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Equatorial circular orbits in the Kerr —de Sitter spacetimes
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Equatorial motion of test particles in Kerr—de Sitter spacetimes is considered. Circular orbits are determined,
their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin
accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static
radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat
Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are
all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the
plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr—de Sitter spacetimes,
and they become counterrotating in the vicinity of the ring singularity in Kerr—de Sitter naked-singularity
spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the
rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high
values exceeding the efficiency of the annihilation process. The transformation of a Kerr—de Sitter naked
singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the
plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the
innermost parts of the plus-family accretion disks that can have strong observational consequences.
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[. INTRODUCTION etry with a ring singularity from the collapse of rotating stars
were found in the scenario $10]. The numerical models of

It is commonly accepted that the energy sources of quathe collapse of collisionless gas spheroids also results in
sars and active galactic nuclei are accretion disks arounstrong candidates for the formation of naked singularities
central massive black hold4,2]. The basic properties of [11].
geometrically thin accretion disksvith negligible pressune Because Penrose’s cosmic censorship hypoth&kis far
are determined by the circular geodesic motion in the blackfrom being proved, naked singularity spacetimes related to
hole background3]. The basic properties of geometrically black-hole spacetimes with a nonzero charge and/or rota-
thick disks are determined by the equilibrium configurationstional parameter could still be considered conceivable mod-
of a perfect fluid orbiting in the black-hole background; how- els of quasars and active galactic nuclei and deserve some
ever, the geodesic structure of the background is relevardttention. Of particular interest are those effects that could
also for the properties of the thick disk4]. distinguish a naked singularity from black holes.

According to the cosmic censorship hypothedd&$ and Test particle motion and test fields were extensively stud-
the uniqueness theorems for black hdlgk the result of the ied for Kerr black-hole spacetimgd2-21]. Gravitational
gravitational collapse of a sufficiently massive rotating ob-radiation of particles moving in the field of a Kerr black hole
ject is a rotating Kerr black hole, rather than a Kerr nakedwere discussed if22], the motion of spinning test particles
singularity; further, the laws of black-hole thermodynamicswas discussed if23]. For a detailed review see the books of
forbid conversion of black holes into a naked singularity. Chandrasekhd24] and Frolov and Novikoy25]. However,
However, although the cosmic censorship is a very plausibl&err naked singularities were also studied widely. Their re-
hypothesis, there is some evidence against it. Naked singyulsive effects and causality-violating regions were investi-
larities arise in various models of spherically symmetric col-gated by de Felice and co-workdi26—28, the equatorial
lapse(e.g.,[7]). In modeling the collapse of rotating stars, it circular geodesics and motion of spherical shell of incoher-
was pointed out that, although mass shedding and gravitaent dust were investigated [129], the collimation effect of
tional radiation will reduce the angular momentum of the starthe region nearby the ring singularity was treatef{3i@], and
during collapse, it will not in general be reduced to the valuethe motion of spinning test particles was discusse{Rii.
that corresponds to a Kerr black hg®&J. The 2D numerical Chandrasekhd®24] also devotes some attention to the effects
models[9] imply that a rotating, collapsing supermassive of Kerr naked singularities, saying “considerable interest at-
object will not always dissipate enough angular momentumaches to knowing the sort of things space-times with naked
to form a Kerr black hole, but a Kerr-like naked singularity singularities are and whether there are any essential differ-
has to be expected to develop from objects rotating rapidlences in the manifestations of space-times with singularities
enough. Candidates for the formation of naked Kerr geomeoncealed behind event horizons.” We follow Chan-

drasekhar’s approach.
All recently available data from a wide variety of cosmo-
*Electronic address: Zdenek.Stuchlik@fpf.slu.cz logical tests indicate convincingly that in the framework of
"Electronic address: Petr.Slany@fpf.slu.cz the inflationary cosmology a nonzero, although very small,

0556-2821/2004/69)/06400121)/$22.50 69 064001-1 ©2004 The American Physical Society



Z. STUCHLIK AND P. SLANY PHYSICAL REVIEW D 69, 064001 (2004

repulsive cosmological constat>0 has to be invoked in spacetimes. In Sec. lll, the equations of the equatorial mo-
order to explain the dynamics of the recent Univd&E32.  tion of test particles are presented. In Sec. IV, the constants
The presence of a repulsive cosmological constant chang@$ motion of the circular orbits are determined, and their
substantially the asymptotic structure of the black-h@e properties are discussed. As in Kerr spacetimes, there exist
naked-singularity backgrounds, as they become asymptoti-two different sequences of the_ equayorlal C|rc_ular geoplesms.
cally de Sitter spacetimes, not flat spacetimes. In such spac¥/e call them plugminus; family orbits. All minus-family
times, an event horizon always exists behind which the ge@rPits are counterrotating relative to the locally nonrotating
ometry is dynamic; we call it a cosmological horizon. frames(LNRF; for a definition of these frames s¢#3]),
Therefore, it is relevant to clarify the influence of the repul-While the plus-family orbits are mostly corotating, but in
sive cosmological constant on the astrophysically interestin§©Me régions are counterrotating relative to the LNRF. Only
properties of the black-hole or naked-singularity background®utside the outer horizon of the Kerr black holes are all the
For these purposes, analysis of the geodesic motion of teBfus-family orbits corotating relative to the LNRF. On the
particles and photons is among the most important techother hand, in vicinity of the ring singularity of the Kerr
niques.(It could be noted that the optical reference geometry?@ked singularities with rotational parameter low enough, the
introduced by Abramowicz, Carter, and Las&2] reflects plus-family orbits become counterrotating relative to the
in an illustrative and intuitive way some hidden properties of-ENRF [29]. We shall see that in all Kerr—de Sitter space-
the geodesic motiof33—35.) Of particular interest are cir- times this happens nearby .the so-cal_led static radlu_s, where
cular geodesics being relevant for the accretion disks. the sequences of plus-family and minus-family orbits coa-
Properties of the geodesic motion in the SchwarzschildJesce-[Note that in asymptotically flat Kerr spacetimes, the
(antiyde Sitter and Reissner—Nordstie(antiyde Sitter orbits corotating(counterrotatingrelative to the LNRF also
spacetimes were discussed[B6,37). Properties of the cir- Ccorotate(counterrotatefrom the point of view of stationary
cular orbits of test particles show that due to the presence JPServers at infinity. However, the last criterion cannot be
a repulsive cosmological constant, the thin disks have no¢Sed in the asymptotically de Sitter spacetimes under consid-
only an inner edge determinédpproximately by the radius e_ranon] In S.ec. vV, thg properties of the_cwcular orbits are
of the innermost stable circular orbit. but also an outer edgéilscussed with attention focused on their relevance for thin
given by the radius of the outermost stable circular orbit2ccretion disks. Regions where the orbits of plus-family are
located nearby the so-called static radius, where the gravitgounterrotating relative to the LNRF are determined; further,
tional attraction of a black holénaked singularityis just It IS established where these orbits could have a negative
compensated for by the cosmological repulsion. energy parameter. The efficiency of the accretion process in
A similar analysis of the equilibrium configurations of a geometrlcally thin disks is determined. In Sec. VI, conclud-

