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Static post-Newtonian equivalence of general relativity and gravity with a dynamical
preferred frame
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A generally covariant extension of general relati\i&R) in which a dynamical unit timelike vector field is
coupled to the metric is studied in the asymptotic weak field limit of spherically symmetric static solutions. The
two post-Newtonian parameters known as the Eddington-Robertson-Schiff parameters are found to be identical
to those in the case of pure GR, except for some nongeneric values of the coefficients in the Lagrangian.
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I. INTRODUCTION The most general action with up to two derivatives of a

Over the past several years quantum gravity considemnit vector field has four terms. Three of these terms were
ations have led a number of researchers to contemplate vié2cluded in the original study of Will and Nordvedt]

lations of Lorentz invariance. Such violations are usually(Which did not include any constraint on the length of the

studied within the realm of particle physics, but they Wou|dvector) and all four were written down and studied using the

also have implications for gravitation. Fixed background ten—t(atrad formalism by Gasperifil1], who broke the local Lor-

sors breaking Lorentz symmetry also break the general ¢ entz symmetry by including in the action terms referring to a

; f | relativi icall ting | Yixed “internal” unit timelike vector. The same theory in the
variance of general relativityGR), generically resulting in  auic formalism was written down if9], and the linearized

overdetermined equations of motion. Together with a theoyaye solutions in one special ca®erresponding to the case
retical bias for preserving general covariance, this leads onfcused on in1]) were reported if10]. The general con-
to consider Lorentz breaking introduced ttynamicaltensor  strained vector-tensor theory is quite complicated due to the
fields. derivative coupling to the vector field which includes con-
The background value of a given dynamical tensor fieldnection components. Therefore the action for the vector in
“spontaneously” breaks Lorentz symmetry, either because ofact modifies the kinetic terms for the metric as well. Thanks
a potential that has a Lorentz violatirigV) minimum, or  to the unit timelike constraint, the vector has only three de-
because the tensor is somehow constrained not to vanisitees of freedom, all corresponding to spacelike variations.
The simplest situations arise from scalar fields whose nonThus, unlike in other vector theories without gauge invari-
zero gradient is an LV vector, and vector fields. Vector fieldsance, problems with negative energy modes need not arise.
without any potential or constraint were considered in the \We are interested in the observational signatures and con-
early 1970s by Will, Nordvedt, and Hellings in the spirit of Straints on the parameters in the _general constrained vector-
alternate theories of gravifil—4]. Vector fields with a po- tensor theory. These can be obtained from the parametrized
tential leading to LV were studied by Kosteléckgd Samuel POSt-Newtonian(PPN parameters, wave phenomena, and

[8] motivated by string theory considerations, and by Clay_strong field effects. The PPN parameters for the general un-

ton and Moffat[5] motivated by the notion that a dynami- _(I:_%nstra|nedltvedctor—tterésor ttlheorylwter(?[hfound ?y_v[ﬂ(ljﬂ.
cally varying speed of light might solve some cosmological 0se resufts do not directly apply to the constrained case,

problems(see alsd6,7)). Een_ce ttr?etanalyss mustt i_aet_carrfo]!_outttantehw. |I‘tl ttr_us g;ﬁer we
A vector field constrained to have a fixed timelike or 2€9'N that process, restricting at first 1o the static pa-

spacelike length breaks local Lorentz symmetry in eve“;ameters, i.e. the Eddington-Robertson-Schiff paramegers

configuration, much as a nonlinear sigma model spontaneand ¥, Which are the only ones that do not vanish when the

ously breaks gauge invariance. In the timelike case the ré§°|ated system Is at rest with_respect to the asymptotic rest
sidual symmetry is the 3D rotation group, while in the space-frame defined by Fh_e vector field. We f|'nd that for generic
like case it is the 21 Lorentz group. A particularly simple values of the coefficients in the Lagrangian these parameters

example of such a theory was considered by Kostéleciy take the same values as in GR. This indicates that to obser-

Samuel[8] and also studied by Jacobson and Mattingly: vationally bound the coefficients in the Lagrangian one must
In this example, the action for the covariant vector field isconsider higher orQer PPN co_ntributions, preferred frame _ef-
just the square ,of the exterior derivative. Like the MaxwellfeCtS associated with the motion of the solar system relative

action for the vector potential, this is independent of thel® the asymptotic rest frame of, and/or radiation or other

connection components. effects. L . .
We use metric signatureH{———) and units withc

=1.
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II. ACTION AND FIELD EQUATIONS
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TABLE I. Special cases of the actidi).

