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Do rotations beyond the cosmological horizon affect the local inertial frame?
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If perturbations beyond the horizon have the velocities prescribed everywhere then the dragging of inertial
frames near the origin is suppressed by an exponential factor. However if perturbations are prescribed in terms
of their angular momenta there is no such suppression. We resolve this paradox and in doing so give new
explicit results for the dragging of inertial frames in closed, flat, and open universes with and without a
cosmological constant.
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I. INTRODUCTION

In a clearly written paper Schmid@1# describes how rota
tional perturbations of a spatially flat universe influence
inertial frames. He finds that such influences are attenu
by an exponential Yukawa factor whenever the perturba
lies beyond a ‘‘horizon’’. He expressed his results in terms
a quantity that he calls the energy currentJW e . What corre-
sponds to Schmid’s energy currentJW e in our calculation is a
quantityJW s with the dimensions of angular momentum. How
ever his result appears to disagree with our earlier result@2#
~hereafter LKB! that in a flat universe the rotation of th
inertial frame,v, due to any system of spheres with sm
rotations about a center is given by

vW ~ r̄ ,t !5
2G

c2 F 1

r̄ 3
JW~ t,, r̄ !1E

r̄

` 1

r̄ 83

dJW

dr̄8
dr̄8G , ~1.1!

where JW (t,, r̄ ) is the total angular momentum within th
sphere of proper radius@3# r̄ 5a(t)r . This expression dem
onstrates how angular momenta at all distances contri
and shows no exponential cutoff and no influence of a
horizon.

Both results agree, however, that inertial ‘‘influence
may be expressed instantaneously i.e. with no light tra
time delay. This is because they follow from the constra
equations of general relativity with an appropriate mapp
onto an unperturbed universe to provide a suitable gaug

The results are inapparentcontradiction. However, when
the details of both calculations are examined it is evident
the contradiction lies in the attribution of different causes
0556-2821/2004/69~6!/064011~12!/$22.50 69 0640
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the effect. Schmid’s ‘‘energy current’’ is considered by hi
as the source of the rotational dragging of inertial framesv.
Schmid’s quantity does not obey a conservation law but fo
rotating sphere it can be directly expressed in terms of
angular velocityV, densityr, pressurep and proper radiusr̄
as

Je52pEE ~r1p!Vsin3u r̄ 4du dr̄, ~1.2!

V is the ‘‘coordinate’’ angular velocity, not that measure
relative to the local inertial frame which, as we show belo
is the quantity needed in the angular momentum conse
tion law. The contribution to the conserved angular mom
tum is

2p~r1p!~V2v!sin3u r̄ 4du dr̄. ~1.3!

The difference comes about mathematically because the
turbed metric is not diagonal but in spherical polar coor
nates is

ds25dt22a2~ t !$dr21r 2@du21sin2u~dw222vdwdt!#%,
~1.4!

wherev(t,r ) gives the small rotation of the inertial fram
due to the rotational perturbations everywhere.

For a perturbed 3-flat universe, angular momentum c
servation is given by the equation

]

]xm
~2A2g Tn

mhn!50, ~1.5!
©2004 The American Physical Society11-1
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where hn is the angular Killing vector of the backgroun
~flat! space corresponding to the particular component of
gular momentum considered.

Thus the conserved quantity is~the minus sign comes
from the signature we use in the metric!

J5E ~2Tw
0 !A2g d3x. ~1.6!

Since thew component ofTmn is brought down in this ex-
pression, it isnot merely the motion of the fluid that is in
volved in Tw

0 via its contributionumun but also the off-
diagonal metric componentg0w which depends onv at the
position of the source@see our metric~1.4!#. As we see from
Eq. ~1.1!, we regard the conserved angular momentumJ as
the source of the dragging of inertial frames, and this was
quantity we used in LKB.

Schmid’s work for a spatially flat universe is more gene
than our work published so far, since he considersall vector
perturbations, nevertheless we treated closed and open
verses as well as flat ones and indeed from a Machian v
point it is the closed universes that are more interesting
far. We also considered all spherical but inhomogene
Lemaı̂tre-Tolman-Bondi universes with rotational perturb
tions that were constant on spheres. Finally we looked
the problem of the rotation of inertial frames induced
spheres of given angular velocities, rather than given ang
momentum. This is a special case of Schmid’s problem
generalized to closed and open universes. In our discus
we wrote down the equations governingv(t,r ) whenV(t,r )
was given and showed how they could be solved. We car
out the detailed solution only for the static closed Einst
universe~LKB Appendix A!.

Schmid’s beautiful result that the dragging is expone
tially suppressed when a sphere of given angular velocit
outside his horizon has stimulated us to work out all o
solutions in detail for all Friedmann-Robertson-Walk
~FRW! universes. Barring factors ofa(t) that Schmid seems
to have omitted in error, we fully confirm his result for a fl
universe. Thus we have the fascinating paradox thatwhile
spheres of given angular velocity have their dragging ex
nentially suppressed if they are outside the horizon, ne
theless the dragging of spheres of given angular momen
suffers no such suppression. How can this be?

In the prescribed angular momentum problem one m
consider~for an open or 3-flat universe! having only one
spherical shell of finite thickness with angular momentu
The gravity of this source will induce a rotation of inerti
frames everywhere. The fluid at all other places will respo
inertially and start to rotate so thatV5v everywhere excep
on the original shell. Thus in the prescribed angular mom
tum problem we give one shell angular momentum and
back and watch. We see how the inertial frames are affe
everywhere else merely by watching the rotations of all ot
spheres.

The prescribed angular velocity problem needs more
ganization in the creation of the initial state. If we start o
thick shell rotating at the prescribed rate then all the oth
will start moving so as to keep up with the induced rotati
06401
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of the inertial frames. If the prescription is to have just t
one thick shell rotating and none of the others we shall h
to stop them. In doing so we have to give them negat
angular momentum to keepV zero even though the inertia
frame is rotating atv. When in Schmid’s problem the per
turbation in angular velocity is considered as confined
yond his horizon he shows that the rotation of inertial fram
is exponentially suppressed near the origin. The prime rea
is that in order to keep the motion confined, the interven
spheres have to be given backward angular momentum
stop them from following their inertial tendency of rotatin
at the inertial ratev. The influence of all the backward an
gular momentum~of non-rotating spheres! rather effectively
cancels most of the rotation of the inertial frames induced
the original shell. Hence the suppression of the effect is
to all the negative angular momentum that was supplied
keep the other spheres from rotating. The remaining supp
sion is due to the rotation of the inertial frame at the origin
shell itself: v there is a fraction ofV so thatV2v, on
which the source depends, is less.

