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Do rotations beyond the cosmological horizon affect the local inertial frame?
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If perturbations beyond the horizon have the velocities prescribed everywhere then the dragging of inertial
frames near the origin is suppressed by an exponential factor. However if perturbations are prescribed in terms
of their angular momenta there is no such suppression. We resolve this paradox and in doing so give new
explicit results for the dragging of inertial frames in closed, flat, and open universes with and without a
cosmological constant.
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[. INTRODUCTION the effect. Schmid’s “energy current” is considered by him
as the source of the rotational dragging of inertial frames
In a clearly written paper Schmid] describes how rota- Schmid’s quantity does not obey a conservation law but for a
tional perturbations of a spatially flat universe influence therotating sphere it can be directly expressed in terms of its
inertial frames. He finds that such influences are attenuatesngular velocity), densityp, pressurg and proper radius
by an exponential Yukawa factor whenever the perturbatioras
lies beyond a “horizon”. He expressed his results in terms of

a quantity that he calls the energy currét What corre-
sponds to Schmid’s energy curreﬁtin our calculation is a

quantityjS with the dimensions of angular momentum. How-

ever his result appears to disagree with our earlier r¢gplt (! iS the “coordinate” angular velocity, not that measured
(hereafter LKB that in a flat universe the rotation of the relative to the local inertial frame which, as we show below,

inertial frame,w, due to any system of spheres with small is the quantity needed in the angular momentum conserva-

Jezzw”(w p)Qsirtdrideodr, (1.2

rotations about a center is given by :ionq I_aw. The contribution to the conserved angular momen-
um is
_2G[1. (=1 d] _ s
cf)(r,t)=— _J(t,<r)+ 7__Tdr, , (11) 2’7T(p+p)(Q w)SIn30r dodr. (1.3
c?[r? rrddr’

The difference comes about mathematically because the per-
turbed metric is not diagonal but in spherical polar coordi-

where 3(t,<r_) is the total angular momentum within the nates is

sphere of proper radiys8] r=a(t)r. This expression dem-

onstrates how angular momenta at all distances ContribUtedsz=dt2—a2(t){dr2+rz[d02+sin26(d<p2—2wd<pdt)]}
and shows no exponential cutoff and no influence of any (1.'4)
horizon.

Both results agree, however, that inertial “influences” yhere o(t,r) gives the small rotation of the inertial frame
may be expressed instantaneously i.e. with no light travely, e to the rotational perturbations everywhere.
time delay. This is because they follow from the constraint gq, 4 perturbed 3-flat universe, angular momentum con-

equations of general relativity with an appropriate mappingservation is given by the equation
onto an unperturbed universe to provide a suitable gauge.

The results are impparentcontradiction. However, when p
the details of both calculations are examined it is evident that — (- — g T#“7")=0, (1.5
the contradiction lies in the attribution of different causes for XM g
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where 7" is the angular Killing vector of the background of the inertial frames. If the prescription is to have just the
(flat) space corresponding to the particular component of anene thick shell rotating and none of the others we shall have

gular momentum considered. to stop them. In doing so we have to give them negative
Thus the conserved quantity ighe minus sign comes angular momentum to kee zero even though the inertial
from the signature we use in the me}ric frame is rotating ato. When in Schmid’s problem the per-

turbation in angular velocity is considered as confined be-

I=| (=19 V=q dx. 1.6 _yond his hO!’IZOI’] he shows that the rotation of |nert_|al frames

f (=TeV—g (1.8 is exponentially suppressed near the origin. The prime reason

is that in order to keep the motion confined, the intervening

Since thep component ofT#” is brought down in this ex- spheres have to be given backward angular momentum to
pression, it isnot merely the motion of the fluid that is in- stop them from following their inertial tendency of rotating
volved in Tg via its contributionu”u” but also the off- at the inertial ratav. The influence of all the backward an-
diagonal metric componel,, which depends om at the  gular momenturnriof non-rotating sphergsather effectively
position of the sourcgsee our metri¢1.4)]. As we see from cancels most of the rotation of the inertial frames induced by
Eq. (1.1), we regard the conserved angular momentlas  the original shell. Hence the suppression of the effect is due
the source of the dragging of inertial frames, and this was théo all the negative angular momentum that was supplied to
guantity we used in LKB. keep the other spheres from rotating. The remaining suppres-

Schmid’s work for a spatially flat universe is more generalsion is due to the rotation of the inertial frame at the original
than our work published so far, since he considdrwvector  shell itself: w there is a fraction of) so thatQ—w, on
perturbations, nevertheless we treated closed and open unihich the source depends, is less.
verses as well as flat ones and indeed from a Machian view- There is a long history of treating dragging effects within
point it is the closed universes that are more interesting bgpheres starting with Einstein’s treatment using an early ver-
far. We also considered all spherical but inhomogeneousion of his gravitational theories. Within general relativity
Lematre-Tolman-Bondi universes with rotational perturba-the early works of Thirrind4] and Lense and Thirrings]
tions that were constant on spheres. Finally we looked intavere later generalized to deep potential wells by Brill and
the problem of the rotation of inertial frames induced by Cohen[6]. This raised questions as to whether the dragging
spheres of given angular velocities, rather than given angulawould be perfect within a black hole’s horizon. We believe
momentum. This is a special case of Schmid’'s problem buthat the first paper to remark on the apparent instantaneity of
generalized to closed and open universes. In our discussianertial frames is the pioneering paper of Lindblom and Brill
we wrote down the equations governiagt,r) whenQ(t,r) [7] on inertia in a sphere that falls through its horizon. More
was given and showed how they could be solved. We carriececently we explored observational effects seen within such a
out the detailed solution only for the static closed Einsteinsphereg 8] and gave an example of strong linear dragging in
universe(LKB Appendix A). a rapidly accelerated charged sphf®& Strong cosmologi-

