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Static post-Newtonian equivalence of general relativity and gravity with a dynamical
preferred frame
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A generally covariant extension of general relativity~GR! in which a dynamical unit timelike vector field is
coupled to the metric is studied in the asymptotic weak field limit of spherically symmetric static solutions. The
two post-Newtonian parameters known as the Eddington-Robertson-Schiff parameters are found to be identical
to those in the case of pure GR, except for some nongeneric values of the coefficients in the Lagrangian.
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I. INTRODUCTION

Over the past several years quantum gravity consid
ations have led a number of researchers to contemplate
lations of Lorentz invariance. Such violations are usua
studied within the realm of particle physics, but they wou
also have implications for gravitation. Fixed background te
sors breaking Lorentz symmetry also break the general
variance of general relativity~GR!, generically resulting in
overdetermined equations of motion. Together with a th
retical bias for preserving general covariance, this leads
to consider Lorentz breaking introduced bydynamicaltensor
fields.

The background value of a given dynamical tensor fi
‘‘spontaneously’’ breaks Lorentz symmetry, either because
a potential that has a Lorentz violating~LV ! minimum, or
because the tensor is somehow constrained not to va
The simplest situations arise from scalar fields whose n
zero gradient is an LV vector, and vector fields. Vector fie
without any potential or constraint were considered in
early 1970s by Will, Nordvedt, and Hellings in the spirit
alternate theories of gravity@1–4#. Vector fields with a po-
tential leading to LV were studied by Kostelecky´ and Samuel
@8# motivated by string theory considerations, and by Cla
ton and Moffat@5# motivated by the notion that a dynam
cally varying speed of light might solve some cosmologi
problems~see also@6,7#!.

A vector field constrained to have a fixed timelike
spacelike length breaks local Lorentz symmetry in ev
configuration, much as a nonlinear sigma model sponta
ously breaks gauge invariance. In the timelike case the
sidual symmetry is the 3D rotation group, while in the spa
like case it is the 211 Lorentz group. A particularly simple
example of such a theory was considered by Kostelecky´ and
Samuel@8# and also studied by Jacobson and Mattingly@9#.
In this example, the action for the covariant vector field
just the square of the exterior derivative. Like the Maxw
action for the vector potential, this is independent of t
connection components.
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The most general action with up to two derivatives of
unit vector field has four terms. Three of these terms w
included in the original study of Will and Nordvedt@1#
~which did not include any constraint on the length of t
vector! and all four were written down and studied using t
tetrad formalism by Gasperini@11#, who broke the local Lor-
entz symmetry by including in the action terms referring to
fixed ‘‘internal’’ unit timelike vector. The same theory in th
metric formalism was written down in@9#, and the linearized
wave solutions in one special case~corresponding to the cas
focused on in@1#! were reported in@10#. The general con-
strained vector-tensor theory is quite complicated due to
derivative coupling to the vector field which includes co
nection components. Therefore the action for the vecto
fact modifies the kinetic terms for the metric as well. Than
to the unit timelike constraint, the vector has only three d
grees of freedom, all corresponding to spacelike variatio
Thus, unlike in other vector theories without gauge inva
ance, problems with negative energy modes need not ar

We are interested in the observational signatures and
straints on the parameters in the general constrained ve
tensor theory. These can be obtained from the parametr
post-Newtonian~PPN! parameters, wave phenomena, a
strong field effects. The PPN parameters for the general
constrained vector-tensor theory were found by Will@4#.
Those results do not directly apply to the constrained ca
hence the analysis must be carried out anew. In this pape
begin that process, restricting at first to the static PPN
rameters, i.e. the Eddington-Robertson-Schiff parameterb
andg, which are the only ones that do not vanish when
isolated system is at rest with respect to the asymptotic
frame defined by the vector field. We find that for gene
values of the coefficients in the Lagrangian these parame
take the same values as in GR. This indicates that to ob
vationally bound the coefficients in the Lagrangian one m
consider higher order PPN contributions, preferred frame
fects associated with the motion of the solar system rela
to the asymptotic rest frame ofua, and/or radiation or other
effects.

We use metric signature (1222) and units with c
51.

II. ACTION AND FIELD EQUATIONS

Taking the viewpoint of effective field theory, we consid
the action as a derivative expansion, keeping all terms c

d.
@
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TABLE I. Special cases of the action~1!.