There is a long history of treating dragging effects with
spheres starting with Einstein’s treatment using an early v
sion of his gravitational theories. Within general relativi
the early works of Thirring@4# and Lense and Thirring@5#
were later generalized to deep potential wells by Brill a
Cohen@6#. This raised questions as to whether the dragg
would be perfect within a black hole’s horizon. We belie
that the first paper to remark on the apparent instantaneit
inertial frames is the pioneering paper of Lindblom and B
@7# on inertia in a sphere that falls through its horizon. Mo
recently we explored observational effects seen within suc
sphere@8# and gave an example of strong linear dragging
a rapidly accelerated charged sphere@9#. Strong cosmologi-
cal perturbations in a weakly rotating sphere surroundin
void were treated by Klein@10#, and in greater detail by
Doležel, Bičák, and Deruelle@11# who also discussed how a
observer within such a cosmological shell views the wo
outside.

We owe a debt to Schmid as his work stimulated us
work out the consequences of our solutions@2# in much
greater detail and, without that, we would never have rais
let alone understood, the delightful paradox emphasi
above. In particular we have now investigated thoroughly
problem whenv is to be solved for with the angular veloc
ties given everywhere at one cosmic time. Previously we
concentrated on the problem with the angular mome
given. While both are important problems we strongly b
lieve that it is the latter that is of dynamical importance
formulating Mach’s principle. It can nevertheless be argu
that the apparent agreement between the angular positio
quasars at different epochs and the inertial frame defined
using the solar system as a giant gyroscope stimulates
chian ideas. While it is the angular momentum that is imp
tant for the physics it is the apparent kinematical agreem
between theangular velocity of the sphere and the inertia
frame that is observed. In this sense the problem with gi
angular velocities may be closer to Mach’s original and it
unclear how distant observations could measure the true
gular momentum of a sphere including its dragging ter
1-2
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while its angular velocity is more directly observable. Ho
ever, see@11# for the complications of light bending. Unfor
tunately the problem of the observed agreement of frame
not what either Schmid or we have addressed since both
treatments relate instantaneous quantities at the same co
time whereas observers use no such world map~except in the
solar system! but a world picture in which distant objects a
seen as they were long ago on the backward light cone
seems unlikely that anexact causal relationship exists be
tween proper motions of masses on our past light cone
our local inertial frame, sinceat any cosmic time the inertia
frame’s rotation has contributions from objects that we
never in our past light cone. Of course such objects will no
doubt have been seen by some alien and the Copern
principle would suggest that the apparent agreement of
kinematic and inertial frames here will be repeated the
What is under discussion above is the influence of dis
bodies on the local inertial frame. This is quite distinct fro
a comparison of the dynamics of the solar system with
kinematics relative to distant quasars~as seen on a hundre
years of past light cones!, from which the rotation of the
inertial frame is computed.

In addition to the resolution of the apparent contradict
with Schmid the main contributions of this paper are t
following.

Section II gives the derivation of the equations govern
general perturbations and a brief introduction to Mach
gauge conditions which allow the separation of the (h0k)
vector perturbation equations from the others. There is a
cussion of the equations of motion that must be obeyed if
contracted Bianchi identities are to be satisfied. As a con
quence when axial symmetry is imposed each ring of fl
preserves its angular momentum. This section conclu
with basic equations for odd parity axially symmetrical pe
turbations from which the remainder of the paper is deriv

Section III derives the explicit expressions for rotation
inertial frames in terms of the angular momentum distrib
tion at any one time. This is done for all FRW universes w
k561 or 0 but the simplest case is solved in this sect
with V constant on spheres at the time considered. This
responds to odd-parity vectorl 51 perturbations withV in-
dependent ofu. In the following paper@12# ~paper II! we
allow for generalu dependence. With the integrals evaluat
at fixed cosmic time and with the constantsc andG restored
we have the following results forvW (r ) at fixed time~for the
derivation of the vector forms below see@2#!:

For k50, r̄ 5a(t)r ,

vW 5
2G

c2a3 FJW~,r !r 231E
r̄

` dJW

dr
r 23drG . ~1.7!

Notice thatvW }@a(t)#23 sinceJW is conserved.
For k51,

vW 5
2G

c2a3 FJW~,x!W~x!1E
x

p dJW

dx8
W~x8!dx8G1vW 0~ t !;

~1.8!
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here vW 0(t) is undetermined,r 5sinx and W(x)5cot3x
13cotx. The arbitrariness ofvW 0(t) is intimately connected
with Mach’s principle. The physicalJW involves (VW 2vW ) and
does not change for rotating axes as it involves a differen
see@2# and below.

For k521,

vW 5
2G

c2a3 FJW~,x!W̄~x!1E
x

` dJW

dx8
W̄~x8!dx8G , ~1.9!

whereW̄(x)5coth3x23cothx12, andW̄ has an extra 2 so i
tends to zero atx→` thus ensuring that the boundary co
dition v→0 is obeyed. When contributions from au depen-
dence ofV are included these results are supplemented bu
dependent terms that average to zero on spheres. More
eral results are given in the accompanying paper II.

Section IV gives explicit solutions for the rotations o
inertial frames for the same special forms of perturbations
in Sec. III but now it is the angular velocities of the differe
spheres that are given rather than their angular momenta~this
is closer to what might be observed but cf. earlier discu
sion!. We definel by

l252ka2~r1p!54~k2a2Ḣ !, ~1.10!

k58pG/c4, k58p in geometrical units used in the follow
ing, the overdot denotes]/]t, and H5ȧ/a is the Hubble
constant. The second relation in Eq.~1.10! follows from the
combination of the background Einstein’s equations for a
r,p,k and also for any value of the cosmological constantL.
The rotation of inertial frames near the origin due to anV
distribution at largez85lr is for k50

v~r !5
1

3 S 11
1

10
l2r 2D E

0

`

z82e2z8V~z8!dz8, ~1.11!

which shows Schmid’s exponential attenuatione2z8. At the
perturbation itself, close toz0, we find forz8 large

v~r 0!5
1

2E0

`S z8

z0
D 2

e2uz82z0uV~z8!dz8. ~1.12!

