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Two-dimensional metric-affine gravity
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There are a number of completely integrable gravity theories in two dimensions. We study the metric-affine
approach in a two-dimensional spacetime and display a new integrable model. Its properties are described and
compared with the known results of Poincare´ gauge gravity.
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I. INTRODUCTION

Although it is well known that the Hilbert-Einstein La
grangian yields trivial dynamics in two dimensions, tw
dimensional gravitational theory has attracted considera
attention recently. In particular, the extension of the spa
time geometry by including nontrivial torsion has enco
passed a class of interesting models with rich mathema
and physical contents@1–5#. For an overview of the relevan
results and a more exhaustive list of publications, we refe
@6,7#. These models are remarkable for at least two reas
Namely, they provide a convenient tool for the study
string-motivated dilaton gravity which can be formulated
an effective Poincare´ gauge model. Moreover, they represe
several examples of physically meaningful completely in
grable models.

The purpose of this paper is to generalize the tw
dimensional gravity models by taking into account all po
sible post-Riemannian geometrical structures. In pract
terms, this means taking into consideration both the tors
and nonmetricity, thus extending the earlier results@1–5#
which were confined only to metric-compatible connectio
with torsion. The general framework for metric-affine grav
~MAG! is firmly established on the basis of the gauge
proach for the general affine group in a spacetime of
dimension@8#. The specific applications to string and dilato
gravity were discussed in@9#, for example. The first~to our
knowledge! two-dimensional gravity model with nonmetric
ity @10#, however, was constructed in terms of a nonme
geometry with vanishing torsion. It is thus of interest
study the case of the most general metric-affine tw
dimensional spacetime with both torsion and nonmetric
being nontrivial. Technically, it seems natural to start w
the quadratic Poincare´ gauge model and to extend it by in
cluding the new quadratic nonmetricity term in the Lagran
ian. We then will benefit from the techniques developed p
viously for the Poincare´ gauge case@5,6#. Our main result is
the demonstration of the complete integrability of the o
tained model in vacuum.

The structure of the paper is as follows. In Sec. II w
briefly summarize the basics of the MAG approach, w
special attention to the irreducible decomposition of the g
metric objects in two dimensions. Section III describes h
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the spacetime interval can be constructed with the help of
torsion, whereas Sec. IV is devoted to the formulation of
dynamical scheme of the model. The complete integrabi
in vacuum is demonstrated in Sec. V. Finally, in Sec. VI w
discuss the results obtained and outline the open proble

Our basic notation and conventions are those of@8#. In
particular, the signature of the two-dimensional metric is
sumed to be (2,1). Spacetime coordinates are labeled
Latin indices i , j , . . .50,1 ~for example, dxi), whereas
Greek indicesa,b, . . .50,1, label the local frame compo
nents~for example, the coframe one-formqa). Along with
the coframe one-formsqa, we will use the so-calledh basis
of the dual coframes. Namely, we define the Hodge dual s
that hª * 1 is the volume two-form. Furthermore, denotin
by ea the vector frame, we have the one-formhaªeach
5 * qa , and the zero-formhabªebcha5 * (qa`qb). The
last expression represents the two-dimensional totally a
symmetric Levi-Civitàtensor.

II. METRIC-AFFINE APPROACH

In metric-affine gravity, the gravitational field is describe
by the coframe one-formqa, the linear connection one-form
Ga

b, and the metricgab . The first two variables are consid
ered to be the gauge potentials of the gravitational field c
responding, respectively, to the translation group and gen
linear group acting in the tangent space at each poin
spacetime. The gravitational field strengths are given by
torsion two-form Ta

ªDqa, the curvature two-formRa
b

ªdGa
b2Ga

g`Gg
b, and the nonmetricity one-formQabª

2Dgab . The frameea5ei
a] i is dual to the coframeqb

5ej
bdxj—i.e., eacqb5ei

aei
b5da

b . The spacetime mani
fold M is equipped with a line element

ds25gi j dxi
^ dxj5gabqa

^ qb. ~1!

More details about the MAG approach in any dimension c
be found in@8#.

