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We consider a local formalism in quantum field theory, in which no reference is made to infinitely extended
spatial surfaces, infinite past or infinite future. This can be obtained in terms of a fundfipgak. | of the
field ¢ on a closed 3D surfacE that bounds a finite regioR of Minkowski spacetime. The dependence of
W[¢,>] on X is governed by a local covariant generalization of the Stinger equation. The particle
scattering amplitudes that describe experiments conducted in the finite fegidhe laboratory during a finite
time—can be expressed in termsWf ¢, ]. The dependence ¥ ¢, ] on the geometry oF, expresses the
dependence of the transition amplitudes on the relative location of the particle detectors. In a gravitational
theory, background independence implies Watp,>. ] is independent ok. However, the detectors’ relative
location is still coded in the argument @[ ¢ ], because the geometry of the boundary surface is determined
by the boundary value of the gravitational field. This observation clarifies the physical meaning of the
functionalW[ ¢] defined by nonperturbative formulations of quantum gravity, such as spinfoam formalism. In
particular, it suggests a way to derive the particle scattering amplitudes from a spinfoam model. In particular,
we discuss the notion of vacuum in a generally covariant context. We distinguish the nonperturbative vacuum
|0s), which codes the dynamics, from the Minkowski vaculfy), which is the state with no particles and
is recovered by taking appropriate large values of the boundary metric. We derive a relation between the two
vacuum states. We propose an explicit expression for computing the Minkowski vacuum from a spinfoam
model.
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I. INTRODUCTION tum states of gravity and matter on a 3D bound#&:y]. But,
as far as we know, no formalism is yet available for deriving

To understand quantum gravity, we have to understangarticle scattering amplitudes from these boundary ampli-
how to formulate quantum field theoryQFT) in a tudes. Here we indicate a direction to construct such formal-
background-independent manner. In the presence of a baclsm.
ground, QFT yields scattering amplitudes and cross sections The key ingredient for developing this formalism is the
for asymptotic particle states, and these are compared witilinkowski vacuum state, namely the “no-particle” state, or
data obtained in the laboratory. The conventional theoreticahe coherent semiclassical state associated with the classical
definition of these amplitudes involves infinitely extendedMinkowski solution. The construction of this state is consid-
spacetime regions and relies on the symmetry properties @fred a major open problem in nonperturbative quantum grav-
the background. In a background independent context thigy, and it is being studied using a variety of different tech-
procedure becomes problematic. For instance, consider theques. See for instance R€i8] and references therein.

2-point function Here, we propose a tentative explicit expression for comput-
ing the Minkowski vacuum from a spinfoam formalism.
W(X,y)=(0|b(x) $(y)|0). (1) We begin by introducing a certain number of general

tools, in the context of the quantum field theory of a simple

In QFT over a background, the independent variaklesdy  free massive scalar field. The Euclidean functional integral
can be related to the spacetime location of particle detectorsver a finite spacetime regidR of spacetime defines a func-
In a background independent context, general covariance intional W[ ¢,% ] that depends on the field boundary valge
plies immediately thatW(x,y) is constant forx#y, and and the geometry of the 3D surfagethat boundsRk. We
therefore it is not clear how the formalism can control theargue that all physical predictions on measurements per-
localization of the detector§See for instance Refl].) formed in the regiorR, including scattering amplitudes be-

Indeed, current efforts to define a quantum theory of graviween particles detected in the lab, can be expressed in terms
ity nonperturbatively, such as loop gravit®,3], may claim  of W[ ¢,X]. The geometry ok, codes the relative spacetime
remarkable theoretical progress, but the problem of derivindocalization of the particle detectors. The functional satisfies
scattering amplitudes remains open. The effort to develop a local Schrdinger equation. This defines a covariant for-
covariant version of loop gravity lead to spinfoam techniquesnalism for QFT entirely in terms of boundary data. For a
[4]. These provide well defined expressions for a Misnergeneral formulation of classical and quantum mechanics
Hawking “sum over 4-geometries[5,6], where finiteness along these lines, see Ref9,10] and[11].
results from the discreteness of space revealed by loop grav- Next, we consider the application of this formalism to the
ity. The spinfoam formalism provides an amplitude for quan-gravitational context. In the gravitational contextWf ¢, |
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is well defined, then background independence implies that it