Special case parameter values in~2! parameter values in@4#

General Relativity c15c25c35c450 t5h5e50
equivalent to GR by field redefinition@12# c11c450, c21c350 t5e50
Will-Nordtvedt @1,4,10# c25c35c450 h5e50
Hellings-Nordvedt@3# c11c21c350, c450 t50
Einstein-Maxwell-like@8,9# c11c350, c25c450 t5h50
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sistent with diffeomorphism symmetry. The most general L
grangian scalar density involving the metricgab and pre-
ferred frame unit vectorua with two or fewer derivatives is
L̃5A2gL, with

L52R2K mn
ab ~¹aum!~¹bun!2l~gabu

aub21! ~1!

where

K mn
ab 5c1gabgmn1c2dm

a dn
b1c3dn

adm
b 1c4uaubgmn . ~2!

Stationarity under variation of the Lagrange multiplierl
constrains the preferred frame vectorua to be unit timelike.
We have omitted in the Lagrangian terms that would van
when the unit constraint is satisfied. The unit timelike vec
ua is present everywhere in spacetime in every field confi
ration and specifies a locally preferred rest frame. It can
thought of as the four-velocity of a ubiquitous fluid an
hence is naturally called theaetherfield. We sometimes use
the termaether theoryto refer to the theory described by th
Lagrangian~1!.

A general class of Lagrangians for vector-tensor theo
with an unconstrained vector was parametrized by Will a
Nordvedt @1,4#. Their term vuauaR does not appear her
because of the unit constraint, and ourc4 term does not
appear there. The relation between the parameters in Re@4#
~neglectingv) and ours~neglectingc4) is

t52~c11c21c3! c152e2t

h52c2 c252h

e52~c21c3!/2 c35h22e. ~3!

In order to agree with observations the dimensionless c
ficientsc1,2,3,4must presumably be fairly small compared
unity. Special cases of this action are identified in Table
Note that the ‘‘Einstein-Maxwell-like’’ case is a subcase
Hellings-Nordtvedt. This case has an extra gauge symm
and was disfavored in@9# on account of the gradient singu
larities that generally develop in the vector field. Anoth
notable subcase of Hellings-Nordtvedt isc15c450, c2
1c350, which is also one of the theories equivalent to G
via a field redefinition.

The metric equation with no matter source~other that the
aether field! can be written in the form

Gab5Tab ~4!

where Gab is the Einstein tensor andTab is the ‘‘aether
stress’’ tensor obtained from varying the aether part of
06400
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action~1! with respect to the metric. For the metric variatio
we use the inverse metric, but we also have a choice whe
to consider the independent aether field to be a covariant
contravariant vector. We choose contravariantua to simplify
the stress tensor a bit, since the action in the contravar
form ~1! has no metric dependence associated with thec2

andc3 terms inK mn
ab . The field equations are thus obtaine

by requiring that the action~1! be stationary with respect to
variations ofgab, ua, andl.

The l variation imposes the unit constraint,

gabu
aub51. ~5!

The ua variation gives

¹aJ m
a 2c4u̇a¹mua5lum , ~6!

where to compactify the notation we have defined

J m
a 5K mn

ab ¹bun ~7!

and

u̇m5ua¹aum. ~8!

Solving for l using Eq.~5! we find

l5um¹aJ m
a 2c4u̇2. ~9!

The gab variation yields the aether stress tensor

Tab5¹m~J(a
mub)2J (a

m ub)1J(ab)u
m!

1c1@~¹mua!~¹mub!2~¹aum!~¹bum!#

1c4 u̇au̇b

1@un~¹mJmn!2c4u̇2#uaub

2
1

2
Lugab . ~10!

In the above, expression~5! has been used to eliminate th
term that arises from varyingA2g in the constraint term in
Eq. ~1!, and in the fourth linel has been eliminated usin
Eq. ~9!. The first line contains all of the terms arising fro
varying the metric dependence of the connection. Note th
contains terms of second order in derivatives. In the last
the notationLu refers to all ofL in Eq. ~1! except the Ricci
scalar term.
5-2
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III. SPHERICALLY SYMMETRIC STATIC SOLUTIONS

Our objective in this paper is to consider the weak fie
limit of spherically symmetric static solutions to the aeth
metric field equations. In spherical symmetry thec4 term in
the action can be absorbed by the change of coefficients

c1→c11c4

c3→c32c4 . ~11!