perfect fluid orbiting the Schwarzschild—de Sitter black-holeind remarks are presented.

backgrounds allowing the existence of stable circular orbits,

which is a necessary condition for the existence of accretion Il. KERR —de SITTER BLACK-HOLE
disks, shows that also thick accretion disks have both the AND NAKED-SINGULARITY SPACETIMES
inner and outer edges located nearby the inoetep mar- In the standard Boyer-Lindquist coordinatesr (6, )
ginally bound circular geodesic. The accretion through the, | geometric unitsd=G=1), the Kerr<anti-)de Sitter ge-
inner cusp and the outflow of matter through the outer Cus%metry is given by the line eI’ement

of the equilibrium configurations are driven by the Paciin
mechanism. It is a mechanical nonequilibrium process when A
the matter of the disk slightly overfills the critical equipoten- gs?2= — —r(dt— asinfde)?
tial surface with two cusps and thus violates the hydrostatic 2p?

equilibrium [38].

, ; 2 2
In the case of Reissner—Nordstre(anti-)/de Sitter back- A sir o 2,2 2, P o, P o

grounds[37], the discussion has been enriched for the case * 12p? [adt=(r"+ade]™+ Ardr - A0d0 '

of the naked-singularity spacetimes—it was shown that even

two separated regions of stable circular orbits are allowed for @

the naked-singularity spacetimes with spacetime paramete(s .o
appropriately chosen.
However, it is very important to understand the role of a 1
nonzero cosmological constant in the astrophysically most Ai=— §Ar2(r2+ a%)+r?2—2Mr+a?, 2
relevant, rotating, Kerr backgrounds. Equatorial motion of
photons has been studied extensively for Kerr—Newman-—

(anti-)de Sitter spacetimes describing both black holes and Ap=1+ EAaZC()g-g' (3)
naked singularities and some unusual effects have been 3
found (for details, sed35,39). Here, attention will be fo-
cused on the circular equatorial motion of test particles in the =1+ lAaz (4)
Kerr—de Sitter backgrounds. 3 '

In Sec. Il, the Kerr—de Sitter backgrounds are separated in
the parameter space into black-hole and naked-singularity p?=r2+a’coge. 5)
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The parameters of the spacetime are mad$, (a specific
angular momentuma(), and cosmological constamdj. It

is convenient to introduce a dimensionless cosmological pa-

rameter

1
—AMZ2,

3 ©®)

y:

For simplicity, we putM = 1 hereafter. Equivalently, also the
coordinateg,r, the line elements| and the parameter of the
spacetimea are expressed in units M and become dimen-
sionless.

For y<O corresponding to the attractive cosmological
constant, the line elemefit) describes a Kerr—anti—de Sitter
geometry. Here we focus our attention on the cas® cor-
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FIG. 1. Functionsyep_(r) (solid curve, y,mn(r) (dashed
curve), Yy (r) (dash-dotted curye andyen(r) (dotted curve

responding to the repulsive cosmological constant, when Eq:haracterlzmg the properties of the functlaﬁ(r y) determining

(1) describes a Kerr—de Sitter spacetime.

the horizons of Kerr—de Sitter spacetimes. The maximum of

The event horizons of the spacetime are given by then—(r) corresponds to the critical value of the cosmologlcal pa-

pseudosingularities of the line eleméht, determined by the
condition A,=0. The loci of the event horizons are deter-
mined by the relation

r2—2r—yr#

21 (@)

a?=aj(r;y)=

The asymptotic behavior of the functiaaﬁ(r 1Y) is given by
ah(r—>0,y)—>0 ah(r—>oc y)— —oo. Fory=0, the function
ah(r) 2r —r? determines loci of the horizons of Kerr black
holes. The divergent points sz(r y) are determined by

Y=Yamy(r)= rl (8)
its zero points are given by
y:yz(h)(r)zg, 9
and its local extrema are determined by the relation
y:)/e(h)+(r)5%m- (10)

The functionsy gy (r), Yz (r), andyem+(r) are illustrated
in Fig. 1. The functionyeg)-(r) has its maximum at
=(3+24/3)/4, where the value of the cosmological param-
eter takes a critical value

=0,05924; (11)

16
yc(KdS):m

for Y>Yckdg » only naked-singularity backgrounds exist for
a’>0. A common point of the functlonsyz(h)(r) and
Yehy—(r) is located atr=3, where is the maximum of
Yo(m)(r) taking a critical value

1
yc(3d3=2—7i0.03704, (12)

rametery g =0.05924 for which the functlorah(r y) has an
inflex point (and no extrema Any Kerr—de Sitter spacetime with
Y>Yekag is Of naked-singularity type containing only a cosmo-
logical horizon. The functiory,,(r) determines the horizons of
the Schwarzschild—de Sitter spacetimes and its maxinLigyg
=1/27 corresponds to the limiting value for the existence of
Schwarzschild—de Sitter black holes.