Schmid’s beautiful result that the dragging is exponen-cal perturbations in a weakly rotating sphere surrounding a
tially suppressed when a sphere of given angular velocity isoid were treated by Kleif10], and in greater detail by
outside his horizon has stimulated us to work out all ourDoleZzl, Bicak, and Deruelld11] who also discussed how an
solutions in detail for all Friedmann-Robertson-Walker observer within such a cosmological shell views the world
(FRW) universes. Barring factors @f(t) that Schmid seems outside.
to have omitted in error, we fully confirm his result for a flat We owe a debt to Schmid as his work stimulated us to
universe. Thus we have the fascinating paradox wisite ~ work out the consequences of our solutid?§ in much
spheres of given angular velocity have their dragging expogreater detail and, without that, we would never have raised,
nentially suppressed if they are outside the horizon, neveret alone understood, the delightful paradox emphasized
theless the dragging of spheres of given angular momentumbove. In particular we have now investigated thoroughly the
suffers no such suppressiddow can this be? problem whernw is to be solved for with the angular veloci-

In the prescribed angular momentum problem one mayies given everywhere at one cosmic time. Previously we had
consider(for an open or 3-flat univergenaving only one concentrated on the problem with the angular momenta
spherical shell of finite thickness with angular momentum.given. While both are important problems we strongly be-
The gravity of this source will induce a rotation of inertial lieve that it is the latter that is of dynamical importance in
frames everywhere. The fluid at all other places will respondormulating Mach'’s principle. It can nevertheless be argued
inertially and start to rotate so th&t= w everywhere except that the apparent agreement between the angular positions of
on the original shell. Thus in the prescribed angular momengquasars at different epochs and the inertial frame defined by
tum problem we give one shell angular momentum and sitising the solar system as a giant gyroscope stimulates Ma-
back and watch. We see how the inertial frames are affectechian ideas. While it is the angular momentum that is impor-
everywhere else merely by watching the rotations of all othetant for the physics it is the apparent kinematical agreement
spheres. between theangular velocity of the sphere and the inertial

The prescribed angular velocity problem needs more orframe that is observed. In this sense the problem with given
ganization in the creation of the initial state. If we start oneangular velocities may be closer to Mach'’s original and it is
thick shell rotating at the prescribed rate then all the othersinclear how distant observations could measure the true an-
will start moving so as to keep up with the induced rotationgular momentum of a sphere including its dragging term,
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while its angular velocity is more directly observable. How- here w(t) is undetermined,r =siny and W(y)=coty
ever, seg11] for the complications of light bending. Unfor- 1 3coty. The arbitrariness ofso(t) is intimately connected
tunately the problem of the observed agreement of frames iS4t \ach's principle. The physical involves @ — &) and

hot what either Sghm|d or we have ad_d_ressed since both %%oes not change for rotating axes as it involves a difference;
treatments relate instantaneous quantities at the same COS"@@e[z] and below

time whereas observers use no such world (expept in the

. ; . . . Fork=-1
solar systembut a world picture in which distant objects are ° '
seen as they were long ago on the backward light cone. It 43
seems unlikely thgt aexact causal relatlonshlp_ exists be- = — j(<X)W(X)+J —W(x)dy'|, (19
tween proper motions of masses on our past light cone and c2a x dy’

our local inertial frame, sincat any cosmic time the inertial
frame’s rotation has contributions from objects that were

never in our past light coneOf course such objects will no tends to zero af— o thus ensuring that the boundary con-

doubt have been seen by some alien and the Copernicamtion w—0 is obeyed. When contributions fromgadepen-

principle would suggest that the apparent agreement of thSence of() are included these results are supplemented by

o ote! e beiebected ereependent terms that average 1o 10 on spheres. Hore ger-
ral results are given in the accompanying paper Il.

bodies on the local inertial frame. This is quite distinct from Section IV gives explicit solutions for the rotations of

Eir?gr?:;t?cn:?:lactjifv tehf[ao dd)g;rr?tlcsugfs:(rg 22';: iﬁséeﬂ]umtrg d'tsinertial frames for the same special forms of perturbations as
: quas . in Sec. lll but now it is the angular velocities of the different

years of past light congsfrom which the rotation of the spheres that are given rather than their angular monténsa

me{:i;&i%ﬁ 12 fﬁ?ﬁaljstgli‘tion of the apparent contradictionis closerto what might be observed but cf. earlier discus-
bp sion). We definex by

with Schmid the main contributions of this paper are the
following. ) 5 o

Section Il gives the derivation of the equations governing A“=2ka“(p+p)=4(k—a‘H), (110
general perturbations and a brief introduction to Machian
gauge conditions which allow the Separation of t”r%kl K=87TG/C4, k=8 in geometrical Unit-S used in the follow-
vector perturbation equations from the others. There is a digng, the overdot denoteg/Jt, and H=a/a is the Hubble
cussion of the equations of motion that must be obeyed if theonstant. The second relation in Ed.10 follows from the
contracted Bianchi identities are to be satisfied. As a consesombination of the background Einstein’s equations for any
guence when axial symmetry is imposed each ring of fluidp, p,k and also for any value of the cosmological constant
preserves its angular momentum. This section concludeShe rotation of inertial frames near the origin due toQ@n
with basic equations for odd parity axially symmetrical per-distribution at largez’ = \r is for k=0
turbations from which the remainder of the paper is derived.

