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Exact gravitational lens equation in spherically symmetric and static spacetimes
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Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic
equation without approximations. After fixing two radius valugsandr g, lensing for an observation event
somewhere atgy and static light sources distributedratis coded in a lens equation that is explicitly given in
terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily
plotted if the metric coefficients have been specified; this allows us to visualize in a convenient way all relevant
lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are
treated: lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.
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[. INTRODUCTION lightlike geodesic equation in a general-relativistic space-
time, without approximations. In this paper we will discuss
Theoretical work on gravitational lensing is traditionally this issue for the special case of a spherically symmetric and
done in a quasi-Newtonian approximation formalism, seestatic spacetime. In view of applications, this includes
e.g., Schneider, Ehlers and Faldg or Petters, Levine and spherical non-rotating stars and black holes, and also more
WambsgansB2], which is based, among other things, on theexotic objects such as wormholes and monopoles with the
approximative assumptions that the gravitational field isdesired symmetries. The main goal of this paper is to dem-
weak and that the bending angles are small. Under thesenstrate that in this case lensing without approximations can
assumptions, lensing is described in terms of a “lens equabe studied, quite conveniently, in terms of a lens equation
tion” that determines a “lens map” from a “deflector plane” that is not less explicit than the lens equation of the quasi-
to a “source plane,” thereby relating image positions on theNewtonian formalism.
observer’s sky to source positions. Although for all practical Lensing without weak-field or small-angle approxima-
purposes up to now this formalism has proven to be ventions was pioneered by Darwi,5] and by Atkinson[6].
successful, there are two motivations for doing gravitationaWhereas Darwin’s work is restricted to the Schwarzschild
lens theory beyond the quasi-Newtonian approximationspacetime throughout, Atkinson derives all relevant formulas
First, from a methodological point of view it is desirable to for an unspecified spherically symmetric and static spacetime
investigate qualitative features of lensing, such as criteria fobefore specializing to the Schwarzschild spacetime in
multiple imaging or for the formation of Einstein rings, in a Schwarzschild and in isotropic coordinates. All important
formalism without approximations, as far as possible, to bdeatures of Schwarzschild lensing are clearly explained in
sure that these features are not just reflections of the approxXboth papers. In particular, they discuss the occurrence of in-
mations. Second, lensing phenomena where strong gravitéinitely many images, corresponding to light rays making
tional fields and large bending angles are involved are narbitrarily many turns around the center and coming closer
longer as far away from observability as they have been and closer to the light sphere a&3m. However, they do
few years ago. In particular, the discovery that there is aot derive anything like a lens equation.
black hole at the center of our galaj®], and probably at the The notion of a lens equation without weak-field or small-
center of most galaxies, has brought the matter of lensing iangle approximations was brought forward much later by
strong gravitational fields with large bending angles closer td-rittelli and Newman7]. It is based on the idea of param-
practical astrophysical interest. If a light ray comes suffi-etrizing the light cone of an arbitrary observation event in a
ciently close to a black hole, the bending angle is not smallparticular way. For a general discussion of this idea and of
in principle, it may even become arbitrarily large, corre-the resulting “exact gravitational lens map” in arbitrary
sponding to the light ray making arbitrarily many turns spacetimes the reader may consult Ehlers, Frittelli and New-
around the black hole. Unboundedly large bending angleman[8] or Perlick [9]. Here we are interested only in the
also occur, e.g., with wormholes; the latter are more exoticpecial case of a spherically symmetric and static spacetime.
than black holes, in the sense that up to now there is no cledrhen the geodesic equation is completely integrable and the
evidence for their existence, but nonetheless considered @xact lens equation of Frittelli and Newman can be written
hypothetical candidates for lensing by many authors. quite explicitly. One can evaluate this equation from the
If one wants to drop the assumptions of weak fields andspacetime perspective, as has been demonstrated by Frittelli,
small angles, gravitational lensing has to be based on thkling and Newman[10] for the case of the Schwarzschild
spacetime, thereby getting a good idea of the geometry of the
light cone. Here we will use an alternative representation,
*Permanent address: Institlir fliheoretische Physik, TU Berlin, using the symmetry for reducing the dimension of the prob-
Sekr. PN 7-1, 10623 Berlin, Germany. Email address:lem. After fixing two radius valuesg andr g, lensing for an
vper0433@itp.physik.tu-berlin.de observation event somewherergf and static light sources
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distributed atr 5 is coded in a lens equation, explicitly given

in terms of integrals over the metric coefficients, that relates
two angles to each other. This representation results in a
particularly convenient method of visualizing all relevant

lensing properties, as will be demonstrated with two ex-
amples.

