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Minkowski vacuum in background independent quantum gravity
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We consider a local formalism in quantum field theory, in which no reference is made to infinitely extended
spatial surfaces, infinite past or infinite future. This can be obtained in terms of a functionalW@w,S# of the
field w on a closed 3D surfaceS that bounds a finite regionR of Minkowski spacetime. The dependence of
W@w,S# on S is governed by a local covariant generalization of the Schro¨dinger equation. The particle
scattering amplitudes that describe experiments conducted in the finite regionR—the laboratory during a finite
time—can be expressed in terms ofW@w,S#. The dependence ofW@w,S# on the geometry ofS expresses the
dependence of the transition amplitudes on the relative location of the particle detectors. In a gravitational
theory, background independence implies thatW@w,S# is independent ofS. However, the detectors’ relative
location is still coded in the argument ofW@w#, because the geometry of the boundary surface is determined
by the boundary valuew of the gravitational field. This observation clarifies the physical meaning of the
functionalW@w# defined by nonperturbative formulations of quantum gravity, such as spinfoam formalism. In
particular, it suggests a way to derive the particle scattering amplitudes from a spinfoam model. In particular,
we discuss the notion of vacuum in a generally covariant context. We distinguish the nonperturbative vacuum
u0S&, which codes the dynamics, from the Minkowski vacuumu0M&, which is the state with no particles and
is recovered by taking appropriate large values of the boundary metric. We derive a relation between the two
vacuum states. We propose an explicit expression for computing the Minkowski vacuum from a spinfoam
model.

DOI: 10.1103/PhysRevD.69.064019 PACS number~s!: 04.60.Pp, 04.60.Gw, 04.62.1v
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I. INTRODUCTION

To understand quantum gravity, we have to underst
how to formulate quantum field theory~QFT! in a
background-independent manner. In the presence of a b
ground, QFT yields scattering amplitudes and cross sect
for asymptotic particle states, and these are compared
data obtained in the laboratory. The conventional theoret
definition of these amplitudes involves infinitely extend
spacetime regions and relies on the symmetry propertie
the background. In a background independent context
procedure becomes problematic. For instance, consider
2-point function

W~x,y!5^0uf~x!f~y!u0&. ~1!

In QFT over a background, the independent variablesx andy
can be related to the spacetime location of particle detec
In a background independent context, general covariance
plies immediately thatW(x,y) is constant forxÞy, and
therefore it is not clear how the formalism can control t
localization of the detectors.~See for instance Ref.@1#.!

Indeed, current efforts to define a quantum theory of gr
ity nonperturbatively, such as loop gravity@2,3#, may claim
remarkable theoretical progress, but the problem of deriv
scattering amplitudes remains open. The effort to develo
covariant version of loop gravity lead to spinfoam techniqu
@4#. These provide well defined expressions for a Misn
Hawking ‘‘sum over 4-geometries’’@5,6#, where finiteness
results from the discreteness of space revealed by loop g
ity. The spinfoam formalism provides an amplitude for qua
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tum states of gravity and matter on a 3D boundary@6,7#. But,
as far as we know, no formalism is yet available for derivi
particle scattering amplitudes from these boundary am
tudes. Here we indicate a direction to construct such form
ism.

The key ingredient for developing this formalism is th
Minkowski vacuum state, namely the ‘‘no-particle’’ state,
the coherent semiclassical state associated with the clas
Minkowski solution. The construction of this state is cons
ered a major open problem in nonperturbative quantum g
ity, and it is being studied using a variety of different tec
niques. See for instance Ref.@8# and references therein
Here, we propose a tentative explicit expression for comp
ing the Minkowski vacuum from a spinfoam formalism.

We begin by introducing a certain number of gene
tools, in the context of the quantum field theory of a simp
free massive scalar field. The Euclidean functional integ
over a finite spacetime regionR of spacetime defines a func
tional W@w,S# that depends on the field boundary valuew
and the geometry of the 3D surfaceS that boundsR. We
argue that all physical predictions on measurements
formed in the regionR, including scattering amplitudes be
tween particles detected in the lab, can be expressed in te
of W@w,S#. The geometry ofS codes the relative spacetim
localization of the particle detectors. The functional satisfi
a local Schro¨dinger equation. This defines a covariant fo
malism for QFT entirely in terms of boundary data. For
general formulation of classical and quantum mechan
along these lines, see Refs.@9,10# and @11#.

