= (a/9x) + f<(al ay¥) andr =L (&) [17], or, in explicit form
[18],

an® ank d 9 otk ofk

A /AT ST K S A L LA

IX élyl IX 0’)yJ dX 0’)yl
k=1,2,...m. (65)

with respect to quasihomologous transformations involving a
general functional dependence of the physical paramaters,
=r(r), U=U(U), P=P(P) andQ=Q(Q), we shall inves-
tigate the group of transformations generated by the infini-
tesimal generator

J
E.
As applied to the case of Eq&2) and (63), Egs. (66)

d d
X=4(r) 5+ 1) 55 + 77(Q) (67)

In the particular case whedé generates quasihomologous give

dpt(U) d¢ d

[1+2y Y[2GM+Q+ ard(1+2y)U]+6r—6(2GM+ Q)

du_ar fgn

2

2GM Q

r r

[1+2y [2GM+Q+ ar3(1+2y)U]+6r —6(2GM+ Q)

1 J
+7 (U)mln vU

1+2cq

J [1+2y [2GM+Q+ ar®(1+2y)U]+6r—6(2GM+ Q)

+7;2(Q)%In ( 2GM Q) , (68)
=7
d7%(Q) d¢(r) _4(r)  7YV)
aQ dr 27 TTu 69)

In Eq. (69) the variables can be easily separated, leading to general expressions for the fuf(elipng (U) and 7%(Q) of

the form

a
{(r)= r—2+br, 7t(U)=(c—

3b)U, 7%(Q)=cQ+d, (70

wherea,b,c,d are separation and integration constants, respectively. Substituting (6&aives the following consistency
condition for the coefficients,b,c,d and for the functiong(U) andcs:
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4a ! Cs
—3+b=(c—3b)u(7— :
.

a 2GM+Q i1(d—2bGM)~l—(C—b)Q
vy l+cg

4 2GM r 2GM
o Q - Q

r r r r

. a 3a(1+2y H(1+2y)Ur?+6
r2 (1+2y H[2GM+Q+ a(1+2y)Ur3]+6r—6(2GM+Q)
. (1+2y H[3ab(1+2y)Ur3+cQ+d]+6br—6(cQ+d)
(1427 H[2GM+Q+ a(1+2y)Ur3]+6r—6(2GM+ Q)

-2y 7y [2GM+Q+a(1+2y)Ur3]+a(1+2y H(1+2y+2y'U)r3
Fe—3pu 2 [ Qt a(1+2y)Ur]ta(1+2y 7)(1+2y+2y'U)r" 71
(1+2y H[2GM+Q+ a(1+2y)Ur3]+6r—6(2GM+ Q)

Equation (71) is identically satisfied fora=b=c=d tional relation between two unknown functions, the dark
=0, corresponding t&X=0 (the identity transformation In pressureP and the dark radiatiod. The symmetry proper-
the second case, in order to satisfy the ider(fit}), we have ties of the vacuum brane space-times can uniquely fix the
to take as a first stea=0. Then we chosé=2bGM and functional relation between these two free parameters of the
c=b. From the general structure of the ident{&a1) it fol- model. The requirement that the vacuum on the brane admits
lows that it cannot be identically satisfied unlegs=0 and a one-parameter group of conformal motions or a group of
c.=0, implying y=P/U=const andy=cs=const. Then in homologous transformations uniquely fixes the functional
order for Eq.(71) to be identically satisfied we must adopt dependence of the free paramet&sand U. The relation
for b the valueb=1 as the last compatibility condition. between the dark pressure and the dark radiation for the
Therefore we have obtained the following theorem. vacuum on the brane admitting a one-parameter group of

Theorem The static, spherically symmetric gravitational conformal motions is of the form R+U=(B/a)r~*. On
field equations in vacuum on the brane are invariant wittthe other hand the invariance of the field equations with re-
respect to the group of the quasihomologous transformatior8Pect to the Lie group of homologous transformations re-
if and only if the dark pressure is proportional to the darkquires a linear proportionality relation betweBrandU, P
radiation,P=yU, y=const. =vyU. Once the relation betwee and U is known, the

The infinitesimal operator generating the group of quasi-general solution of the vacuum field equations can be found

homologous transformations on the static brane has the forferturbatively.
The Schwarzschild solution is no longer the unique

d vacuum solution of the gravitational field equations. More-

—. (72 ;

JQ over, most of the general solutions we have found are not

asymptotically flat and consequently they are of a cosmo-

The quantities Q+2GM)/r andUr? (or any two inde- logical nature.

pendent functions of themare homologous invariants. In order to obtain a manifestly coordinate invariant char-

Hence the homology properties of the spherically symmetri@cterization of certain geometrical properties of geometries,

vacuum space-times on the brane are described by the fopuch as for example curvature singularities, the Petrov type

lowing homology theorem. of the Weyl tensor, etc., the scalar invariants of the Riemann
Homology Theoremlf U(r) is a solution of the static, tensor have been extensively used. Two scalars, which have

spherically symmetric gravitational field equations inbeen considered in the physical literature, are the

vacuum on a brane with the dark pressure proportional to thKretschmann scalarsRiemSe= R RIK and RicciSq