Section Il derives the explicit expressions for rotation of
inertial frames in terms of the angular momentum distribu- w(r)= 3
tion at any one time. This is done for all FRW universes with
k==1 or O but the simplest case is solved in this section ) ) L
with © constant on spheres at the time considered. This codhich shows Schmid's exponential attenuatior . At the
responds to odd-parity vectbr=1 perturbations witt) in-  Perturbation itself, close ta,, we find forz’ large
dependent off. In the following papef12] (paper 1) we
allow for generald dependence. With the integrals evaluated
at fixed cosmic time and with the constantandG restored
we have the following results fab(r) at fixed time(for the

derivation of the vector forms below s¢2|): For k=1 we give the results near the origin and at the
Fork=0, r=a(t)r, perturbation whem?>4. When\2<4, which can occur
when aA term is present, there is no exponential in the

whereW( y) = coti®y—3cothy+2, andW has an extra 2 so it

1 @ ,
1+—)\2r2)f z'%e"70(z)dz', (1.1)
10 o

w9\ 2
w(fo)=;fo (z—o) e 17 -%l0(z)dz. (1.12

. R I dJ 3 expression. It is assumed that expl—4 x) is large at the
“T 258 J<nr—=+ —ar’ dr. (1.7 source. Withr =siny
R - 1 A2x2\ (e
Notice thato=[a(t)] 2 sinceJ is conserved. w(x)= —( 1+ —X) f A2\ \Z—4 e W
Fork=1, 3 10 0
y X sir?(x')Q(x' )dy. (1.13
o= ——| I(<Y)W +fW—W'd'+(:)t;
c?a (X)W x dy’ (xX)dx o) We have assumed exgk2—4x)>1 for x=, x', and
(1.8 —x'. At the “source”
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1 \2—3 [siny'\2 Il. THE EQUATIONS TO BE SOLVED
_ * 2 X 7\/)\274‘)(,7)(0'
©(xo)=5 ] M 22\ sinyg € We write the perturbed FRW metric in the form
XQ(x")dx". (1.14 ds?=(g,,,+h,,)dx*dx”
Similarly for k= —1,r=sinhy, =dt?—a?(t)f;dx'dx +h,,dx“dx", (2.1
1 A2x2\ (e 5 where the background metrig,, is used to move indices
_ ’ v
w(x)= 3 1+ 1—0) fo NZYNZ+4 e N and the time-independent part of the spatial background met-
ric fj; (i,j,k=1,2,3) is used to define the 3-covariant deriva-
X sinfP(x" )Q(x")dyx’, (1.15  tive Vi andV*=fKV],
In one of the standard coordinate systems the background
and at the source FRW metric reads
1= N [siny'\? 55—, 2
w(xo0)= —f . ) e WAl TxlO () dy d?=dt?—a? S +r2(de?+sirode?) |, (2.2
2Jo \/\2+4 | sinhyo 1—kr
(1.1

where in a positive curvatureclosed universe k=+1) r

We emphasize that all of the above relationships are trug (o, 1y, in flat (k=0) and negative curvaturé — 1) open
at any given instant, but that both the angular momentumyniversesr  (0), and 6e(0,7), ¢ <(0,27). We shall
distribution and the angular velocity distribution at later in- 5150 employ hyperspherical coordinates
stants are related to those at earlier times, so cannot be given
independentlyof those given at an earlier epoch. In axial ds?=dt?—a[dy?+r3(d6?+sirfede?)], (2.3
symmetry the angular momentum distribution follows the
motion of the perfect fluid but, as the angular momentum iswith r =siny, x, sinhy for k=1,0,—1.
first order and the movement across the background is of first |n a completely general gauge for general perturbations
order, the product can be neglected. Thus to first order thﬁ/“” the (momentum constraint equation 5G2= xSTY,
angular momentum density can be considered as painted fjrns out to be
the background. This is not true &f which is not conserved
and nor is it true of the angular velocify. In both casesto 1 _, 1, J. 2 1. 0
find the time evolution one must appeal to the equations of ¥ Mokt Khok= gaViVjho+ zaVik— Saf=a’k Ty,
motion which, in axial symmetry, leads back to local conser- (2.9
vation of angular momentum density. Only by use of its con-
servation can one find hof? andJ can evolve consistently Where
with the Einstein equationg.e. with the contracted Bianchi
identities. In this sense the given angular momentum prob-
lem is far more physical than either Schmid’s problem or the
given Q) problem to which it is equivalent. The time evolu-
tion of w and() are derived and discussed in Sec. V. is the perturbed mean external curvature tefconstant

In a paper that has long been in gestation we give a disslices, and
cussion of those gauges in which the Machian relations of
the local inertial frames to the motions of distant masses can
be expressed instantaneously at constant cosmic time. In that
paper we derive all equations that govern all perturbations.
All can be solved using harmonics in the 3-space of constarflotice that Eq.(2.4) is independent of the choice of the
time. However harmonics are not as informative as Green'sosmological constanf\ because we perturbed “mixed”
functions so in the following paperl2] we integrate the components o6 . Other perturbed Einstein's equations will
relationships between the rotations of the inertial frames andot be needed herSee note below Ed2.26).] Since, how-
the angular momentum density for all axially symmetricalever, we are interested primarily in perfect fluid perturbations

odd-parity vector perturbations, usually called “toroidal” we shall also consider the perturbed fluid equations of mo-
perturbations in the astrophysical and geophysical literaturgjon, i.e. the perturbed Bianchi identities

These results allow) — w, which enter the angular momen-

tum density, to be any function of (¢) but independent of (8p) +3H(8p+ 8p)+ (p+p)Vi(hg+ V)

¢. However, since the background is spherically symmetric,

non-axisymmetric perturbations can be generated by re- _

expanding axisymmetric perturbations around a new axis, +(p+p)(§Hh00—EIC)—O, 27
and taking the component with the nei'¢ as the compo-

nent with generam. and

K=a (2.5

3 AT NN
5 Hhgo— 5 (hl)+V;hj

1
7‘k=—vj<hlk—§5lkh;). (2.6)
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1, b . ji=a(p+ p)(@ZfuVM—hg) = —a®sTy. (212
—l[a*(ptp)(@fmV"—ho) '+ Viop
a In the following we shall often express the background time
1 dependent terma?(p+ p) by using Eq.(1.10.
+=(p+p)Vihee=0, (2.9 Consider first the flat universé&+ 0). In Cartesian coor-

2 dinatesx® used by Schmid1], the 3-metricf,,=&,,, and

' Eqg. (2.11) become
where V¥=dx¥/dt = 5U% and Vi= — a2tV is the flid " Zt S

(small velocity. The perturbed fluid energy-momentum ten- V2hg=2a%k8T0=2a%k(p+p)(hoe+ Vi), (2.13
sor components entering the constraint equati@# read
whereV? is the flat-space Laplacian. Substituting from Eq.
8TR=(p+p)(ok+ Vi) = (p+p) (hox—aZf V™). (1.10 with k=0 in the first term in the right-hand side of Eq.
(2.9  (2.13, we get

There have been various choices of gauges used in the lit- V2hg,= —4a%H hox— 2ka*(p+ p) V. (2.19
erature, in particular the synchronous gaubgy€ hg,=0).