Next, we consider the application of this formalism to t
gravitational context. In the gravitational context, ifW@w,S#
©2004 The American Physical Society19-1
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is well defined, then background independence implies th
is independent from local variations of the location ofS. At
first sight, this seems to leave us in the characteristic in
pretative obscurity of background independent QFT: the
dependence ofW@w,S# from S is equivalent to the indepen
dence ofW(x,y) from x and y, mentioned above. But at
closer look, it is not so: in this context the boundary fieldw
includes the gravitational field, which is the metric, a
therefore the argument ofW@w,S#5W@w# still describes the
relative spacetime location of the detectors. This fact sho
allow us to express scattering amplitudes directly in terms
W@w# even in the background-independent context.

We distinguish two distinct notions of vacuum. The first
the nonperturbative vacuum stateu0S& that the functional
integral on the bulk defines on the~kinematical! Hilbert
space associated with the boundary surfaceS. If the metric
on S is chosen to be spacelike, this is the Hartle-Hawk
state@7#. In the context we are considering, instead,S is the
boundary of a finite 4D region of spacetime, andu0S& is a
background-independent way of coding quantum dynam
@11#. The second notion of vacuum is the Minkows
vacuum state. Here we denote the Minkowski vacuum s
as u0M& @except in Eq.~1!, where it was denotedu0&]. We
shall argue that this state is recovered for appropriate va
of the boundary metric.

A main result of this work is an equation connecting t
two vacuum states, and an explicit formula for t
Minkowski vacuum stateu0M&, in terms of a spinfoam
model. Here we present only the key ideas and the m
results; detailed derivations will appear elsewhere.

II. LOCAL TOOLS IN QFT

A. Field to field propagator

Consider a real massive scalar fieldf(x) on Minkowski
space. To start with assume it is a free field. We writex

5(t,xW ). Denote byw(xW ) the classical field configuration a
time zero: w(xW )5f(xW ,0). The state space at time zer
Ht50, is Fock space, where the~distributional! field operator
w(xW ) and the HamiltonianH are defined. The lowest eigen
state ofH is the vacuum stateu0M&, and its energyE0 is
zero. Fock space admits countable bases. Choose a basun&
of eigenstates ofH with eigenvaluesEn , and consider the
operator

W~T!5(
n

e2TEnun&^nu. ~2!

In the large T limit, this becomes the projector on th
vacuum

lim
T→`

W~T!5u0M&^0Mu. ~3!

We now move to a functional Schro¨dinger representation
Given a classical field configurationw at time zero, letuw&
be the ~generalized! eigenstate of the operatorw(xW ) with
eigenvaluew. We can express any stateuC& of Fock space in
this field basis:
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C@w#5^wuC&. ~4!

In this representation, the operator~2! reads

W@w1 ,w2 ,T#5^w1uW~T!uw2&. ~5!

It satisfies the Euclidean Schro¨dinger equation~in both vari-
ables!

2
]

]T
W@w1 ,w2,T#5Hw1

W@w1 ,w2,T#. ~6!

From ~3!, we can obtain the vacuum~up to normalization! as

C0M
@w#5N^wu0M&5 lim

T→`

W@w,0,T#. ~7!

Particle scattering amplitudes can be derived fro
W@w1 ,w2 ,T#. For instance the 2-point function can be o
tained as the analytic continuation of the Schwinger funct

S~x1 ,x2!5 lim
T→`

E Dw1Dw2W@0,w1 ,T#w1~xW1!

3W@w1 ,w2 ,~ t12t2!#w2~xW2!W@w2,0,T#. ~8!

This can be generalized to anyn-point function where the
times t1 , . . . tn are on thet50 and thet5T surfaces; these
in turn, are sufficient to compute all scattering amplitud
since time dependence of asymptotic states is trivial.

W@w1 ,w2 ,T# admits the well-defined functional integra
representation

W@w1 ,w2 ,T#5Efut5T5w1
fut505w2

Dfe2ST
E[f] . ~9!