Before we proceed with the analysis of the metric-affi
gravity model in two dimensions, it is instructive to unde
stand the structure of the basic geometric objects. Here
describe their independent components and irreducible p

In two dimensions, thetorsion has two components. I
reduces to its vector trace one-form~second irreducible
piece@8#!

Ta5qa`T, TªeacTa. ~2!
©2004 The American Physical Society09-1
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The two-dimensionalnonmetricity has six independen
components and it decomposes into three irreducible p
Qab5 (1)Qab1 (3)Qab1 (4)Qab , with

(3)Qabªq (aeb)cL2
1

2
gabL, ~3!

(4)QabªgabQ, ~4!

(1)QabªQab2 (3)Qab2 (4)Qab . ~5!

Here the shear covector part of the nonmetricity and
Weyl covector are, respectively,

Lªqaebc Q↗ab , Qª

1

2
gabQab , ~6!

where Q↗ab5Qab2Qgab is the traceless piece of the no
metricity. For the spacetime dimension greater than 2,
nonmetricity has also a second irreducible piece@8# which
vanishes identically(2)Qab50 in two dimensions.

The three one-forms of torsion and nonmetricity (T,Q,L)
form the so-calledtriplet which plays a significant role in the
MAG theories in four dimensions@11#. As we will see, the
triplet of one-forms is important also for understanding
the two-dimensional MAG.

The curvature two-form has four components in two d
mensions and it decomposes into the three irreducible pi

Rab5Wab1 Z↗ab1
1

2
gabZ. ~7!

Here the skew-symmetric partWabªR[ab] is the direct gen-
eralization of the Riemann-Cartan curvature, whereas
symmetric partZabªR(ab)5

1
2 DQab is only nontrivial in

presence of the nonmetricity. The skew-symmetric par
irreducible in two dimensions. It has one independent co
ponent and it can be expressed in terms of the curva
scalarRªeacebcRab:

Wab52
1

2
Rqa`qb. ~8!

However, the symmetric part is more nontrivial. It has thr
components and it can be decomposed into the trace
form ZªgabZab ~one component! and the traceless pa
Z↗abªZab2 1

2 gabZ ~two components!.
The coframeqa is not covariantly constant in a gener

MAG spacetime. Similarly, the covariant derivatives of theh
objects are also nonvanishing. In particular, in two dime
sions, we find, explicitly,

Dha5heacL1habTb , ~9!

Dha
b5 * ~ (1)Qa

b2 (3)Qa
b!. ~10!

We will use these identities in the analysis of the MAG fie
equations.
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III. TORSION AND LINE ELEMENT OF SPACETIME

In our demonstration of the complete integrability of th
two-dimensional MAG model, we will use the technic
tools developed earlier for the Poincare´ gauge theory@5,6#.
Namely, in two dimensions, one can construct the spacet
interval from a nondegenerate torsion. Here we briefly su
marize the corresponding definitions and results.

In two dimensions, the two independent components
the torsion can be described in terms of the vector-val
torsion zero-formta defined via the Hodge dual

ta
ª * Ta. ~11!

Then the torsion two-form is recovered as

Ta52tah. ~12!

We call the manifoldM a nondegenerate metric-affine spac
time when the torsion square is not identically zero—i.
t2
ªtataÞ0. Then we can write a coframe as@5,6#

qa52
1

t2
~Thabtb1 * Tta!. ~13!

In other words, the torsion one-formT and its dual * T
specify a coframe with respect to which one can expand
the 2D geometrical objects. Such a coframe is nondegene
when t2Þ0, hence the terminology. The volume two-for
can be calculated as an exterior square of the torsion o
form T:

h5
1

2
habqa`qb5

1

t2
* T`T. ~14!

Defining a coframe of a two-dimensional spacetime in ter
of the torsion one-form is an important step in the study
the integrability of the MAG model.