The lens equation discussed in this paper should be com-
pared with the lens equation for spherically symmetric and
static spacetimes that was introduced by Virbhadra,
Narasimha and Chitrgl1] and then, in a modified form, by
Virbhadra and Ellig12]. The Virbhadra-Ellis lens equation
has found considerable interest. It was applied to the
Schwarzschild spacetinjé@2] and later also to other spheri-
cally symmetric and static spacetimes, e.g. to a boson star by
Dabrowski and Schunck13], to a fermion star by Bilic
Nikoli¢ and Viollier[14], to spacetimes with naked singulari-
ties by Virbhadra and Elli$15], to the Reissner-Nordstmo FIG. 1. The figure shows the plank= /2. The observer, in-
spacetime by Eiroa, Romero and TorrEs5] and to a dicated by a dot, is situated at=ro, ©=0; the light sources are
Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holedistributed atr =rg. The lens equation relates the anlewhich
by Bhadra[17]. In the last two papers, the authors concen-gives the image position on the observer’s sky to the adigiehich
trate on light rays that make several turns around the centeives the source position in the spacetime. The arigledicated in
and they use analytical methods developed by Bga8a this picture is irrelevant for the lens equation but will be needed in
The Virbhadra-Ellis lens equation takes an intermediary poSec. IV C.

sition b_etween the exact lens equation anq the quasi§tands for “observer,” the inde$ stands for “source.” We
Newtonian approximation. It makes no assumptions as to thg .~ ¢ -1 observer ’at=ro ©=0, 9= /2. Itis our goal

smallness of bending angles, but it does make approximativgy jetermine the appearance, on the observer's sky, of static
assumptions as to the position of light sources and observq[ght sources distributed on the spherers.

For the Virbhadra-Ellis lens equation to be valid the space-~ gy symmetry, we may restrict to the plare= /2. We

time must be asymptotically flat for—cc and both observer consider past-oriented lightlike geodesics that start at time
and light sources must be at positions whei®large; more-  =( at the observer and terminate, at some tirre- T<0

over, one has to restrict to |Ight sources close to the radla}\/hmh depends on the geodesic’ somewhere on the Sphere
line opposite to the observer position, i.e., to the case thatrg. To each of those light rays we assign the an@le
there is only a small misalignmer{The question of how one measured at the observer between the ray’s tangent and the
can free oneself from the latter assumption was addressed ljjrection of g, , and the anglab, swept out by the azimuth
Dabrowski and Schunck13] and by Bozzg19].) The lens  coordinate along the ray on its way from the observer to the
equation to be discussed in the present paper is not restrictsturce; see Fig. 1. The desired lens equation is an equation
to the asymptotically flat case, and it makes no restriction omf the form F(®,®)=0 which relates image positions on

the position of light sources or observer. the observer’s sky, given b§), to source positions in the
spacetime, given byp modulo 2. We restrict® to values
Il. DERIVATION OF THE LENS EQUATION between— 7 and 7; then|®| can be viewed as a colatitude

coordinate on the observer’s celestial sphere. By symmetry,
We consider an arbitrary spherically symmetric and staticF(®,®)=0 must be equivalent t¢(—©®,—®)=0. For a
spacetime. For our purpose it will be advantageous to writgjiven angle®, neither existence nor uniqueness of an angle
the metric in the form ® with F(®,®)=0 is guaranteed. Existence fails if the re-
) spective light ray never meets the sphetrerg; uniqueness
g=A(NX(S(r)*dr*+ R(r)*(d9?+ sif 9de?) — dt?). fellails if it mgets trﬁs sphere several tinges. In the Ia(tqter case the
observer sees two or more images of light sourceg at the

Here ¢ and ¢ are the standard coordinates on the sphiere, S8Me point on the sky, one behind the other. We will refer to

ranges oveR andr ranges over an open interval ], , sl M29ES ,}Nhich are covered by other images as to “hidden
where—o<r < ma=. We assume that the functiods ~ Mages. The lens equation can be solved fby thereby

S andR are strictly positive andat least piecewigediffer- ~ 91ving alens map®+—®, only if hidden images do not exist
entiable on the intervalr],,,r maf. As the lightlike geode- (O are willfully ignored. ,
sics are not affected by the conformal factb¢r)? (apart To work out the lens equation we have to calculate the

from their parametrizationsthe lens equation will depend li9htiike geodesics in the plané = /2 of the metric(1),
on the metric coefficient$(r) and R(r) only. We will see which is an elementary exercise. As a conformal factor has

below that many qualitative features of the lens equation ar8° influence on the lightlike geodesitapart from their pa-
determined by the coefficief(r) alone. rametrization, they are solutions of the Euler-Lagrange