Here the integral is over all fieldsf on the stripR bounded
by the two surfacest50 and t5T, with fixed boundary
value. The actionST

E@f# is the Euclidean action. Notice tha
using this functional integral representation the express
~9! for the Schwinger function becomes the well known e
pression

S~x1 ,x2!5E Dff~x1!f~x2!e2SE[f] , ~10!

obtained by joining at the two boundaries the three fu
tional integrals in the regionst,t2 , t2,t,t1, andt1,t.

The functionalW@w1 ,w2 ,T# can be computed explicitly
in the free field theory. Its expression in terms of the Four

transformw̃ of w is ~herev5AkW21m2)

W@w1 ,w2 ,T#5N expF2
1

2E d3k

~2p!3
v

3S uw̃1u21uw̃2u2
2

2w̃1w̃2 D G . ~11!

tanh~vT! sinh~vT!

9-2
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MINKOWSKI VACUUM IN BACKGROUND INDEPENDENT . . . PHYSICAL REVIEW D 69, 064019 ~2004!
B. Kinematical Hilbert space and nonperturbative vacuum

Consider the 3D surfaceST5]R, namely the boundary
of the stripR. This surface is composed by the two disco
nected componentst50 and t5T. Define a ‘‘kinematical’’
Hilbert spaceKST

, associated with theentiresurfaceST , as
the tensor product

KST
5Ht5T* ^ Ht50 . ~12!

The notationH* indicates the dual of the Hilbert spaceH
~which is of course canonically isomorphic toH itself!. De-
note asw5(w1 ,w2) a field on ST . The field basis of the
Fock space induces the basis

uw&5uw1 ,w2&[^w1u t5T^ uw2& t50 ~13!

in KST
; the vectorsuC& of HST

are written in this basis a
functionals

C@w#5C@w1 ,w2#[^w1 ,w2uC&. ~14!

The functionalW@w1 ,w2 ,T# defines the preferred~bra!
state

^0ST
uw&[W@w1 ,w2 ,T#. ~15!

in this Hilbert space. This corresponding to the functionar
of Ref. @11#. We call the stateu0ST

&, the ‘‘nonperturbative
vacuum’’ or ‘‘covariant vacuum.’’ This state expresses t
dynamics fromt50 to t5T. A state in the tensor product o
two Hilbert spaces defines a linear mapping between the
spaces. The linear mapping fromHt50 to Ht5T defined by
^0ST

u is precisely the~imaginary time! evolution e2TH. In-
deed, we have by construction

^0ST
u~^coutu ^ uc in&!5^coutue2THuc in& ~16!

or

^0ST
uc in&5e2THuc in&. ~17!

Notice that the bra/ket mismatch is apparent only, as
three states live in different Hilbert spaces.

Equation~3! shows that in the limitT→` we have the
projector on the vacuum

lim
T→`

^0ST
u~^coutu ^ uc in&!5^coutu0M&^0Muc in&. ~18!

We can therefore write the relation between the two noti
of vacuum that we have defined as

lim
T→`

u0ST
&5u0M& ^ ^0Mu. ~19!

This is a key equation for what follows. Again, the bra/k
mismatch is apparent only, as the three states are in diffe
Hilbert spaces.

The tensor product of two quantum state spaces desc
the ensemble of the measurements described by the two
tors. ThereforeKST

is the space of the possible results of
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measurements performed at time 0and at time t @9–11#.
Observations at two different times are correlated by the
namics. HenceKST

is a ‘‘kinematical’’ state space, in the
sense that it describes more outcomes than the physic
realizable ones. Dynamics is then a restriction on the p
sible outcome of observations@9–11#. It expresses the fac
that measurement outcomes are correlated. The state^0ST

u,
seen as a linear functional onKST

, assigns an amplitude to
any outcome of observations. This amplitude gives us
correlation between outcomes at time 0 and outcomes at
T. Therefore the theory can be represented as follows.
Hilbert spaceKST

* describes all possible outcomes of me

surements made onST . Dynamics is given by the single
linear functional

r: KT→C,

uC&°^0ST
uC&. ~20!

For a given collection of measurement outcomes descri
by a stateuC&, the quantity^0ST

uC& gives the correlation
probability amplitude between these measurements.