which is the limiting value for the existence of
Schwarzschild—de Sitter black hold86]. In Reissner—
Nordstran—de Sitter spacetimes, the critical value of the cos-
mological parameter limiting the existence of black-hole
spacetimes i§37]

2
yC(RNdS:2_7:007407

If y=Y¢kag, the functionaﬁ(r;y) has an inflex point at
r=rgi, corresponding to a critical value of the rotation pa-
rameter of Kerr—de Sitter spacetimes

(3+2J— 1,21202. (13

cr|t
Kerr—de Sitter black holes can exist fat<aZ; only, while
Kerr de Sitter naked singularities can exist for bath
cr|t anda >a'crlt

For y>0, the functionyeg,_(r) determines two local
extrema ofa? h(r;y) aty<ygkas » denoted aﬂmax(h)(r1 y),

inny (12,Y), With 13<1 5. If y<Y¢(sag, @ainm(r2,Y)<0,
and the minimum is unphysical. The functiaefy(r) diverges
at ry=1/Jy, and it is discontinuous there. The function
Yem)+(r) determines a maximum af? n(r;y) at a negative
value ofa? which is, therefore, physically irrelevafgee Fig.
2 giving typical behavior oB(r;y)].

If 0<y<ysdg, black-hole spacetimes exist faa?
\ag,ax(h)(y) and naked-singularity spacetimes exist &r
>amax(h)(y) If Yesa <y<yc(,<ds), black-hole spacetimes
exist foramm(h)(y)<a <amax(h)(y) while naked-singularity
spacenmes exist foa? <amm(h)(y) anda? >amax(h)(y) The
funcuonsamm(h)(y) afnax(h)(y) are implicitly given by Eqgs.
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FIG. 2. Horizons of Kerr—de Sitter spacetimes. They are given F|G. 3. Classification of Kerr—de Sitter spacetimes. The space
for five typical values of the cosmological parametdsy the func-  of parameters? andy is separated into six regions. Dashed curves
tion ag(r;y). Fory>ykqg=0.05924 {=0.08) the function has separate regions of black holes and naked singularities. Solid curves
no local extrema and only naked-singularity spacetimes are allowegjvide the parametric space into spacetimes differing by properties
(the only horizon is the cosmological horigofrory=ycxas , the  of the stable circular orbits relevant for Keplerian accretion disks.
function has an inflex point where the black-hole and the cosmoggy large values o&? both the solid lines tend to the? axis. (1)
logical horizons coincide. Forycsqg=1/27<y<Yckas (Y  Black-hole spacetimes with both corotating and counterrotating
=0.045) the function has two local extrema in positive values andstaple or bound circular orbitsll ) black-hole spacetimes with no
the black-hole spacetimes exist faf between those extrema. For counterrotating stable or bound circular orbits}] ) black-hole
Y=Y(sag the local minimum resides on the axié=0. The criti-  spacetimes with no corotating and counterrotating stable or bound
cal valueysqg represents the limiting value of cosmological pa- circular orbits,(IV ) naked-singularity spacetimes with no corotating
rameter for which the Schwarzschild—de Sitter black holes can exgnd counterrotating stable or bound circular orbit¢) naked-
ist; the Kerr—de Sitter black holes again exist &rbetween those  singularity spacetimes with both corotating and counterrotating
extrema. For 82y <ysqg (Y =0.03) the local minimum resides in  staple or bound circular orbits, ari¥1) naked-singularity space-
the nonphysical regioa®<0 and the black holes exist fa” up to  times with no counterrotating stable or bound circular orbits of the
the local maximum. For completeness, we present the gray curvgiinus family. The dash-dotted curve defines the subregion of
determining horizons of the Kery(=0) black holes. In all cases, naked-singularity spacetimes, where the plus-family circular orbits
the local extrema correspond to the extreme black holes. could be stable and counterrotatifijom the point of view of a
locally nonrotating observir shaded is the subregion allowing

(7) and(10); the separation of Kerr—de Sitter black-hole andg e circular orbits WIthE , <0.

naked-singularity spacetimes in the parameter spaeg is

shown in Fig. 3. In black-hole spacetimes, there aré tWghe equations were obtained by Carfét. For the motion
black-hole horizons and the cosmological horizon, with restricted to the equatorial plane @/d\=0, 6= /2) the
<rp<rc. In naked-singularity spacetimes, there is the coStarter equations take the form
mological horizonr only.

The extreme cases, when twar all threg horizons coa- ) o
lesce, were discussed in detail for the case of Reissner— o =R (r), (14)
Nordstran—de Sitter spacetimg#0,41]. In Kerr—de Sitter

spacetimes, the situation is analogicalt |f =ry, <r., the de alP
r

extreme black-hole case occursyif_<ry.=r., the mar- rzd—:—lP(,Jr A (15
ginal naked-singularity case occurs;frif_=r,.=r., the A r
“ultra-extreme” case occurs which corresponds to the naked- .
singularity case. rziz —alP,+ {r+an)ip, (16)
d\ 0 A, '
Ill. EQUATORIAL MOTION
) ) ) ~ where

In order to understand basic properties of thin accretion
disks in the field of rotating black holes or naked singulari- R(r)= Pf—A,(m2r2+ K), (17)
ties, it is necessary to study equatorial geodetical motion,
especially circular motion, of test particles, as it can be P,=1&(r2+a%) —lad (18)
shown that due to the dragging of the inertial frames any ' ’
tllted_ disk has to be driven to the equatorial plane of the P,=I(af—d), (19)
rotating spacetimegt2].