For introducing our lens equation we have to fix two ra-equations of the Lagrangian= 3(S(r)?r 24+ R(r)%¢?
dius valuesr andrg betweenr ., andr ,.x. The indexO —t?), i.e.
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(S(r)?r) =S(r)S'(Nr2+R(r)R'(r)¢?, ()
(R(r)%¢) =0, 3)
t=0, (4)
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¢(®,S):Js R(rp)sin®ds 13

o R(MO®3)%

Equation(13) can be rewritten as an integral overwith r
=dr/ds substituted from Eq(11). This gives us the lens
equation in the form

where an overdot denotes differentiation with respect to the

curve parametes. As an aside we mention that, by Eg), a
circular light ray exists at radius, if and only if R’(r)

=0. Comparing this condition with the equivalent but less

convenient Eq(33) in Atkinson’s article[6] shows that it is
advantageous to write the metric in the foft). The rel-

R(ro)sin®S(r)dr

(14)

|cos®| [rg
=

"~ cos® Jig R(r)\/R(r)Z—R(ro)zsinz@.

If r changes sign, Eq12) has to be replaced by a piecewise

evance of circular light rays in view of lensing was discussedntegration. Similarly, the substitution from ttesntegration
by Hasse and Perlick0], also see Claudel, Virbhadra, and in Eq. (13) to an r-integration must be done piecewise. In

Ellis [21] for related results.

To get the past-oriented light ray that starts at timd at
the observer in the direction determined by the aréleve
have to impose the initial conditions

. cos®
MNs=0=To, r|5:°:S(TO)’ 5
. sin®
¢ls-0=0, <P|s:o=m, (6)
tls-0=0, tls-o=—1. (7)

For each®, the initial value problen{2), (3), (4), (5), (6),
(7) has a unique maximal solution

r=r0,s), ¢=¢(0,s), t=-s, tS)
wheres ranges from 0 up to son®,,(®). Every image on
the observer’s sky of a light source & corresponds to a
pair (0,®) such that

rs<=r®,T) and ®=¢(O,T) 9)
with some parameter valuee ]0,5,,,,(®)[. In other words,
we get the desired lens equatifii®,®) =0 if we eliminate
T from the two equation$9).

this case, the lens equation is not of the foiid); in par-
ticular, it is not guaranteed that the lens equation can be
solved ford. In any case, we get exact integral expressions
for the lens equation, and for the travel timigfrom which

all relevant lensing features can be determined in a way that
is not less explicit than the quasi-Newtonian approximation
formalism. This will be demonstrated by two examples in
Sec. V. In Sec. V A we treat a particularly simple example
where the metric coefficienR(r) andS(r) are analytic and
the integral(12) can be explicitly calculated in terms of el-
ementary functions. In this case it suffices to calculate Eq.
(12) for arbitrarily smalls to get the whole functiom(®,s)

by maximal analytic extension; i.e., in this case it is not

necessary to determine the points wherehanges sign and
to perform a piecewise integration.

I1l. DISCUSSION OF THE LENS EQUATION

In the first part of this section we want to discuss for
which values of® the lens equatiof(®,d)=0 admits a
solution. In other words, we want to determine which part of
the observer’s sky is covered by the light sources distributed
atr =rg. We restrict to the casey<rg. (The results for the
caser o>r g follow immediately from our discussion; we just
have to make a coordinate transformation —r and, cor-
respondingly, to chang® into w—®. The casa =rg can
be treated by a limit proceduje.

We get an explicit expression for the lens equation, and For a light ray with one end-point at, and the other atg

for the travel timeT, by writing the functionsr(®,s) and

the right-hand side of Eqd11) must be non-negative for all

#(0,s) in terms of integrals. From the constant of motion petweerr 5 andrs. This condition restricts the possible val-

S(r)%r 2+ R(r)%@2—t?=0 (10
we find, with the help of Eq.3), (4), (6), (7),
S(r)2R(r)%r 2=R(r)%2—R(r o)?sirt0. (11)

If r does not change sign, integration of Efyl) yields

R(r)S(r)dr

(12

|cos®|fr((-),s)

080 Jio  \R(r)Z—R(ro)%sifO

With r(®,s) known, o= ¢(0®,s) is determined by integrat-
ing Eq. (3) with Eq. (6),

ues of® by sirf®=<sir?s, where

sing=inf{R(r)/R(rg)|ro<r<rg}. (15
Note that our assumptions guarantee that this infimum is
strictly positive, 0< 8, < /2.

Furthermore, a light ray withr/2<|®|< = can arrive at
rs only if it passes through a minimal radius valpé®)
<ro. As Eq. (11) requiresR(p(0®))?=R(ro)?sirf®, this
can be true only if sif®=sir’s,, where

sin ), =inf{R(r)/R(ro)|r min<r <ro}, (16)

0=, =m/2. So in general the light sourcesraf cover on
the observer’s sky a disk of angular radigjsaround the pole
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“relativistic” by Virbhadra and Ellis[12]. Note that different

images of a light source may have the same winding number.
If we sendg, to 0 or torr= — 7, solutions® of Eg. (18)

with sin® #0 come in pairs @,— ®). By spherical symme-

try, every such pair gives rise to an Einstein ring. There are

as many Einstein rings as the equation

I(S i =
0= — :5” 0=0 F(O,im)=0 (19)
_l‘Lf admits solutions with positive integersEven integers cor-
i respond to Einstein rings of the sourceg=0, and odd
integersi correspond to Einstein rings of the source¢gt
=7T=—1T.
0= —m/2 IV. OBSERVABLES

To each solution ®,®) of the lens equation we can as-
sign redshift, travel time, apparent brightness and image
distortion.