Special case parameter valueg 2 parameter values ip]
General Relativity C1=Cy=C3=C4=0 T=n=€=0
equivalent to GR by field redefinitiofi2] c1+¢c4=0, cy+c3=0 7=¢=0
Will-Nordtvedt[1,4,10 C,=C3=C,=0 n=¢€=0
Hellings-Nordved{ 3] c,+Cy+c3=0,c,=0 =0
Einstein-Maxwell-like[8,9] c+c3=0, c,=c,=0 7=7=0

sistent with diffeomorphism symmetry. The most general La-action(1) with respect to the metric. For the metric variation
grangian scalar density involving the metigg, and pre- we use the inverse metric, but we also have a choice whether
ferred frame unit vectou? with two or fewer derivatives is to consider the independent aether field to be a covariant or a
L=+—gcL, with contravariant vector. We choose contravariafto simplify

the stress tensor a bit, since the action in the contravariant

L=—-R—Ka® _(V.u™(Vu")—A\(gapudu®—1) (1) form (1) has no metric dependence associated withahe

andc; terms inK? . The field equations are thus obtained
where by requiring that the actiofil) be stationary with respect to
variations ofg2®, u?, andx.

ab _ ab b a; b
K™ mn=C19™ gmn+ c25ﬁ15n+c35ﬁ5ﬁ1+c4u UGmn- (2) The )\ variation imposes the unit constraint,

Stationarity under variation of the Lagrange multiplier gapUiub=1. (5)
constrains the preferred frame vectdrto be unit timelike. ab
We have omitted in the Lagrangian terms that would vanishrhe 2 variation gives
when the unit constraint is satisfied. The unit timelike vector
u? is present everywhere in spacetime in every field configu- V02— CaU,VinU2= AUp,, (6)
ration and specifies a locally preferred rest frame. It can be
thought of as the four-velocity of a ubiquitous fluid and where to compactify the notation we have defined
hence is naturally called theetherfield. We sometimes use
the termaether theoryto refer to the theory described by the J2 =K3  vu" (7
Lagrangian(1).
A general class of Lagrangians for vector-tensor theoriesind
with an unconstrained vector was parametrized by Will and _
Nordvedt[1,4]. Their term wu?u,R does not appear here um=u?v,u™. (8
because of the unit constraint, and ay term does not
appear there. The relation between the parameters if&/ef. Solving for\ using Eq.(5) we find
(neglectingw) and ours(neglectingc,) is )
A=u"V,J% —c,u?. 9
7=—(C1+CytC3) Ci1=2€—T7
The g2° variation yields the aether stress tensor

7n=—0C C=—7
e=—(CytcC3)/2 C3=n—2€. ©) Tap= Vm(J(amUb)_Jm(aub)+‘](ab)um)
I_n _order to agree with observations Fhe dimensionless coef- +¢4[ (Vua) (V™up) — (Vaum) (Vou™ ]
ficientscy , 3 4must presumably be fairly small compared to o
unity. Special cases of this action are identified in Table I. +Cyq UyUp
Note that the “Einstein-Maxwell-like” case is a subcase of )
Hellings-Nordtvedt. This case has an extra gauge symmetry +[Un(Vind™) = C4U%]u Uy
and was disfavored if@] on account of the gradient singu- 1
larities that generally develop in the vector field. Another — =LyGab- (10
notable subcase of Hellings-Nordtvedt és=c,=0, c, 2
+c3=0, which is also one of the theories equivalent to GR . .
via a field redefinition. In the above, expressiofd) has been used to eliminate the
The metric equation with no matter sour@ther that the ~term that arises from varyi_nd—_g in the constraint term in
aether field can be written in the form Eqg. (1), and in the fourth line\ has been eliminated using
Eq. (9). The first line contains all of the terms arising from
Gap=Tap (4)  varying the metric dependence of the connection. Note that it

contains terms of second order in derivatives. In the last line
where G, is the Einstein tensor andi,, is the “aether the notationZ, refers to all ofZ in Eq. (1) except the Ricci
stress” tensor obtained from varying the aether part of thescalar term.
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Ill. SPHERICALLY SYMMETRIC STATIC SOLUTIONS tions in terms of the functions N(r),B(r),
a(r),b(r) and their derivatives. The end result is a set of
coupled ordinary differential equations coming from both the
Einstein equation and the aether field equation. Given that
there are only three free functions left after applying the
constraint(16), just three independent ODE'’s are needed. We