K=1%(a&—®)>. (20)

A. Carter equations

The motion of a test particle with rest masds given by ~ The proper time of the particles, is related to the affine
the geodesic equations. In a separated and integrated forpparametern by r=m\. The constants of the motion are

064001-4



EQUATORIAL CIRCULAR ORBITS IN THE KERR-@ . . . PHYSICAL REVIEW D 69, 064001 (2004

energy €), related to the stationarity of the geometry; axial by an “effective potential” given by the conditioR(r)=0
angular momentumd®), related to the axial symmetry of the for turning points of the radial motion. It is useful to define
geometry; “total” angular momentumK), related to the Specific energy and specific angular momentum by the rela-
hidden symmetry of the geometry. For the equatorial motiontions
K is restricted through Eq.20) following from the condi-
tions on the latitudinal motio43]. Notice that€ and ® EEI_S, LEE_ (21)
cannot be interpreted as energy and axial angular momentum m m
at infinity, since the spacetime is not asymptotically flat. ) )

Solving the equation

B. Effective potential R(r)=[E(r2+a?) —aL]?—A[r2+(aE—L)?]=0, (22)

The equatorial motion is governed by the constants of
motion &£,®. Its properties can be conveniently determinedwe find the effective potential in the form

alyr(r?+a?)+2]L+AYr2L2+r[(1+ya?)r(r’+a?) +2a?]}*2
[(1+ya®)r(r?+a?)+2a?] '

E(r;iL,ay)= (23)

In the stationary regionsA(=0), the motion is allowed for an analogous redefinition in the case of equatorial photon
where motion sed 35]. With the constant of motiorX, instead of_,
the effective potential takes the simple form

E=E((r;L,a,y) (24
1
N E(+)(r;X,a,y)Er—z[aX+A,l/2(r2+X2)1/2] (28)
E<E_,(r;L,a,y). (250  and the equation of trajectori¢g6) transforms to the form
ConditionsE=E,(r,L,a,y) [or E=E_)(r;L,a,y)] give de _ L (r+2)X+atr : (29
the turning points of the radial motion; at the dynamic re- dr Ay J(rPE—aXx)?—A,(r?+X?)

gions (A,<0), the turning points are not allowed. In the
region between the outer black-hole horizon and the cosmo-
logical horizon, the motion of particles in the positive-root
states—i.e., particles with positive energy as measured by The equatorial circular orbits can most easily be deter-
local observers—being future directedt{dh >0) and hav- mined by solving simultaneously the equations

ing a direct “classical” physical meaning, is determined by

IV. EQUATORIAL CIRCULAR ORBITS

the effective potentiaE ., (r;L,a,y). The character of the R(r)=r*E%2—2ar?EX+(a?—A,)X?>-r?A,=0, (30
motion in the whole Kerr—de Sitter background and the rel-
evance of the effective potenti&|_(r;L,a,y), determining dr

the motion of particles in the negative-root states between —r:4r3E2—4arEX—Ar’X2—Ar’r2—2rAr=0, (31
the black-hole and cosmological horizons, is qualitatively the

same as dlscussed_ [_I16]. In the following we restrict our whereA/=dA, /dr. Combining Eqs(30) and (31), we ar-
attention to the positive-root states determined by the effec-. . )
. . ) ) . . ~Tive at a quadratic equation
tive potentialE(,)(r;L,a,y). Trajectories of the equatorial

motion are then determined by the equation

X\? X
A(r)| =] +B(r)|=|+C(r)=0, (32
E E
dp 1 aE(r’+a’—A,)+(A,—a?L
da A [E(r?+a?)—alL]?—A[r?+(aE-L)?] with
(26)
A(r)=2A.(a®—A,)+a%Alr, (33
Nevertheless, it is convenient to redefine the axial angular 5
momentum by the relation B(r)=—2aA/r", (34)
X=L-aE; (27) C(r)=r*(A[r—2A)). (35)
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Its solution can be expressed in the relatively simple form 1.1 11 o
~ 1 ~ 1.05 10
X r2(r_a2_ r4) : 0.9 L 0.0
(E (ray)= 2, .2 ! 31172 £ 0.8 o
+ ar[r=1-yr(2re+a%) = A [r(1—-yr )](36) 0.7 0.85
3 4 5 & 7T 8 9 10
Assuming now :
X X 5
X+:E+<E) - XTE E) ' S 7 o%5%s
" - % 0.8 L 00522
substituting into Eq(30), and solving for the specific energy o =05
0.6

of the orbit, we obtain

2 1 1/2 r
1___(r2+a2)yia Y 1.1
r r3 0.
: = W 5 0.
Et(ruaiy)_ 3 1 1/2711/2" (38) 3; 0.9 5 g
1-——a’y+2al ——y "o " o
r r3 0.7 0.
0 10 20 30 40
The related constant of motiolX, of the orbit is then given - -
by the expression FIG. 4. Specific energy of the equatorial circular orbits in
1 172 Kerr—de Sitter black-hole spacetimes. The spacetimes are specified
2 by the cosmological parametgiand the rotational parametar(a?
—axr? —-y y gical p P
3 varies from 0.0 to 1.0 in steps of 0.2ZT'he left column corresponds
X.(r:ay)= T (39 to the plus-family orbits; the right column corresponds to the

minus-family orbits. The local extrema of the curves correspond to
the marginally stable orbits, the rising parts correspond to stable
orbits, and the descending parts correspond to unstable ones. The

i o . _ behavior of the curves for the spacetimes with10~° is similar to
while the specific angular momentum of the circular orbits isihe case ofy=10"5.

determined by the relation

3 1 172
1-——a%y*2a|l ——y
r r3

1 12 a? 2a
2 2\y,— 2 2 1+ —F—
2atar(rc+a‘)yxr(re+a )(—3—y> ;2 3
r . 1/2
. L.(r;a)=xr""—— . 42
L.(r;ay)=— 3 Tz =(ria) 3 2a]* 2
) - 1-—+=—
ril . aina(r3 y) ] rop32