In order to understand the effect of dragging of inertial Now comparing our general form of the perturbed FRW
frames, in particular its “instantaneous” character, it is con-metric with the perturbed metri) in Schmid’s work(and
venient to use gauges—we call them “Machian”—in which being careful of the opposite signatyreve see thathg
the constraint equations, and still anotifeombination of = —ap,(Schmid. Considering p+ p)V, (denoted byd, in

the perturbed field equations are explicitly the elliptic equa-Schmig as the source, Eq2.14) written for Schmid's 3,
tions. In order to achieve this it is first useful to choosepecomes

coordinates om= const slices such that tlspatialharmonic-
type gauge conditions are satisfied, 'rz_e.:o, where7, is —V2B—4a’HB=—2ka%(p+p)Vy. (2.15
given in Eq.(2.6) (in numerical relativityZ,= 0 is frequently o . , , 5
called the “minimal distortion” shift vector gauge condi- TQ'S is Schmid's basic equatidfi4), up to the factors” and
tion). Next, it is convenient to choose the time slices so that&” Which in Schmid’s equat|o(11_4), are missing but this does
for example, the perturbation of their external curvature vanOt changeos!gmﬁcantly Schmid's conclusions.
ishes: K=0,K given by Eq. (2.5 (so-called “uniform When 6T, is given, the solution of Eq2.13 is given as
Hubble expansion gaugg” Under these gauge conditions the Poisson integral over the source. If, however, the matter
(which determine the coordinates in a substantially more recurrent is given, Eq(2.14) can be written as
strictive way than e.g. the synchronous gautye constraint 2 2 _ 4
field equationg2.4) become the elliptic equations for just the VZhok= A (Dhok=—2ka%(p+P)Vi, (2.18
componentdy, ; no otherh,,, enter. with (k=0)

Until now we considered general perturbations in the cho-
sen gauge. Hereafter, we assume the vediggsV to be N2= —4a2H. .17
transverse,

Usually (e.g. in the standard Friedmann modé#s<0, sox
is real. The three equation®.16) are, as emphasized by

. o Schmid, of the Yukawa type. The Green’s functions are given
so that alscﬁké‘TE:O. If Eq. (2.10 is not satisfied, we can yp g

apply V¥ to Eq.(2.4), find the elliptic equation for the scalar by
V¥hok, solve it and substitute back into E@.4), where the 1 eFx—x|
third term on the left hand side could be viewed as the source G(x,x")=—
together WithéTE. Since, however, the longitudinal parts do
not contribute to the dragging of inertial frames, we assum
Egs.(2.10 to be satisfied.
The constraint field equation&.4) with our choice of 1 A x=x|
gaugeK=7,=0 [cf. Egs.(2.5 and(2.6)] thus become hok= — Z_Ka4(p+ p)f Vk(x’)ﬁdx’.
™ X=X/
V2ho+ 2kho=2a%k T0=2a%k(p+ p) (hox— af V™), (219

2.1
219 Clearly if the perturbationV,(x’) is located at|x—x’|

where for the perfect qui@STE is substituted from Eq2.9). =\"1=1/2a\—H, ie. beyond the Hradius’ Ry
This is our basic equation to be solved at a given time =(—H)~%2in Schmid’s terminology, the vectdry, which
=const, with either5T or VX given. The Bianchi identities determines the dragging of inertial frames is exponentially
(fluid equations of motiondetermine the time evolution of suppressed around the origin. Although we thus verified the
perturbations, the scalar E@.7) for 8p, whereas the vector interesting conclusion of Schmid, we do not resonate with
equation(2.8) governs the evolution of the term his view that “because of the exponential cuf-of there is

Vkhe=0, V, V=0, (2.10

(2.18

E |X—X’| '

She well-behaved solution of E@2.16 is thus
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no need to impose ‘appropriate boundary conditions of some

kind'.” The Green'’s function in Eq(2.18 with the + sign in
the exponential is also the solution of E.16 with a

S-function source but one discards it by demanding “reason-

able” boundary conditions at infinity.
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X2 ™ 2 _
J(XLXZ):_f dXJO d9JO de\—g oT) 7",
X1
(2.29

where »*=(0,0,0,1) is the rotational Killing vector, the

From the Machian viewpoint the closed universes are ohackground metric determinamgf=g® = —a°rsin?s, and
course preferable. There is, however, no vector Green’s fung— sinx, x, sinhy for respectivelyk=+1,0—1 as in Eq.

tion available for Eq(2.11) with eitherﬁT(k’ or V| considered

(2.3). Integrating overp we have

as a source. In order to understand how Schmid’s conclu-

sions get modified in curved universes and to generalize our
previous worl 2], which analyzed perturbations correspond-

X2 T A3 20 0
J(xux2)=—27| dx| doa’r®singsT,
X1 0

ing to rigid rotating spheres in the FRW universes, we shall

study all axisymmetric, odd-paritipole perturbations cor-

responding to differentially rotating “spheres.” We now de-
rive the basic equations for such “toroidal” perturbations.

