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Two-dimensional metric-affine gravity
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There are a number of completely integrable gravity theories in two dimensions. We study the metric-affine
approach in a two-dimensional spacetime and display a new integrable model. Its properties are described and
compared with the known results of Poincgi@uge gravity.
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[. INTRODUCTION the spacetime interval can be constructed with the help of the
torsion, whereas Sec. IV is devoted to the formulation of the
Although it is well known that the Hilbert-Einstein La- dynamical scheme of the model. The complete integrability
grangian yields trivial dynamics in two dimensions, two- in vacuum is demonstrated in Sec. V. Finally, in Sec. VI we
dimensional gravitational theory has attracted considerabléiscuss the results obtained and outline the open problems.
attention recently. In particular, the extension of the space- Our basic notation and conventions are thos¢&f In
time geometry by inc|uding nontrivial torsion has encom- particular, the Signature of the two-dimensional metric is as-
passed a class of interesting models with rich mathematicgumed to be {,+). Spacetime coordinates are labeled by
and physical conten{d—5]. For an overview of the relevant Latin indices i,j,...=0,1 (for example, dx), whereas
results and a more exhaustive list of publications, we refer té>reek indicese, 8, ... =0,1, label the local frame compo-
[6,7]. These models are remarkable for at least two reasongents(for example, the coframe one-forih®). Along with
Namely, they provide a convenient tool for the study ofthe coframe one-form#“, we will use the so-called) basis
string-motivated dilaton gravity which can be formulated asof the dual coframes. Namely, we define the Hodge dual such
an effective Poincargauge model. Moreover, they representthat »:=*1 is the volume two-form. Furthermore, denoting
several examples of physically meaningful completely inte-by e, the vector frame, we have the one-form,:=e,|7n
grable models. =*9,, and the zero-formy,g:=eg|n,=*(9,/\94). The
The purpose of this paper is to generalize the two-ast expression represents the two-dimensional totally anti-
dimensional gravity models by taking into account all pos-symmetric Levi-Civitatensor.
sible post-Riemannian geometrical structures. In practical
terms, this means taking into consideration both the torsion Il. METRIC-AFFINE APPROACH
and nonmetricity, thus extending the earlier resllts-5]|
which were confined only to metric-compatible connections In metric-affine gravity, the gravitational field is described
with torsion. The general framework for metric-affine gravity by the coframe one-forn#“, the linear connection one-form
(MAG) is firmly established on the basis of the gauge ap{’.”, and the metrig, ;. The first two variables are consid-
proach for the general affine group in a spacetime of angred to be the gauge potentials of the gravitational field cor-
dimension(8]. The specific applications to string and dilaton responding, respectively, to the translation group and general
gravity were discussed if9], for example. The firstto our  linear group acting in the tangent space at each point of
knowledge two-dimensional gravity model with nonmetric- spacetime. The gravitational field strengths are given by the
ity [10], however, was constructed in terms of a nonmetrictorsion two-form T*:=D 9, the curvature two-fornR,”
geometry with vanishing torsion. It is thus of interest to :=dI',#—T,”AT' #, and the nonmetricity one-for®Q,z:=
study the case of the most general metric-affine two—Dg,z. The framee,=¢€',d, is dual to the coframe’”
dimensional spacetime with both torsion and nonmetricity= ejﬁdx‘—i.e., eajﬁﬁze'aeiﬁzég. The spacetime mani-
being nontrivial. Technically, it seems natural to start withfold M is equipped with a line element
the quadratic Poincargauge model and to extend it by in- ‘ '
cluding the new quadratic nonmetricity term in the Lagrang- dsz=gijdx'®dx1=gaﬁﬁ“® 9P, (N)
ian. We then will benefit from the techniques developed pre-
viously for the Poincargauge casgs,6]. Our main resultis  More details about the MAG approach in any dimension can
the demonstration of the complete integrability of the ob-be found in[8].
tained model in vacuum. Before we proceed with the analysis of the metric-affine
The structure of the paper is as follows. In Sec. Il wegravity model in two dimensions, it is instructive to under-
briefly summarize the basics of the MAG approach, withstand the structure of the basic geometric objects. Here we
special attention to the irreducible decomposition of the geodescribe their independent components and irreducible parts.
metric objects in two dimensions. Section Il describes how In two dimensions, thdorsion has two components. It
reduces to its vector trace one-forfsecond irreducible
piece[8])
*On leave from the Department of Theoretical Physics, Moscow
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The two-dimensionaihonmetricity has six independent [l. TORSION AND LINE ELEMENT OF SPACETIME
components and it decomposes into three irreducible parts:

) In our demonstration of the complete integrability of the
Qup= MQupt PQupt “Qup, with | e e

two-dimensional MAG model, we will use the technical

1 tools developed earlier for the Poincagauge theory5,6).

(3)QaB:= Yo A — 5048A, (3) Namely, in two dimensions, one can construct the spacetime
2 interval from a nondegenerate torsion. Here we briefly sum-

marize the corresponding definitions and results.

(4)Qa5=:gaﬁQ, (4) In two dimensions, the two independent components of
) 5 . the torsion can be described in terms of the vector-valued
MQ,p=Qus~ ¥Qup— MQ,p. (5  torsion zero-formt“ defined via the Hodge dual

Here the shear covector part of the nonmetricity and the t4=*T, (11

Weyl covector are, respectively, . .
Then the torsion two-form is recovered as

1
A=0eG s, Q=507 Qup, ®) Ti= -y, 12

We call the manifoldM anondegenerate metric-affine space-

where @ ,5=Q,5~QQ,p is the traceless piece of the Non- time when the torsion square is not identically zero—i.e.,
metricity. For the spacetime dimension greater than 2, the2._¢ t«+0. Then we can write a coframe 5 6]
o :

nonmetricity has also a second irreducible pig8kwhich
vanishes identically?’Q,z=0 in two dimensions. 1
The three one-forms of torsion and nonmetricity @, A) 94=——(T naﬁtﬁ+ *Tt9). (13
form the so-calledriplet which plays a significant role in the t
MAG theories in four dimensiongl1]. As we will see, the
triplet of one-forms is important also for understanding o
the two-dimensional MAG.
The curvaturetwo-form has four components in two di-
mensions and it decomposes into the three irreducible piec

¢In other words, the torsion one-form and its dual *T
specify a coframe with respect to which one can expand all
the 2D geometrical objects. Such a coframe is nondegenerate
é{ghentzato, hence the terminology. The volume two-form
can be calculated as an exterior square of the torsion one-
1 form T:
Rup=Wopt Z o5t 59apZ. (7)

_ _ _ n= lnaﬁf}“/\ﬂﬁ:%*T/\T. (14)
Here the skew-symmetric pai, ;:=R;,z is the direct gen- 2 t

eralization of the Riemann-Cartan curvature, whereas the _ _ o
symmetric partZaB::R(aB):%DQaﬂ is only nontrivial in  Defining a_coframe ofa_two-d!mensmnal spacetime in terms
presence of the nonmetricity. The skew-symmetric part i®f the torsion one-form is an important step in the study of
irreducible in two dimensions. It has one independent comthe integrability of the MAG model.

ponent and it can be expressed in terms of the curvature

scalarR:eaJeﬁjR“B: IV. GRAVITATIONAL FIELD EQUATIONS
1 We are now ready to formulate the dynamics of the MAG
W= — —RI*/\ 95 (8) model in two dimensions. Let us consider the Lagrangian
2 two-form
However, the symmetric part is more nontrivial. It has three 1 b a,
components and it can be decomposed into the trace two- V(ﬂ“,T“,Raﬁ,QQBF(ER— ZRZ—)\> n— ?T“/\*Ta

form Z:=g“ﬂZaB (one componentand the traceless part

Z op=Z 05— 29apZ (two components _ B %Q“B/\*Q
The coframed“ is not covariantly constant in a general 2 ap:

MAG spacetime. Similarly, the covariant derivatives of the

objects are also nonvanishing. In particular, in two dimen-Herea,, a,, b, and\ (cosmological termare the coupling