is independent from local variations of the location3af At
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Vel=(g|¥). @

first sight, this seems to leave us in the characteristic intern this representation, the operal@ reads
pretative obscurity of background independent QFT: the in-

dependence AV ¢, ] from %, is equivalent to the indepen-
dence ofW(x,y) from x andy, mentioned above. But at a
closer look, it is not so: in this context the boundary field

W1, @2, T1=(@1|W(T)|¢y). (5)

It satisfies the Euclidean Schiioger equatioriin both vari-

includes the gravitational field, which is the metric, andables

therefore the argument 9% ¢,2 ]=W[ ¢] still describes the

relative spacetime location of the detectors. This fact should
allow us to express scattering amplitudes directly in terms of

W[ ¢] even in the background-independent context.

d
- a_TW[QC’l,ﬁDz,T]:H<p1W[<P1,<Pz,T]- (6)

We distinguish two distinct notions of vacuum. The firstis grqm, (3), we can obtain the vacuufop to normalizationas

the nonperturbative vacuum sta@y) that the functional
integral on the bulk defines on théinematica] Hilbert
space associated with the boundary surfacedf the metric

Vo, [¢]=N(¢|0y)= limW[¢,0T]. (7)

T—oo

on X is chosen to be spacelike, this is the Hartle-Hawking

state[7]. In the context we are considering, insteadis the
boundary of a finite 4D region of spacetime, di6d) is a

Particle scattering amplitudes can be derived from
W[ ¢41,¢2,T]. For instance the 2-point function can be ob-

background-independent way of coding quantum dynamicgined as the analytic continuation of the Schwinger function

[11]. The second notion of vacuum is the Minkowski

vacuum state. Here we denote the Minkowski vacuum state

as|0y) [except in Eq.(1), where it was denote{D)]. We

shall argue that this state is recovered for appropriate values

of the boundary metric.

A main result of this work is an equation connecting the
two vacuum states, and an explicit formula for the

Minkowski vacuum statelOy), in terms of a spinfoam

model. Here we present only the key ideas and the mai

results; detailed derivations will appear elsewhere.

Il. LOCAL TOOLS IN QFT
A. Field to field propagator

Consider a real massive scalar fietgx) on Minkowski
space. To start with assume it is a free field. We wxte

=(t,x). Denote bye(X) the classical field configuration at
time zero: ¢(X)=¢(x,0). The state space at time zero,
Hi-o, is Fock space, where ttidistributiona) field operator
@(x) and the Hamiltoniard are defined. The lowest eigen-
state ofH is the vacuum stat¢0y,), and its energyg, is
zero. Fock space admits countable bases. Choose a basis
of eigenstates oH with eigenvalues,,, and consider the
operator

W(T>=; e TEnln)(n|. (2)

In the large T limit, this becomes the projector on the

vacuum

lim W(T)=[0p)(Op.

T—oo

)

We now move to a functional Schiimger representation.
Given a classical field configuratiop at time zero, le{¢)
be the (generalizell eigenstate of the operatas(x) with
eigenvaluep. We can express any std#) of Fock space in
this field basis:

S(Xq,Xp)= lim

T—oo

XWL @1, ¢2,(t1— 1) 1@2(X) W[ 92,0,T]. (8)

f DD e, W0,01,T]e1(Xy)

This can be generalized to amypoint function where the
Hmestl, ...t, are on thea=0 and thet=T surfaces; these
In turn, are sufficient to compute all scattering amplitudes,
since time dependence of asymptotic states is trivial.