FIG. 2. In the case<rg, the light sources cover the non-
shaded region on the observer’s sky, wéhand &,, given by Egs.
(15) and(16), respectively(For rs<r, one gets an analogous pic-
ture, with ® =0 and® = 7= — 7 interchanging their roleslf the .
spacetime is asymptotically flat andrif is sufficiently large, this A. Redshift
picture gives the so-called “escape cones” which have been calcu- The general redshift formula for static metricse, e.g.,
lated by Syng¢22] for the Schwarzschild spacetime and by PandeStraumanr24], p. 97 specified to metrics of the forrfl)

and Durgapa23] for an unspecified asymptotically flat spherically says that the redshittis given by
symmetric and static spacetime.

. . - . . A(ro)
®=0 and, if §,<4,, in addition a ring of angular width 1+z= Ao (20
6,— 6, around the pole®= 7= —1; see Fig. 2. The two
domains join if 6, = /2. if the observer’s world line is a-line at r=rgy and the

We see that the allowed values 6f are determined by source’s world line is a-line atr=rg. In our situationr o
the metric coefficienR alone. We will now demonstrate that andr g are fixed, so the redshift is a constant.
R alone also determines the occurrence or nonoccurrence of
hidden images. Hidden images occur if a light ray from
intersects the sphere=r g at least two times; between these
two intersections it must pass through a maximal radius Recall that @,®) is a solution of the lens equation if and
a(0®)>rg which, by Eqg.(11), has to satisfyR(c(©))?  only if there is a parametef such that the equation®)
=R(r)%si’®. Such a radiusr(0®) exists for all® with hold. This assigns a travel timeto each solution®,®) of
sif® > C2 where the lens equation. If there are no hidden images, the equation

r(®,T)=rggivesT as a single-valued function &.

B. Travel time

C=inf{R(r)/R(ro)|rs<r<rmay- (17)
C. Angular diameter distance
As O is restricted by sifd <sir?s,, hidden images cannot . g o .
occur if C=sing, . The latter condition is satisfied in asymp- _ Quite generally, determination of the angular diameter
totically flat spacetimes, whereR(r)—c for r—r,, distance requires solving the Sachs equations for the optical
(=), if we chooser s sufficiently large. This is the reason scalars along lightlike geodesics, see e.g. Sch_ne|der, Ehlers
why in the more special situation of the Virbhadra-Ellis lens@nd Falco[1]. For the Schwarzschild metric, this has been
In the rest of this section we discuss the question of mulmethod easily carries over to arbitrary spherically symmetric
tiple imaging and the occurrence of Einstein rings. For a@Nd static spacetimes as was demonstrated by [2@rin
light source atr=rg, =@y, 9=m/2 with 0<|po|<, what follows we give a reformulation of these results in

images on the observer’s sky are in one-to-one corresporl€'Ms of our lens equation.

dence with solution® of the equation To that end we fix a solution®,®) of the lens equation
and thereby dpast-orienteglight ray from the observer at
F(O,p0+2n7)=0 (18) ro to a light source ats. Around this ray, we consider an

infinitesimally thin bundle of neighboring rays, with vertex
with ne Z. We call the integen the “winding number” of  at the observer. The angular diameter distance is defined as
the corresponding light ray. An image with=0 is called the square root of the ratio between the cross-sectional area
“primary” and an image withn=— ¢, /| ¢, is called “sec-  of this bundle at the light source and the opening solid angle
ondary.” Images with other values of correspond to light at the observer. Owing to the symmetry of our situation there
rays that make at least one full turn and have been termeare two preferred spatial directions perpendicular to the ray:
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a radial direction(along a meridian on the observer’s $ky A solution (©,®) of the lens equation is calledradial
and a tangential directiofalong a circle of equal latitude on critical point if Dj,;=0 and atangential critical pointif
the observer’s sky Therefore, the angular diameter dlstanceDt =0. The latter condition is equivalent to sih=0 and
naturally comes about as a product of a radial part and 8in®+0, ie., to the occurrence of an Einstein ring. Note
tangential part. that (radial and tangentialcritical points come in pairs,
To calculate the radial part, we consider the infinitesi-(@ &) and (—-®,—®). Every such pair corresponds to a
mally neighboring ray which corresponds to an infinitesi-circle of equal latitude on the observer's sky which may be
mally neighboring solution @ +d®,®+d®) of the lens  called a(radial or tangentialcritical circle, as in the quasi-

equation, i.ed® andd® satisfy Newtonian approximation formalism, see Schneider, Ehlers
oF (I) and Falcd 1], p. 233. In the quasi-Newtonian formalism one
(@ D)+ (@ q)) _ (21)  usually introduces the inverse magnification factoys' nd

1/u' as substitutes deangandD;ng. In our situation, where
there is no flat background metric, not even asymptotically,
the magnification factors cannot be defined in a reasonable
way, but working withD,, and Df,mg is completely satisfac-

do
Dan=A(rs) R(rgicosy 5o (22)  tory.