IV. GRAVITATIONAL FIELD EQUATIONS

We are now ready to formulate the dynamics of the MA
model in two dimensions. Let us consider the Lagrang
two-form

V~qa,Ta,Ra
b,Qab!5S 1

2
R2

b

4
R22l Dh2

a1

2
Ta` * Ta

2
a2

2
Qab` * Qab . ~15!

Herea1 , a2 , b, andl ~cosmological term! are the coupling
constants. Recall that the Lagrangian of the Poincare´ gauge
model in two dimensions contained only the linear and q
dratic contractions of curvature and torsion—the first a
second terms on the right-hand side of Eq.~15!. In order to
investigate the influence of the nonmetricity, we have o
minimally modified the Poincare´ Lagrangian by adding the
last term quadratic in the nonmetricity. However, it is nec
sary also to note that the curvature scalarR is now qualita-
9-2



e

ta
ct

e-
n

th

of
e
ua
-

a

a
e

na
o-
e
re

s is

n

ion

es
ms

t of

the

TWO-DIMENSIONAL METRIC-AFFINE GRAVITY PHYSICAL REVIEW D 69, 064009 ~2004!
tively different since it depends on the general linear conn
tion and not on the Lorentz connection alone.

The gravitational field equations are derived from the to
LagrangianV1Lmat by independent variations with respe
to the metricgab , the one-formqa ~coframe! and one-form
Gb

a ~connection!. The corresponding so-calledzeroth, first,
andsecondfield equations read

DMab2mab5sab, ~16!

DHa2Ea5Sa , ~17!

DHa
b2Ea

b5Da
b . ~18!

The source terms on the right-hand sides are defined as
derivatives of the matter Lagrangian:sab

ª2dLmat/dgab
~the metrical energy-momentum two-form!, Sa
ªdLmat/dqa ~the canonical energy-momentum one-form!,
Da

bªdLmat/dGa
b ~the canonical hypermomentum on

form!. The gauge field momenta appearing in the left-ha
sides of the field equations are given by

Mab
ª22

]V

]Qab
52a2* Qab, ~19!

Haª2
]V

]Ta
5a1ta , ~20!

Ha
bª2

]V

]Ra
b

5
1

2
ha

b~12bR!. ~21!

Finally, the energy-momenta and hypermomentum of
gravitational field are described bymab52]V/]gab and

Ea5eacV1~eacTb!Hb1~eacRb
g!Hb

g

1
1

2
~eacQbg!`Mbg, ~22!

Ea
b52qa`Hb2Ma

b . ~23!

One can show quite generally~in any dimension! @8# that
the zeroth equation~16! is redundant: it is a consequence
Eqs.~17!, ~18! and of the Noether identities. Accordingly, w
will consider the system of the first and second field eq
tions ~17! and ~18! which determine completely the dynam
ics of the gravitational field.

V. GENERAL VACUUM SOLUTION

We will now specialize to the vacuum case when the m
ter sources are absent,Sa50,Da

b50. As a preliminary re-
mark, we notice that if we put the nonmetricity equal zero
this stage,Qab50, we will not recover the results of th
Poincare´ gauge model. Similarly, the limit ofa250 does not
yield the old results despite the fact that the gravitatio
Lagrangian then formally coincides with that of the tw
dimensional Poincare´ gauge theory. It is important to realiz
that the MAG dynamics is very different from the Poinca´
06400
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gauge case; in particular, the number of the field equation
now greater.

A. Second field equation

Substituting Eqs.~19!–~21! into the second field equatio
~18!, we find, in vacuum,

1

2
D@ha

b~12bR!#1a1qatb12a2* Qa
b50. ~24!

Taking the trace, we obtain the relation between the tors
and Weyl one-forms:

Q5
a1

4a2
T. ~25!

Now, using the identity~10!, we decompose Eq.~24! into the
symmetric and antisymmetric parts:

1

2
~12bR! * ~ (1)Qab2 (3)Qab!

1a1* ~q (aeb)cT2gabT!12a2* Qab50, ~26!

2
b

2
habdR1a1q [atb]50.

~27!

The symmetric part~26! yields

(1)Qab50, L5
2a1

12bR24a2
T. ~28!

As a result, we discover at the end thetriplet structure of the
torsion-nonmetricity sector when the only nontrivial piec
of the torsion and nonmetricity remain the three one-for
which are proportional to each other:L;Q;T.