W[ ¢41,¢5,T] admits the well-defined functional integral
representation

E
W[ 1,02, T]= | gl o, D e STI4. )

Bli=0=¢2

Here the integral is over all field$ on the stripR bounded

by the two surfaces=0 andt=T, with fixed boundary
value. The actiorS$[¢>] is the Euclidean action. Notice that
using this functional integral representation the expression
(9) for the Schwinger function becomes the well known ex-
pression

S(lexz)zf D¢¢(X1)¢(X2)975E[¢], (10

obtained by joining at the two boundaries the three func-
tional integrals in the regions<t,, t,<t<t,, andt;<t.

The functionalW[ ¢1,¢,,T] can be computed explicitly
in the free field theory. Its expression in terms of the Fourier

transforme of ¢ is (herew= Vk2+m?)
d3k
w
(2m)®

1

W[(Plv(PZ!T]:NeX[{ - Ef
|201|2+|Z’2|2_ 2019,

tanH T) sin(wT)

11)
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B. Kinematical Hilbert space and nonperturbative vacuum measurements performed at timea@d at timet [9-11].
Consider the 3D surfacE;=dR, namely the boundary Observations at two different times are correlated by the dy-

of the stripR. This surface is composed by the two discon-Namics. Hencels_is a “kinematical” state space, in the
nected components=0 andt=T. Define a “kinematical” sense that it describes more outcomes than the physically

Hilbert spaces , associated with thentire surfaceS r, as realizable ones. Dynamics is then a restriction on the pos-
the tensor product sible outcome of observatio9-11]. It expresses the fact

that measurement outcomes are correlated. The «‘gmgtTde,
ICET=H§;T®Ht:0. (12)  seen as a linear functional das_, assigns an amplitude to
) o ) any outcome of observations. This amplitude gives us the
The notation}#* indicates the dual of the Hilbert spag¢  correlation between outcomes at time 0 and outcomes at time
(which is of course canonically isomorphic ¥ itself). De-  T. Therefore the theory can be represented as follows. The
note ase=(¢1.¢,) a field onZy. The field basis of the jhert spacek’¥ _ describes all possible outcomes of mea-

Fock space induces the basis surements made oBy. Dynamics is given by the single

loy=le1.02)=(e1lt-1®|@2)1-0 (13 linear functional
in Ks_; the vectorg V) of Hs_ are written in this basis as p: K1—C,
functionals
[W)—=(0s, |¥). (20
Viel=Y[e1,e2]=(e1,0:¥). (14
The functionalW[ ¢4,,,T] defines the preferre¢ora) ~ For a given collection of measurement outcomes described
state by a state|V), the quantity<02T|\If> gives the correlation

probability amplitude between these measurements.

in this Hilbert space. This corresponding to the functigmal C. The functional W[e,*]

of Ref. [11]. We call the statg¢Os_), the “nonperturbative We consider the extension this formalism to the case
vacuum” or “covariant vacuum.” This state expresses theWhereR, instead of being the strip between two planes, is an
dynamics fromt=0 tot=T. A state in the tensor product of arbitraryfinite regions of spacetime. Lét be the boundary
two Hilbert spaces defines a linear mapping between the tw8f . which is a closed, connected 3D surface with the to-
spaces. The linear mapping frokg,_, to H,_7 defined by ~ Pology (butin general not the geomejryf a 3-sphere. Lep
<02T| is precisely the(imaginary time evolutione™TH. In-  be a scalar field o, and consider the functional

deed, we have by construction

E
_ W[(p,2]=J D pe Srl?). (21
<OET|(<’/’out|®|‘//in>):<'r//out|e TH|’/’in> (16) dls=¢
or The integral is over all 4D fields oR that take the value
CTh on %, and the action in the exponent is the Euclidean action
(Os i) =€ ""|hn). (17 where the 4D integral is oveR. In the free theory the inte-

) ) _ gral is a well defined Gaussian integral and can be evaluated.
Notice that the bra/ket mismatch is apparent only, as thee classical equations of motion with boundary vaguen
three states live in different Hilbert spaces. 3, form an elliptic system and in general have a solution