We define theadial angular diameter distancas

with ¢ given by Fig. 1, i.e. A(rs)R(rs)cosydd measures, D. Luminosity distance
in the direction perpendicular to the original ray, how far the  |n arbitrary spacetimes, the angular diameter distance
neighboring ray is away. By Eq$3), (6), and(11), ¢y must D, is related to théuncorrecteyiluminosity distance Ry,
satisfy by the universal formulaD,,,= (1+z)2Dang, see, e.g.,
. ) Schneider, Ehlers and FalEb], Eq.(3.80. With the redshift
R(ro)sin®=R(rg)siny. (23 7 given by Eq.(20) and the angular diameter distanbdg,,

With ¥ given by Eq.(23) and dd/d® given by Eq.(21), 9Ven by Eq.(25), we find

ang is determined by Eq.22) for every solution @,®) of A(ro)?
the lens equation. Note tha@,, is singular at those solu- Dium= \/|Dangptand. (26)
tions of the lens equation whe&#/9d has a zero. If the A(rs)?

lens equation can be solved fdr, we may vrewDang as a
(single-valued function of ©.

To calculate the tangential part we consider an infinitesi-
mally neighboring light ray that results by applying a rota-
tion around the axie =0, 4= m/2. Such rotations are gen-
erated by the Kiling vector field K=singd,
+cotd cosed,, . At points with 9= /2, this Killing vector o
field takes the formK= SiN@A(r)R(r)g(dy,ds)  Y20,. E. Image distortion
Hence, if we rotate by an infinitesimal anglg, the neigh- ang and D;ng|mmediate|y give the apparent distortion of
boring ray intersects the sphere=rgs at a distance images. For the sake of illustration, we may think of small
A(rg)R(rg)sin®dg from the original ray. Relating this dis- spheres, with infinitesimal diametetD, distributed with
tance to the angle sindp between the two rays at the ob- their centers at=rg. By definition of D},;and D}, each
server gives theangential angular diameter distance solution @,®) of the lens equation corresponds t0 an ellip-
tical image of such a sphere on the observer’s sky, with the

For an isotropically radiating light source with bolometric
luminosity L, the total flux at the observer is/(47DZ,,),
see again Schneider, Ehlers and Falth Eq. (3.79. Hence,

if we distribute standard candles mtrg, their apparent
brightness on the observer’s sky is proportionaDigy, .

D;ng=A(rS)R(rs)anq). (24  radial (meridiona) diameter of the ellipse equal tm®|
sin® =|dD/Dj,gd and with the tangentla(latrtudrnal) diameter of
the ellipse equal t¢d3|=|dD/D, nd- Thus, we may use the
By this equa’uonDang is uniquely determined for each solu- ellipticity
tion (O,d) of the lens equation. Agaerang may be viewed
as a function o® if the lens equation can be solved fér. |d®|—|dB| |Dhnd —|D§mJ
DjngandDy, together give théaveragegiangular diam- *= 13048 o' : 27
eter distanceor area distance |DanJ +| Dan@J
D ang= m (25) as a measure for image distortion.
Note that botrD;ng and Dgng may be negative. Images with V. EXAMPLES
angPang>0 are said to haveven parityand images with A. Lensing by a Barriola-Vilenkin monopole
angpang<0 are said to havedd parity Images with odd We consider the metric
parity show the neighborhood of the light source side-
inverted in comparison to images with even parity. g=dr?+k?r?(d9?+sirf9de?) — dt? (29
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FIG. 3. The lens equatio(82) for the Barriola-Vilenkin mono- FIG. 4. The lens equatio(82) for the Barriola-Vilenkin mono-
pole with k=1/3.7 andro=0.7%g. Intersections with the dashed pole with k=1/3.7 andrs=0.7%o. Other than in the caseq
lines indicate Einstein rings. Shading distinguishes sources with<rg, the lens equation cannot be solved doy i.e., there are hid-
N(k) +1=4 images from sources witN(k) =3 images. den images. The angle is determined by s=rgsSina and 7/2

<a<m. The picture shows that all Einstein rings, indicated by
where k is a positive constant. Fok=1, this is just intersections with the dashed lines, are hidden. Shading distin-
guishes sources witN(k) +1=4 images from sources witN(k)

