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Exact gravitational lens equation in spherically symmetric and static spacetimes
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Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic
equation without approximations. After fixing two radius valuesr O and r S , lensing for an observation event
somewhere atr O and static light sources distributed atr S is coded in a lens equation that is explicitly given in
terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily
plotted if the metric coefficients have been specified; this allows us to visualize in a convenient way all relevant
lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are
treated: lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.
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I. INTRODUCTION

Theoretical work on gravitational lensing is traditional
done in a quasi-Newtonian approximation formalism, s
e.g., Schneider, Ehlers and Falco@1# or Petters, Levine and
Wambsganss@2#, which is based, among other things, on t
approximative assumptions that the gravitational field
weak and that the bending angles are small. Under th
assumptions, lensing is described in terms of a ‘‘lens eq
tion’’ that determines a ‘‘lens map’’ from a ‘‘deflector plane
to a ‘‘source plane,’’ thereby relating image positions on t
observer’s sky to source positions. Although for all practi
purposes up to now this formalism has proven to be v
successful, there are two motivations for doing gravitatio
lens theory beyond the quasi-Newtonian approximati
First, from a methodological point of view it is desirable
investigate qualitative features of lensing, such as criteria
multiple imaging or for the formation of Einstein rings, in
formalism without approximations, as far as possible, to
sure that these features are not just reflections of the app
mations. Second, lensing phenomena where strong gra
tional fields and large bending angles are involved are
longer as far away from observability as they have bee
few years ago. In particular, the discovery that there i
black hole at the center of our galaxy@3#, and probably at the
center of most galaxies, has brought the matter of lensin
strong gravitational fields with large bending angles close
practical astrophysical interest. If a light ray comes su
ciently close to a black hole, the bending angle is not sm
in principle, it may even become arbitrarily large, corr
sponding to the light ray making arbitrarily many turn
around the black hole. Unboundedly large bending ang
also occur, e.g., with wormholes; the latter are more ex
than black holes, in the sense that up to now there is no c
evidence for their existence, but nonetheless considere
hypothetical candidates for lensing by many authors.

If one wants to drop the assumptions of weak fields a
small angles, gravitational lensing has to be based on
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lightlike geodesic equation in a general-relativistic spa
time, without approximations. In this paper we will discu
this issue for the special case of a spherically symmetric
static spacetime. In view of applications, this includ
spherical non-rotating stars and black holes, and also m
exotic objects such as wormholes and monopoles with
desired symmetries. The main goal of this paper is to de
onstrate that in this case lensing without approximations
be studied, quite conveniently, in terms of a lens equat
that is not less explicit than the lens equation of the qua
Newtonian formalism.

Lensing without weak-field or small-angle approxim
tions was pioneered by Darwin@4,5# and by Atkinson@6#.
Whereas Darwin’s work is restricted to the Schwarzsch
spacetime throughout, Atkinson derives all relevant formu
for an unspecified spherically symmetric and static spacet
before specializing to the Schwarzschild spacetime
Schwarzschild and in isotropic coordinates. All importa
features of Schwarzschild lensing are clearly explained
both papers. In particular, they discuss the occurrence o
finitely many images, corresponding to light rays maki
arbitrarily many turns around the center and coming clo
and closer to the light sphere atr 53m. However, they do
not derive anything like a lens equation.

The notion of a lens equation without weak-field or sma
angle approximations was brought forward much later
Frittelli and Newman@7#. It is based on the idea of param
etrizing the light cone of an arbitrary observation event in
particular way. For a general discussion of this idea and
the resulting ‘‘exact gravitational lens map’’ in arbitrar
spacetimes the reader may consult Ehlers, Frittelli and N
man @8# or Perlick @9#. Here we are interested only in th
special case of a spherically symmetric and static spacet
Then the geodesic equation is completely integrable and
exact lens equation of Frittelli and Newman can be writt
quite explicitly. One can evaluate this equation from t
spacetime perspective, as has been demonstrated by Fri
Kling and Newman@10# for the case of the Schwarzschil
spacetime, thereby getting a good idea of the geometry of
light cone. Here we will use an alternative representati
using the symmetry for reducing the dimension of the pro
lem. After fixing two radius valuesr O andr S , lensing for an
observation event somewhere atr O and static light sources

:
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VOLKER PERLICK PHYSICAL REVIEW D69, 064017 ~2004!
distributed atr S is coded in a lens equation, explicitly give
in terms of integrals over the metric coefficients, that rela
two angles to each other. This representation results
particularly convenient method of visualizing all releva
lensing properties, as will be demonstrated with two e
amples.