C. The functional W†w,S‡

We consider the extension this formalism to the ca
whereR, instead of being the strip between two planes, is
arbitraryfinite regions of spacetime. LetS be the boundary
of R, which is a closed, connected 3D surface with the
pology~but in general not the geometry! of a 3-sphere. Letw
be a scalar field onS and consider the functional

W@w,S#5E
fuS5w

Dfe2SR
E [f] . ~21!

The integral is over all 4D fields onR that take the valuew
on S, and the action in the exponent is the Euclidean act
where the 4D integral is overR. In the free theory the inte-
gral is a well defined Gaussian integral and can be evalua
The classical equations of motion with boundary valuew on
S form an elliptic system and in general have a soluti
fcl@w#, which can be obtained by integration from th
Green function for the shapeR. A change of variable in the
integral reduces it to a trivial Gaussian integration tim

e2SR
E [w] . HereSR

E @w# is the field theoretical Hamilton func
tion: the action of the bulk field determined by the bounda
conditionw. This function satisfies a local Hamilton-Jaco
functional equation and solves the classical field theoret
dynamics@10,12#.

D. Local Schrödinger equation

W@w,S# satisfies a local functional equation that gover
its dependence onS. Let tW be arbitrary coordinates onS.
Represent the surface and the boundary fields
S:tW°xm(tW ) and w:tW°w(tW ). Let nm(tW ) be the unit length
normal toS. Then
9-3
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nm~tW !
d

dxm~tW !
W@w,S#5H~tW !W@w,S# ~22!

whereH(xW ) is an operator obtained by replacingp(xW ) by
2 id/dw(x) in the Hamiltonian density

H~xW !5g21/2p2~xW !1g1/2~ u¹W wu21m2w2!; ~23!

g is the determinant of the induced metric onS and the norm
is taken in this metric. SinceW is independent of the param
etrization,

]xm~tW !

]tW

d

dxm~tW !
W@w,S#5PW ~tW !W@w,S#, ~24!

where the linear momentum isPW (tW )5¹W f(tW )d/dw(tW ). De-
tails will be given elsewhere. IfS is spacelike,~22! is the
Euclidean Tomonaga-Schwinger equation@13#. See also the
cautionary remarks in Ref.@14#.

E. Relation with the propagator

Choose nowS to be a cylinderSRT , with radiusR and
height T, with the two bases on the surfacest50 and t
5T. Given two compact support functionsw1 and w2, de-
fined ont50 andt5T respectively, we can always chooseR
large enough for the two compact supports to be include
the bases of the cylinder. Then we expect that

W@w1 ,w2 ,T#5 lim
R→`

W@w1 ,w2 ,SRT# ~25!

because the Euclidean Green function decays rapidly and
effect of having the side of the cylinder at finite distan
goes rapidly to zero asR increases. Equation~8! illustrates
how scattering amplitudes can be computed fr
W@w1 ,w2 ,T#. In turn, Eq.~25! indicates howW@w1 ,w2 ,T#
can be obtained fromW@w,S#, whereS is the boundary of a
finite region. Therefore knowledge ofW@w,S# allows us to
compute physical scattering amplitudes. We expect that
should remain true in the perturbative expansion of an in
acting field theory as well, whereR includes the interaction
region.

W@w,S# can be directly defined in the Minkowski regim
as well. For a cylindrical box in Minkowski space, letw
5(wout ,w in ,wside) be the components of the field on th
spacelike bases and timelike side. Consider the field the
defined in the box, with time dependent boundary conditio
wside, and let U@wside# be the evolution operator fromt
50 to t5T generated by the~time dependent! Hamiltonian
of the theory. ThenW@w,S#[^woutuU@wside#uw in&. When
wside is constant in time, this can be obtained by analy
continuation from the Euclidean functional.

F. How far is infinity?

At first sight, the limitsT,R→` seem to indicate tha
arbitrarily large surfacesS are needed to compute vacuu
and scattering amplitudes. Notice however that the con
06401
in

he

is
r-

ry
s

c

r-

gence ofW@w1 ,w2 ,T# to the vacuum projector is dictated b
~2!: it is exponential in the mass gapE1, or the Compton
frequency of the particle. ThusT at laboratory scales is
largely sufficient to guarantee arbitrarily accurate conv
gence. In the Euclidean context, rotational symmetry s
gests the same to hold for theR→` limit. Thus the limits
can be replaced by fixingR andT at laboratory scales. Prob
lems could arise for the analytical continuation, which mig
not commute with the limits, but these problems do not
fect the determination of the vacuum state, where no ana
cal continuation is required.