Minkowski spacetime in spherical coordinates. For1, . : _ )
=3 images; only one image of each source is nonhidden.

there is a deficit solid angle and a singularityratO; the
planet=const, 9= /2 has the geometry of a cone. Simi-

larly, for k>1 there is a surplus solid angle and a singularity 1 sin® ro+scos®
atr=0. Fork# 1, the metric is nonflat. The Einstein tensor S)= K [sin@| arcco = >
has nonvanishing componen®=—G,,=(1—k?)/r?, so ro+2roscosd +s

the weak energy condition is satisfié@dithout a cosmologi- (31)

cal constantif and only if k<1. In that case it was shown
by Barriola and Vilenkinf27] that the metric may be viewed
as a model for the spacetime around a monopole resultin
from breaking a globaD(3) symmetry. To within the weak-
field approximation, basic features of lensing by such a rsSin(@ — k) —rosin® =0, (32)
monopole were discussed in the original paper by Barriola

and Vilenkin[27] and also by Durref28]. In what follows  \yhich is to be considered on the domain

we give a detailed account in terms of our exact lens equa-

tion. Note that the Virbhadra-Ellis lens equatifi?] is not —-7<0<mw, Kkldo|<|O]|. (33
applicable to this case, at least not without modification, be-

cause fok# 1 the spacetime is not asymptotically flat in the We restrict to the case that the integd(k) defined by

For sin®@+0, s ranges from 0 tox, so |¢|=|¢(0,s)]
ranges from 0 td®|/k. Eliminating T from the two equa-
fons (9) gives the lens equation,

usual sense. N(K)=<1/k<N(k)+1 is odd. The lens equation is plotted for
Comparison of Eq(28) with Eq. (1) shows that the metric the casea o<rg in Fig. 3 and for the casey>rg in Fig. 4.
coefficients are given by [For producing the pictures we have chodersuch that
N(k)=3.] In either case we find that there d¢k) Einstein
A(r)=1, S(r)=1, R(r)=kr (29)  rings. For a light source at=rs,¢= ¢, =m/2 with O

<|@o|<m there are N(k) images if |¢g|=<(1+N(K)
—1/k) 7 (nonshaded regions in Figs. 3 andahdN(k) +1
images otherwis¢shaded regions in Figs. 3 andl 4

In the following we concentrate on the cagg<rs. Then
the lens equation can be solved fbr giving a lens map

on the intervalr pj,= 0<r <r,,=%. With these metric co-
efficients, the integral§l2) and(13) can be calculated in an
elementary fashion, yielding the solution to the initial value
problem in the form

1 ro .
O—P=—| ®—arcsi r—sm@) (39

r(0,s)=\r3+2roscos® +?, (30) K s
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t
Dgng’ Dang m = 2.5 logIO(Dlzum) +mg

- rs +To .

-2

FIG. 6. Apparent brightness of standard candles for the
Barriola-Vilenkin monopole wittkk=1/3.7 andr o=0.7% 5. Instead
of D[J,f], which is proportional to the energy flux from point
sources, we have plotted the magnituge- 2.5 IoglO(Dﬁ,m)erO
used by astronomers. The constamf has been chosen such that
m=0 at®=0. Einstein rings are infinitely bright in the ray optical
treatmentm= — o,

FIG. 5. Tangential angular diameter distariz,, (dashed and
radial angular diameter distan(‘.li_1ng (solid) as functions of® for
the Barriola-Vilenkin monopole wittk=1/3.7 andro=0.7%s.
The dashed curve also gives the travel timeD’,,,. Each zero of

ang"
Djngindicates an Einstein ring. Whei,,,andD,,; have the same

ang
sign, the images have even parity; whagng and D;ng have dif-

ferent signs, the images have odd parity, i.e., the neighborhood of The metric
each light source is shown side-inverted. 2, 2. 2 2, 2 2
g=dr?+(r2+a?(d9?+sirfdde? —dt?, (39

B. Lensing by an Ellis wormhole

on the domain- 7<® <, i.e., in the notation of Fig. 2 we
have §,= /2 and §,,=0. In the cas&k=1 (flat spacetimg
the lens map can be continuously extended into the poi
®=7=—1 (and by periodicity onto the full circle® e R
mod 27). For k#1 the ray with® =7=— 7 cannot pass
through the singularity at=0, so the lens map is not to be
extended beyond the open intervat r,7[. On this inter-
val, ® increases monotonously fromw/k to 7/k, see Fig.
3. Thus, the range of the lens map is independemiycdind
rs. The ratioro/rg influences the shape of the graph of the
lens map in the following way. Fary/rs—0 it becomes a
straight line,®=0/k. Forrgy/rg—1 it becomes a broken
straight line,®=0 for |®|<x/2 and ®=(20 —7)/k for
|® — 7| < /2. Note that linearity of the lens map implies
that the angular distance on the observer’s sky between con——_ —p)
secutive images is the same for all light sources.