(40 In the limit of a—0 we arrive at the formulas determining
Relations(38)—(40) determine two families of the circular the specific energy and the specific angular momentum of
orbits. We call them plus-family orbits and minus-family or- circular orbits in the field of Schwarzschild—de Sitter black
bits according to the: sign in relationg38)—(40). The typi-  holes[36]:
cal behavior of the functiong.. (r;a,y) andL . (r;a,y) giv-

ing the specific energy and specific angular momentum is E(r:y)= r—2-yr 43)
illustrated in Figs. 4 and 5, respectively, for Kerr—de ' [r(r_S)]l/z’
Sitter black-hole spacetimes with appropriately taken pa-
rameters. Figure 6 shows the typical behavior of these func- 1—yr3)L2
tions for some Kerr—de Sitter naked-singularity spacetimes. L(ry)= r(d-yr’ . (44)
In the limit of y—0, relations(38) and(40) reduce to the ' (r—3)12
expression given by Chandrasekliiar units of M) [24] for
circular orbits in the Kerr backgrounds: here, we do not givé for the minus-family orbits as these
are equivalent to the plus-family orbits in spherically sym-
2 a metric spacetimes.
1- F“—L?z The formulas for the specific energy and angular momen-
E.(r:a)= r (41) tum of the equatorial circular orbits hold equally for both
= 3 24 |Y? Kerr—de Sitter y>0) and Kerr—anti-de Sittery<0) space-
1— —+— times. Here, we shall concentrate our discussion on the cir-
r r3’2] cular motion in Kerr—de Sitter spacetimes. We shall deter-
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A. Existence of circular orbits

Inspecting expression88) and (40), we find two reality
conditions on the circular orbits. The first restriction on the
existence of circular orbits is given by the relation

L, (r,a)
=N W s O

r r 1

y=<ye=—. (45)

-

which introduces the notion of the “static radius,” given by
the formular =y~ independently of the rotational param-
etera. It can be compared with the formally identical result
in Schwarzschild—de Sitter spacetimgd6]. A “free” or
“geodetical” observer on the static radius has ohly com-
ponent of four-velocity nonzero. The position on the static
radius is unstable relative to radial perturbations, as follows
from the discussion on stability of the circular orbits per-
formed below.

" The second restriction on existence of circular orbits is
given by the condition

L.(r,a)

Li(r,a)
=N w o U;

L_(r,a)

y=10

0 10 20 30 40

r r

FIG. 5. Specific angular momentum of the equatorial circular
orbits in Kerr—de Sitter black-hole spacetimes. The spacetimes are
specified by the cosmological parameyeand the rotational param-
etera (a? varies from 0.0 to 1.0 in steps of 0.2The left column ) ) B ) )
corresponds to the plus-family orbits; the right column corresponddh€ equality determines the radii of photon circular orbits,
to the minus-family orbits. The local extrema of the curves corre-Where bothE—co andL — .
spond to the marginally stable orbits, the rising partk pfand the The photon circular orbits of the plus-family are given by
descending parts &f_ correspond to the stable orbits, the descend-the relation
ing parts ofL, , and the rising parts df _ correspond to the un-
stable50nes. The behavior of the cursves for the spacetimesywith (17yr3)1/2+(173yr2)1/2
<10"° is similar to the case of=10"". a= aé;gl,z)(r?Y)E o . (47

yr

3 1 1/2
1- ——a%y*x2al —-y| =0; (46)
r r3

mine radii where the existence of circular orbits is allowed,while for the minus-family orbits they are given by the rela-
the orientation of the circular motion relative to the locally tion
nonrotating frames, stability of the circular motion relative to
radial perturbations. Finally, we shall introduce the notion of

_(1_yr3)l/2i(l_3yr2)l/2

marginally bound orbits. a=a1(17y)= yr32 (48)
0.99
0.985
= 0.98
£0.975 FIG. 6. Specific energy and
Ho0.97 specific angular momentum of the
0.965 equatorial circular orbits in
Kerr—de Sitter naked-singularity
o 10200 30 40 0 o 20 30 40 spacetimes. The  plus-family
r r

curves are plotted for the rota-
tional parametem®=10, 20, 30,

50, 100, 300; the minus-family
-2 curves are plotted fomr®=2, 5,
E) T -4 10, 20, 30. The meaning of par-
g < 6l ticular parts of the curves is the
- - same as in black-hole spacetimes.
-8 30 .
y=10
0 10 20 30 40
r r
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The photon circular orbits can be determined by a “com-where the notanoraph(l) andaph(z) is used for thex parts

mon” formula related tca?: of Eq. (49 because these functions can define photon orbits
s 2 _ for both plus-(minusy family circular orbits. A detailed dis-
a“=apn12(ry) cussion of the equatorial photon motion is presente@H),

.3 a2 SV — where more general, Kerr—Newmaanti-)de Sitter space-
= (L—yr)+(1—-3yr?)=2y(1—yr’)(1-3yr )' (49)  times are studied. In the Kerr—de Sitter spacetimes the situ-
y2rs ation is much simpler. Since

0a§h(112)_ [1—yr2(r+3)+3y?rS)1YAyr2—2) [ —2+yr3(r +4)—y?r®]

50
ar y2ri[1—yr2(r+3)+3y%r°¥? %0

we find that the local extrema (aa‘zph(llz)(r;y) are located at while the minus-family orbits are located at radii satisfying

radii determined by the relation the relation
2r+1+8r+1 Mph(3) <l <rs. (56)
Y=Yeph(N=———"F—"—=Yem=(r). (51)
2r In the naked-singularity spacetimes, we have to distinguish
) ) . two qualitatively different cases.
Therefore a1 2)(r;y) andag(r;y) have common points at ¢ 5 \ag(s)(y) there is one photon circular orbit belong-

their local extrema. Nevertheless, in order to obtain dlrectlyng to the minus-family orbits. In such spacetimes, the plus-
limits on the existence of the plusminusy family circular family orbits are located in the region
orbits, it is convenient to consider the pluysainus) photon

circular orbits determined by relatio47) and (48), respec- o<r<r.. (57)
tively, under the assumptioa=0. We have to introduce a s
critical value of the rotational parameter corresponding to th
cituation wherea(®) (ry)= o r: ) e where these 8 a >ac(s)(y) the situation changes dramatically as the
Shin(TiY) =akwl) Y/ minus-family orbits(and the notion of the static radjusease

functions reach the static radiog=y~* to exist. There is only one plus-family photon circular orbit.