To see why, note that any spherically symmetric vector fi
is hypersurface orthogonal, hence the twist

va5eabcdu
b¹cud ~12!

of the aether vanishes. The identity@12#

u̇252vava1¹aub¹aub2¹aub¹bua, ~13!

valid for u satisfyingu251, can be used to trade theu̇2 term
in the action~1! for anv2 term together with the substitutio
~11!. Since the twist occurs quadratically and vanishes
spherical symmetry, that term will not contribute to the fie
equations, hence thec4u̇2 term simply modifies the coeffi
cients as indicated in Eq.~11!. Thus we henceforth setc4
50 without loss of generality, as it can be reintroduced at
end via the replacements~11!. @Although substitution of the
identity ~13! will not change the content of the field equ
tions, it will change the value of the Lagrange multiplierl
for a given solution.#

We have analyzed the asymptotic limit of such solutio
and found that at first PPN order the two ERS parameters
exactly the same as in pure GR as long asc11c21c3Þ0.
The special casec11c21c350 has no single characteriza
tion. We now describe how these results are obtained.

A. Field equations

A common choice for a weak field analysis is isotrop
coordinates (t,r ,u,w), which we adopt here. In these coo
dinates the line element is

ds25N~r !dt22B~r !~dr21r 2dV2!. ~14!

~Note that r is not the usual Schwarzschild radial coord
nate.! The aether field takes the form

ut~r !
]

]t
1ur~r !

]

]r
5a~r !

]

]t
1b~r !

]

]r
~15!

and the unit constraint becomes

N~r !a~r !22B~r !b~r !251. ~16!

The aether field equation~6! has justt andr components, and
the elimination ofl reduces this pair to one independe
equation.

Solving the field equations is obviously an enormous t
given the form~10! of the stress tensor so we used the sy
bolic math programMAPLE and the Riemann tensor packa
@13#. With this package one can easily express the field eq
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tions in terms of the functions N(r ),B(r ),
a(r ),b(r ) and their derivatives. The end result is a set
coupled ordinary differential equations coming from both t
Einstein equation and the aether field equation. Given
there are only three free functions left after applying t
constraint~16!, just three independent ODE’s are needed.
used the aether field equation~6! and thett and rr compo-
nents of the metric equation. The equations are sufficie
complicated that it does not seem illuminating to displ
them here.

B. Asymptotic weak field limit

Far from the source, the metric should approach
Minkowski space. In order to examine what happens ar
approaches infinity we introduce the change of variables

x5
1

r
. ~17!

Aroundx50 the functionsN(x),B(x),b(x) will have power
series behavior in the form of

N~x!511N1x1N2x21N3x31N4x4 ~18!

B~x!511B1x1B2x21B3x31B4x4 ~19!

b~x!5b01b1x1b2x21b3x31b4x4. ~20!

At this stage it is convenient to use the constraint equa
~16! to eliminatea(r ) in favor of the radial componentb(r ).
It turns out that asymptotic flatness and spherical symm
generally require the aether to have no radial componen
infinity (a051, b050) except in the Einstein-Maxwell-like
case where the action takes a special form with an additio
symmetry. The first order coefficientN1 determines the New-
tonian gravitational potential, so what we are really int
ested in are the post-Newtonian corrections to this associ
with the B1 and N2 coefficients. The higher order coeffi
cients are post-post Newtonian~and beyond!. Substituting
the above forms of the functions into the equations of mot
and performing a series expansion inMAPLE around the point
x50 ultimately gives a set of algebraic equations that can
solved to produce the local power series solutions for
fields.

C. Series solutions

To illustrate our methods we first discuss the local pow
series solutions to pure Einstein gravity in isotropic coor
nates. In this case, theci parameters are all set to zero an
we are left to consider the two coupled ODE’s for the fun
tions N(x), B(x) given by the vanishingtt and rr compo-
nents of the Einstein tensor. Using the procedure describe
Sec. III B we find

Gtt5F3

4
B1

222B2Gx41FN1S 3

4
B1

222B2D
2

9

4
B1

317B1B226B3Gx51••• ~21!
5-3
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C. ELING AND T. JACOBSON PHYSICAL REVIEW D69, 064005 ~2004!
Grr 52~N11B1!x31FN1
21

1

2
N1B1

1
5

4
B1

222N222B2Gx41•••. ~22!

Thus, at third order inx, the rr equation implies

B152N1 . ~23!

We can then substitute this result into the fourth order eq
tions and solve simultaneously to determine that

N25
1

2
N1

2 ~24!

B25
3

8
N1

2 . ~25!