As @ is a (single-valuedl function of ®, so are all ob-
servables. By evaluating the formulas derived in Sec. IV for
the case at hand we find

wherea is a positive constant, is an example for a traversable
n\fvormhole of the Morris-Thorne class; see box 2 in Morris
and Thorng29]. It was investigated, already in the 1970s, by
Ellis [30] who called it a “drainhole.” Lensing in the Ellis

2=0, (35 ommeeeees o e

T=Djn="0C0SO + \r§—rasirfo, (36)

kr 1
D! S sin(

FIG. 7. The ellipticity ¢ for the Barriola-Vilenkin monopole
with k=1/3.7 and o=0.77% 5. If small spheres are distributed with
(37) their centers at =rg, this function describes their distortion into

ellipses on the observer’s skg.=0 indicates circular images,

e=—1 images with no tangential extensi@adial critical point$,
which givesD ,, ande as functions o via Egs.(26) and  ande=1 images with no radial extensigtangential critical points,
(27). The observables are plotted in Figs. 5, 6, and 7. i.e. Einstein rings

g sin®” |\ k

_r(rosi”
® —arcsi

s
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spacetime was discussed, in a scattering formalism assumin i)
that observer and light source are at infinity, by Chetouani
and Clenent[31]. In the following we give a detailed ac- Lo
count of lensing in this spacetime with the help of our lens
equation. e R e T T
By comparison of Eq(38) with Eq. (1) we find .
A(r)=1, S(r)=1, R(r)=vr?+a? (39 L D
where the radius coordinate ranges fromrpj,=—% t0 = —cceeocaooooo- E
INmax=°- (We donot identify the region where is positive
with the region where is negative. The functionR has a "y o1 ©
minimum atr =0, thereby indicating the existence of circu- o s
lar light rays at the neck of the wormhole. In the following
we consider the case that observer and light sources are 0~ [~===="=="="="" R
different sides of the neck of the wormhole,o<ro<0 | B
As a first step, we determine for which angl@sthe lens ~ p-------------- e LI
equation admits a solution; recall Fig. 2. In the case at hand, | N
the angless, and §;, defined by Eqs(15) and(16) are given

by sin5|=a/\/roz+a2 and 8, = w/2> 6, . Hence, the lens

equation admits a solution for all angles with [©]< /2 FIG. 8. The lens equatio@?2) for the Ellis wormhole. The angle

and 5,(< ml2) is defined in Eq(40). There are infinitely many Einstein
) rings, indicated by intersections with the dashed lines.
3|n2®<3|n25,=r(2)+a2. (40 of ® in terms of an elliptic integral and thereby the lens
equation,
Light sources distributed at=r g illuminate a disk of angu-
lar radiusé, < 7/2 on the observer’s sky. The apparent rim of > o
the disk corresponds to light rays that spiral asymptotically b= frs Vrotasin@dr 42
towardsr =0. As the constant defined by Eq(17) satisfies 'o \/r2+ a2 \/r2+ a2co20 — résinz(é)

C=\(ri+a?)/(rg+a%) >al\r5+a’=sing,, there are no
hidden images, i.e., the lens equation can be solvedfor ) )
With © restricted by Eq(40) we read from Eq(11) that  S€®€ Fig. 8. Asb increases monotonously fromeo to % on

! has no zeros along a ray that starts atro and passes the domain }-6,,46,[, there are infinitely many Einstein

_ . rings whose angular radii converge &. If we fix a light
throughr =rg. Hence, Eq(12) gives usr(®,s) and thereby - . g : S
the travel time in terms of an elliptic integral, source alp= o with 0<|pol <, Fig. 8 gives us infinitely
many images which can be characterized in the following

. 24 a2 way. For everyneZ there is a uniqué®,e]— 6,,48,[ such
s= fr('s) rhatdr _ (41 thatF(0,,¢+2n7)=0, and®,— = 4 for n— + oo,
£ \/r2+ a%cog® —r3sirf® As ® is a (single-valued function of @, so are all ob-

servables. By evaluating the formulas derived in Sec. IV for
Similarly, Eq.(14) gives us® as a(single-valuegl function  the case at hand we find

z=0, (43

rs r’+a2dr
o \r2+a2cog0 —r2sirfe

frs Vr2+a2co20 —r2sir?® \ra+a?\r2+a2cos@dr
r

r
_ : (49
Mg Vr2+a2co€0 —rsirt®®
Vri+a? Jrs Vr3+a%sin@dr
=——-—Sin ) (46)
g gin@ ‘o \r2+a2\r?+a2cog0 —r2sirt®
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T m = 2.5logo(D2) + mo
30 ﬂ[\[
20 [\/\