The fact that we can define the vacuum state, or part
states, locally seems to contradict the fact that the notion
vacuum and particle states are global. Let us therefore c
ment on this delicate point. The conventional notions
vacuum and particle states are global, but particle detec
arefinitely extended. In fact, we may distinguish two distin
notions of a particle@15#. Fock particle states are ‘‘global,’
while states detected by a localized detector~eigenstates of
local operators describing detection! are ‘‘local’’ particles
states. Local particle states are very close to~in norm!, but
distinct from, the corresponding ‘‘global’’ particle states. O
a flat background, we conveniently approximate the lo
particle state detected by the detectors, using global par
states, which are far easier to deal with. The global natur
the conventional definition of vacuum and particles is the
fore an approximation adopted for convenience, it is not d
tated by physical properties of particles we detect.

Replacing the limitsR→` andT→` with finite macro-
scopicR andT we miss theexactglobal vacuum orn-particle
state, but we can nevertheless describe local experime
The restriction of QFT to a finite region of spacetime mu
describe completely experiments confined to this region
states detected by finitely extended particle detectors.

In conclusion, QFT can be formulated in terms of a st
spaceKS associated to the boundary of a finite regionR.
States inKS represent measurement outcomes onS. Dy-
namics is expressed by the single state^0Su in KS , which
gives the amplitude for any complete set of measureme
This can be computed as a functional integral over the in
rior regionR. Measurement of the boundaryfield are repre-
sented by the basisuw&. The Minkowski vacuum stateu0M&
is obtained by propagation in imaginary time for a laborato
scale.Particle detection determines particle states inKS ,
which can be obtained acting with field operator onu0M&.
More details on boundary particle states will be given el
where.

III. QUANTUM GRAVITY

In quantum gravity, making the formulation describe
above concrete is a complex task. The problem that we c
sider here is only how to interpret a functional integral f
quantum gravity defining a functional of the boundary stat
assuming this is given to us. Concrete definitions ofW@w,S#
are rather well developed in the context of the spin fo
formalism. Lorentzian and Riemannian versions of the f
malism have been studied, and some finiteness results
been proven to all orders in a perturbative expansion@16#.
9-4
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Background independence implies immediately that
gravitational functionalW@w,S# defined by an appropriat
version of ~21! is independent of any local variation ofS.
Fixing the topology ofS, we have therefore

W@w,S#5W@w#. ~26!

At first sight, this seems the sort of independence from
sition and time that renders background-independent Q
difficult to interpret. The independence ofW@w,S# is indeed
analogous to the independence ofW(x,y) from x andy men-
tioned at the beginning of this paper.

However, the property ofS that codes the relative spac
time location of the detectors is themetricof S. In the gravi-
tational case, the metric ofS is not coded in the location o
S on a manifold: it is coded in the boundary value of t
gravitational field onS. Therefore the relative location of th
detectors, lost withS because of general covariance, com
back with w, as this includes the boundary value of t
gravitational field. Therefore, if we are given a function
integral for gravity, we can interpret it exactly as we did f
the scalar field. The boundary value of the gravitational fi
plays the double role previously played byw andS. In fact,
this is precisely the core of the conceptual novelty of gene
relativity: there is noa priori distinction between localiza
tion measurements and measurements of dynamical
ables.

W@w# determines a preferred stateu0S&, defined by
^0Suw&5W@w# in the kinematical state spaceK associated
with the boundary. This is the covariant vacuum, and co
the dynamics. It satisfies a dynamical equation analogou
Eq. ~22!, whereH(tW ) is now the Hamiltonian constraint den
sity operator. But sinceW is independent ofS by general
covariance, the left hand side of~22! vanishes, leaving

H~tW !W@w#50, ~27!

which is the~Lorentzian! Wheeler–De Witt equation@6#.