The lens equation discussed in this paper should be c
pared with the lens equation for spherically symmetric a
static spacetimes that was introduced by Virbhad
Narasimha and Chitre@11# and then, in a modified form, by
Virbhadra and Ellis@12#. The Virbhadra-Ellis lens equatio
has found considerable interest. It was applied to
Schwarzschild spacetime@12# and later also to other spher
cally symmetric and static spacetimes, e.g. to a boson sta
Da̧browski and Schunck@13#, to a fermion star by Bilic´,
Nikolić and Viollier @14#, to spacetimes with naked singular
ties by Virbhadra and Ellis@15#, to the Reissner-Nordstro¨m
spacetime by Eiroa, Romero and Torres@16# and to a
Gibbons-Maeda-Garfinkle-Horowitz-Strominger black ho
by Bhadra@17#. In the last two papers, the authors conce
trate on light rays that make several turns around the ce
and they use analytical methods developed by Bozza@18#.
The Virbhadra-Ellis lens equation takes an intermediary
sition between the exact lens equation and the qu
Newtonian approximation. It makes no assumptions as to
smallness of bending angles, but it does make approxima
assumptions as to the position of light sources and obse
For the Virbhadra-Ellis lens equation to be valid the spa
time must be asymptotically flat forr→` and both observe
and light sources must be at positions wherer is large; more-
over, one has to restrict to light sources close to the ra
line opposite to the observer position, i.e., to the case
there is only a small misalignment.~The question of how one
can free oneself from the latter assumption was addresse
Da̧browski and Schunck@13# and by Bozza@19#.! The lens
equation to be discussed in the present paper is not restr
to the asymptotically flat case, and it makes no restriction
the position of light sources or observer.

II. DERIVATION OF THE LENS EQUATION

We consider an arbitrary spherically symmetric and sta
spacetime. For our purpose it will be advantageous to w
the metric in the form

g5A~r !2
„S~r !2dr21R~r !2~dq21sin2qdw2!2dt2….

~1!

Herew andq are the standard coordinates on the sphert
ranges overR andr ranges over an open interval ]r min ,r max@
where2`<r min,r max<`. We assume that the functionsA,
S, andR are strictly positive and~at least piecewise! differ-
entiable on the interval ]r min ,r max@ . As the lightlike geode-
sics are not affected by the conformal factorA(r )2 ~apart
from their parametrizations!, the lens equation will depen
on the metric coefficientsS(r ) and R(r ) only. We will see
below that many qualitative features of the lens equation
determined by the coefficientR(r ) alone.

For introducing our lens equation we have to fix two r
dius valuesr O and r S betweenr min and r max. The indexO
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stands for ‘‘observer,’’ the indexS stands for ‘‘source.’’ We
think of an observer atr 5r O , w50, q5p/2. It is our goal
to determine the appearance, on the observer’s sky, of s
light sources distributed on the spherer 5r S .

By symmetry, we may restrict to the planeq5p/2. We
consider past-oriented lightlike geodesics that start at timt
50 at the observer and terminate, at some timet52T,0
which depends on the geodesic, somewhere on the sphr
5r S . To each of those light rays we assign the angleQ,
measured at the observer between the ray’s tangent and
direction of] r , and the angleF, swept out by the azimuth
coordinate along the ray on its way from the observer to
source; see Fig. 1. The desired lens equation is an equa
of the form F(Q,F)50 which relates image positions o
the observer’s sky, given byQ, to source positions in the
spacetime, given byF modulo 2p. We restrictQ to values
between2p andp; then uQu can be viewed as a colatitud
coordinate on the observer’s celestial sphere. By symme
F(Q,F)50 must be equivalent toF(2Q,2F)50. For a
given angleQ, neither existence nor uniqueness of an an
F with F(Q,F)50 is guaranteed. Existence fails if the r
spective light ray never meets the spherer 5r S ; uniqueness
fails if it meets this sphere several times. In the latter case
observer sees two or more images of light sources atr S at the
same point on the sky, one behind the other. We will refer
images which are covered by other images as to ‘‘hidd
images.’’ The lens equation can be solved forF, thereby
giving a lens mapQ°F, only if hidden images do not exis
~or are willfully ignored!.

To work out the lens equation we have to calculate
lightlike geodesics in the planeq5p/2 of the metric~1!,
which is an elementary exercise. As a conformal factor
no influence on the lightlike geodesics~apart from their pa-
rametrization!, they are solutions of the Euler-Lagrang
equations of the LagrangianL5 1

2 „S(r )2ṙ 21R(r )2ẇ 2

2 ṫ 2
…, i.e.

FIG. 1. The figure shows the planeq5p/2. The observer, in-
dicated by a dot, is situated atr 5r O , w50; the light sources are
distributed atr 5r S . The lens equation relates the angleQ which
gives the image position on the observer’s sky to the angleF which
gives the source position in the spacetime. The anglec indicated in
this picture is irrelevant for the lens equation but will be needed
Sec. IV C.
7-2
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EXACT GRAVITATIONAL LENS EQUATION IN . . . PHYSICAL REVIEW D 69, 064017 ~2004!
„S~r !2ṙ …˙5S~r !S8~r ! ṙ 21R~r !R8~r !ẇ 2, ~2!

„R~r !2ẇ…˙ 50, ~3!