Their solutions, in particular for=2 and closed universes,

X2 ™
~2r [ “ax [ d0iconn),
X1 0
(2.2H

require special treatment. These solutions are analyzed in thgherej(6, y,t) is the (coordinate angular momentum den-

following paper Il
In spherical coordinatefas in the FRW metricg2.2),

(2.3)], the only non-vanishing vector components are

hoo(t,r,0) and V(t,r,0) [for the general axisymmetric
even-parity vector fieldsv,=0, whereasV,(t,r,d) and

sity. Hence, the Bianchi identit{2.23 can be written as
[i(6.x)]=0. (2.29

This is important for studying the time evolution of thg,

V,(t,r,6) are non-vanishing, the same being true for@ndV perturbationgsee Sec. Y. It can also be shown that,

hor ,hog]. There is now just one non-trivial constraint equa-

tion in (2.11) to be satisfied:

(2.20

in which V2=fK'V,V , with f¥' being the inverse té,, given
by FRW metric(2.2) [recall—see Eq(2.1)—that f,, is posi-
tive definite, without factom?]. CalculatingV?2h,,, explic-
itly, we find Eq.(2.20 to take the form

V2ho,+ 2khg,=2a2k 5T,

g (1 J o
25759 sing a9/ "0¢

(2.21

hoet

1k2(92 kﬂ
( Y)P r—r

+4khg,=2a%k ST,

Before solving this constraint equation it is interesting to

notice what the perturbed equations of moti@manchi iden-

tities) say about axisymmetric odd-parity perturbations.

Equation(2.7), in our gauge choicéwith =0) and with
the transverse character bf,,V,, is a simple evolution
equation for8p. The vector Eq.(2.8) for indices 1,2k*
=r,x?=#) turns into the well known relativistic equilibrium

conditions for perfect fluidsY,dp=—(p+ p) V(3hoo) (see
e.g.[13]). In the following the crucial role is played by Eq.

as a consequence of the perturbed Bianchi idef2i33 and
the constraint equatiof2.20, the only remaining non-trivial
perturbed Einstein equationG, ,= xT,,=0, is automati-
cally satisfied.

Defining the fluid angular velocity

0=-ve=2¢ 2.2
- - al ( . D
we get
V,=—a?f, Ve=—-ar?sifoQ(t,r,0). (2.29
Writing similarly
ho,=a’r?sirfd o(t,r,0), (2.29
the only non-vanishing component 611'{2 becomes
STo=(p+p)a®r2sirt(w—Q). (2.30

The angular momentum density conservation 123,
[(2.26)], turns then into the simple evolution equation

(2.31

Let us now return back to the constraint equati@r21).

[a°(p+p)(w—Q)]'=0.

. 3_ . . . .
(2.8) for index 3 k"= ¢). Since in the axisymmetric case The second term on its left hand side suggests a decomposi-
Ve 6p=0,V,hoo=0, it becomes tion into the vector spherical harmonics. It should be empha-
sized that, in contrast to standard practice in the cosmologi-

3 2,24 _ L
[a(p+p)(a’rsirove hoe)1'=0, (2.22 cal perturbation theory where perturbations are decomposed
or into harmonics in all three spatial dimensiqsse e.g[14]),
we decompose in the usual coordinafe® on spheres only,
[a35T2]'=0. (2.23 and assume axial symmet¢gpherical function%,,, having

m=0). Thus, we write Y,,=35Y0)

This is the conservation of angular momentum of each ele- o
ment of each aX|aIIy symmetpcal ring of flgld. _The total ho¢=azf22 ) (1,1)SINGY g 4,
angular momentum in a spherical layef;, x») is given by =1

(2.32
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ar2>, Q(t,r)singY,q 4
=1

V,=-—
(2.33
and
STg=a(p+p)r2 2, (@=Q)sing Yio,
:zl [STO(t,r)]iSiNGY 0. (2.34

Substituting these expansions into Eg.21) and using the
orthogonality of functions siftY)q , for differentl’s, we ob-
tain the “radial” equation for eacl:

2 072 J 2 2
(1=kr?) =5 —kr oo (o) =11+ 1o+ 4krZo,

=2a2K(p+p)rz(w|—Q|)=)\2r2(w|—Q|), (233

where we used Ed1.10. It is easy to convert the last equa-
tion into the form

|(|+1)

W

_\/—_2

=N2(Q -

[\/1 kr? —(r )|+

ar
(2.36

Forl=1 (and the background pressuse-0) this equation
coincides exactly with Eq4.32 in LKB. In the language of
the present paper, in LKB we analyzed dipole=() axi-

w|).

symmetric odd-parity perturbations. Withl=1,Y,q,
=—/3/4msing, so that putting o=—+3/47 w,-1,

—+3/47 Q,_4, we recover
ho,=a’r?sirfd w(t,r), V,=—a’r’sinfo Q(t,r),
STo=a2(p+p)risifd(w—0Q), (2.37

which corresponds to thagidly rotating spheres in the FRW

universes considered in Sec. 4.4 in LKB, and, for given

Q(t,r), analyzed in detail in Sec. IV in the following.
Consider first the cade=0. Equation(2.36 can be writ-
ten with the angular momentum densit&'lﬁm as a source,

2991
ar

1+ 1)-2

1 9
— —|r > o=\ (w

r4 or

2k o
_Q|):r—2(5T<p)|-
(2.38

r
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where 2= —4a?H=2xa%(p+p) by using Eq.(1.10 with
k=0.

In the case of spatially curvedk#0) backgrounds it is
advantageous to write?=k(1— u?), i.e. u=+1—kr? to

obtain
1 p dw, [(1+1)-2
—Ik(1- 2\15/2 VL N T
S M BT Ry
R 0y 2.
T (2.40
The substitution
o =[k(1-pu?)]" ¥ (2.49)

turns Eq.(2.40 into the Legendre equation fa®, with
(8T2); as the source:

P , dw| 3(3 ) (I1+3)?