For k51 we give the results near the origin and at t
perturbation whenl2.4. When l2,4, which can occur
when aL term is present, there is no exponential in t

expression. It is assumed that exp(Al224 x) is large at the
source. Withr 5sinx

v~x!5
1

3
S 11

l2x2

10
D E

0

`

l2Al224 e2Al224x8

3sin2~x8!V~x8!dx8. ~1.13!

We have assumed exp(Al224 x)@1 for x5p, x8, andp
2x8. At the ‘‘source’’
1-3
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v~x0!5
1

2
E

0

`

l2
l223

Al224
S sinx8

sinx0
D 2

e2Al224ux82x0u

3V~x8!dx8. ~1.14!

Similarly for k521,r 5sinhx,

v~x!5
1

3
S 11

l2x2

10
D E

0

`

l2Al214 e2Al214x8

3sinh2~x8!V~x8!dx8, ~1.15!

and at the source

v~x0!5
1

2
E

0

` l

Al214
S sinhx8

sinhx0
D 2

e2Al214ux82x0uV~x8!dx8.

~1.16!

We emphasize that all of the above relationships are
at any given instant, but that both the angular moment
distribution and the angular velocity distribution at later i
stants are related to those at earlier times, so cannot be g
independentlyof those given at an earlier epoch. In axi
symmetry the angular momentum distribution follows t
motion of the perfect fluid but, as the angular momentum
first order and the movement across the background is of
order, the product can be neglected. Thus to first order
angular momentum density can be considered as painte
the background. This is not true ofJW s which is not conserved
and nor is it true of the angular velocityV. In both cases to
find the time evolution one must appeal to the equations
motion which, in axial symmetry, leads back to local cons
vation of angular momentum density. Only by use of its co
servation can one find howV andJW s can evolve consistently
with the Einstein equations~i.e. with the contracted Bianch
identities!. In this sense the given angular momentum pro
lem is far more physical than either Schmid’s problem or
given V problem to which it is equivalent. The time evolu
tion of v andV are derived and discussed in Sec. V.

In a paper that has long been in gestation we give a
cussion of those gauges in which the Machian relations
the local inertial frames to the motions of distant masses
be expressed instantaneously at constant cosmic time. In
paper we derive all equations that govern all perturbatio
All can be solved using harmonics in the 3-space of cons
time. However harmonics are not as informative as Gree
functions so in the following paper@12# we integrate the
relationships between the rotations of the inertial frames
the angular momentum density for all axially symmetric
odd-parity vector perturbations, usually called ‘‘toroida
perturbations in the astrophysical and geophysical literat
These results allowV2v, which enter the angular momen
tum density, to be any function of (r ,u) but independent of
w. However, since the background is spherically symmet
non-axisymmetric perturbations can be generated by
expanding axisymmetric perturbations around a new a
and taking the component with the neweimw as the compo-
nent with generalm.
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II. THE EQUATIONS TO BE SOLVED

We write the perturbed FRW metric in the form

ds25~ ḡmn1hmn!dxmdxn

5dt22a2~ t ! f i j dxidxj1hmndxmdxn, ~2.1!

where the background metricḡmn is used to move indices
and the time-independent part of the spatial background m
ric f i j ( i , j ,k51,2,3) is used to define the 3-covariant deriv
tive ¹k and¹k5 f kl¹l .

In one of the standard coordinate systems the backgro
FRW metric reads

ds25dt22a2F dr2

12kr2
1r 2~du21sin2udw2!G , ~2.2!

where in a positive curvature~closed! universe (k511) r
P^0,1&, in flat (k50) and negative curvature (k521) open
universesr P^0,̀ ), and uP^0,p&, wP^0,2p). We shall
also employ hyperspherical coordinates

ds25dt22a2@dx21r 2~du21sin2udw2!#, ~2.3!

with r 5sinx, x, sinhx for k51, 0,21.
In a completely general gauge for general perturbati

hmn , the ~momentum! constraint equation,dGk
05kdTk

0 ,
turns out to be

1

2
¹2h0k1kh0k2

1

6
a2¹k¹ jh0

j 1
2

3
a¹kK2

1

2
a2Ṫk5a2kdTk

0,

~2.4!

where

K5aF3

2
Hh002

1

2
~hj

j !"1¹ jh0
j G ~2.5!

is the perturbed mean external curvature oft5constant
slices, and

Tk52¹ j S hk
j 2

1

3
dk

j hi
i D . ~2.6!

Notice that Eq.~2.4! is independent of the choice of th
cosmological constantL because we perturbed ‘‘mixed
components ofGk

0 . Other perturbed Einstein’s equations w
not be needed here.@See note below Eq.~2.26!.# Since, how-
ever, we are interested primarily in perfect fluid perturbatio
we shall also consider the perturbed fluid equations of m
tion, i.e. the perturbed Bianchi identities

~dr!"13H~dr1dp!1~r1p!¹k~h0
k1Vk!

1~r1p!S 3

2
Hh002

1

a
KD50, ~2.7!

and
1-4
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1

a3
@a3~r1p!~a2f kmVm2h0k!#

"1¹kdp

1
1

2
~r1p!¹kh0050, ~2.8!

where Vk5dxk/dt .dUk and Vk52a2f k jV
j is the fluid

~small! velocity. The perturbed fluid energy-momentum te
sor components entering the constraint equations~2.4! read

dTk
05~r1p!~h0k1Vk!5~r1p!~h0k2a2f kmVm!.

~2.9!