For the additional coefficients inB(x) andN(x) we continue
the process of examining higher order equations, substitu
in lower order results, and solving simultaneously. These
lutions can of course be verified by simply expanding
commonly known solution for the functions in isotropic c
ordinates in a power series.

Now we return to the case of interest and tune theci
parameters back up to nonzero values. At lowest~second!
order inx the aether field equation tells us that

22~c11c21c3!b0~b0
211!50, ~26!

which says thatb050 provided thatc11c21c3Þ0. This
combination of parameters also appears in the aether
equation at third order inx,

22~c11c21c3!b150. ~27!

From Eqs.~26! and ~27! it is clear that we have two com
pletely different cases depending on whether or notc11c2
1c3 vanishes. These cases must be analyzed separatel

D. Generic case:c1¿c2¿c3Å0

For this generic case Eq.~26! shows that asymptotic flat
ness of the metric implies thatb050, i.e. the aether has n
radial velocity at infinity. Together with the constraint th
implies thata152N1/2. In addition, Eq.~27! tells us that
b150.

Now let us consider the metric equations. Therr equation
tells us that

B152N1 , ~28!

a result identical to pure GR. We have now determined al
the zeroth and first order coefficients in terms ofN1, but to
examine the higher order ones we must consider the hig
order terms in the expansions of the field equations. At fou
order theu field equation is identically zero after substitutin
b150 andB152N1. Now all that remains at this order is t
determineB2 and N2 using the two Einstein equations
fourth order inx. These have the form
06400
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N1

2c12c1N222B21
3

4
N1

250 ~29!

7

4
N1

222N222B21
1

8
N1

2c150. ~30!

Solving these two equations simultaneously yields the fi
result

N25
1

2
N1

2 ~31!

B25
3

8
N1

21
1

16
N1

2c1 . ~32!

To determine further coefficients of the power series
pansion we move on to consider the field equations at fi
and sixth order inx. At fifth order in theu field equation we
recover the result

~c11c21c3!~b2N12b3!50 ~33!

indicating thatb2 is a new free parameter in addition toN1,
andb35N1b2. The remaining metric equations at fifth ord
are quite complicated so we simply quote the final result

B352
1

16
N1

32
5

96
N1

3c1 ~34!

N35
3

16
N1

32
1

96
N1

3c1. ~35!

We also examined the sixth order equations to findN4 and
B4, but we will not give the results due to their complexit
However, we note that these coefficients depend on bothN1
andb2.

As a final note, we also expanded the equation for lam
in Eq. ~9! and used all of the above results for the expans
coefficients to determine at what order lambda contribu
This yields

l5
1

2
N1

2c1x41•••. ~36!

@As mentioned at the beginning of this section, thec4 depen-
dence ofl cannot be obtained via the substitutions~11!.#

E. Special case:c1¿c2¿c3Ä0

This special case corresponds to the Hellings-Nordtv
theory @3# with a unit constraint on the vector field. Settin
c352c22c1 from the beginning and repeating the proc
dure we find that the second ordertt andrr metric equations
imply

c2b0
250. ~37!

This special case thus further subdivides into the casesc2
Þ0 andc250.
5-4
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1. c2Å0

If c2 is nonzero we again find thatua has no radial com-
ponent at infinity. There is no single characterization of t
case. An exceptional subcase occurs ifc150, which falls
into the class@12# that is equivalent to GR via a field redefi
nition ~and the Lagrangian is justR1c2Rabu

aub). In this
class the aether field is completely unconstrained. Ifc1Þ0
we again findB152N1 as in Eq.~28!, while unlike Eq.~31!
we find

N25
1

8
N1

2~c116c214!/~c211!. ~38!

2. c2Ä0

The casec250 yields the Einstein-Maxwell-like~plusc4)
sector of the theory, which was previously analyzed nonp
turbatively in@9#. Working through the procedure for findin
the local power series solutions we find the Reissn
Nordström solution~providedl50) with b0 , b1, andN1 as
free parameters. The freedom appearing here inb0 andb1 is
a result of the limited gauge symmetry

ua→ua1¹af ~39!

preserving the unit constraint, as discussed in@9#. Specifi-
cally, b1 is associated with an ‘‘aether charge’’ whileb0 cor-
responds to a scaling freedom. This is similar to the us
Reissner-Nordstrom case where the general solution for
co-vector potentialAt is

At5
Q1Dr

r
, ~40!

where theD constant is usually set to zero so that the fie
will be 0 at infinity.