13 Therefore, the plus-family circular orbits are located in the

1-3y region
Ao (V)= (52
0<r<l’ph. (58)

Further, it is necessary to determifiey a numerical proce-
dure the related critical value of.t.he cosmolcz)gmal parameter 2. Vo9 <Y<Ye(sag (Figs. 7c,7d)
Ye(s) Such that fory <<y the critical valueac(s)(y) corre-

sponds to a naked-singularity spacetime. The numerical pro- Now, we have to distinguish two cases in black-hole

cedure implies spacet|mes
P If a <ac(s)(y), the loci of the photon circular orbits are
Ye(g=0.033185. (53  again related by relatiofb4), and the limits on the existence

of plus-family and minus-family circular orbits are the same
The results can be summarized in dependence on the cosm@s in the case of <y.—see relationg55) and (56), re-

logical parameter and are illustrated in Fig. 7. spectively.
If a2>a§(s)(y), black-hole spacetimes admit only the
1. y<y. (Figs. 7a,7b) plus-family circular orbits and all of the three photon circular

In black-hole spacetimes there are three photon circula?rblts limit them by the relation
orbits. Their loci satisfy the conditions
fy 0<r<rph(1) and rph(2)<r<rph(3). (59)
r <rpy<r <r <r <rs. 54 . . . .

PR(1)=Th(=) =Th(+) =Tph(2) ="ph(3) =Ts &9, naked-singularity spacetimes, only one plus-family photon
circular orbit exists and the plus-family circular orbits are

The orbitsr andr belong to the plus-family orbits, "~ ;
ph(1) Ph(2) 9 P y limited by relation(58).

while r 1,3y belongs to the minus-family orbits. We can con-
clude that in the black-hole backgrounds, the plus-family cir- .
cular orbits are located at radii satisfying the relations 3. Ye(sa9<Y<Ye(kas) (Fig. 7€)

Only the plus-family circular orbits exist that are limited

0<r<rpnay and ryn)<r<rs, (55 by three photon circular orbits through relati@®) in black-
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FIG. 7. Existence of the circular orbits. Locations of the horizons and the photon circular orbits are given as functions of the rotational
parameter for typical values of the cosmological parameter of Kerr—de Sitter spacetimes and the regions of the existence of the circular orbits
are shown. Dash-dotted curves depict the horizons, solid curves depict the plus-family photon circular orbits, dashed curves depict the
minus-family photon circular orbits, and the gray line gives the static radiusy~*®). Notice that the static radius is relevant only in the
spacetimes admitting the minus-family circular orbits. The plus-family circular orbits exist in the whole shaded region, while the minus-
family circular orbits exist in the dark-gray regions only—i.e., in the spacetimesywith,sqg - In the naked-singularity spacetimes only
one photon circular orbit exists and the plus-family orbits always approach the ring singularity0at
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hole spacetimes and by one photon circular orbit through Locally measured components of the four-momentum are

relation(58) in naked-singularity spacetimes. given by the projection of a particle’s four-momentum onto
the tetrad:
4. Yekan <Y (Fig. 7f)
. . . . (@) = pre(@ 67)
Naked-singularity spacetimes exist for amay>0. The s
spacetimes admit only the plus-family circular orbits limited,yere
by one photon circular orbit through relati¢s8).
dx* .dx#
B. Orientation of the circular orbits pr=m-——=mx‘=-—— (68)

The behavior of the circular orbits in the field of Kerr
black holes y=0) suggests that the plus-family orbits cor-
respond to the corotating orbits, while the minus-family cir- ) i .
cular orbits correspond to the counterrotating ones. HoweveRart'Cle’ andr is |_ts proper time. .
this statement is not generally correct even in some of the In the equatorial planed= /2, the azimuthal component

Kerr naked-singularity spacetimes—namely, in the space‘-)f the four-momentum measured in the locally nonrotating

times with the rotational parameter low enough, where Countrames is given by the relation
terrotating plus-family orbits could exist nearby the ring sin- 1/2
gularity [29]. In Kerr—de Sitter spacetimes, the situation is ple) =
even more complicated and we cannot identify the plus-

family circular ort_)lts with purely corotating orbits EVeNn I \here the temporal and azimuthal components of the four-
black-hole spacetimes. Moreover, in rotating spacetimes Wltt}n

are the coordinate components of particle’s four-momentum,
the affine parametex= 7/m, m denotes the rest mass of the

(e QD). (69)

ary observers at infinity, as can be done in Kerr :spacetimesn,10t|0n E.X:

since these spacetimes are not asymptotically flat.

2 2 2
The natural way of defining the orientation of the circular t= I_[ (r’+af)(r’E—ax) ' (70)
orbits in Kerr—de Sitter spacetimes is to use the point of view r2 Ay
of locally nonrotating frames that is used in asymptotically
flat Kerr spacetimes too. The tetrad of one-forms correspond- o a
ing to these frames in the Kerr—de Sitter backgrounds is p=—| X+ A—(rzE—aX) : (72)
given by[35] r '
o AA 02 1/2d A simple calculation reveals
ow'V= t, (60)
12A (o) mr
| " p'® =A—1/2(aE+ X) (72
(0= ASITY de—Qd 61
W= 1202 (de ), (61) and using Eq(27) we obtain intuitively anticipated relation
2\ 1/2 mr
w(r)E(i_r) dr, (62) p(¢):IA\_1/2L' (73
2\ 1/2 We can see that the sign of the azimuthal component of the
w(ﬁ)z(e_) de, (63)  four-momentum measured in the locally nonrotating frames
0 is given by the sign of the specific angular momentum of a
particle on the orbit of interest. Therefore, the circular orbits
where with p(¥»>0 (L>0) we call corotating, and the circular or-
o 2o 2 bits with p(¥’<0 (L<0) we call counterrotating, in agree-
A=(r+a’)"—a%A, (64 ment with the approach used in the case of asymptotically
flat Kerr spacetimes.
A, =1+ya’cog¥, (65)

. . C. Stability of the circular orbits
and the angular velocity of the locally nonrotating frames,

The loci of the stable circular orbits are given by the

de a condition
O=—=—[—A+(r?+a%)A,]. (66)
a A 2
d°R
_ ) —=0, (74)
Note thatA ,=1 in the equatorial plane. dr?