ẗ50, ~4!

where an overdot denotes differentiation with respect to
curve parameters. As an aside we mention that, by Eq.~2!, a
circular light ray exists at radiusr p if and only if R8(r p)
50. Comparing this condition with the equivalent but le
convenient Eq.~33! in Atkinson’s article@6# shows that it is
advantageous to write the metric in the form~1!. The rel-
evance of circular light rays in view of lensing was discuss
by Hasse and Perlick@20#, also see Claudel, Virbhadra, an
Ellis @21# for related results.

To get the past-oriented light ray that starts at timet50 at
the observer in the direction determined by the angleQ we
have to impose the initial conditions

r us505r O , ṙ us505
cosQ

S~r O!
, ~5!

wus5050, ẇus505
sinQ

R~r O!
, ~6!

tus5050, ṫ us50521. ~7!

For eachQ, the initial value problem~2!, ~3!, ~4!, ~5!, ~6!,
~7! has a unique maximal solution

r 5r~Q,s!, w5f~Q,s!, t52s, ~8!

wheres ranges from 0 up to somesmax(Q). Every image on
the observer’s sky of a light source atr S corresponds to a
pair (Q,F) such that

r S5r~Q,T! and F5f~Q,T! ~9!

with some parameter valueTP]0,smax(Q)@ . In other words,
we get the desired lens equationF(Q,F)50 if we eliminate
T from the two equations~9!.

We get an explicit expression for the lens equation, a
for the travel timeT, by writing the functionsr(Q,s) and
f(Q,s) in terms of integrals. From the constant of motio

S~r !2ṙ 21R~r !2ẇ 22 ṫ 250 ~10!

we find, with the help of Eqs.~3!, ~4!, ~6!, ~7!,

S~r !2R~r !2ṙ 25R~r !22R~r O!2sin2Q. ~11!

If ṙ does not change sign, integration of Eq.~11! yields

s5
ucosQu

cosQ
E

r O

r(Q,s) R~r !S~r !dr

AR~r !22R~r O!2sin2Q
. ~12!

With r(Q,s) known, w5f(Q,s) is determined by integrat
ing Eq. ~3! with Eq. ~6!,
06401
e

d
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f~Q,s!5E
0

s R~r O!sinQds̃

R„r~Q,s̃!…2
. ~13!

Equation~13! can be rewritten as an integral overr, with ṙ
5dr/ds substituted from Eq.~11!. This gives us the lens
equation in the form

F5
ucosQu

cosQ
E

r O

r S R~r O!sinQS~r !dr

R~r !AR~r !22R~r O!2sin2Q
. ~14!

If ṙ changes sign, Eq.~12! has to be replaced by a piecewis
integration. Similarly, the substitution from thes-integration
in Eq. ~13! to an r-integration must be done piecewise.
this case, the lens equation is not of the form~14!; in par-
ticular, it is not guaranteed that the lens equation can
solved forF. In any case, we get exact integral expressio
for the lens equation, and for the travel timeT, from which
all relevant lensing features can be determined in a way
is not less explicit than the quasi-Newtonian approximat
formalism. This will be demonstrated by two examples
Sec. V. In Sec. V A we treat a particularly simple examp
where the metric coefficientsR(r ) andS(r ) are analytic and
the integral~12! can be explicitly calculated in terms of e
ementary functions. In this case it suffices to calculate
~12! for arbitrarily smalls to get the whole functionr (Q,s)
by maximal analytic extension; i.e., in this case it is n
necessary to determine the points whereṙ changes sign and
to perform a piecewise integration.

III. DISCUSSION OF THE LENS EQUATION

In the first part of this section we want to discuss f
which values ofQ the lens equationF(Q,F)50 admits a
solution. In other words, we want to determine which part
the observer’s sky is covered by the light sources distribu
at r 5r S . We restrict to the caser O,r S . ~The results for the
caser O.r S follow immediately from our discussion; we jus
have to make a coordinate transformationr→2r and, cor-
respondingly, to changeQ into p2Q. The caser O5r S can
be treated by a limit procedure.!

For a light ray with one end-point atr O and the other atr S
the right-hand side of Eq.~11! must be non-negative for allr
betweenr O andr S . This condition restricts the possible va
ues ofQ by sin2Q<sin2d I where

sind I5 inf$R~r !/R~r O!ur O,r ,r S%. ~15!

Note that our assumptions guarantee that this infimum
strictly positive, 0,d I<p/2.

Furthermore, a light ray withp/2,uQu,p can arrive at
r S only if it passes through a minimal radius valuer(Q)
,r O . As Eq. ~11! requiresR„r(Q)…25R(r O)2sin2Q, this
can be true only if sin2Q>sin2d II where

sind II 5 inf$R~r !/R~r O!ur min,r ,r O%, ~16!

0<d II <p/2. So in general the light sources atr S cover on
the observer’s sky a disk of angular radiusd I around the pole
7-3
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VOLKER PERLICK PHYSICAL REVIEW D69, 064017 ~2004!
Q50 and, if d II ,d I , in addition a ring of angular width
d I2d II around the poleQ5p.2p; see Fig. 2. The two
domains join ifd I5p/2.