Fr i M 1 A e
I S (2.42
"Ik pnp e '

Finally, considering the fluid angular velocity as the source,
we can write the last equation again as the Legendre equation
with a more complicated degree:

+ 2
— k(l—Mz)i—L: + 2

I+3)% |
k(l—,uz)]wI

— —K;=—-\20,[k(1-u?)]¥

kv(v+1)—

(2.43

where

1\2 :
v+ 5) =4-2kka’(p+p)=4—kr\?>=4ka’H.
(2.44

The degree of the Legendre equation does not depend.on
Forl=1, Eq.(2.43 goes over into Eq(4.35 in LKB [15].

Ill. SOLUTIONS FOR w WITH GIVEN ANGULAR
MOMENTUM DISTRIBUTION

We shall start by making more explicit the solutions ob-
tained in LKB which are thé=1 odd-parity vector solutions
of the general problem. In such modes each sphere rotates
with no shear but it expand®r contracts with the back-

If the fluid angular velocity is taken as a source, the equaground and as it does so its angular velocity charges

tion reads Sec. V).
Jd &w I(1+1)—2 k=0.
Lo [ 0002l | o
rdoor\ ar r2 The equation to be solved is E@.38 with | =1 [this is

(2.39

Eq. 4.33 LKB|
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S ) 0 w)= 5T @a —2a~3 W< +JWWde’+ 3.8
o)t ( w)_r_z o 3. w=2a (<x) i d_X’X wg, (3.9
multiplying up byr# this takes the form where
d dw 6 dJ(<r) IXJW )
— | —=]=== J= 27a’[r(x')]?sirt0(— T dady’. (3.9
ar( m) = (32 o |, 2malr(x)Psito=6Tg)dedy . (3.9
SO Just as in the last case/ diverges aty=0 like y3;
however, the angular momentum of spheres near the origin is
Jw 6J sufficiently small to make th&VJ tend to a constant ag
o g (3.3 tends to zero. It is shown in LKB that the condition of con-

vergence of the second integral gt 7 is that the total
angular momentum of the universe is zero. If that condition
is satisfied and) — w is regular nea = 7 then the integral
converges. If the total angular momentum is not zero then
the integral forw diverges ajy= 7. Thus forw to be finite at
x = 7 the total angular momentum must be zero in the closed

The constant of integration is zero singe<r) is zero atr
=0 wheredw/dJr must vanish. Integrating again and insist-
ing thatw—0 atoo we find

w:a-sfmﬂdr,ZZa-s I<r) n wﬂr/—s dr’ universe. There is no way of fixin_@o becau_se_ t_here ?s no
rr'd r3 rdr’ standard of zero rotation, as there is for the infinite universes.
Indeed, according to Mach a description of the world in ro-
2 (r (= tating axes is just as good in principle as a description in
_ 12ai _ 0 ’
N r3fo J'O 2mr"sing(—oT,)dodr non-rotating ones. Note that the sour€e-w does not
change when the axes are rotating sificandw acquire the
i 0 . same constanb,. An absolute rotation can arise only from
+2 o 2ar’ sing(— &T,) dodr’, (34 spatial boundary conditions which do not occur for closed
universes.
where we have used EQ.25 to defineJ(<r) in terms of
sTY. k=—1.
The equation to be solved is E@®.40 with |=1. Multi-
k=1. plying through by @?—1)%2 we obtain
The equation to be solved is E@.40 with |=1, which 5 P 6 d
H w
IS Eq. (4.34) LKB [16], _ (Mz_ 1)5/2_ — 2k /qu_ 15.'_2: -
6 dJ p I ad du
d Jw
v _ 2522 _ o o2\12¢70_ = Y (3.10
(M((l M) &#] 2k(1—p) 70T, 2 du
S0 on integration and division
so that
dw 6
2_ 12—~ 2_
y 1y 00 6J (n°=1) o as(,u 1)J. (3.11)
(1-p5)™ = (3.9

In a¥(1-u??
Writing = coshy to introduce the natural radial variable of

As before there is no integration constant for the same rediyperbolic space, this becomes

son. We now writeu=cosy; then y is the normal cosmic

radial angle and dw 6 J

—=—— . (3.12
J 3 gj
o 63 X ad sintty
o= - (3.6 . . N o
Ix adsinty Integrating again and insisting that—0 at infinity we use
the integral
Now
x dy' 1 1—
jx dy 1( £+ 3001 1W( @ f prvay = — 5 (cotiy—3cothy +2)=~ ZW(x),
=— —(coty+3coty)=— = . .
sifty 3 X X 3 (3.13
Hence and on integrating by parts we obtain
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so for a source localized iny(1=A) with A<1/\,
w=2a3

. (3.19

— ©__ dJ
WI(< +fW’—d’
(<x) . (X)dX,X -

r —
1+ 1—0)()\r0)3e‘“092A, (4.6)

w(2)= 3
whereJ is the same as in Eq3.9) with r =sinhy. We have 3
chosen the above definition @ so thatW— 0 at infinity; SO which clearly shows the exponential decline of influence re-
no constant of integration is needed to incorporate thgnarked on by Schmifil]. WhenQ is concentrated neay,

boundary condition thab—0. in o=\ A, then withz>1 andQ =0 we get

IV. SOLUTIONS FOR @ WITH GIVEN Q

1 =27 2 , o
_ o w(zg)= —f (—) e 172l (z)dZ = \AQ. (4.7)
The method of solution was outlined in LKB but here we 2Jo\29

work through all the details starting with the simplest case. - -
Thusat the source the inertial frame rotates\at ) and()

k=0. —w=(1-\A)Q.
The relevant equation to be solved is Eg8.39 with | We now turn to the solutions for a closed universe.
=1 [Eq. (4.33 in LKB], rewritten as
k=1.
1 9 Jw . , .
o rA—| —\2w=—220. (4.1 The relevant equation is Legendre’s equation dor (1
ré g\ ar — 1?)¥w with an inhomogeneous term written below. This

) ) . ) is LBK Eq. (4.35 and the same as EQ.43 of Sec. Il of
Here \“=2a“k(p+p)>0. A" "a has the units of a length ihis paper specialized fde=1:

and we shall call it, following Schmifil], the distance to the
horizon. In dimensionless comoving coordinates this corre- 9o (2)2
sponds tor=\"1. We write z=\r and dw/dz=w’'. Then —( (1—,u2)—} Y v(v+l)———(w=—K,
Eq. (4.1 reduces to Iu o (1=p%