064001-10



EQUATORIAL CIRCULAR ORBITS IN THE KERR-@ . . . PHYSICAL REVIEW D 69, 064001 (2004

which has to be satisfied simultaneously with the conditions
R(r)=0 and dR/dr=0 determining the specific energy and
the specific angular momentum of the circular orbits. Using
relations(38) and (39), we find that the radii of the stable
orbits of both families are restricted by the condition

r[6—r+r34r—15)y]+8a[r(1-yr’)*"+a?3+r?(1
—4yr3)]=0. (75

The marginally stable orbits of both families can be de-
scribed together by the relation

azzazms(l (1Y) ; - ; :
' FIG. 8. Reality conditions for the existence of the stable circular

=[3+r2%y(1—-4yr®)] 2r((r—6-r34r—15)y] orbits. Black and gray solid curves correspond to the functions
Yms(r) andy(r), respectively; dash-dotted and dashed curves cor-
X[3+r2y(1—4yrd)]+32(1—yr3)3 respond to the functiong,,.. (r) andy,. (r), respectively. Stable

N 33/ 33172 orbits can exist only in the shaded region, where the local maximum
+8(1-yr¥)¥H1-4yr’) corresponds to the critical value of the cosmological parameter

X{r[3=ry(6+10r - 15yr%)]-2}*?). (76)  Yer(mst)=0.06886.

The (+) sign in Eq.(76) is not directly related to the plus- The plus-family stable circular orbits are allowed fgr
family and minus-family orbits. The functioa?,,, corre- ~ <Yms(r), i y<yi, and for y<ymg(r). if yi<y
sponding to thet sign in Eq.(76), determines marginally ~~VYerit(ms+)- "

stable orbits of the plus-family orbits, while the function 2The condition ~ determining the local extrema of
a%q2). corresponding to the- sign in Eq.(76), is relevant Amg1,2(13Y)

for both the plus-family and minus-family orbits. The reality ga2 (r:y)

conditions for the functlonams(l 2(ry) are dlrectly given w:q (82)

by Eq.(76). The standard conditiop<y(r)=1/r is guar- or

anteed by the first relevant condition L . .
y implies very complicated relations; however, they lead to one

simple relevant relation

1
=< r=—. 7
Y<Ymdr) 3 (77) .
o . . y:ye(ms,)(r)E T3 (83
The other two conditions can be given in the form 10r
Y<VYms_ () OF Y=y (), (78  determining important local extrema of boﬁfns(llz)(r;y)

simultaneously, both located on the radius
where the functiony,y+)(r) are given by the relation

1
3+5r +(60r —20r2+9)12 79 r=re(ms)(y)EW- (84)
1503 '

The critical value of the cosmological parameter for the
The behavior of the functiongy(r), ym«(r), andyns.(r) is  existence of the minus-family stable circular orbits, deter-
illustrated in Fjg. 8. The functioyms(+)(r) is irrellevant; the  mined by the Conditiomﬁqs(z)(fe(ms) :y)=0, is given by
relevant functiony,qy(r) intersects the functioyy(r) at
r=3, wherey=ysqg=1/27, and the functioy,(r) atr 12
—(3+2\/—)/4 wherey=y,;=16/(3+23)%. The critical Yerit(ms—) =74 (85
value of the cosmological parameter for the existence of the 15
stable(plus-family) orbits, corresponding to the local maxi-
mum ofy,y(r), is given by

Yms=(r)=

It coincides with the limit on the existence of the stable cir-
cular orbits in Schwarzschild—de Sitter spacetirf24].
Properties of the functionaﬁil,z)(r;y) can be summa-

100 =0.06886. (80) rized in the following way.

ycrit(ms+)=(5+2\/ﬁ)3 - . .
() Y>Yecrit(ms+) - No stable circular orbits are allowed
The related critical value of the rotational parameter is for any value of the rotational parameter.

(") ycrlt(ms+)>y>ycr|t(ms— At r= e(ms): the func-
) 955+ 424,10 tion aﬁm(l)(r y) has a local maxmuma(ms(max)) and the

ritms) = 1600 141716 @D function aZ2(r;y) has a local minimum &3,y min). For
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FIG. 9. Marginally stable circular orbits in Kerr—de Sitter space- ~ 0.925f ™ | — —=7 1 libio)
times. The relevant functions are given for some typical values of e SR U
the cosmological parametgr(a) The black-hole region of Kerr—de 0-9¢ ol ms(d) ms(o)r \
Sitter spacetimes. Fogr<12/15' there exist spacetimes containing 025 05 o095 1 125 1S
four marginally stabléms) orbits. For a given spacetime, the inner- log r
most and the outermost ms orbits belong to the plus-family orbits;
the two orbits in between belong to the minus-family orbis.In FIG. 10. Effective potential of the equatorial radial motion of

the naked-singularity region there exist spacetimes with no stabltest particles in an appropriatelly chosen Kerr—de Sitter black-hole
orbits for a fixed value of/ [spacetimes witta? greater than the spacetime y=10"%a?=0.36) allowing stable circular orbits for
global maximum of functiora?,(r:y) for a giveny]. Stable coun-  corotating particles. Marginally bourtehb) orbits are given by the
terrotating(minus-family) orbits exist only in shaded regions of the solid curve corresponding to the angular momentum paraméter
presented spacetimes. But some naked-singularity spacetimes cofi-Xmp+ =2.38445. The curve has two local maxima of the same
tain counterrotating plus-family orbits; for more details, see thevalue, E;,,,=0.93856, corresponding to the inngnb(i)] and the
text. The dashed line corresponds to the radiusy18° where  outer[mb(o)] marginally bound orbits. The dashed effective poten-
both maxima ofaﬁqs(r;y) are located. tial defines the inner marginally stable orbihg(i)] by coalescing
the local minimum and thénnen local maximum. It corresponds

aﬁﬁ(mm)<a <ams(ma . the equatiorazzazms(lyz)(r;y) de- to the parameterX=>Xpgi)+=2.20307 with specific energy
termines two marginally stable plus-family circular ot Emg)+=0.90654. In an analogous manner, the dash-dotted poten-
|nner one and an outer oneFor 0<a? <a2 and a2 tial defines the outer marginally stablg orfims(0)] with specific

ms(min) energy Eno)+=0.94451 corresponding to the parametr
>ams(max), no stable circular orbits are allowed.