There have been various choices of gauges used in the
erature, in particular the synchronous gauge (h005h0k50).
In order to understand the effect of dragging of inert
frames, in particular its ‘‘instantaneous’’ character, it is co
venient to use gauges—we call them ‘‘Machian’’—in whic
the constraint equations, and still another~combination of!
the perturbed field equations are explicitly the elliptic equ
tions. In order to achieve this it is first useful to choo
coordinates ont5const slices such that thespatialharmonic-
type gauge conditions are satisfied, i.e.Tk50, whereTk is

given in Eq.~2.6! ~in numerical relativityṪk50 is frequently
called the ‘‘minimal distortion’’ shift vector gauge cond
tion!. Next, it is convenient to choose the time slices so th
for example, the perturbation of their external curvature v
ishes: K50,K given by Eq. ~2.5! ~so-called ‘‘uniform
Hubble expansion gauge’’!. Under these gauge condition
~which determine the coordinates in a substantially more
strictive way than e.g. the synchronous gauge! the constraint
field equations~2.4! become the elliptic equations for just th
componentsh0k ; no otherhmn enter.

Until now we considered general perturbations in the c
sen gauge. Hereafter, we assume the vectorsh0k ,Vk to be
transverse,

¹kh0k50, ¹kV
k50, ~2.10!

so that also¹kdTk
050. If Eq. ~2.10! is not satisfied, we can

apply¹k to Eq.~2.4!, find the elliptic equation for the scala
¹kh0k , solve it and substitute back into Eq.~2.4!, where the
third term on the left hand side could be viewed as the sou
together withdTk

0 . Since, however, the longitudinal parts d
not contribute to the dragging of inertial frames, we assu
Eqs.~2.10! to be satisfied.

The constraint field equations~2.4! with our choice of
gaugeK5Tk50 @cf. Eqs.~2.5! and ~2.6!# thus become

¹2h0k12kh0k52a2kdTk
052a2k~r1p!~h0k2a2f kmVm!,

~2.11!

where for the perfect fluiddTk
0 is substituted from Eq.~2.9!.

This is our basic equation to be solved at a given timt
5const, with eitherdTk

0 or Vk given. The Bianchi identities
~fluid equations of motion! determine the time evolution o
perturbations, the scalar Eq.~2.7! for dr, whereas the vecto
equation~2.8! governs the evolution of the term
06401
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j k[a3~r1p!~a2f kmVm2h0k!52a3dTk
0. ~2.12!

In the following we shall often express the background tim
dependent terma2(r1p) by using Eq.~1.10!.

Consider first the flat universe (k50). In Cartesian coor-
dinatesxk used by Schmid@1#, the 3-metricf kl5dkl , and
Eq. ~2.11! becomes

¹2h0k52a2kdTk
052a2k~r1p!~h0k1Vk!, ~2.13!

where¹2 is the flat-space Laplacian. Substituting from E
~1.10! with k50 in the first term in the right-hand side of Eq
~2.13!, we get

¹2h0k524a2Ḣh0k22ka4~r1p!Vk. ~2.14!

Now comparing our general form of the perturbed FR
metric with the perturbed metric~5! in Schmid’s work~and
being careful of the opposite signature!, we see thath0k

52abk~Schmid!. Considering (r1p)Vk ~denoted byJW e in
Schmid! as the source, Eq.~2.14! written for Schmid’sbk
becomes

2¹2bk24a2Ḣbk522ka3~r1p!Vk. ~2.15!

This is Schmid’s basic equation~14!, up to the factorsa2 and
a3 which in Schmid’s equation~14! are missing but this doe
not change significantly Schmid’s conclusions.

WhendTk
0 is given, the solution of Eq.~2.13! is given as

the Poisson integral over the source. If, however, the ma
current is given, Eq.~2.14! can be written as

¹2h0k2l2~ t !h0k522ka4~r1p!Vk, ~2.16!

with (k50)

l2524a2Ḣ. ~2.17!

Usually ~e.g. in the standard Friedmann models! Ḣ,0, sol
is real. The three equations~2.16! are, as emphasized b
Schmid, of the Yukawa type. The Green’s functions are giv
by

G~x,x8!52
1

4p

e7lux2x8u

ux2x8u
; ~2.18!

the well-behaved solution of Eq.~2.16! is thus

h0k52
1

2p
ka4~r1p!E Vk~x8!

e2lux2x8u

ux2x8u
dx8.

~2.19!

Clearly if the perturbationVk(x8) is located at ux2x8u
*l2151/2aA2Ḣ, i.e. beyond the ‘‘Ḣ radius’’ RḢ

5(2Ḣ)21/2 in Schmid’s terminology, the vectorh0k which
determines the dragging of inertial frames is exponentia
suppressed around the origin. Although we thus verified
interesting conclusion of Schmid, we do not resonate w
his view that ‘‘because of the exponential cut-off . . . there is
1-5
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no need to impose ‘appropriate boundary conditions of so
kind’.’’ The Green’s function in Eq.~2.18! with the1 sign in
the exponential is also the solution of Eq.~2.16! with a
d-function source but one discards it by demanding ‘‘reas
able’’ boundary conditions at infinity.

From the Machian viewpoint the closed universes are
course preferable. There is, however, no vector Green’s fu
tion available for Eq.~2.11! with eitherdTk

0 or Vk considered
as a source. In order to understand how Schmid’s con
sions get modified in curved universes and to generalize
previous work@2#, which analyzed perturbations correspon
ing to rigid rotating spheres in the FRW universes, we sh
study all axisymmetric, odd-parityl-pole perturbations cor
responding to differentially rotating ‘‘spheres.’’ We now d
rive the basic equations for such ‘‘toroidal’’ perturbation
Their solutions, in particular forl>2 and closed universes
require special treatment. These solutions are analyzed in
following paper II.

In spherical coordinates@as in the FRW metrics~2.2!,
~2.3!#, the only non-vanishing vector components a
h0w(t,r ,u) and Vw(t,r ,u) @for the general axisymmetric
even-parity vector fieldsVw50, whereasVr(t,r ,u) and
Vu(t,r ,u) are non-vanishing, the same being true
h0r ,h0u]. There is now just one non-trivial constraint equ
tion in ~2.11! to be satisfied:

¹2h0w12kh0w52a2kdTw
0, ~2.20!

in which ¹25 f kl¹k¹l , with f kl being the inverse tof kl given
by FRW metric~2.2! @recall—see Eq.~2.1!—that f kl is posi-
tive definite, without factora2]. Calculating¹2h0w explic-
itly, we find Eq. ~2.20! to take the form

F ~12kr2!
]2

]r 2
2kr

]

]r Gh0w1
1

r 2
sinu

]

]u S 1

sinu

]

]u Dh0w

14kh0w52a2kdTw
0. ~2.21!