We see that the allowed values ofQ are determined by
the metric coefficientR alone. We will now demonstrate tha
R alone also determines the occurrence or nonoccurrenc
hidden images. Hidden images occur if a light ray fromr O
intersects the spherer 5r S at least two times; between thes
two intersections it must pass through a maximal rad
s(Q).r S which, by Eq. ~11!, has to satisfyR„s(Q)…2

5R(r O)2sin2Q. Such a radiuss(Q) exists for allQ with
sin2Q.C2 where

C5 inf$R~r !/R~r O!ur S,r ,r max%. ~17!

As Q is restricted by sin2Q<sin2d I , hidden images canno
occur if C>sind I . The latter condition is satisfied in asymp
totically flat spacetimes, whereR(r )→` for r→r max
(5`), if we chooser S sufficiently large. This is the reaso
why in the more special situation of the Virbhadra-Ellis le
equation@12# hidden images cannot occur.

In the rest of this section we discuss the question of m
tiple imaging and the occurrence of Einstein rings. Fo
light source atr 5r S , w5w0 , q5p/2 with 0,uw0u,p,
images on the observer’s sky are in one-to-one corresp
dence with solutionsQ of the equation

F~Q,w012np!50 ~18!

with nPZ. We call the integern the ‘‘winding number’’ of
the corresponding light ray. An image withn50 is called
‘‘primary’’ and an image withn52w0 /uw0u is called ‘‘sec-
ondary.’’ Images with other values ofn correspond to light
rays that make at least one full turn and have been ter

FIG. 2. In the caser O,r S , the light sources cover the non
shaded region on the observer’s sky, withd I andd II given by Eqs.
~15! and~16!, respectively.~For r S,r O one gets an analogous pic
ture, with Q50 andQ5p.2p interchanging their roles.! If the
spacetime is asymptotically flat and ifr S is sufficiently large, this
picture gives the so-called ‘‘escape cones’’ which have been ca
lated by Synge@22# for the Schwarzschild spacetime and by Pan
and Durgapal@23# for an unspecified asymptotically flat spherical
symmetric and static spacetime.
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‘‘relativistic’’ by Virbhadra and Ellis@12#. Note that different
images of a light source may have the same winding num

If we sendw0 to 0 or top.2p, solutionsQ of Eq. ~18!
with sinQÞ0 come in pairs (Q,2Q). By spherical symme-
try, every such pair gives rise to an Einstein ring. There
as many Einstein rings as the equation

F~Q,ip!50 ~19!

admits solutions with positive integersi. Even integersi cor-
respond to Einstein rings of the source atw050, and odd
integersi correspond to Einstein rings of the source atw0
5p.2p.

IV. OBSERVABLES

To each solution (Q,F) of the lens equation we can as
sign redshift, travel time, apparent brightness and im
distortion.

A. Redshift

The general redshift formula for static metrics~see, e.g.,
Straumann@24#, p. 97! specified to metrics of the form~1!
says that the redshiftz is given by

11z5
A~r O!

A~r S!
~20!

if the observer’s world line is at-line at r 5r O and the
source’s world line is at-line at r 5r S . In our situationr O
and r S are fixed, so the redshift is a constant.

B. Travel time

Recall that (Q,F) is a solution of the lens equation if an
only if there is a parameterT such that the equations~9!
hold. This assigns a travel timeT to each solution (Q,F) of
the lens equation. If there are no hidden images, the equa
r(Q,T)5r S givesT as a single-valued function ofQ.

C. Angular diameter distance

Quite generally, determination of the angular diame
distance requires solving the Sachs equations for the op
scalars along lightlike geodesics, see e.g. Schneider, Eh
and Falco@1#. For the Schwarzschild metric, this has be
explicitly worked out by Dwivedi and Kantowski@25#. Their
method easily carries over to arbitrary spherically symme
and static spacetimes as was demonstrated by Dyer@26#. In
what follows we give a reformulation of these results
terms of our lens equation.

To that end we fix a solution (Q,F) of the lens equation
and thereby a~past-oriented! light ray from the observer a
r O to a light source atr S . Around this ray, we consider a
infinitesimally thin bundle of neighboring rays, with verte
at the observer. The angular diameter distance is define
the square root of the ratio between the cross-sectional
of this bundle at the light source and the opening solid an
at the observer. Owing to the symmetry of our situation th
are two preferred spatial directions perpendicular to the r

u-
e

7-4
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EXACT GRAVITATIONAL LENS EQUATION IN . . . PHYSICAL REVIEW D 69, 064017 ~2004!
a radial direction~along a meridian on the observer’s sk!
and a tangential direction~along a circle of equal latitude o
the observer’s sky!. Therefore, the angular diameter distan
naturally comes about as a product of a radial part an
tangential part.

To calculate the radial part, we consider the infinite
mally neighboring ray which corresponds to an infinite
mally neighboring solution (Q1dQ,F1dF) of the lens
equation, i.e.dF anddQ satisfy

]F
]Q

~Q,F!1
]F
]F

~Q,F!
dF

dQ
50. ~21!