KE)\ZQ(]._,LLZ)SM, (48)

4
0"+ -—w—w=—. (4.2
z where (v+3)?=4—\? as in EqQ.(2.44. Sincek=+1 the

The corresponding homogeneous equation is Bessel's equiP@c€ 1S hyperspherical and the convention is to wte
— =cosy so thaty becomes the radial variable. The solutions

tion for z~*2Jy(iz), which has real solutione=Z andw ¢ e homogeneous equation are the Legendre functions
=K, whereZ=2z"33,(7) and K=z ¥%Ky(z). For small P34 ) andQ¥?(u) and a recurrence relation that generates
z, I—3\2lm(1+2%/10); K—+m/l2z % For large z, Z  P“*!from P* andP*_, . [Here the ordew of the Legendre
—(IN2mz 2% K— w2z %2 function has nothing to do with the variable= \1—kr2.]

We use the method of variation of parameters to solve thdhus
inhomogeneous equation with boundary conditions that

C . .. —-1/2
tends to zero at infinity and to a constant at the origin. We 12 |7 Y E
thus obtain Py (COS()—<2) (siny) " Y%cos | v+ 51x|
Y JZ INAT( 51 QO(z')dz' T 2 1
w(2)=K(2) O(z )*(2')Q(z")dz Qilz(COS():—(E) (siny)~YZsin <V+ E)X _
o - 4.9
+I(Z)J (z)*K(2")Q(z")dZ' . 4.3
z To keep P¥%(cosy) and Q*¥%(cosy) real, we now use

_ S 1—u?) ~Y2=(siny) ! in place of w?— 1) 2in the recur-
For the solutions near the origin with sources that are not sgance relation 8.5.1 of Abramowitz and Steg[¥] (this
close, we may neglect the first term and then for small  erely multiplies the results byi):

1 /2
o=

When the sourc€) is beyond the horizom=1, i.e.z’>1,  the same relation holds for tf@%?. It turns out to be con-
20 L venient to writen= v+ 1. We note that Eqg2.44 and(4.8)
1+ Z_)f (z)2e7Q(z)dz; (4.5 invol\_/e this quantity and thah can be real but is often
10/ J; imaginary. Thus

Z2

* li P2y ! ! ! 1 1 l
[@rana@az. P¥icos = g ( . 5) pyzcosw( - 5) py_zl};

(4.9 (4.10

1+1—O

1
(1)(2)= §

064011-9



BICAK, LYNDEN-BELL, AND KATZ
3/2
Ph212(Ccosy)

T —-1/2 . -

(4.1

similarly writing n when it is real butn=iN when it is
imaginary:

Q¥2,,, (cosy)

B (LI T A————
=3 Sinslzx[cos(sm(nx) nsinycogny)],

Qi31112— 1/2 (COSY)

T 1/2 1

M[cos(sinl‘( Nyx)— NsinycosiNy)].

(4.12

PHYSICAL REVIEW D 69, 064011 (2004

day, dp, m sin(nm) n*-1 W

TR P R R S e
(4.19

Having formed solutionp andq each of which satisfiesne
of the boundary conditions we look for solutions of the in-
homogeneous equation of the form

=A(p)p+B(n)q. (4.17

We chooseA’p+B’q=0, and then the equation demands
that

(1-w’)[A'p'+B'q']=—K, (4.18

where a prime denoteg/du. Solving for A’ and B’ we
have, using the Wronskiam/(1— u?) defined earlierA’
=Kq/W. Now p does not satisfy the boundary conditions at
x=0, soA must be zero there; hence

A= leq J d 4.1
= I-LWM_ — sinydy. (4.19

We shall be concerned to have functions which, after mul-

tiplication by another (sig) 32

this stringent convergence not g=0 but at the “other”r

=0 aty= . Since that is an alternative origin it is clear that

3/2

is indeed the linear combination (72)/sm(n7-r)Pn 2 o(x)

—cos(wr)Qn 1/2(X) Finally we notice than=0, which is
needed in some of our solutions, gl\@§1,2—0 This is not
a solution at all. However Ilrmﬂo[(lln)Qn_l,z] gives the

finite limit
221
(E) M[XCOSX—SM)(]- (4.13
We shall therefore use the functions

T 1/2 1
Qn—<§) Msn(x), (4.14

T 1/2 1
pn—<§) Msn(ﬂ—x)

, are nevertheless still finite Similarly B’=—Kp/» and to satisfy the boundary condi-
at the originy=0. A little expansion aroungt=0 shows
that theP function diverges but th€ function satisfies this
stringent test. Our next job is to find a solution that satisfies

tions atu=—1, y=,

B J”Kp f d 4.2
= oy dr=" WSW‘XX (4.20

Qn 21 cosm—x)] passes that test. A little work shows that it Thus the solution by variation of the parameters is

p(x)f — siny’dx’+q(x) f —5 Siny"dx’ }
(4.21)

which gives our solution for(x) = (siny) *?w:

o(x)=——— Sn(7T X)f N2QS,(x)siny’dy’

+Sn(X)f N2QS,(m—x")siny’ dx’ } (4.22

For y small,

(1-n? (1+n?)x?
Hsz[l_l—O}

as our independent solutions of the Legendre equation. The%g"

functions have the added advantage that they remain real

whenn=iN:

S.(x)=—cosy sm(nn)() +sinycogny), (4.15

inh(N
Sin(x)=— Coaw +sinycoshNy).

The Wronskian may be shown to be

1 (1-n?) (4—n?)
Sinsxsﬁ 3|1t o XZ}, (4.23
and forn=iN,
1 (1+N?) (4+N?)
sy N T 3 [ 10 XZ}' (4.2

We note that withk=+ 1, 4+ N2=\2 and

064011-10



DO ROTATIONS BEYOND THE COSMOLOGICA. . ..