Equation(3) shows that in the limiff —c we have the 4, ] which can be obtained by integration from the
projector on the vacuum Green function for the shagR. A change of variable in the

lim <02T|(<%ut|®|¢in>):<%UI|OM><OM|¢m>. (18) in:cegral reduces it tF) a triyial Gaussilan integration times
T e Srl¢l. HereS5[ ¢] is the field theoretical Hamilton func-
) ) ~ tion: the action of the bulk field determined by the boundary
We can therefore write the relation between the two notiongondition ¢. This function satisfies a local Hamilton-Jacobi

of vacuum that we have defined as functional equation and solves the classical field theoretical
. dynamics[10,12.
im |05 )= |0 ® (Oul. (19 ~dynamicsi10.12

T—oo

D. Local Schradinger equation
This is a key equation for what follows. Again, the bra/ket

mismatch is apparent only, as the three states are in different W ¢, ] satisfies a local functional equation that governs

Hilbert spaces. its dependence oB. Let r be arbitrary coordinates ob.

The tensor product of two quantum state spaces describéepresent the surface and the boundary fields as
the ensemble of the measurements described by the two fa&: m—x*(7) and ¢: 7> ¢(7). Let n*(7) be the unit length
tors. ThereforslczT is the space of the possible results of all normal to3,. Then
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) R gence ofW[ ¢4, ¢,,T] to the vacuum projector is dictated by
n*(7) —W[e,2]=H(")W[¢,X] (22 (2): it is exponential in the mass gdp,, or the Compton
OxH() frequency of the particle. Thug at laboratory scales is
largely sufficient to guarantee arbitrarily accurate conver-
gence. In the Euclidean context, rotational symmetry sug-
gests the same to hold for tlie—co limit. Thus the limits
can be replaced by fixinR andT at laboratory scales. Prob-
lems could arise for the analytical continuation, which might
not commute with the limits, but these problems do not af-
fect the determination of the vacuum state, where no analyti-

whereH(x) is an operator obtained by replacing(x) by
—i6ld¢(X) in the Hamiltonian density

HO)=g Y2720 +g | Ve?+m?e?);  (23)

g is the determinant of the induced metric Brand the norm
is taken in this metric. Sinc®/ is independent of the param-

etrization, cal continuation is required.. .
The fact that we can define the vacuum state, or particle
axM7) 6 . states, locally seems to contradict the fact that the notions of
= W[, 2]=P(1)W[¢,X], (24)  vacuum and particle states are global. Let us therefore com-
ar  ox¥(7) ment on this delicate point. The conventional notions of

.. L R vacuum and particle states are global, but particle detectors
where the linear momentum B(7)=V ¢(7)d/5¢(7). De-  arefinitely extended. In fact, we may distinguish two distinct
tails will be given elsewhere. [E is spacelike(22) is the  notions of a particld15]. Fock particle states are “global,”
Euclidean Tomonaga-Schwinger equat[ds]. See also the while states detected by a localized detec®igenstates of

cautionary remarks in Ref14]. local operators describing detectjoare “local” particles
states. Local particle states are very closditonorm), but
E. Relation with the propagator distinct from, the corresponding “global” particle states. On

a flat background, we conveniently approximate the local

particle state detected by the detectors, using global particle

—T. Given two compact support functions, and @,, de- states, Whic_h are far_eg_sier to deal with. The gl_obal nature of
' 2 the conventional definition of vacuum and particles is there-

fined ont=0 andt=T respectively, we can always _chod§e .fore an approximation adopted for convenience, it is not dic-
large enough for the two compact supports to be included i ted by physical properties of particles we detect.