(15

sions, we find, explicitly, constants. Recall that the Lagrangian of the Poinganege
model in two dimensions contained only the linear and qua-
D 7%= ne*|A+ Ty, (9)  dratic contractions of curvature and torsion—the first and

second terms on the right-hand side of Etp). In order to
D 7%= *(MQ*;— ®)Q%y). (10)  investigate the influence of the nonmetricity, we have only

minimally modified the Poincar&agrangian by adding the
We will use these identities in the analysis of the MAG field last term quadratic in the nonmetricity. However, it is neces-
equations. sary also to note that the curvature scdkais now qualita-
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tively different since it depends on the general linear connecgauge case; in particular, the number of the field equations is
tion and not on the Lorentz connection alone. now greater.

The gravitational field equations are derived from the total
LagrangianV +L ,5; by independent variations with respect A. Second field equation
to the metricg, s, the one-formd“ (coframe and one-form
I' 5" (connection. The corresponding so-callezbroth first,
andsecondfield equations read

Substituting Eqs(19)—(21) into the second field equation
(18), we find, in vacuum,

[e3 a o 1
DM —m®=g?F, (16) 5D[7°p(1-bR)J+a9°t+2a,*Q*=0.  (24)
DH.—E.=2., 17 Taking the trace, we obtain the relation between the torsion
@ @ _pra and Weyl one-forms:
DH®—E%5=A%. (18) y
The source terms on the right-hand sides are defined as the Q= ﬂ-r_ (25)
derivatives of the matter Lagrangian“?:=26L i/ 69,4 4a,

(the  metrical energy-momentum  two-form X,

=L o/ 00 (the canonical energy-momentum one-form
A pi= SLmat T P (the canonical hypermomentum one-
form). The gauge field momenta appearing in the left-hand

Now, using the identity10), we decompose E@24) into the
symmetric and antisymmetric parts:

sides of the field equations are given by 5(1- bR *(MQ,z— ®Q,z)
M @B — Zﬁgv =2a,*Q“’, (19 ta* (9,8p)T—0apT) +28,"Q.p=0,  (26)
ap
b
y oV 20 _EnaﬁdR+alﬁ[atB]:0'
a'= p?Ta_alta, ( ) (27)
The symmetric par26) yields
He A (1-bR) (21)
pi=— ——==71%4(1-DbR). 2a
R 2 Vo = S S
Qup=0, A=7pr" 4a2T. (28)

Finally, the energy-momenta and hypermomentum of the , )
gravitational field are described W“BZNV/(?QQB and As a result, we discover at the end thiplet structure of the

torsion-nonmetricity sector when the only nontrivial pieces

Ea:eaJV+(eaJTB)HB+(eaJRﬁy)HB'y of the torsion and nonmetricity remain the three one-forms
which are proportional to each othex:~Q~T.
1 . . . . .
" E(eaJQﬁy)/\Mﬁyv 22) Finally, the antisymmetric equatiai27) yields
b
T=-—dR. (29
E“%=—19%\Hz—M%;. (23 a;

One can show quite generallin any dimension[8] that This is. corppletely analogous to the corresponding result of
the zeroth equatiofil6) is redundant: it is a consequence of the Poincarggauge model5,6].
Eqgs.(17), (18) and of the Noether identities. Accordingly, we

will consider the system of the first and second field equa- B. First field equation
tions (17) and(18) which determine completely the dynam-  \ye hegin the analysis of the first MAG field equatidr)
ics of the gravitational field. by noticing that substitution of Eq&L5), (20), (21), and(19)

into Eq. (22) yields
V. GENERAL VACUUM SOLUTION

We will now specialize to the vacuum case when the mat- E,= —]77;,1+ %( * QﬁyeaJQBer Qp,8al” QA7). (30
ter sources are abse,=0,A%;=0. As a preliminary re-
mark, we notice that if we put the nonmetricity equal zero at
this stage,Q,z=0, we will not recover the results of the
Poincaregauge model. Similarly, the limit ai,=0 does not
yield the old results despite the fact that the gravitational n°/AE,=0, 9°/\E,=—V7. (31)
Lagrangian then formally coincides with that of the two- “ “
dimensional Poincargauge theory. It is important to reqlize Using the results of the previous subsection, we then find the
that the MAG dynamics is very different from the Poincarefirst MAG equation explicitly:

Here V=a,t?/2—bR2/4+ \. Obviously, the above one-form
has the properties
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a;Dt,= —Vn,+8,(* Qe,JQ—Q7,4e°1Q). (32

This equation determines the components of the torsion ve
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The unknown functionB(Z,p) is determined as follows.
Substituting Eq.(37) into Eq. (33) and using Eq(14), we

{ind the differential equation

tor. Recall, however, that ultimately we are interested in the

spacetime intervall) which is expressed in terms of the
coframe(13). Thus, we need to find the one-forfhand its
dual * T together with the quadratic invariant of the torsion
t>=t,t® This is achieved by contracting E2) with 7,
9%, andt®, respectively.

Contracting Eq(32) with »* and taking into account Eq.
(31), we finddT=0. Note that we need the identitg) and
relation(28) for this. The result is consistent with the earlier
explicit formula(29).

Contracting Eq(32) with 9¢, we obtain

a,d*T=(a,;t>—2V) 7. (33
Finally, contracting Eq(32) with t*, we get the differential
equation for the function?:

a ~ a
Eldtzzvn thZ(Q+A). (34)

Substituting Eqs(25), (28), and(29) into Eq.(34), we obtain
the first-order ordinary differential equation, the integration
of which yieldst? as a function of the curvature scalar:

2 —(1—
ap [[4bn (2 4a2)2]e*PEi(p)

—t2=
2ab

—ap+a—2(1l—-4a,)+coe ’y. (35

Here 14:=1/a;+ 1/8a,, and Eifp) is the exponential inte-
gral function of the variable

_ bR+4a,-1 36
= (36)
The meaning of the integration constantwill be clarified
in the next subsection.

C. Spacetime geometry

In order to find the spacetime interval, we will proceed
along the same line as the [i,6]. Namely, as we see from
Eq. (29), the torsion one-fornT plays the role of the first leg
of a zweibein and we can interpr& as one of the local
spacetime coordinates. The form of the soluti@®) sug-

&5 B=(at?—27)— (38)
a * L at?
Combining this with Eq(34), we obtain the solution
_tzep
B= Bo, (39)
P

with an arbitraryBo=Bg({).

Thus, we have completely determined the cofrd@& in
terms of the torsion one-forif29), the dual torsion37), and
the quadratic torsion invariariB5). The spacetime interval
(1) is then recovered straightforwardly as

(_t2)e2p 2

p?

2

ds?=— ’

2 d p
- (40)
1

az (—t?)
Without loss of generality, we can evidently @§=1 by a
redefinition of the local coordinaté

In order to reveal the meaning of the integration constant
Co in Eq. (35), we notice that =g, is the Killing vector field
for the line elemen{40). As a result, we can verify that the
energy one-form

e=¢£"%, (41

is strongly conservedje =0. The first MAG field equation
(17) yields

a2
d(t?)+(1-1p)t’dp+ — (2\ - bR2/2)dp1 :
a

a.e’
e= 2p

Using this, we can verify that =dM, with

(42)

_agt’e’  ae|
~ 2p  4ajb|

[4b\— (2— 422 o

—ap+a—2(1—-4ay). (43

In vacuum,%, ,=0 and hence=dM=0. Thus,M =M, is
constant for the vacuum solution obtained. Substituting Eq.

gests, furthermore, that it will be more convenient to replacd35) into Eq. (43), we find, explicitly,

R with p using the linear transformatio36).