Before solving this constraint equation it is interesting
notice what the perturbed equations of motion~Bianchi iden-
tities! say about axisymmetric odd-parity perturbation
Equation~2.7!, in our gauge choice~with K50) and with
the transverse character ofh0k ,Vk, is a simple evolution
equation fordr. The vector Eq.~2.8! for indices 1,2 (x1

5r ,x25u) turns into the well known relativistic equilibrium

conditions for perfect fluids,¹kdp52(r1p)¹k(
1
2 h00) ~see

e.g. @13#!. In the following the crucial role is played by Eq
~2.8! for index 3 (x35w). Since in the axisymmetric cas
¹wdp50,¹wh0050, it becomes

@a3~r1p!~a2r 2sin2uVw2h0w!# "50, ~2.22!

or

@a3dTw
0 # "50. ~2.23!

This is the conservation of angular momentum of each
ment of each axially symmetrical ring of fluid. The tot
angular momentum in a spherical layer^x1 ,x2& is given by
06401
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J~x1,x2!52E
x1

x2
dxE

0

p

duE
0

2p

dwA2ḡ dTm
0 hm,

~2.24!

where hm5(0,0,0,1) is the rotational Killing vector, the
background metric determinantḡ5ḡ(3)52a6r 4sin2u, and
r 5sinx, x, sinhx for respectivelyk511,0,21 as in Eq.
~2.3!. Integrating overw we have

J~x1,x2!522pE
x1

x2
dxE

0

p

du a3r 2sinudTw
0

52pE
x1

x2
dxE

0

p

du j ~u,x,t !,

~2.25!

where j (u,x,t) is the ~coordinate! angular momentum den
sity. Hence, the Bianchi identity~2.23! can be written as

@ j ~u,x!# "50. ~2.26!

This is important for studying the time evolution of theh0k
andVk perturbations~see Sec. V!. It can also be shown that
as a consequence of the perturbed Bianchi identity~2.23! and
the constraint equation~2.20!, the only remaining non-trivial
perturbed Einstein equation,dGrw5kdTrw50, is automati-
cally satisfied.

Defining the fluid angular velocity

V5Vw5
dw

dt
, ~2.27!

we get

Vw52a2f wwVw52a2r 2sin2u V~ t,r ,u!. ~2.28!

Writing similarly

h0w5a2r 2sin2u v~ t,r ,u!, ~2.29!

the only non-vanishing component ofdTk
0 becomes

dTw
05~r1p!a2r 2sin2u~v2V!. ~2.30!

The angular momentum density conservation law~2.23!,
@~2.26!#, turns then into the simple evolution equation

@a5~r1p!~v2V!# "50. ~2.31!

Let us now return back to the constraint equation~2.21!.
The second term on its left hand side suggests a decomp
tion into the vector spherical harmonics. It should be emp
sized that, in contrast to standard practice in the cosmol
cal perturbation theory where perturbations are decompo
into harmonics in all three spatial dimensions~see e.g.@14#!,
we decompose in the usual coordinatesu,w on spheres only,
and assume axial symmetry~spherical functionsYlm having
m50). Thus, we write (Yl0,u[]uYl0)

h0w5a2r 2(
l 51

`

v l~ t,r !sinuYl0,u, ~2.32!
1-6
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Vw52a2r 2(
l 51

`

V l~ t,r !sinuYl0,u,

~2.33!

and

dTw
05a2~r1p!r 2(

l 51

`

~v l2V l !sinu Yl0,u

5(
l 51

`

@dTw
0~ t,r !# lsinuYl0,u. ~2.34!

Substituting these expansions into Eq.~2.21! and using the
orthogonality of functions sinu Yl0,u for different l ’s, we ob-
tain the ‘‘radial’’ equation for eachl:

F ~12kr2!
]2

]r 2
2kr

]

]r G ~r 2v l !2 l ~ l 11!v l14kr2v l

52a2k~r1p!r 2~v l2V l !5l2r 2~v l2V l !, ~2.35!

where we used Eq.~1.10!. It is easy to convert the last equa
tion into the form

2A12kr2
1

r 2

]

]r FA12kr2
]

]r
~r 2v l !G1

l ~ l 11!

r 2
v l24kv l

5l2~V l2v l !. ~2.36!

For l 51 ~and the background pressurep50) this equation
coincides exactly with Eq.~4.32! in LKB. In the language of
the present paper, in LKB we analyzed dipole (l 51) axi-
symmetric odd-parity perturbations. Withl 51,Y10,u

52A3/4psinu, so that putting v52A3/4p v l 51 , V
52A3/4p V l 51, we recover

h0w5a2r 2sin2u v~ t,r !, Vw52a2r 2sin2u V~ t,r !,

dTw
05a2~r1p!r 2sin2u~v2V!, ~2.37!

which corresponds to therigidly rotating spheres in the FRW
universes considered in Sec. 4.4 in LKB, and, for giv
V(t,r ), analyzed in detail in Sec. IV in the following.

Consider first the casek50. Equation~2.36! can be writ-
ten with the angular momentum density (dTw

0) l as a source,

1

r 4

]

]r S r 4
]v l

]r D2
l ~ l 11!22

r 2
v l5l2~v l2V l !5

2k

r 2
~dTw

0 ! l .

~2.38!

If the fluid angular velocity is taken as a source, the eq
tion reads

1

r 4

]

]r S r 4
]v l

]r D2Fl21
l ~ l 11!22

r 2 Gv l52l2V l ,

~2.39!
06401
-

wherel2524a2Ḣ52ka2(r1p) by using Eq.~1.10! with
k50.

In the case of spatially curved (kÞ0) backgrounds it is
advantageous to writer 25k(12m2), i.e. m5A12kr2 to
obtain

1

@k~12m2!#3/2

]

]m H @k~12m2!#5/2
]v l

]m J 2
l ~ l 11!22

k~12m2!
v l

5
2k

k~12m2!
~dTw

0 ! l . ~2.40!