the bases of the cylinder. Then we expect that Replacing the limitsR— andT— with finite macro-
W 1,02, T]1= im W[ @1, 0,5 r1] (25) scopicR andT we miss theexactglobal vacuum on-particle
R state, but we can nevertheless describe local experiments.
The restriction of QFT to a finite region of spacetime must
because the Euclidean Green function decays rapidly and trdescribe completely experiments confined to this region and
effect of having the side of the cylinder at finite distancestates detected by finitely extended particle detectors.
goes rapidly to zero aR increases. Equatiof8) illustrates In conclusion, QFT can be formulated in terms of a state
how scattering amplitudes can be computed fromspaceKs associated to the boundary of a finite regi@n
W[ ¢1,9,,T]. In turn, Eq.(25) indicates howW[ ¢4, ¢5,T] States inKs represent measurement outcomesXnDy-
can be obtained frof[ ¢,3 ], where, is the boundary of a namics is expressed by the single sté@g| in Ky, which
finite region. Therefore knowledge ®¥[ ¢, ] allows us to  gives the amplitude for any complete set of measurements.
compute physical scattering amplitudes. We expect that thi$his can be computed as a functional integral over the inte-
should remain true in the perturbative expansion of an interrior regionR. Measurement of the boundafigld are repre-
acting field theory as well, wher® includes the interaction sented by the basig). The Minkowski vacuum statfy,)
region. is obtained by propagation in imaginary time for a laboratory
W[ ¢,2 ] can be directly defined in the Minkowski regime scale. Particle detection determines particle stateski,
as well. For a cylindrical box in Minkowski space, let  which can be obtained acting with field operator |@).
=(®out ®in ¢sige be the components of the field on the More details on boundary particle states will be given else-
spacelike bases and timelike side. Consider the field theoryhere.
defined in the box, with time dependent boundary conditions

Choose nows to be a cylinder2 7, with radiusR and
height T, with the two bases on the surfaces0 andt

¢Pside,» and letU[ ¢giqe] be the evolution operator frorm Il. QUANTUM GRAVITY

=0 tot=T generated by th&ime dependentHamiltonian ] ] ) )

of the theory. TheW[ ¢,31=(@oulU[ @sidel| @in). When In quantum gravity, making the formulation described
@side IS CONStant in time, this can be obtained by analyticB0V€ concrete is a complex task. The problem that we con-
continuation from the Euclidean functional. sider here is only how to interpret a functional integral for

quantum gravity defining a functional of the boundary states,

assuming this is given to us. Concrete definitions\pfp,>. ]

are rather well developed in the context of the spin foam
At first sight, the limitsT,R—o seem to indicate that formalism. Lorentzian and Riemannian versions of the for-

arbitrarily large surface® are needed to compute vacuum malism have been studied, and some finiteness results have

and scattering amplitudes. Notice however that the convermeen proven to all orders in a perturbative expan§id.

F. How far is infinity?
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Background independence implies immediately that the As a first example, a boundary metric can be defined as
gravitational functionaM/ ¢, ] defined by an appropriate follows. Consider a three-sphere formed by two “polan”
version of(21) is independent of any local variation &f. andout regions and one “equatorialside region. Let the
Fixing the topology of2, we have therefore mattert gravity field on the three-sphere be split as

We,2]=W¢]. (26) ®=(®out» Pin  Pside)- (28

At first sight, this seems the sort of independence from po-_. the equatorial fieldp, g, to take the special val

sition and time that renders background-independent QFF'Xf. quf " 'al Ti€ldpsige indri pl ' f;/E U¢R¥

difficult to interpret. The independence Wi ¢,2 ] is indeed de [ned as Toflows. Qon45|der a gylndrlca surlatgr o

analogous to the independencé/fx,y) from x andy men- radiusR and helghﬂ' in R%, as Qeﬂned above. L&k, (and