Our objective in this paper is to consider the weak field
limit of spherically symmetric static solutions to the aether-
metric field equations. In spherical symmetry theterm in
the action can be absorbed by the change of coefficients

C;—Ci4Cy used the aether field equatié) and thett andrr compo-
nents of the metric equation. The equations are sufficiently
C3—C3—Cy. (12) complicated that it does not seem illuminating to display
them here.
To see why, note that any spherically symmetric vector field
is hypersurface orthogonal, hence the twist B. Asymptotic weak field limit
w,= fabcaubvcud (12 Far from the source, the metric should approach flat
Minkowski space. In order to examine what happens as
of the aether vanishes. The identjti2] approaches infinity we introduce the change of variables
u?=— w0+ Vou,VauP— V,u, VPu?, (13 e } arn

. r
valid for u satisfyingu?=1, can be used to trade thé term

in the action(1) for an w? term together with the substitution Aroundx=0 the functiondN(x),B(x),b(x) will have power
(11). Since the twist occurs quadratically and vanishes irseries behavior in the form of
spherical symmetry, that term will not contribute to the field

. - 2 3 4
equations, hence theyu? term simply modifies the coeffi- N(X) =14 Nyt Nax“ Ngx™+ Ngx (18)
cients as indicated in Eq11). Thus we henceforth set, —14 B2+ Bax3+ Bax?
=0 without loss of generality, as it can be reintroduced at the BO)=14Bax+Box"+ Box™+ Bax (19
end via the replacement4l). [Although substitution of the b(X) =bg+ byx+b,x2+ bax3+b,xA. (20)

identity (13) will not change the content of the field equa-
tions, it will change the value of the Lagrange multipller At this stage it is convenient to use the constraint equation
for a given solution]. (16) to eliminatea(r) in favor of the radial componetii(r).

We have analyzed the asymptotic limit of such solutionsit turns out that asymptotic flatness and spherical symmetry
and found that at first PPN order the two ERS parameters argenerally require the aether to have no radial component at

exactly the same as in pure GR as longcas-c,+c3#0. infinity (ag=1, by=0) except in the Einstein-Maxwell-like
The special case;+c,+c3=0 has no single characteriza- case where the action takes a special form with an additional
tion. We now describe how these results are obtained. symmetry. The first order coefficieN; determines the New-
tonian gravitational potential, so what we are really inter-
A. Field equations ested in are the post-Newtonian corrections to this associated

with the B; and N, coefficients. The higher order coeffi-

cients are post-post Newtonigand beyonyl Substituting

the above forms of the functions into the equations of motion

and performing a series expansiorMnpPLE around the point
ds?=N(r)dt2—B(r)(dr2+r2dQ?). (149  X=0 ultimately gives a set of algebraic equations that can be

solved to produce the local power series solutions for the
(Note thatr is not the usual Schwarzschild radial coordi- fields.
nate) The aether field takes the form

A common choice for a weak field analysis is isotropic
coordinates t;r, 8,¢), which we adopt here. In these coor-
dinates the line element is

C. Series solutions

u'(r) % + ur(r)%za(r)%vL b(r) % (15 To illustrate our methods we first discuss the local power
series solutions to pure Einstein gravity in isotropic coordi-
and the unit constraint becomes nates. In this case, thg parameters are all set to zero and
we are left to consider the two coupled ODE'’s for the func-
N(r)a(r)?—B(r)b(r)?=1. (16)  tions N(x), B(x) given by the vanishingt andrr compo-

nents of the Einstein tensor. Using the procedure described in
The aether field equatidi®) has just andr components, and Sec. Ill B we find
the elimination of\ reduces this pair to one independent
equation.