We define theradial angular diameter distanceas

Dang
r 5A~r S!R~r S!cosc

dF

dQ
~22!

with c given by Fig. 1, i.e.,A(r S)R(r S)coscdF measures,
in the direction perpendicular to the original ray, how far t
neighboring ray is away. By Eqs.~3!, ~6!, and~11!, c must
satisfy

R~r O!sinQ5R~r S!sinc. ~23!

With c given by Eq.~23! and dF/dQ given by Eq.~21!,
Dang

r is determined by Eq.~22! for every solution (Q,F) of
the lens equation. Note thatDang

r is singular at those solu
tions of the lens equation where]F/]F has a zero. If the
lens equation can be solved forF, we may viewDang

r as a
~single-valued! function of Q.

To calculate the tangential part we consider an infinite
mally neighboring light ray that results by applying a rot
tion around the axisw50, q5p/2. Such rotations are gen
erated by the Killing vector field K5sinw]q

1cotq cosw]w . At points withq5p/2, this Killing vector
field takes the formK5sinwA(r )R(r )g(]q ,]q)21/2]q .
Hence, if we rotate by an infinitesimal angledb, the neigh-
boring ray intersects the spherer 5r S at a distance
A(r S)R(r S)sinFdb from the original ray. Relating this dis
tance to the angle sinQdb between the two rays at the ob
server gives thetangential angular diameter distance

Dang
t 5A~r S!R~r S!

sinF

sinQ
. ~24!

By this equation,Dang
t is uniquely determined for each solu

tion (Q,F) of the lens equation. Again,Dang
t may be viewed

as a function ofQ if the lens equation can be solved forF.
Dang

r andDang
t together give the~averaged! angular diam-

eter distanceor area distance

Dang5AuDang
r Dang

t u. ~25!

Note that bothDang
r andDang

t may be negative. Images wit
Dang

r Dang
t .0 are said to haveeven parityand images with

Dang
r Dang

t ,0 are said to haveodd parity. Images with odd
parity show the neighborhood of the light source sid
inverted in comparison to images with even parity.
06401
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A solution (Q,F) of the lens equation is called aradial
critical point if Dang

r 50 and atangential critical point if
Dang

t 50. The latter condition is equivalent to sinF50 and
sinQÞ0, i.e., to the occurrence of an Einstein ring. No
that ~radial and tangential! critical points come in pairs,
(Q,F) and (2Q,2F). Every such pair corresponds to
circle of equal latitude on the observer’s sky which may
called a~radial or tangential! critical circle, as in the quasi-
Newtonian approximation formalism, see Schneider, Eh
and Falco@1#, p. 233. In the quasi-Newtonian formalism on
usually introduces the inverse magnification factors 1/m r and
1/m t as substitutes forDang

r andDang
t . In our situation, where

there is no flat background metric, not even asymptotica
the magnification factors cannot be defined in a reason
way, but working withDang

r andDang
t is completely satisfac-

tory.

D. Luminosity distance

In arbitrary spacetimes, the angular diameter dista
Dang is related to the~uncorrected! luminosity distance Dlum
by the universal formulaD lum5(11z)2Dang, see, e.g.,
Schneider, Ehlers and Falco@1#, Eq. ~3.80!. With the redshift
z given by Eq.~20! and the angular diameter distanceDang
given by Eq.~25!, we find

D lum5
A~r O!2

A~r S!2
AuDang

r Dang
t u. ~26!

For an isotropically radiating light source with bolometr
luminosity L, the total flux at the observer isL/(4pD lum

2 ),
see again Schneider, Ehlers and Falco@1#, Eq. ~3.79!. Hence,
if we distribute standard candles atr 5r S , their apparent
brightness on the observer’s sky is proportional toD lum

22 .

E. Image distortion

Dang
r andDang

t immediately give the apparent distortion o
images. For the sake of illustration, we may think of sm
spheres, with infinitesimal diameterdD, distributed with
their centers atr 5r S . By definition ofDang

r andDang
t , each

solution (Q,F) of the lens equation corresponds to an ell
tical image of such a sphere on the observer’s sky, with
radial ~meridional! diameter of the ellipse equal toudQu
5udD/Dang

r u and with the tangential~latitudinal! diameter of
the ellipse equal toudbu5udD/Dang

t u. Thus, we may use the
ellipticity

«5
udQu2udbu
udQu1udbu

5
uDang

r u2uDang
t u

uDang
r u1uDang

t u
~27!

as a measure for image distortion.