- - - S ou) be a(3D) disk located within the lowefand upper

tioned at the beginning of this paper, basis of3, and let2 ;40 the part of 2t outside those
However, the property ot that codes the relative space- disk FF]T’I side P RT

time location of the detectors is tineetricof .. In the gravi- Isks, so tha

tational case, the metric & is not coded in the location of

S on a manifold: it is coded in the boundary value of the SRt 2inU20utU T side- (29)

gravitational field or¥ . Therefore the relative location of the

detectors, lost witl®. because of general covariance, comesLet g be the metric off ;4. and letogrr=(gr7,0) be the

back with ¢, as this includes the boundary value of theboundary field or ;4. determined by the metric beirgy+

gravitational field. Therefore, if we are given a functional and all other fields being zero. Given arbitrary valugg,

integral for gravity, we can interpret it exactly as we did for and ¢;, of all the fields, including the metric, in the two

the scalar field. The boundary value of the gravitational fielddisks, consideW[ (¢oy:, ¢in , er7) 1. In Writing the boundary

plays the double role previously played byandX. In fact,  field as composed by three parts @6p,y, @in > ©sige) We
this is precisely the core of the conceptual novelty of generaére in fact splittingkC as

relativity: there is noa priori distinction between localiza-

tion measurements and measurements of dynamical vari-

Shles Y K=Hou®H®Hsige. (30
W[ ¢] determines a preferred stat@y), defined by o ) _

with the boundary. This is the covariant vacuum, and code§tate|0x) in K with the bra statd¢r1 in Hsige. For large

the dynamics. It satisfies a dynamical equation analogous t®8NoughR and T, we expect the resulting state b, ;@ Hi,

Eq.(22), whereH () is now the Hamiltonian constraint den- {© reduce to the Minkowski vacuum. That is,
sity operator. But sinc&V is independent oB. by general
covariance, the left hand side (#2) vanishes, leaving lim {@gr7|0s)=|0m)®{(0y]. (31
R,T—o
H(T)W[¢]=0, (27)
L , ) ) Therefore for a generiin configuration, and up to normal-
which is the(Lorentzian Wheeler—De Witt equatiof6]. ization,

A. Minkowski vacuum in quantum gravity Tylel= lim W(e ¢imorm)] (32
M - y¥in  ¥YRT/ 1-

The quantum stat¢0,,) that describes the Minkowski RT—e
vacuum is not singled out by the dynamics alone in quantum
gravity. Rather, it is singled out as the lowest eigenstate of agives the vacuum functional for large and T. (Below we
energyH+, which is the variable canonically conjugate to a shall use a simpler geometry for the boundary.
nonlocal functionT of the gravitational field defined as the ~ One may hope that the convergenceRrand T is fast.
proper time along a given worldline. These formulas allow us to extract the Minkowski vacuum

This situation has an analogy in the simple quantum sysstate from a Euclidean gravitational functional integral.
tem formed by a single relativistic particle. In the Hilbert n-particle scattering states can then be obtained by generali-
space of such a system there is no preferred vacuum statgations of the flat space formalism, and, if it is well defined,
But we can choose a preferred Lorentz frame, and thereforgy analytic continuation in the single variable Notice that
a preferred Lorentz tima®. The conjugate variable % is  we are precisely in the case of time independeiye,
the momentunp,, and there is &generalizefistate of mini-  where analytical continuation may be well defined.
mum po.

To find the Minkowski vacuum state, we can repeat the
very same procedure used above. The only difference is that
the bulk functional integral is not over the bulk matter fields, The argument o is not a classical field: it is an element
but also over the bulk metric. This difference has no bearingf the eigenbasis of the field operator. In the gravitational
on the above formulas, which regard the boundary metriccase (functions of the gravitational field operator can be
which, in the two cases, is an independent variable. diagonalized, but eigenvalues are not continuous fields. In

B. Spin networks and spinfoams
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loop quantum gravity, eigenstates of the metric are spin netwheren,, . .

work stategs). Therefore the quantum gravitationAl must
be a function of spin network stat&¥[s] on %, and not of

continuous gravitational fields an. In fact, this is precisely

what a spin foam model provides.

PHYSICAL REVIEW %9, 064019 (2004

. ,n, indicate four links adjacent to the node
andn;=1; (or n;=1,) if the ith link of the noden is the
outgoing(or ingoing link 1.