Finally, the antisymmetric equation~27! yields

T52
b

a1
dR. ~29!

This is completely analogous to the corresponding resul
the Poincare´ gauge model@5,6#.

B. First field equation

We begin the analysis of the first MAG field equation~17!
by noticing that substitution of Eqs.~15!, ~20!, ~21!, and~19!
into Eq. ~22! yields

Ea52Ṽha1
a2

2
~ * QbgeacQbg1Qbgeac * Qbg!. ~30!

Here Ṽ5a1t2/22bR2/41l. Obviously, the above one-form
has the properties

ha`Ea50, qa`Ea52Ṽh. ~31!

Using the results of the previous subsection, we then find
first MAG equation explicitly:
9-3
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a1Dta52Ṽha1a2~ * QeacQ2QhabebcQ!. ~32!

This equation determines the components of the torsion
tor. Recall, however, that ultimately we are interested in
spacetime interval~1! which is expressed in terms of th
coframe~13!. Thus, we need to find the one-formT and its
dual * T together with the quadratic invariant of the torsio
t25tata. This is achieved by contracting Eq.~32! with ha,
qa, andta, respectively.

Contracting Eq.~32! with ha and taking into account Eq
~31!, we finddT50. Note that we need the identity~9! and
relation~28! for this. The result is consistent with the earli
explicit formula ~29!.

Contracting Eq.~32! with qa, we obtain

a1d * T5~a1t222Ṽ!h. ~33!

Finally, contracting Eq.~32! with ta, we get the differential
equation for the functiont2:

a1

2
dt25ṼT1

a1

4
t2~Q1L!. ~34!

Substituting Eqs.~25!, ~28!, and~29! into Eq.~34!, we obtain
the first-order ordinary differential equation, the integrati
of which yieldst2 as a function of the curvature scalar:

2t25
a2r

2a1
2b

H @4bl2~124a2!2#

a
e2rEi~r!

2ar1a22~124a2!1c0e2rJ . ~35!

Here 1/aª1/a111/8a2, and Ei(r) is the exponential inte-
gral function of the variable

r5
bR14a221

a
. ~36!

The meaning of the integration constantc0 will be clarified
in the next subsection.

C. Spacetime geometry

In order to find the spacetime interval, we will proce
along the same line as the in@5,6#. Namely, as we see from
Eq. ~29!, the torsion one-formT plays the role of the first leg
of a zweibein and we can interpretR as one of the loca
spacetime coordinates. The form of the solution~35! sug-
gests, furthermore, that it will be more convenient to repla
R with r using the linear transformation~36!.

The second leg of a zweibein will be then described
the dual torsion one-form* T. Then following @5,6# we in-
troduce the second local coordinatez and find in this way the
general ansatz

* T5B~z,r!dz. ~37!
06400
c-
e
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The unknown functionB(z,r) is determined as follows
Substituting Eq.~37! into Eq. ~33! and using Eq.~14!, we
find the differential equation

a1

a
]rB5~a1t222Ṽ!

B

a1t2
. ~38!

Combining this with Eq.~34!, we obtain the solution

B5
2t2er

r
B0 , ~39!

with an arbitraryB05B0(z).
Thus, we have completely determined the coframe~13! in

terms of the torsion one-form~29!, the dual torsion~37!, and
the quadratic torsion invariant~35!. The spacetime interva
~1! is then recovered straightforwardly as

ds252
~2t2!e2r

r2
B0

2dz21
a2

a1
2

dr2

~2t2!
. ~40!

Without loss of generality, we can evidently putB051 by a
redefinition of the local coordinatez.

In order to reveal the meaning of the integration const
c0 in Eq. ~35!, we notice thatj5]z is the Killing vector field
for the line element~40!. As a result, we can verify that th
energy one-form

«5jaSa ~41!

is strongly conserved,d«50. The first MAG field equation
~17! yields

«5
a1er

2r Fd~ t2!1~121/r!t2dr1
a2

a1
2 ~2l2bR2/2!drG .

~42!

Using this, we can verify that«5dM, with

M5
a1t2er

2r
1

a2er

4a1bH @4bl2~124a2!2#

a
e2rEi~r!