V. EXAMPLES

A. Lensing by a Barriola-Vilenkin monopole

We consider the metric

g5dr21k2r 2~dq21sin2qdw2!2dt2 ~28!
7-5
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where k is a positive constant. Fork51, this is just
Minkowski spacetime in spherical coordinates. Fork,1,
there is a deficit solid angle and a singularity atr 50; the
plane t5const, q5p/2 has the geometry of a cone. Sim
larly, for k.1 there is a surplus solid angle and a singular
at r 50. ForkÞ1, the metric is nonflat. The Einstein tens
has nonvanishing componentsGtt52Grr 5(12k2)/r 2, so
the weak energy condition is satisfied~without a cosmologi-
cal constant! if and only if k<1. In that case it was show
by Barriola and Vilenkin@27# that the metric may be viewe
as a model for the spacetime around a monopole resu
from breaking a globalO(3) symmetry. To within the weak
field approximation, basic features of lensing by such
monopole were discussed in the original paper by Barr
and Vilenkin @27# and also by Durrer@28#. In what follows
we give a detailed account in terms of our exact lens eq
tion. Note that the Virbhadra-Ellis lens equation@12# is not
applicable to this case, at least not without modification,
cause forkÞ1 the spacetime is not asymptotically flat in th
usual sense.

Comparison of Eq.~28! with Eq. ~1! shows that the metric
coefficients are given by

A~r !51, S~r !51, R~r !5kr ~29!

on the intervalr min50,r ,r max5`. With these metric co-
efficients, the integrals~12! and~13! can be calculated in an
elementary fashion, yielding the solution to the initial val
problem in the form

r~Q,s!5Ar O
2 12r Os cosQ1s2, ~30!

FIG. 3. The lens equation~32! for the Barriola-Vilenkin mono-
pole with k51/3.7 andr O50.77r S . Intersections with the dashe
lines indicate Einstein rings. Shading distinguishes sources
N(k)1154 images from sources withN(k)53 images.
06401
g

a
a

a-

-

f~Q,s!5
1

k

sinQ

usinQu
arccosS r O1s cosQ

Ar O
2 12r Os cosQ1s2D .

~31!

For sinQÞ0, s ranges from 0 to`, so uwu5uf(Q,s)u
ranges from 0 touQu/k. Eliminating T from the two equa-
tions ~9! gives the lens equation,

r Ssin~Q2kF!2r OsinQ50, ~32!

which is to be considered on the domain

2p,Q,p, kuFu,uQu. ~33!

We restrict to the case that the integerN(k) defined by
N(k)<1/k,N(k)11 is odd. The lens equation is plotted fo
the caser O,r S in Fig. 3 and for the caser O.r S in Fig. 4.
@For producing the pictures we have chosenk such that
N(k)53.# In either case we find that there areN(k) Einstein
rings. For a light source atr 5r S ,w5w0 ,q5p/2 with 0
,uw0u,p there are N(k) images if uw0u<(11N(k)
21/k)p ~nonshaded regions in Figs. 3 and 4! andN(k)11
images otherwise~shaded regions in Figs. 3 and 4!.

In the following we concentrate on the caser O,r S . Then
the lens equation can be solved forF, giving a lens map

Q°F5
1

k S Q2arcsinS r O

r S
sinQ D D ~34!

th

FIG. 4. The lens equation~32! for the Barriola-Vilenkin mono-
pole with k51/3.7 andr S50.77r O . Other than in the caser O

,r S , the lens equation cannot be solved forF, i.e., there are hid-
den images. The anglea is determined byr S5r Osina and p/2
,a,p. The picture shows that all Einstein rings, indicated
intersections with the dashed lines, are hidden. Shading dis
guishes sources withN(k)1154 images from sources withN(k)
53 images; only one image of each source is nonhidden.
7-6



oi

e

he

s
co

fo

ble
ris
by

d

the

t

at
l

h
o
,
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on the domain2p,Q,p, i.e., in the notation of Fig. 2 we
haved I5p/2 andd II 50. In the casek51 ~flat spacetime!,
the lens map can be continuously extended into the p
Q5p.2p ~and by periodicity onto the full circle,QPR
mod 2p). For kÞ1 the ray withQ5p.2p cannot pass
through the singularity atr 50, so the lens map is not to b
extended beyond the open interval ]2p,p@ . On this inter-
val, F increases monotonously from2p/k to p/k, see Fig.
3. Thus, the range of the lens map is independent ofr O and
r S . The ratior O /r S influences the shape of the graph of t
lens map in the following way. Forr O /r S→0 it becomes a
straight line,F5Q/k. For r O /r S→1 it becomes a broken
straight line,F50 for uQu<p/2 and F5(2Q2p)/k for
uQ2pu,p/2. Note that linearity of the lens map implie
that the angular distance on the observer’s sky between
secutive images is the same for all light sources.

As F is a ~single-valued! function of Q, so are all ob-
servables. By evaluating the formulas derived in Sec. IV
the case at hand we find

z50, ~35!

T5Dang
r 5r OcosQ1Ar S

22r O
2 sin2Q, ~36!

Dang
t 5

krS

sinQ
sinS 1

k FQ2arcsinS r OsinQ

r S
D G D , ~37!

which givesD lum and« as functions ofQ via Eqs.~26! and
~27!. The observables are plotted in Figs. 5, 6, and 7.