We can now implement Eq32) in this theory. Instead of
the cylindrical boundary considered above, we can choose a

A spinfoam sum where the degrees of freedom are not cugimpler geometry. Let the spin netwosk be composed by
off by the choice of a fixed triangulation is defined by the two parts connected to each other=s#s;. Let s be arbi-
Feynman expansion of the QFT over a group, studied in Refrary andsy is said to be a weave staf&8] for the three-
[17]. Let us recall here the basic equations of the formulametric g defined as follows. Take a 3-sphere of radium

tions, referring to Refs[17] and [10] for motivations and
details. Letd(gy, . ..,g4) be a field on[SO(4)]*, satisfy-

ing
#(91,92,93,94) = ¢(919,929,939,949), (33
for all ge SO(4). Consider the action
1 A
S[¢>]=5J (¢)*+ aJ (Puo)®. (34

Here Py is defined by

Py#(91,92,93,94)
= | dh,. dhg(ois goh, gsh g (39
whereH is a fixedSQ(3) subgroup ofSO(4), andf ¢° is
shorthand notation for
10
f ¢5=f iﬂl dgi#(91,92,93,94) #(9a,95,96,97)

X ¢(97,93,98,99) #(99,96,92,910)

X $(910,98,95,91)- (36)

R*. Remove a spherical 3-ball of unit radigs: is the three-
metric of the three-dimensional surfadwith boundary
formed by the sphere with the removed ball. | recall that a
weave state for a metrigis an eigenstate dfunctions of the
smearefl metric operator, whose eigenvalues approximate
(functions of the smeared at distances that are large com-
pared to the Planck length.

The quantity

Wyls]=(s|0y)= lim f Ddfgys [@le” S (39)

T—o

is then a tentative ansatz for the quantum state describing the
Minkowski vacuum in a ball of unit radius. This quantity can
be computed explicitly17] and may be finite at all orders in

\ [16].

IV. CONCLUSIONS

In this paper we have sketched several general ideas on
the physical interpretation of the formalism in background
independent QFT. The main ideas we have considered are
the following:

(i) In QFT, the functional integral over a finite region
defines the functiondlV[ ¢,2] of the boundary field, which
expresses the physical content of the the@Fiie description
of quantum gravity in terms of boundary data is reminiscent
of holographic formulations of string theofy9].)

(ii) This functional can be used to compute the vacuum
state|0y,), taking choosing® appropriately.

The Feynman expansion of this theory is a sum over spin- (jji) |n a background independent theomyparticle func-

foams and can be interpreted as a well-defined version of thgons w(x,

. Xp) become meaningless, because they are

Misner-Hawking sum over geometries. Transition amp|itUde~°independent of the coordinates, whid ¢,3 ] maintains its
between quantum states of space can be computed as expgfysical meaning, in spite of the fact that it is independent of
tation values o5(4) invariant operators in the group field s “This is because in a gravitational theory the relative lo-
theory. In particular, the boundary amplitude of a 4-valenteation of the detectors is coded gnand not inS.. Localiza-

spin networks can be computed as

Wisl- | Dot wle 34, @7
The spinfoam polynomial is defined as
ol-11 [ da,, .. .dg, Rg,,) ...
n ny
(in)Bn, in 14l
R gng g TT 0 (39

tion measurements are on the same footing as the dynamical
variable measurements.

(iv) The functionalW[ ¢] defines a staté0s) that codes
the dynamics of the theory by determining the correlation
amplitudes between boundary measurements.

(v) The Minkowski vacuum statf0,,) can be computed
from nonperturbative quantum gravity by choosing appropri-
ate boundary values of the gravitational field.

(vi) A tentative formula giving the Minkowski vacuum
state in terms of a spinfoam model is given by E2p).

(vii) Relevant analytical continuation is in the proper
length of the boundary, not in the time coordinate.

Much remains to be done and many points are far from
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clear. The most urgent of these problems is the following. ACKNOWLEDGMENTS
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