The substitution

v l5@k~12m2!#23/4v̄ l ~2.41!

turns Eq. ~2.40! into the Legendre equation forv̄ l with
(dTw

0) l as the source:

]

]m Fk~12m2!
]v̄ l

]m G1F k
3

2 S 3

2
11D2

~ l 1 1
2 !2

k~12m2!
G v̄ l

5
2k

@k~12m2!#1/4
~dTw

0 ! l . ~2.42!

Finally, considering the fluid angular velocity as the sour
we can write the last equation again as the Legendre equa
with a more complicated degree:

]

]m Fk~12m2!
]v̄ l

]m G1F kn~n11!2
~ l 1 1

2 !2

k~12m2!
G v̄ l

52Kl[2l2V l@k~12m2!#3/4, ~2.43!

where

S n1
1

2D 2

5422kka2~r1p!542kl254ka2Ḣ.

~2.44!

The degreen of the Legendre equation does not depend ol.
For l 51, Eq. ~2.43! goes over into Eq.~4.35! in LKB @15#.

III. SOLUTIONS FOR v WITH GIVEN ANGULAR
MOMENTUM DISTRIBUTION

We shall start by making more explicit the solutions o
tained in LKB which are thel 51 odd-parity vector solutions
of the general problem. In such modes each sphere rot
with no shear but it expands~or contracts! with the back-
ground and as it does so its angular velocity changes~see
Sec. V!.

kÄ0.

The equation to be solved is Eq.~2.38! with l 51 @this is
Eq. 4.33 LKB#
1-7
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1

r 4

]

]r S r 4
]v

]r D52l2~V2v!5
2k

r 2
dTw

0; ~3.1!

multiplying up by r 4 this takes the form

]

]r S r 4
]v

]r D52
6

a3

dJ~,r !

dr
, ~3.2!

so

]v

]r
52

6J

a3r 4
. ~3.3!

The constant of integration is zero sinceJ(,r ) is zero atr
50 where]v/]r must vanish. Integrating again and insis
ing thatv→0 at ` we find

v5a23E
r

` 6J

r 84
dr852a23FJ~,r !

r 3
1E

r

` dJ

dr8
r 823 dr8G

5
2

r 3E0

r E
0

p

2pr 82sinu~2dTw
0 !du dr8

12E
r

`E
0

p

2pr 821sinu~2dTw
0 ! du dr8, ~3.4!

where we have used Eq.~2.25! to defineJ(,r ) in terms of
dTw

0 .

kÄ1.

The equation to be solved is Eq.~2.40! with l 51, which
is Eq. ~4.34! LKB @16#,

]

]m H ~12m2!5/2
]v

]mJ 52k~12m2!1/2dTw
05

6

a3

dJ

dm

so that

~12m2!1/2
]v

]m
5

6J

a3~12m2!2
. ~3.5!

As before there is no integration constant for the same
son. We now writem5cosx ; then x is the normal cosmic
radial angle and

]v

]x
52

6J

a3sin4x
. ~3.6!

Now

Ex dx

sin4x
52

1

3
~cot3x13cotx![2

1

3
W~x!. ~3.7!

Hence
06401
a-

v52a23FWJ~,x!1E
x

p

W
dJ

dx8
dx8G1v0, ~3.8!

where

J5E
0

xE
0

p

2pa3@r ~x8!#2sin2u~2dTw
0 !dudx8. ~3.9!

Just as in the last caseW diverges atx50 like x23;
however, the angular momentum of spheres near the orig
sufficiently small to make theWJ tend to a constant asx
tends to zero. It is shown in LKB that the condition of co
vergence of the second integral atx5p is that the total
angular momentum of the universe is zero. If that condit
is satisfied andV2v is regular nearx5p then the integral
converges. If the total angular momentum is not zero th
the integral forv diverges atx5p. Thus forv to be finite at
x5p the total angular momentum must be zero in the clo
universe. There is no way of fixingv0 because there is no
standard of zero rotation, as there is for the infinite univers
Indeed, according to Mach a description of the world in r
tating axes is just as good in principle as a description
non-rotating ones. Note that the sourceV2v does not
change when the axes are rotating sinceV andv acquire the
same constantv0. An absolute rotation can arise only from
spatial boundary conditions which do not occur for clos
universes.

kÄÀ1.

The equation to be solved is Eq.~2.40! with l 51. Multi-
plying through by (m221)3/2 we obtain

]

]m
H ~m221!5/2

]v

]m
J 522kAm221dTw

052
6

a3

dJ

dm
,

~3.10!

so on integration and division

~m221!1/2
]v

]m
52

6

a3
~m221!J. ~3.11!

Writing m5coshx to introduce the natural radial variable o
hyperbolic space, this becomes

]v

]x
52

6

a3

J

sinh4x
. ~3.12!

Integrating again and insisting thatv→0 at infinity we use
the integral

Ex dx8

sinh4x8
52

1

3
~coth3x23cothx12![2

1

3
W̄~x!,

~3.13!

and on integrating by parts we obtain
1-8
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v52a23F W̄J~,x!1E
x

`

W̄~x8!
dJ

dx8
dx8G , ~3.14!

whereJ is the same as in Eq.~3.9! with r 5sinhx. We have

chosen the above definition ofW̄ so thatW̄→0 at infinity; so
no constant of integration is needed to incorporate
boundary condition thatv→0.

IV. SOLUTIONS FOR v WITH GIVEN V

The method of solution was outlined in LKB but here w
work through all the details starting with the simplest cas

kÄ0.

The relevant equation to be solved is Eq.~2.39! with l
51 @Eq. ~4.33! in LKB #, rewritten as

1

r 4

]

]r S r 4
]v

]r D2l2v52l2V. ~4.1!

Here l252a2k(r1p).0. l21a has the units of a length
and we shall call it, following Schmid@1#, the distance to the
horizon. In dimensionless comoving coordinates this co
sponds tor 5l21. We write z5lr and ]v/]z5v8. Then
Eq. ~4.1! reduces to

v91
4

z
v2v52V. ~4.2!