FIG. 5. Tangential angular diameter distanceDang
r ~dashed! and

radial angular diameter distanceDang
t ~solid! as functions ofQ for

the Barriola-Vilenkin monopole withk51/3.7 and r O50.77r S .
The dashed curve also gives the travel timeT5Dang

r . Each zero of
Dang

t indicates an Einstein ring. WhereDang
t andDang

r have the same
sign, the images have even parity; whereDang

t and Dang
r have dif-

ferent signs, the images have odd parity, i.e., the neighborhoo
each light source is shown side-inverted.
06401
nt
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B. Lensing by an Ellis wormhole

The metric

g5dr21~r 21a2!~dq21sin2qdw2!2dt2, ~38!

wherea is a positive constant, is an example for a traversa
wormhole of the Morris-Thorne class; see box 2 in Mor
and Thorne@29#. It was investigated, already in the 1970s,
Ellis @30# who called it a ‘‘drainhole.’’ Lensing in the Ellis

of

FIG. 6. Apparent brightness of standard candles for
Barriola-Vilenkin monopole withk51/3.7 andr O50.77r S . Instead
of D lum

22 , which is proportional to the energy flux from poin
sources, we have plotted the magnitudem52.5 log10(D lum

2 )1m0

used by astronomers. The constantm0 has been chosen such th
m50 atQ50. Einstein rings are infinitely bright in the ray optica
treatment,m52`.

FIG. 7. The ellipticity « for the Barriola-Vilenkin monopole
with k51/3.7 andr O50.77r S . If small spheres are distributed wit
their centers atr 5r S , this function describes their distortion int
ellipses on the observer’s sky.«50 indicates circular images
«521 images with no tangential extension~radial critical points!,
and«51 images with no radial extension~tangential critical points,
i.e. Einstein rings!.
7-7
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VOLKER PERLICK PHYSICAL REVIEW D69, 064017 ~2004!
spacetime was discussed, in a scattering formalism assu
that observer and light source are at infinity, by Chetou
and Clément @31#. In the following we give a detailed ac
count of lensing in this spacetime with the help of our le
equation.

By comparison of Eq.~38! with Eq. ~1! we find

A~r !51, S~r !51, R~r !5Ar 21a2, ~39!

where the radius coordinater ranges fromr min52` to
r max5`. ~We donot identify the region wherer is positive
with the region wherer is negative.! The functionR has a
minimum atr 50, thereby indicating the existence of circ
lar light rays at the neck of the wormhole. In the followin
we consider the case that observer and light sources ar
different sides of the neck of the wormhole,2`,r O,0
,r S,`.

As a first step, we determine for which anglesQ the lens
equation admits a solution; recall Fig. 2. In the case at ha
the anglesd I andd II defined by Eqs.~15! and~16! are given
by sind I5a/Ar O

2 1a2 and d II 5p/2.d I . Hence, the lens
equation admits a solution for all anglesQ with uQu,p/2
and

sin2Q,sin2d I5
a2

r O
2 1a2

. ~40!

Light sources distributed atr 5r S illuminate a disk of angu-
lar radiusd I,p/2 on the observer’s sky. The apparent rim
the disk corresponds to light rays that spiral asymptotica
towardsr 50. As the constantC defined by Eq.~17! satisfies
C5A(r S

21a2)/(r O
2 1a2).a/Ar O

2 1a25sind I , there are no
hidden images, i.e., the lens equation can be solved forF.

With Q restricted by Eq.~40! we read from Eq.~11! that
ṙ has no zeros along a ray that starts atr 5r O and passes
throughr 5r S . Hence, Eq.~12! gives usr(Q,s) and thereby
the travel time in terms of an elliptic integral,

s5E
r O

r(Q,s) Ar 21a2dr

Ar 21a2cos2Q2r O
2 sin2Q

. ~41!

Similarly, Eq. ~14! gives usF as a~single-valued! function
06401
ing
i

s

on

d,
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of Q in terms of an elliptic integral and thereby the le
equation,

F5E
r O

r S
Ar O

2 1a2sinQdr

Ar 21a2Ar 21a2cos2Q2r O
2 sin2Q

, ~42!

see Fig. 8. AsF increases monotonously from2` to ` on
the domain ]2d I ,d I@ , there are infinitely many Einstein
rings whose angular radii converge tod I . If we fix a light
source atw5w0 with 0,uw0u,p, Fig. 8 gives us infinitely
many images which can be characterized in the follow
way. For everynPZ there is a uniqueQnP] 2d I ,d I@ such
that F(Qn ,w012np)50, andQn→6d I for n→6`.

As F is a ~single-valued! function of Q, so are all ob-
servables. By evaluating the formulas derived in Sec. IV
the case at hand we find

FIG. 8. The lens equation~42! for the Ellis wormhole. The angle
d I(,p/2) is defined in Eq.~40!. There are infinitely many Einstein
rings, indicated by intersections with the dashed lines.
z50, ~43!

T5E
r O

r S Ar 21a2dr

Ar 21a2cos2Q2r O
2 sin2Q

. ~44!