A. Minkowski vacuum in quantum gravity

The quantum stateu0M& that describes the Minkowsk
vacuum is not singled out by the dynamics alone in quan
gravity. Rather, it is singled out as the lowest eigenstate o
energyHT , which is the variable canonically conjugate to
nonlocal functionT of the gravitational field defined as th
proper time along a given worldline.

This situation has an analogy in the simple quantum s
tem formed by a single relativistic particle. In the Hilbe
space of such a system there is no preferred vacuum s
But we can choose a preferred Lorentz frame, and there
a preferred Lorentz timex0. The conjugate variable tox0 is
the momentump0, and there is a~generalized! state of mini-
mum p0.

To find the Minkowski vacuum state, we can repeat
very same procedure used above. The only difference is
the bulk functional integral is not over the bulk matter field
but also over the bulk metric. This difference has no bear
on the above formulas, which regard the boundary me
which, in the two cases, is an independent variable.
06401
e

-
T

s

l

d

al

ri-

s
to

m
n

s-

te.
re

e
at
,
g
c,

As a first example, a boundary metric can be defined
follows. Consider a three-sphere formed by two ‘‘polar’’in
and out regions and one ‘‘equatorial’’side region. Let the
matter1gravity field on the three-sphere be split as

w5~wout ,w in ,wside!. ~28!

Fix the equatorial fieldwside to take the special valuewRT
defined as follows. Consider a cylindrical surfaceSRT of
radiusR and heightT in R4, as defined above. LetS in ~and
Sout) be a ~3D! disk located within the lower~and upper!
basis ofSRT , and letSside the part ofSRT outside those
disks, so that

SRT5S inøSoutøSside. ~29!

Let gRT be the metric ofSside and letwRT5(gRT,0) be the
boundary field onSside determined by the metric beinggRT
and all other fields being zero. Given arbitrary valueswout
and w in of all the fields, including the metric, in the tw
disks, considerW@(wout ,w in ,wRT)#. In writing the boundary
field as composed by three parts asw(wout ,w in ,wside) we
are in fact splittingK as

K5Hout^ Hin* ^ Hside. ~30!

Fixing wside5wRT means contracting the covariant vacuu
stateu0S& in K with the bra statêwRTu in Hside. For large
enoughR andT, we expect the resulting state inHout^ Hin*
to reduce to the Minkowski vacuum. That is,

lim
R,T→`

^wRTu0S&5u0M& ^ ^0Mu. ~31!

Therefore for a genericin configuration, and up to normal
ization,

CM@w#5 lim
R,T→`

W@~w,w in ,wRT!#. ~32!

gives the vacuum functional for largeR and T. ~Below we
shall use a simpler geometry for the boundary.!

One may hope that the convergence inR and T is fast.
These formulas allow us to extract the Minkowski vacuu
state from a Euclidean gravitational functional integr
n-particle scattering states can then be obtained by gene
zations of the flat space formalism, and, if it is well define
by analytic continuation in the single variableT. Notice that
we are precisely in the case of time independentwside,
where analytical continuation may be well defined.

B. Spin networks and spinfoams

The argument ofW is not a classical field: it is an elemen
of the eigenbasis of the field operator. In the gravitatio
case ~functions of! the gravitational field operator can b
diagonalized, but eigenvalues are not continuous fields
9-5
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loop quantum gravity, eigenstates of the metric are spin
work statesus&. Therefore the quantum gravitationalW must
be a function of spin network statesW@s# on S, and not of
continuous gravitational fields onS. In fact, this is precisely
what a spin foam model provides.

A spinfoam sum where the degrees of freedom are not
off by the choice of a fixed triangulation is defined by t
Feynman expansion of the QFT over a group, studied in R
@17#. Let us recall here the basic equations of the formu
tions, referring to Refs.@17# and @10# for motivations and
details. LetF(g1 , . . . ,g4) be a field on@SO(4)#4, satisfy-
ing

f~g1 ,g2 ,g3 ,g4!5f~g1g,g2g,g3g,g4g!, ~33!

for all gPSO(4). Consider the action

S@f#5
1

2E ~f!21
l

5!E ~PHf!5. ~34!

HerePH is defined by

PHf~g1 ,g2 ,g3 ,g4!