The corresponding homogeneous equation is Bessel’s e

tion for z23/2J3/2( iz), which has real solutionsv5Ī andv

5K̄, whereĪ5z23/2I 3/2(z) and K̄5z23/2K3/2(z). For small

z, Ī→ 1
3 A2/p(11z2/10); K̄→Ap/2z23. For large z, Ī

→(1/A2p)z22ez; K̄→Ap/2z22e2z.
We use the method of variation of parameters to solve

inhomogeneous equation with boundary conditions thav
tends to zero at infinity and to a constant at the origin.
thus obtain

v~z!5K̄~z!E
0

z

~z8!4Ī~z8!V~z8!dz8

1Ī~z!E
z

`

~z8!4K̄~z8!V~z8!dz8. ~4.3!

For the solutions near the origin with sources that are no
close, we may neglect the first term and then for smallz

v~z!5
1

3
A2

pS 11
z2

10D Ez

`

~z8!4K̄~z8!V~z8!dz8.

~4.4!

When the sourceV is beyond the horizonz51, i.e.z8@1,

v~z!5
1

3 S 11
z2

10D Ez

`

~z8!2e2z8V~z8!dz8; ~4.5!
06401
e
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so for a source localized inr 0(16D) with D!1/l,

v~z!5
1

3 S 11
l2r 2

10 D ~lr 0!3e2lr 0V̄2D, ~4.6!

which clearly shows the exponential decline of influence
marked on by Schmid@1#. WhenV is concentrated nearz0,

in z06lD, then withz0@1 andV5V̄ we get

v~z0!5
1

2E0

`S z8

z0
D 2

e2uz82z0uV~z8! dz8.lDV̄. ~4.7!

Thusat the source the inertial frame rotates atlDV̄ andV̄

2v5(12lD)V̄.
We now turn to the solutions for a closed universe.

kÄ1.

The relevant equation is Legendre’s equation forv̄5(1
2m2)3/4v with an inhomogeneous term written below. Th
is LBK Eq. ~4.35! and the same as Eq.~2.43! of Sec. II of
this paper specialized forl 51:

]

]m H ~12m2!
]v̄

]mJ 1H n~n11!2
~ 3

2 !2

~12m2!
J v̄52K,

K[l2V~12m2!3/4, ~4.8!

where (n1 1
2 )2542l2 as in Eq.~2.44!. Sincek511 the

space is hyperspherical and the convention is to writem
5cosx so thatx becomes the radial variable. The solutio
of the homogeneous equation are the Legendre funct
Pn

3/2(m) andQn
3/2(m) and a recurrence relation that genera

Pn
m11 from Pn

m andPn21
m . @Here the orderm of the Legendre

function has nothing to do with the variablem5A12kr2.#
Thus

Pn
1/2~cosx!5S p

2 D 21/2

~sinx!21/2cosF S n1
1

2DxG ,
Qn

1/2~cosx!52S p

2 D 1/2

~sinx!21/2sinF S n1
1

2DxG .
~4.9!

To keep Pn
3/2(cosx) and Qn

3/2(cosx) real, we now use
(12m2)21/25(sinx)21 in place of (m221)21/2 in the recur-
rence relation 8.5.1 of Abramowitz and Stegun@17# ~this
merely multiplies the results by2 i ):

Pn
3/2~cosx!5

1

sinx F S n2
1

2D Pn
1/2cosx1S n1

1

2D Pn21
1/2 G ;

~4.10!

the same relation holds for theQn
3/2. It turns out to be con-

venient to writen5n1 1
2 . We note that Eqs.~2.44! and~4.8!

involve this quantity and thatn can be real but is often
imaginary. Thus
1-9
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Pn21/2
3/2 ~cosx!

52S p

2 D 21/2 1

sin3/2x
@cosxcos~nx!2nsinxsin~nx!#;

~4.11!

similarly writing n when it is real butn5 iN when it is
imaginary:

Qn21/2
3/2 ~cosx!

5S p

2 D
1
2 1

sin3/2x
@cosxsin~nx!2nsinxcos~nx!#,

QiN21/2
3/2 ~cosx!

5 i S p

2 D 1/2 1

sin3/2x
@cosxsinh~Nx!2Nsinxcosh~Nx!#.

~4.12!

We shall be concerned to have functions which, after m
tiplication by another (sinx)23/2, are nevertheless still finite
at the originx50. A little expansion aroundx50 shows
that theP function diverges but theQ function satisfies this
stringent test. Our next job is to find a solution that satisfi
this stringent convergence not atx50 but at the ‘‘other’’r
50 atx5p. Since that is an alternative origin it is clear th
Qn21/2

3/2 @cos(p2x)# passes that test. A little work shows that
is indeed the linear combination (2/p)sin(np)Pn21/2

3/2 (x)
2cos(np)Qn21/2

3/2 (x). Finally we notice thatn50, which is
needed in some of our solutions, givesQ21/2

3/2 [0. This is not
a solution at all. However limn→0@(1/n)Qn21/2

3/2 # gives the
finite limit

S p

2 D 1/2 1

sin3/2x
@xcosx2sinx#. ~4.13!

We shall therefore use the functions

qn5S p

2 D 1/2 1

sin3/2x
Sn~x!, ~4.14!

pn5S p

2 D 1/2 1

sin3/2x
Sn~p2x!

as our independent solutions of the Legendre equation. T
functions have the added advantage that they remain
whenn5 iN:

Sn~x!52cosx
sin~nx!

n
1sinxcos~nx!, ~4.15!

SiN~x!52cosx
sinh~Nx!

N
1sinxcosh~Nx!.

The Wronskian may be shown to be
06401
l-

s

se
al

pn

dqn

dm
2qn

dpn

dm
5

p

2

sin~np!

n

n221

12m2
5

W
12m2

.

~4.16!

Having formed solutionsp andq each of which satisfiesone
of the boundary conditions we look for solutions of the i
homogeneous equation of the form

v̄5A~m!p1B~m!q. ~4.17!

We chooseA8p1B8q50, and then the equation deman
that

~12m2!@A8p81B8q8#52K, ~4.18!

where a prime denotes]/]m. Solving for A8 and B8 we
have, using the WronskianW/(12m2) defined earlier,A8
5Kq/W. Now p does not satisfy the boundary conditions
x50, soA must be zero there; hence

A52E
m

1 Kq

W dm52E
0

x Kq

W sinxdx. ~4.19!