2ar1a22~124a2!J . ~43!

In vacuum,Sa50 and hence«5dM50. Thus,M5M0 is
constant for the vacuum solution obtained. Substituting
~35! into Eq. ~43!, we find, explicitly,

c052
4a1b

a2
M0 . ~44!

By construction,M0 represents the total mass of the config
ration; cf. the discussion in@5#.
9-4
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D. Torsion-degenerate spacetime

Above, we have described a nondegenerate metric-a
spacetime, the geometric properties of which are totally
termined by the two-dimensional torsion. For completene
we also need to analyze the case of degenerate torsion
t250 everywhere. It is straightforward to see that the fi
and the second MAG field equations~17!, ~18! yield

Ta50, Qab50, R52Al

b
. ~45!

The resulting manifold is thus isometric to the tw
dimensional de Sitter space with vanishing torsion and n
metricity. This result is analogous to the degenerate solut
of the Poincare´ gauge model@1,4–6#.

VI. DISCUSSION AND CONCLUSION

In this paper we have studied the quadratic MAG mo
~15! in two-dimensional spacetime. We demonstrated t
such a theory represents a new example of a completely
tegrable model of two-dimensional gravity. This result w
obtained by means of a direct extension of the general fra
work which was developed earlier for the case of the Po
carégauge models. Not surprisingly, the form of the gene
vacuum solution resembles the solution of the quadr
Poincare´ model. However, the old results are not recove
in the formal limit of the vanishing nonmetricity couplin
constanta2→0. In particular, let us recall that it is possib
to interpret the solutions of the Poincare´ model as two-
dimensional black holes. In our current approach, the an
sis of the possible black hole structure is related to the st
of zeros of the metric coefficientgzz5t2e2r/r2 for the gen-
eral solution~35!. For certain values of the coupling con
stants (a1 ,a2 ,b,l), the resulting geometry may indeed di
play black hole features similar to the black holes discove
in the quadratic Poincare´ model. However, in general, th
new solutions obtained are no black holes.

As compared to the Poincare´ gauge case, qualitatively, th
curvature and torsion remain the basic elements of
theory. The scalar curvature acts as one of the local coo
nates of the spacetime manifold, whereas the torsion defi
a special coframe and thus provides a tool for construc
the spacetime interval. In addition, one of our primary go
was to study the specific role and place of the nonmetric
Quite interestingly, it turns out that the non-Riemannian s
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tor of the MAG model is represented by the triplet structu
(T,Q,L) of the torsion and nonmetricity one-forms. Such
triplet ansatz plays an important role in the four-dimensio
case@11#. The presence of the nonmetricity strongly modifi
the vacuum solution. In particular, it introduces more sing
larities into the Riemannian geometry as compared to
effect of the torsion in the Poincare´ model. The Riemannian
curvature of the metric~40! can be easily computed from th
corresponding Christoffel symbols and it reads, explicitly,

R̃5R2
2a1

2t2

a2r2
2

2

ab
@4bl2~bR!2#~121/r!. ~46!

One may notice that the Lagrangian~15! does not de-
scribe the most general MAG model in two dimensions.
deed, since the nonmetricity has three irreducible parts,
can extend Eq.~15! by including two more quadratic
(Q•Q) terms and, furthermore, to add a nonmetricity tim
torsion term of the form (Q•T). Such an extension, how
ever, does not change our main result: The dynamics of
MAG fields remains qualitatively the same as in the minim
model ~15!, and the generalized model is also complete
integrable. However, the inclusion of the nontrivial matt
sources~scalar or spinor! as well as further extension of th
model~15! by adding the quadratic terms ofZab destroys the
integrability, in general.

The last but not least remark is about the origin of in
grability property of the MAG model. There exists a syste
atic way of embedding the two-dimensional~dilaton and
Poincare´ gauge! gravity into the class of so-called Poisso
sigma models@3,7,12#. The corresponding theoretical ma
chinery provides an effective tool for demonstrating th
complete integrability. A preliminary analysis shows that
similar interpretation of the new MAG model as a Poisso
Sigma model seems also to be possible.
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