T, sin(nr) 7 ) sinh(N )
w 2(n 1) - 2(1+N)—N .
(4.25
For N large andy small
Sin 4 )\2)(2)
———Ne N7 1+ = 4.2
Wsinty 3 10 (4.29

For N large andy not small nor neatr,

Sin(x) = %SinX e, S (m—y)= %Sin)( eN(T—x)_
(4.27)
Hence our solution near the origin is
)\2/\/2
10

1+ Nf )\ZQ(X')SinZ)('efNX’d)(’,

0(X)=3 )
(4.28

and near the perturbation

Y A2N
w(XO)_Efo N2+ 1

siny’
Sinyg

2
) e*N\x’*XOIQ(X')dX',
(4.29

where in the last equation we consider a perturbation with a

mean{) of Q) in rox A with NA<1.

k=—1.

The equation to be solved is E@®.43 with k=—1 and
|=1. Now we writex= coshy, (v+3)>=\?>+4. Space is now
hyperbolic andu runs from 1 toe. The relevant solutions of
the homogeneous equation are

2 1(7\"¥2 1
_ 32, T :A~32 I
p_ (PV + WIQV ) 2 2) Sinr?/ZXSe(X)u
/
q=iQ¥?=1 ( 3) Y (4.30
212 sink?y

wheren=(v+3),

E(x)=—(n—1)e " x4 (n+1)e" (" Dx,

1
Se(x)=5[EQ0—EB(=X)]. (4.31)

The Wronskian

dg dp  (n*-1)n

——q—= 4.3
R (432

The solution by variation of parameters is

PHYSICAL REVIEW D 69, 064011 (2004

: (4.33

o=—

1 * M
_— Kdu+ f Kd
n2—1) qu ktq| pKdu

hence, changing the integrations framrto y andw to w, we
have

(Sinhx)s{ fx .
=——I|E N2Q(x")Se(x')sinhy'dy’
“= anP—1)n ) . (X")Se(x")sinhy"dx
+Se()()f )\ZQ(X/)E(X/)SinhX’dX'} (4.34
X
For smally
5 [ 2n 3n?+1
EX)=2-(n"=Dx*| 1= x+—5 X
n(n’+1)
_1—5)( +...}, (4.35
> (n?+1)
2n n“+1
_ s 2 34 _ 2
S0 =5 (n 1)x[1 i x}- (430
At large x
E(x)=(n+1)e” (" x=2(n+1)e "sinhy,
1
Se(X)=E(n—l)e(““)":(n—l)e“)(sinh)(.
(4.37)
Near the origin
1 (4=n?)x?| (= "
=3 1_T L(n —4)(n+1)
xsint?x’'e ™' Q(x")dx". (4.38

At the perturbation

1 n?—4 (=[sinhy’
w(XO):E n J'O(SinhXo

2
) e "X x5 )dy'.
(4.39

V. THE TIME EVOLUTION OF THE DRAGGING

The evolution ofw and() as functions of cosmic time is
governed by the equations of motigonontracted Bianchi
identitieg (2.8). For axisymmetric, odd-parity perturbations
these become the angular momentum density conservation
law, as discussed in EqR.22—(2.26) in Sec. Il. In terms of
o(t,r,0) andQ(t,r,6) the conservation law simply becomes
Eq. (2.3)), i.e.

[a°(p+p)(0—Q)]'=0 (5.0

or, in terms of the angular momentum density, we get
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1 i(x,0) perfect.(For perfect dragging in the context of a slowly ro-
: (5.2  tating stationary sphere, see, e.g., R6f.)

“ a%(p+p) risine’

In this formula the first factor singles out the time depen- Note added

dence of Q—w. Notice that we have already obtained  ager sybmitting the paper for publication and posting it

w(t,r,0) as a function of the angular momentum within on the gr-qc website, we learnt about REES], in which

i(3 é])(fsxi;‘ﬁnvf\’}g ]Egrened ca;ej: ;rnld (c))n_ tie[st'en?eEs:a(f’?t‘;)’ “several new analytic solutions for rotational perturbations

Edué\tio.n(S '2) can t%enwbe reg%rded as a slolutml(lt ) 6)' qf the Friedmann metrics are fpund." In R¢d8], however,.

implied by ihe equations of motion Y (i) our problem of the perturbations beyond the cosmological
' horizon is not analyzedji) the angular momentum of per-

On the other hand, fofl — w given at some timé=t, as turbati . i idered, afid) an i i US|
a function of .6, Eq. (5.2 determines the densiti(, 6) turbations is not considered, afid) an incorrect conclusion
is made that the angular velocity of matter must be of a

which in turn givesd(<y), andw(t,x, 6) is then obtained -
from Egs.(3.4),(3.9),(3.14. The angular velocity of matter, separable form,"Q(r,t)=a(r)b(t). In fact, one of the au-

Q(t,x.6), is then given again by Ed5.2). thors of Ref.[18] later realized thaf) need not be in this
If we are interested in proper azimuthal velocities, we carfor™ and gave some other special solutions in iRE8]. (In
write [18] and[19], our Q) is denoted byw and vice versa.
Also, we would like to point out that the importance of
V=arsindQ, v=arsindo, (5.3 the angular momenta rather than the angular velocities as

“independent sources” of the dragging effects has recently
been emphasized in a thorough analysis of the system of two
. concentric, slowly rotating spherical sheflsith the interior
1 j(x.0) . : .

e (5.4 being charged but massless and the exterior massive but neu-
a’(p+p) risifg tral) in a so-called” electromagnetic Thirring problem” by
King and Pfisteff20].

and rewrite Eq(5.2) as

V-v=

Since|Qr|,|wr|<1, we have als¢V|,|v|<1. In the case of
the dust universesp=0) the density obeys the conservation

law pa®=const=C. Equation(5.4) then implies ACKNOWLEDGMENTS
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