Similarly B852Kp/W and to satisfy the boundary cond
tions atm521, x5p,

B52E
21

m Kp

W dm52E
x

p Kp

W sinxdx. ~4.20!

Thus the solution by variation of the parameters is

v̄52Fp~x!E
0

x Kq

W sinx8dx81q~x!E
x

p Kp

W sinx8dx8G ,
~4.21!

which gives our solution forv(x)5(sinx)23/2v̄:

v~x!52
p/2

W sin3x
FSn~p2x!E

0

x

l2VSn~x8!sinx8dx8

1Sn~x!E
x

p

l2VSn~p2x8!sinx8dx8G . ~4.22!

For x small,

Sn→
~12n2!

3
x3F12

~11n2!x2

10 G ,
i.e.,

1

sin3x
Sn→

~12n2!

3 F11
~42n2!

10
x2G , ~4.23!

and forn5 iN,

1

sin3x
SiN → ~11N2!

3 F11
~41N2!

10
x2G . ~4.24!

We note that withk511, 41N25l2 and
1-10
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W5
p

2
~n221!

sin~np!

n
52

p

2
~11N2!

sinh~Np!

N
.

~4.25!

For N large andx small

SiN

W sin3x
→2

4

3p
Ne2NpS 11

l2x2

10 D . ~4.26!

For N large andx not small nor nearp,

SiN~x!5
1

2
sinx eNx, SiN~p2x!5

1

2
sinx eN(p2x).

~4.27!

Hence our solution near the origin is

v~x!5
1

3 S 11
l2x2

10 DNE
x

p

l2V~x8!sin2x8e2Nx8dx8,

~4.28!

and near the perturbation

v~x0!5
1

2E0

p l2N

N211
S sinx8

sinx0
D 2

e2Nux82x0uV~x8!dx8,

~4.29!

where in the last equation we consider a perturbation wit

meanV of V̄ in r 06D with ND!1.

kÄÀ1.

The equation to be solved is Eq.~2.43! with k521 and
l 51. Now we writem5coshx, (n11

2)
25l214. Space is now

hyperbolic andm runs from 1 tò . The relevant solutions o
the homogeneous equation are

p52S Pn
3/21

2

p
iQn

3/2D5
1

2 S p

2 D 21/2 1

sinh3/2x
Se~x!,

q5 iQn
3/25

1

2 S p

2 D 1/2 1

sinh3/2x
E~x!, ~4.30!

wheren5(n1 1
2 ),

E~x!52~n21!e2(n11)x1~n11!e2(n21)x,

Se~x!5
1

2
@E~x!2E~2x!#. ~4.31!

The Wronskian

p
dq

dm
2q

dp

dm
52

~n221!n

m221
. ~4.32!

The solution by variation of parameters is
06401
a

v̄52
1

n~n221!
FpE

m

`

qKdm1qE
1

m

pKdmG ; ~4.33!

hence, changing the integrations fromm to x andv̄ to v, we
have

v5
~sinhx!23

4~n221!n
FE~x!E

0

x

l2V~x8!Se~x8!sinhx8dx8

1Se~x!E
x

`

l2V~x8!E~x8!sinhx8dx8G . ~4.34!

For smallx

E~x!522~n221!x2 F12
2n

3
x1

3n211

12
x2

2
n~n211!

15
x31•••G , ~4.35!

so

Se~x!5
2n

3
~n221!x3F12

~n211!

15
x2G . ~4.36!

At large x

E~x!5~n11!e2(n21)x52~n11!e2nxsinhx,

Se~x!5
1

2
~n21!e(n11)x5~n21!enxsinhx.

~4.37!

Near the origin

v5
1

3 F12
~42n2!x2

10 G E
x

`

~n224!~n11!

3sinh2x8e2nx8V~x8!dx8. ~4.38!

At the perturbation

v~x0!5
1

2

n224

n E
0

`S sinhx8

sinhx0
D 2

e2nux82x0uV~x8!dx8.

~4.39!

V. THE TIME EVOLUTION OF THE DRAGGING

The evolution ofv andV as functions of cosmic time is
governed by the equations of motion~contracted Bianchi
identities! ~2.8!. For axisymmetric, odd-parity perturbation
these become the angular momentum density conserva
law, as discussed in Eqs.~2.22!–~2.26! in Sec. II. In terms of
v(t,r ,u) andV(t,r ,u) the conservation law simply become
Eq. ~2.31!, i.e.

@a5~r1p!~v2V!# "50 ~5.1!

or, in terms of the angular momentum density, we get
1-11
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V2v5
1

a5~r1p!
•

j ~x,u!

r 4sin3u
. ~5.2!

In this formula the first factor singles out the time depe
dence of V2v. Notice that we have already obtaine
v(t,r ,u) as a function of the angular momentum with
x, J(,x), in all three casesk511, 0,21 @see Eqs.~3.4!,
~3.8!, ~3.14!#. We foundv to depend on the time as 1/a3(t).
Equation~5.2! can then be regarded as a solutionV(t,r ,u)
implied by the equations of motion.

On the other hand, forV2v given at some timet5t0 as
a function ofx,u, Eq. ~5.2! determines the densityj (x,u)
which in turn givesJ(,x), andv(t,x,u) is then obtained
from Eqs.~3.4!,~3.8!,~3.14!. The angular velocity of matter
V(t,x,u), is then given again by Eq.~5.2!.

If we are interested in proper azimuthal velocities, we c
write

V5ar sinu V, v5ar sinu v, ~5.3!

and rewrite Eq.~5.2! as

V2v5
1

a4~r1p!
•

j ~x,u!

r 3sin2u
. ~5.4!

SinceuVr u,uvr u!1, we have alsouVu,uvu!1. In the case of
the dust universes (p50) the density obeys the conservatio
law ra35const[C. Equation~5.4! then implies

V2v5
j ~x,u!

Cr3sin2u
•

1

a
. ~5.5!

This is not valid neart;0 whena→0 due to our approxi-
mation. For a→`, V2v→0, and the dragging become
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Note added

After submitting the paper for publication and posting
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