The solutions withlÞ0 have the aether aligned with th
Killing vector, i.e. b(r )[0. While there always exist suc
solutions in this special case, they are not asymptotically
except in the even more special casec152c352, c250.
~In that case there is a full functional freedom in the solutio
which corresponds in the charged dust interpretation of@9# to
the case of extremally charged dust.! Thus the exterior solu-
tion for a star must havel50. On the other hand at th
origin we must havelÞ0 to avoid a 1/r singularity in the
u-field. It does not appear possible to match these, so it m
be that there are no static spherically symmetric soluti
that are regular at the origin. Since the Einstein-Maxw
case was already deemed unphysical@9# due to the generic
appearance of aether shocks, we shall not belabor this p
here.

F. Eddington-Robertson-Schiff parameters

In the usual analysis of the post-Newtonian corrections
the gravitational field of a static spherical body t
Schwarzschild line element is rewritten in terms of isotro
coordinates and those metric coefficients are then expan
to post-Newtonian accuracy. This takes the following fo
for a general gravitational theory@4#:
06400
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ds25S 12
2M

r
12b

M2

r 2 D dt22S 122g
M

r D @dr21r 2dV2#

~41!

where M is the gravitating mass of the body in geomet
units andg andb are the Eddington-Robertson-Schiff~ERS!
parameters of the theory. The parameterg measures the
amount of space curvature produced by a unit rest mass
b describes the amount of nonlinearity in the superposit
law.

In the generic casec11c21c3Þ0, we read off from Eqs.
~28! and ~31! of Sec. III D that

g51 ~42!

b51, ~43!

in exact agreement with pure GR. The special casec11c2
1c350 has no single characterization. Ifc150 it is equiva-
lent to GR via a field redefinition, and the aether field
arbitrary. If c250 it is the Einstein-Maxwell-like sector, an
the exterior is described by the Reissner-Nordstro¨m solution.
Henceg51, but the value ofb depends upon the aethe
charge which is not determined by our method. If neitherc1
nor c2 vanishes then, using Eq.~38! we find

g51 ~44!

b5
1

4

c116c214

c211
, ~45!

where Eq.~38! was used to obtainb. This special case cor
responds tot5v50Þh which, as shown by Will@4#, is
dynamically overdetermined in the linearized, unconstrain
vector-tensor theory.

IV. DISCUSSION

There are two important implications of this analys
First, there appear to be only two free parameters in the lo
solution around infinity for the generic casec11c21c3
Þ0, namelyN1 and b2. It is possible that analyzing the
global behavior of the field equations may eliminate one
these or demonstrate the existence of even more parame
Based on an analogy from pure GR, the metric parameteN1
is determined by the mass of the presumed static, cen
object generating the field. The aether parameterb2 cannot
be associated with a ‘‘charge’’ as in the special case
Einstein-Maxwell due to the 1/r 2 fall off.

The second implication is that in the generic case
aether model is quite close observationally to pure GR si
the ERS parameters match. More precisely, the coefficie
of the metric expansions are identical up toB2, which differs
by a term of relative sizec1 ~or c11c4). Other alternative
theories of gravity with the same ERS parameters are
general vector-tensor theory without the unit constraint@14#,
and the bimetric theories with prior geometry of Rosen a
of Rastall@4#. The fact that the ERS parameters are the sa
suggests that there may be a closer relation than migh
5-5



a

ic

e

y
ia
e
th

am-
-

th a
ri-

l be

in

nts
y-

C. ELING AND T. JACOBSON PHYSICAL REVIEW D69, 064005 ~2004!
expected between the PPN parameters of unconstrained
constrained vector tensor theories. It also is interesting
note the differences between this model and the Brans-D
scalar-tensor theory. The Brans-Dicke parameters are

g5
11v

21v
~46!

b51 ~47!

where v is the Dicke coupling constant, which must b
greater than 500 in order to agree with observation.

In order to have a comprehensive check on the theor
the solar system we need to consider the full post-Newton
approximation scheme. This allows for preferred frame
fects due to the motion of the solar system with respect to
s

r,

06400
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asymptotic preferred frame and is described by ten par
eters~two of which areg andb). To determine these param
eters one perturbatively integrates the field equations wi
fluid source, imposing the condition of regularity at the o
gin. It seems likely that this would fix the value ofb2 in the
generic case. Further tests of preferred frame effects wil
found in gravitational wave phenomena~briefly mentioned in
@10#! such as the orbital decay of binary pulsars, and
strong field settings such as black holes.
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