5E
H4

dh1 . . . dh4f~g1h1 ,g2h2 ,g3h3 ,g4h4!. ~35!

whereH is a fixedSO(3) subgroup ofSO(4), and*f5 is
shorthand notation for

E f55E )
i 51

10

dgif~g1 ,g2 ,g3 ,g4!f~g4 ,g5 ,g6 ,g7!

3f~g7 ,g3 ,g8 ,g9!f~g9 ,g6 ,g2 ,g10!

3f~g10,g8 ,g5 ,g1!. ~36!

The Feynman expansion of this theory is a sum over s
foams and can be interpreted as a well-defined version o
Misner-Hawking sum over geometries. Transition amplitud
between quantum states of space can be computed as e
tation values ofSO(4) invariant operators in the group fiel
theory. In particular, the boundary amplitude of a 4-vale
spin networks can be computed as

W@s#5E DF f s@F#e2S[f] , ~37!

The spinfoam polynomial is defined as

f s@f#5)
n
E dgn1

. . . dgn4
R

an1

( j n1
)bn1~gn1

! . . .

3R
an1

( j n4
)bn4~gn4

!vbn1
. . . bn4

i n )
l

d l 1l 2, ~38!
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wheren1 , . . . ,n4 indicate four links adjacent to the noden,
and ni5 l 1 ~or ni5 l 2) if the i th link of the noden is the
outgoing~or ingoing! link l.

We can now implement Eq.~32! in this theory. Instead of
the cylindrical boundary considered above, we can choo
simpler geometry. Let the spin networks8 be composed by
two parts connected to each other,s85s#sT . Let s be arbi-
trary andsT is said to be a weave state@18# for the three-
metric gT defined as follows. Take a 3-sphere of radiusT in
R4. Remove a spherical 3-ball of unit radius.gT is the three-
metric of the three-dimensional surface~with boundary!
formed by the sphere with the removed ball. I recall tha
weave state for a metricg is an eigenstate of~functions of the
smeared! metric operator, whose eigenvalues approxim
~functions of the smeared! g at distances that are large com
pared to the Planck length.

The quantity

CM@s#5^su0M&5 lim
T→`

E DF f s#sT
@F#e2S[F] . ~39!

is then a tentative ansatz for the quantum state describing
Minkowski vacuum in a ball of unit radius. This quantity ca
be computed explicitly@17# and may be finite at all orders in
l @16#.

IV. CONCLUSIONS

In this paper we have sketched several general idea
the physical interpretation of the formalism in backgrou
independent QFT. The main ideas we have considered
the following:

~i! In QFT, the functional integral over a finite regio
defines the functionalW@w,S# of the boundary field, which
expresses the physical content of the theory.~The description
of quantum gravity in terms of boundary data is reminisc
of holographic formulations of string theory@19#.!

~ii ! This functional can be used to compute the vacu
stateu0M&, taking choosingS appropriately.

~iii ! In a background independent theory,n particle func-
tions W(x1 , . . . ,xn) become meaningless, because they
independent of the coordinates, whileW@w,S# maintains its
physical meaning, in spite of the fact that it is independen
S. This is because in a gravitational theory the relative
cation of the detectors is coded inw and not inS. Localiza-
tion measurements are on the same footing as the dynam
variable measurements.

~iv! The functionalW@w# defines a stateu0S& that codes
the dynamics of the theory by determining the correlat
amplitudes between boundary measurements.

~v! The Minkowski vacuum stateu0M& can be computed
from nonperturbative quantum gravity by choosing approp
ate boundary values of the gravitational field.

~vi! A tentative formula giving the Minkowski vacuum
state in terms of a spinfoam model is given by Eq.~39!.

~vii ! Relevant analytical continuation is in the prop
length of the boundary, not in the time coordinate.

Much remains to be done and many points are far fr
9-6
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clear. The most urgent of these problems is the followi
The spinfoam model we have referred to in the text is R
mannian, not Euclidean. Namely its amplitudes corresp
to the complex quantityeiSE, whereSE is the Euclidean ac-
tion, and not to a real exponential. The relation between
Euclidean, Riemannian, and Lorentzian spinfoam model
not yet completely clear, we believe.
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