The second leg of a zweibein will be then described by

the dual torsion one-fornt T. Then following[5,6] we in-
troduce the second local coordingtand find in this way the
general ansatz

*T=B({,p)d{. (37

4a,b
a2

Co=— 0- (44)

By constructionM represents the total mass of the configu-
ration; cf. the discussion ifb].
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D. Torsion-degenerate spacetime tor of the MAG model is represented by the triplet structure

Above, we have described a nondegenerate metric-affinglQ:/A) of the torsion and nonmetricity one-forms. Such a
spacetime, the geometric properties of which are totally delfiPlét ansatz plays an important role in the four-dimensional
termined by the two-dimensional torsion. For completenes<c@S€11]. The presence of the nonmetricity strongly modifies
we also need to analyze the case of degenerate torsion wifi€ vacuum solution. In particular, it introduces more singu-
t2=0 everywhere. It is straightforward to see that the firsti@!ities into the Riemannian geometry as compared to the
and the second MAG field equatiof?), (18) yield effect of the torsion in the Pomcareodel. The Riemannian

curvature of the metri¢40) can be easily computed from the
corresponding Christoffel symbols and it reads, explicitly,

A
T*=0, Qus=0, R=2\[6. (45
- 2a%t? 2
. . . . . R=R— — —[4bx—(bR)?](1—1/p).  (46)
The resulting manifold is thus isometric to the two- a%p? ab

dimensional de Sitter space with vanishing torsion and non-

metricity. This result is analogous to the degenerate solutions ) ,

of the Poincaregauge modef1,4— 6. Qne may notice that the Lagrang_lamS) dqes not de-
scribe the most general MAG model in two dimensions. In-
deed, since the nonmetricity has three irreducible parts, we
can extend Eq.(15 by including two more quadratic

In this paper we have studied the quadratic MAG model(Q- Q) terms and, furthermore, to add a nonmetricity times
(15 in two-dimensional spacetime. We demonstrated thatorsion term of the form @-T). Such an extension, how-
such a theory represents a new example of a completely irever, does not change our main result: The dynamics of the
tegrable model of two-dimensional gravity. This result wasMAG fields remains qualitatively the same as in the minimal
obtained by means of a direct extension of the general framenodel (15), and the generalized model is also completely
work which was developed earlier for the case of the Poinintegrable. However, the inclusion of the nontrivial matter
caregauge models. Not surprisingly, the form of the generalsources(scalar or spingras well as further extension of the
vacuum solution resembles the solution of the quadratienodel(15) by adding the quadratic terms &f,; destroys the
Poincaremodel. However, the old results are not recoveredntegrability, in general.
in the formal limit of the vanishing nonmetricity coupling The last but not least remark is about the origin of inte-
constanta,— 0. In particular, let us recall that it is possible grability property of the MAG model. There exists a system-
to interpret the solutions of the Poincareodel as two- atic way of embedding the two-dimensionalilaton and
dimensional black holes. In our current approach, the analyPoincaregaugé gravity into the class of so-called Poisson-
sis of the possible black hole structure is related to the studgigma modelq3,7,12. The corresponding theoretical ma-
of zeros of the metric coefficiertgg:t2e2”/p2 for the gen-  chinery provides an effective tool for demonstrating their
eral solution(35). For certain values of the coupling con- complete integrability. A preliminary analysis shows that a
stants @;,a,,b,\), the resulting geometry may indeed dis- similar interpretation of the new MAG model as a Poisson-
play black hole features similar to the black holes discoveredigma model seems also to be possible.
in the quadratic Poincarmodel. However, in general, the
new solutions obtained are no black holes.

As compared to the Poincagauge case, qualitatively, the
curvature and torsion remain the basic elements of the The author is grateful to the Organizers of the workshop
theory. The scalar curvature acts as one of the local coordi‘Gravity in two dimensions” for the invitation to the Erwin
nates of the spacetime manifold, whereas the torsion definedchralinger Institute(Vienna and for support. The discus-

a special coframe and thus provides a tool for constructingions with the participants of the workshop are appreciated,
the spacetime interval. In addition, one of our primary goalswith special thanks to Friedrich Hehl for the helpful com-
was to study the specific role and place of the nonmetricityments. This research was supported by the Deutsche Fors-
Quite interestingly, it turns out that the non-Riemannian secehungsgemeinschafBonn) under grant HE 528/20-1.

VI. DISCUSSION AND CONCLUSION
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