Solving the field equations is obviously an enormous task
given the form(10) of the stress tensor so we used the sym-
bolic math programMApPLE and the Riemann tensor package _ 283+7B B.—6B
[13]. With this package one can easily express the field equa- 41 =2 3

x*+| Ny

3 2 3 2
Gtt: _Bl_ZBz ZB]__ZBZ

4

XS4 ... 1)
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3 2 1 5 2 3 2
Gyr=—(Ny+By)X*+| N3+ 5N;B; gNiC1—CiNz = 2B, + 7 N7 =0 (29
B2 aN,— 2B, |xt+ (22) 72 12
4 1 2 2 ZN1_2N2_282+§N1C120. (30)

Thus, at third order irx, therr equation implies Solving these two equations simultaneously yields the final

B;=—N;. (23) result
We can then substitute this result into the fourth order equa- N, = }Nz (31)
tions and solve simultaneously to determine that 2721

1 3 1
— 2
No=5Nj (24) BZ:§N§+ 1—6N§cl. (32
B.— ENZ 25) To determine further coefficients of the power series ex-
27 g pansion we move on to consider the field equations at fifth

and sixth order irx. At fifth order in theu field equation we

For the additional coefficients iB(x) andN(x) we continue  recover the result
the process of examining higher order equations, substituting
in lower order results, and solving simultaneously. These so- (cy+cyt+c3)(bNy—bg)=0 (33
lutions can of course be verified by simply expanding the
commonly known solution for the functions in isotropic co- indicating thath, is a new free parameter in addition N,
ordinates in a power series. andbs;=N;b,. The remaining metric equations at fifth order

Now we return to the case of interest and tune the are quite complicated so we simply quote the final results

parameters back up to nonzero values. At lowssicond

1 5

order inx the aether field equation tells us that By=— ENE_ %Nfcl (34)
—2(cy+Cy+Cg)bg(b3+1)=0, (26)
3 1
which says thaty=0 provided thatc,+c,+c3#0. This N3= EN?— %Nfcl. (35

combination of parameters also appears in the aether field

equation at third order im, We also examined the sixth order equations to fiidand
_ B4, but we will not give the results due to their complexity.
—2(c,+Cy+c3)by=0. 2 4 -
(Cr+CotCa)by @ However, we note that these coefficients depend on Ngth

From Eqgs.(26) and (27) it is clear that we have two com- andb,. _
pletely different cases depending on whether or oot c, As a final note, we also expanded the equation for lambda

coefficients to determine at what order lambda contributes.

D. Generic case:cy+Cy,+C3#0 This yields

For this generic case E(R6) shows that asymptotic flat- s 4
ness of the metric implies théi,=0, i.e. the aether has no A= NICXT+ - (36)
radial velocity at infinity. Together with the constraint this

implies thata;=—N,/2. In addition, Eq.(27) tells us that [As mentioned at the beginning of this section, thelepen-

b;=0. . _ _ _ dence ofx cannot be obtained via the substitutidig).]
Now let us consider the metric equations. Thesquation

tells us that E. Special casec;+c,+c3=0

B;=—Nj, (28 This special case corresponds to the Hellings-Nordtvedt

theory[3] with a unit constraint on the vector field. Setting

a result identical to pure GR. We have now determined all 0t,= —c,—c, from the beginning and repeating the proce-

the zeroth and first order coefficients in terms\af, but to  dyre we find that the second orderandrr metric equations

examine the higher order ones we must consider the highgpp

order terms in the expansions of the field equations. At fourth

order theu field equation is identically zero after substituting czb§= 0. (37)

b;=0 andB;= —N;. Now all that remains at this order is to

determineB, and N, using the two Einstein equations at This special case thus further subdivides into the cases

fourth order inx. These have the form #0 andc,=0.
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1. #0

2M M? 2 M 24 12402
If ¢, is nonzero we again find thaf has no radial com- ds’=|1- T+2:3r_2 dt _(1_277)[‘“ +r7dQ7]
ponent at infinity. There is no single characterization of this (41)
case. An exceptional subcase occurgif=0, which falls
into the clasg12] that is equivalent to GR via a field redefi- where M is the gravitating mass of the body in geometric
nition (and the Lagrangian is jus®+c,R,pu?u®). In this  units andy andg are the Eddington-Robertson-ScHERS
class the aether field is completely unconstrained:, i 0 parameters of the theory. The parametemmeasures the
we again findB,; = —N; as in Eq.(28), while unlike Eq.(31)  amount of space curvature produced by a unit rest mass and
we find B describes the amount of nonlinearity in the superposition
law.
N2=EN§(01+602+4)/(02+ 1). (39) In the generic case; + c,+c3# 0, we read off from Eqs.
8 (28) and(31) of Sec. Ill D that

2. ¢,=0 y=1 (42)