Dang
r 5E

r O

r S
Ar S

21a2cos2Q2r O
2 sin2QAr O

2 1a2Ar 21a2cosQdr

Ar 21a2cos2Q2r O
2 sin2Q3

, ~45!

Dang
t 5

Ar S
21a2

sinQ
sinS E

r O

r S
Ar O

2 1a2sinQdr

Ar 21a2Ar 21a2cos2Q2r O
2 sin2Q

D , ~46!
7-8
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which givesD lum and« as functions ofQ via Eqs.~26! and
~27!. The observables are plotted in Figs. 9, 10, 11, and

As there are infinitely many Einstein rings whose angu
radii converge tod I , the tangential angular diameter distan
must have infinitely many zeros that converge tod I . This is
difficult to show in a picture unless one transformsQ into a
new coordinatex that goes to infinity forQ→d I . If one
chooses a logarithmic transformation formula, as has b
done in Fig. 10, one sees that in terms of the new coordin
x the Einstein rings become equidistant. This feature is
particular to the Ellis wormhole;F as a function ofQ al-
ways diverges logarithmically when a circular light ray a
radiusr p with R8(r p)50 andR9(r p).0 is approached. The
proof can be taken from Bozza@18#.

FIG. 9. The travel timeT as a function ofQ for the Ellis worm-
hole. The axisQ50 is met atT05r S2r O ; see Eq.~44!.

FIG. 10. Dang
r ~dashed! andDang

t ~solid! as functions ofQ for the
Ellis wormhole. At each Einstein ringDang

t has a zero. To make th
oscillatory behavior ofDang

t visible, we usex52 log(12uQu/d I)
instead ofQ on the abscissa;uQu ranges from 0 tod I if x ranges
from 0 to `. The axis is met at D0

5Ar S
21a2Ar O

2 1a2a21@arctan(r S /a)2arctan(r O /a)#; see Eqs.
~45! and ~46!.
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One may also treat the case that observer and l
sources are on the same side of the neck of the wormhol
the observer is closer to the neck than the light source
,r O,r S,` or 2`,r S,r O,0, the results are quite simi
lar to the case above. The only difference is in the fact t
the light sources appear as a disk of radiusbigger thanp/2,
i.e., the disk covers more than one hemisphere. If the
server is farther from the neck than the light sources, 0,r S
,r O,` or 2`,r O,r S,0, there are hidden images. i.e
one does not get a single-valued lens mapQ°F.

The qualitative features of lensing by an Ellis wormho
are very similar to the qualitative features of lensing by

FIG. 11. The apparent brightness, measured in terms of ma
tude m52.5 log10(D lum

2 )1m0, as a function ofQ for the Ellis
wormhole. The constantm0 has been chosen such thatm50 at Q
50. We use the same coordinatex as in Fig. 10 on the abscissa. A
each Einstein ring there is a singularity,m52`.

FIG. 12. The ellipticity« as a function ofQ for the Ellis worm-
hole. Again we have chosen the coordinatex from Fig. 10 on the
abscissa.« is equal to 1 at the Einstein rings and smaller than
between the Einstein rings. However, beyond the third Einstein
« stays so close to 1 that in the picture it looks like a const
function.
7-9
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Schwarzschild black hole. The radiir min52`, r p50, r max
5` in the Ellis case correspond respectively to the ra
r min52m, r p53m, r max5` in the Schwarzschild case. As
matter of fact, we encounter these same features when
the function R has one minimum,R8(r p)50 and R9(r p)
.0, and no other extrema on the considered interval.

VI. CONCLUDING REMARKS

The lens equation and the formulas for redshift, tra
time and radial angular diameter distance used in this pa
refer to lightlike geodesics of the (211)-dimensional metric
A(r )2@S(r )2dr21R(r )2dw22dt2#, independently of
whether this metric results from restricting a spherica
symmetric and static spacetime to the equatorial pla
Therefore, these results apply equally well to the planz
5const. of a cylindrically symmetric and static spacetim
l,
io

of
J.
ie

ro
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and, of course, to genuinely (211)-dimensional spacetime
with the assumed symmetries such as the BTZ black h
~For lightlike—and timelike—geodesics in the metric of th
BTZ black hole see Cruz, Martı´nez and Pen˜a @32#.! E.g., the
metricdr21k2r 2dw22dt2 results not only by restricting the
spacetime of a Barriola-Vilenkin monopole to the planeq
5p/2, as discussed in Sec. V A, but also by restricting
cylindrically symmetric and static metricdr21k2r 2dw2

1dz22dt2 to the planez50. The latter metric is well
known to describe the spacetime around a static string,
Vilenkin @33#, Gott @34# and Hiscock@35#, and was investi-
gated in detail already by Marder@36,37#. Hence, if re-
interpreted appropriately, the results of Sec. V A apply
light rays in the plane perpendicular to a static string. F
treatingall light rays in a cylindrically symmetric and stati
spacetime one may introduce a modified lens equation,
placing the spherer 5r S with a cylinder.
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