1% 1%
XZFE—ZUm‘f‘(Q‘FZGM)

dark radiation, then so also B?U(Cr), whereC is an ar- =R;jR", whereR;;,, is the Riemann curvature tensor.
bitrary constant. For space-times which are the product of two
2-dimensional spaces, one Lorentzian and one Riemannian,
VI. DISCUSSIONS AND FINAL REMARKS subject to a separability condition on the function which

couples the 2-spaces, it has been suggddt@dthat the set
In the present paper we have considered some properties
of the vacuum exterior to compact astrophysical objects in
the brane world model. The system of field equations can be
reduced to two ordinary differential equations, in three un-
knowns, whose solution gives all the geometrical propertieforms an independent set of scalar polynomial invariants,
of the space-time. The system of basic equations describingatisfying the number of degrees of freedom in the curvature.
the vacuum gravitational field equation on the brane is notn Eq. (73) R=g"g/*R;; is the Ricci scalar and the quanti-
uniquely determined and its solution depends on the functiesr,, r, andw, are defined according {@0]

C={R,I‘1,r2,W2}, (73)
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o1
r1=aspad">=7 S, (74
.. ,BB ,CACA 1w
2= dpgre P =- gSaSES"é‘, (75
CD,j,EFAB 1 ~cd~efab
W=V agcpVep Y == gcabcdcefC )
(76)

where Si=R2—1Ré" is the trace-free Ricci tensofhag s

denotes the spinor equivalent 8f,, W agcp denotes the

spinor equivalent of the Weyl tens@,;.q, and Eabcd de-

notes the complex conjugate of the self-dual Weyl tensor:

;rbcd: #(Cavca—1* Capcd -

In terms of the “electric” E,.=CapcquPu? and “mag-
netic” H,.=C¥,.Pu? parts of the Weyl tensor, wheté is
a timelike unit vector an€@?, .= 3 7.,.CS} is the dual ten-
sor, the invariantv, is given by[19]

PHYSICAL REVIEW D69, 064020 (2004
1 apybgc abpec
W2:3_2(3EbHcHa_ ELECEZ)

+ 55 (HEHOHS— 3EREDHY). 7

The values of the invariant s¢R,r,,r,,w,} for some
static spherically symmetric vacuum brane solutions are pre-
sented in the Appendix.

The corrections to the Newtonian potential on the brane
have been considered by using perturbative expansions in the
static weak-field regime. The leading order correction to the
Newtonian potential on the brane is given = (GM/r)

X (1+212/3r?) [1], wherel is the curvature scale of the five-
dimensional anti—de Sitter spacetime (AylSor it can also
involve a logarithmic factof21]. This type of weak-field
behavior cannot be recovered in the classes of solutions we
have considered in the present paper. However, this could be
possible for models involving a more precise knowledge of

the general behavior of the dark radiation and dark pressure
terms.

APPENDIX

In this appendix we present the values of the Kretschmann sd@iemSe=R;;, R/ andRicciSg=R;;R" and some
values of the independent set of the scalar polynomial invarigRis; ,r,,w,} for the exact static spherically symmetric

vacuum brane geometries discussed in the paper.
@
2GM+Qqy 3aPy

V_a"N—
e’'=e 1 ; o2’ (A1)
9P 6[21a2P2+ 12aPy(2GM+Qg)r + 2(2G M+ Q,)?r2
RicciSog= T Riequ:[ 0 ol 8Q0) ( Qo ], (A2)
r r
B  9a%P B
R=0, r;= PR r,=0, (A3)
3[27a°P3+27a?P3(2GM+ Qo)r + 9aPy(2GM+ Qq)?r?+ (2GM+ Q) %3]
4r1?
b
b) el 2GM . (4 2G M\ Y22 N 2GM A
' =Co| 1= ——ICi= g\l — , et=le——, (A5)
6a?
RicciSg= 5 (AB)
@ 2GM
——C;\/1- ré
GM r
2GM
24 —4C3G3M3+| a?+2C3G?°M?—2aC,GM \/ 1— r
RiemSa 5 : (AT)
a 2GM
——C;\/1- r’
GM r
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3a? 3a°
R:O, M= 2 ro=— 3 (A8)
Y 2GM @ 2GM
2| ——-C;\/1- ré 4 ——-C;\/1- r®
GM r GM r
o 4 o 2
9aC,G?M2(2GM—r)| | —| r?+7| —| Cir(r—2GM)+4C}(2GM—r)?
3 GM GM
Re(w,)=—
4 2GM  « 2GM
Ci\/1- -— 1- —rt2
r GM r
o 2 o 4 o 2
G3M3| 2C2(2GM—r)—| —| r||| = r?=31 —| C2r(2GM—r)+4C2(2GM—r)?
3 GM GM GM
- . (A9)
4 2GM  «
Ci\/1- -— rt?
r GM
Im(w,)=0. (A10)
(©
e'=A%? e == 1+E (A11)
- ] _3 r2 ]
Riceis 2(2B%+r%) Riems 8(B%+r%) (AL2)
ICCI _—, em _—,
= 3ré & 3ré
Re0 2B%+r* 4B°-3Br*—r® (AL3)
=0, n=——— =———5
Yoer® 2 36r12
Re(w,) = % Im(w,)=0. (Al14)
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