The case,=0 yields the Einstein-Maxwell-liképlusc,)
sector of the theory, which was previously analyzed nonper-
turbatively in[9]. Working through the procedure for finding i, exact agreement with pure GR. The special oagec,
the local power series solutions we find the Reissner- . _g pas no single characterizationclf=0 it is equiva-
Nordstran solution(provided\ =0) with by, by, andNy as  jent 1o GR via a field redefinition, and the aether field is
free parameters. The freedom appearing hetgiandby is  4ihitrary. Ifc,=0 it is the Einstein-Maxwell-like sector, and
a result of the limited gauge symmetry the exterior is described by the Reissner-Nordstewlution.
(39) Hence y=1, but the value of8 depends upon the aether

charge which is not determined by our method. If neitber

preserving the unit constraint, as discussedgh Specifi-  NOr ¢, vanishes then, using E38) we find
cally, b, is associated with an “aether charge” whibg cor-

B=1, (43

Uy— Uyt V,f

responds to a scaling freedom. This is similar to the usual r=1 (44
Reissner-Nordstrom case where the general solution for the
co-vector potential, is - l W (45)
4  cot+1
Q+Dr
A= e (40 where Eq.(38) was used to obtai. This special case cor-

responds tor=w=0%# n which, as shown by Will4], is
where theD constant is usually set to zero so that the fielgdynamically overdetermined in the linearized, unconstrained

will be 0 at infinity. vector-tensor theory.
The solutions withh # 0 have the aether aligned with the
Killing vector, i.e. b(r)=0. While there always exist such IV. DISCUSSION

solutions in this special case, they are not asymptotically flat
except in the even more special case= —c3=2, ¢c,=0.
(In that case there is a full functional freedom in the solution,
which corresponds in the charged dust interpretatidi®pfo

There are two important implications of this analysis.

First, there appear to be only two free parameters in the local

solution around infinity for the generic casg+c,+cj

the case of extremally charged du&thus the exterior solu- 0, namely!\ll and b2'. It is pos§|ble that a.na_lyzmg the

tion for a star must hava=0. On the other hand at the global behavior of the field equations may eliminate one of

origin we must have\#0 to avoid a 1 singularity in the these or demonstrate the existence of even more parameters.
?ased on an analogy from pure GR, the metric parani¢fer

u-field. It does not appear possible to match these, so it ma) determined by th f th d stati tral
be that there are no static spherically symmetric solution > determined by the mass of he presumed static, centra
object generating the field. The aether parambtecannot

that are regular at the origin. Since the Einstein—MaxweIIb iated with a “ch . in th al ¢
case was already deemed unphys|[@ldue to the generic e ats_so?/lae \I,;”d at cihar%ef "ﬁs f!fn € special case o
appearance of aether shocks, we shall not belabor this poiﬁt'ns ein-viaxwell due to the I fall oft. .

The second implication is that in the generic case the

here. aether model is quite close observationally to pure GR since
the ERS parameters match. More precisely, the coefficients
of the metric expansions are identical udg which differs

In the usual analysis of the post-Newtonian corrections tdy a term of relative size, (or ¢, +c¢,). Other alternative
the gravitational field of a static spherical body thetheories of gravity with the same ERS parameters are the
Schwarzschild line element is rewritten in terms of isotropicgeneral vector-tensor theory without the unit constrpidi,
coordinates and those metric coefficients are then expandeudhd the bimetric theories with prior geometry of Rosen and
to post-Newtonian accuracy. This takes the following formof Rastall[4]. The fact that the ERS parameters are the same
for a general gravitational theofy]: suggests that there may be a closer relation than might be

F. Eddington-Robertson-Schiff parameters
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expected between the PPN parameters of unconstrained aadymptotic preferred frame and is described by ten param-

constrained vector tensor theories. It also is interesting teters(two of which arey and). To determine these param-

note the differences between this model and the Brans-Dicketers one perturbatively integrates the field equations with a

scalar-tensor theory. The Brans-Dicke parameters are fluid source, imposing the condition of regularity at the ori-
gin. It seems likely that this would fix the value bj in the
_ 1+_“’ (46) generic case. Further tests of preferred frame effects will be
YT 2% w found in gravitational wave phenomef(taiefly mentioned in

[10]) such as the orbital decay of binary pulsars, and in
B=1 (47)  strong field settings such as black holes.

where o is the Dicke coupling constant, which must be
greater than 500 in order to agree with observation. ACKNOWLEDGMENTS
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