S

—(5] 5]
FIG. 9. The travel tim& as a function o® for the Ellis worm- ﬁ
hole. The axis® =0 is met atT,=rg—ro; see Eq.(44). 10

which givesD,,, ande as functions o via Eqgs.(26) and

(27). The observables are plotted in Figs. 9, 10, 11, and 12.
As there are infinitely many Einstein rings whose angular 0 T
radii converge t@, , the tangential angular diameter distance Y | l |
must have infinitely many zeros that convergesto This is
i FIG. 11. The apparent brightness, measured in terms of magni-

difficult to show in a picture unless one transforfsinto a
new coordinatex that goes to infinity for® —&,. If one  tude m=2.5log(D?,,)+ My as a function of® for the Ellis

chooses a logarithmic transformation formula, as has beewormhole. The constanh, has been chosen such tmat=0 at ®

done in Fig. 10, one sees that in terms of the new coordinate 0. We use the same coordinatas in Fig. 10 on the abscissa. At

x the Einstein rings become equidistant. This feature is no¢ach Einstein ring there is a singularitg= — .

\F/)vaa\gglgﬁlre:getsh?ogglristhvm::r;llrI];ﬁe?saac:rliﬁ?gfﬁgﬁ?a? at a One may also treat th_e case that observer and light
. , , " . sources are on the same side of the neck of the wormhole. If

radiusr, with R'(rp) =0 andR’(r) >0 is approached. The the observer is closer to the neck than the light sources, 0

proof can be taken from Boz4as]. <ro<rg<w or —n<rgs<ro<0, the results are quite simi-
lar to the case above. The only difference is in the fact that

DT Dt the light sources appear as a disk of radiigger than /2,
ang?’ -4 . . N

i.e., the disk covers more than one hemisphere. If the ob-
server is farther from the neck than the light sourcesy @
<ro<® or —»<ro<rg<O0, there are hidden images. i.e.,
one does not get a single-valued lens ntap>®.
The qualitative features of lensing by an Ellis wormhole
are very similar to the qualitative features of lensing by a

1
]
[}
]
]
]
]
]
[
1
i
H €
[}
t
]
i
]
1
!

[

Dq

ANVANVANVANVA
VAAVALVARVAAVAR

T

FIG. 10.Dgg (dasheazlandDang(soIid) as functions oB for the
Ellis wormhole. At each Einstein rinBznghas a zero. To make the  FiG. 12. The ellipticitys as a function o for the Ellis worm-
oscillatory behavior oD}, visible, we usex=—1og(1—|0[/8)  nhole. Again we have chosen the coordinatéom Fig. 10 on the
instead of® on the abscissd®| ranges from 0 to, if x ranges  apscissas is equal to 1 at the Einstein rings and smaller than 1
fom 0 to «. The axis is met at Dy petween the Einstein rings. However, beyond the third Einstein ring
e stays so close to 1 that in the picture it looks like a constant

=ri+a?\rj+a’a arctanfs/a)—arctanto/a)]; see EQgs.
(45) and(46). function.
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Schwarzschild black hole. The radij,=—%, r,=0, rp,,, ~ and, of course, to genuinely (21)-dimensional spacetimes
= in the Ellis case correspond respectively to the radiiwith the assumed symmetries such as the BTZ black hole.
Fmin=2M, I ,=3m, I =2 in the Schwarzschild case. As a (For lightlike—and timelike—geodesics in the metric of the
matter of fact, we encounter these same features whenevE Z black hole see Cruz, Martez and Pem[32].) E.g., the

the functionR has one minimump'(r,)=0 and R'(r,) metricdr?+ k?r2de?— dt? results not only by restricting the

>0, and no other extrema on the considered interval. ~ SPacetime of a Barriola-Vilenkin monopole to the plafe
=/2, as discussed in Sec. V A, but also by restricting the
VI, CONCLUDING REMARKS cylindrically symmetric and static metriclr?+ k?r2d¢?

+dz?—dt? to the planez=0. The latter metric is well

The lens equation and the formulas for redshift, travelknown to describe the spacetime around a static string, see
time and radial angular diameter distance used in this pap@rilenkin [33], Gott[34] and Hiscock 35], and was investi-
refer to lightlike geodesics of the (21)-dimensional metric gated in detail already by MarddB6,37. Hence, if re-
A(r)[S(r)?dr?+R(r)?de?—dt?], independently  of interpreted appropriately, the results of Sec. V A apply to
whether this metric results from restricting a sphericallylight rays in the plane perpendicular to a static string. For
symmetric and static spacetime to the equatorial planereatingall light rays in a cylindrically symmetric and static
Therefore, these results apply equally well to the plane spacetime one may introduce a modified lens equation, re-
=const. of a cylindrically symmetric and static spacetimeplacing the sphere=r g with a cylinder.
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