=X =2.90538.
(iii) Y= Yerit(ms-) - There are two zero points of the ~ "X?"
function ams(z)(r Y) correspondlng to its local minima, . . . )
while it has a local maXImumms(manQ) atr=rgmey, Where the inner and outer marginally stable orliterresponding to
the maX|mum of the funcnoams(l)(r y) is located too. For SPecial values of the paramerX i) , X)) The search
a2> a2 there is no stable circular orbit. For for the marginally bound orbits in a concrete Kerr—de Sitter-
mimax) 1 . . . .

%imaﬁ)<a <ams(max), there are two marginally stable spacetime must.be realized ina numer_lcgl way and can be

plus-family circular orbits. Foa?<aZ there are four successful only in the spacetimes admitting stable circular
mgmax2)

. ) . rbits. Clearly, in the spacetimes wigte 12/15', the minus-
marginally stable orbits. The innermost and the outermosf_ . : : . :
orbits belong to the plus-family orbits; the two orbits in be- amily marginally bound orbits do not exist. Figure 3 offers

tween belong to the minus-family orbits insight iqto the pos;ibility of the ex_istence of both staple and
' bound circular orbits of both families. The limitingolid)
curves are obtained from the conditiof&),(83) that have
fo be solved simultaneously.
The location of the astrophysically important circular or-
its (photon orbits, marginally stable and marginally bound
orbits) in dependence on the rotational parametés given
in Fig. 11 for three appropriately chosen values of the cos-
mological parametey. The values ofy reflect the depen-
dence of the existence of stable minus-family orbitsyon
The behavior of the effective potentiél8) enables us to  Stable plus-family orbits exist for all chosen valuesyoh
introduce the notion of the marginally bound orbits—i.e.,the relevant range of the parameterSpacetimes without
unstable circular orbits where a small radial perturbatiorstable circular orbits or without any circular orbits are in-
causes infall of a particle from the orbit to the center or itsferred from Figs. 7,8.
escape to the cosmological horizon. For some special value
of the axial parameteX, denoted a,,,, the effective po-
tential has two local maxima related by the condition V. DISCUSSION

The functionsazms(llz) are illustrated for typical values of the
cosmological parameter in Fig. 9. In the parameter spac
y-a?, separation of Kerr—de Sitter spacetimes according t
the existence of stable circular orbits, determined by th
functionsaﬁqs(lyz)(r;y) andyemg(r), is given in Fig. 3.

D. Marginally bound circular orbits

E)(mb(i) s Xmb:@,Y) =E(1)(Fmp(o) i Xmp,2,Y), (86) In comparison with asymptotically flat Kerr spacetimes,
where the effect of the rotational parameter vanishes for as-

and corresponding to both the inner and outer marginallymptotically large values of the radius, in Kerr—de Sitter
bound orbits; see Fig. 1@nd Fig. 15, below For complete- spacetimes the properties of the circular orbits must be
ness, the figures include the effective potentials defining bottreated more carefully, because the rotational effect is rel-
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FIG. 11. Mutual positions of the astrophysically important circular orbits in Kerr—de Sitter spacetimes. The figures are constructed for
three representative valuesyfThe radii of the special equatorial circular orbits are plotted as functions of the rotational paranigdter
wide dashed line is given by the value of rotational parameter corresponding to the extreme black hole and it splits up Kerr—de Sitter
spacetimes into black-hol@BH) and naked-singularityNS) regions. Thin curves are used for the plus-family orlfitsmost cases they
correspond to the corotating orbits from the point of view of the locally nonrotating observers, but there are exceptions described.in the text
Bold curves are used for the minus-family orhits all spacetimes under consideration: counterrotating ort8slid curves determine the
inner and outer black-hole horizons. Dotted curves determine the photon circular orbits; dashed curves determine the margir(atlly) bound
circular orbits. There is a disconnection between BH and NS regions for the plus-family orbits. Lower gray dashed curves determine the
marginally bound orbits hidden under the inner black-hole horizon; the upper one, approaching the static radius fyrisrtslbuter
analogy. Dash-dotted curves determine the marginally staieorbits. Fory=12/15" there are no minus-family mb and ms orbits.

evant in whole the region where the circular orbits are alfamily orbits coalesce, is given by the relation
lowed and it survives even at the cosmological horizon.

The minus-family orbits have specific angular momentum L(re;y.a)=L.=—a 3y'3+a’%y 87)
negativel. _ <0, in every Kerr—de Sitter spacetime and such s ¥, @) =Ls= (1—3ytB—g2y)12’
orbits are counterrotating from the point of view of locally
nonrotating frames. and their specific energy is
In black-hole spacetimes, the plus-family orbits are coro- . e a aulB 212
tating in almost all radii where the circular orbits are allowed E(rsiy,a)=E=(1-3y™~a%y)™ (88)

except some region in vicinity of the static radius, where

they become counterrotating, as their specific angular mo- . N

mentumL is slightly negative there. In naked-singularity A. Circular orbits with zero angular momentum
spacetimes, the plus-family orbits behave in a more complex Separation of the corotating and counterrotating orbits as
way; nevertheless, they are always counterrotating in vicinitydefined by their azimuthal angular momentum relative to the
of the static radius. locally nonrotating frames is determined by the orbits with

The specific angular momentum of particles located orL=0. The orbits with zero angular momentum are defined
the static radius, where the plus-family orbits and the minusby the relation

Y=Y(=0)(r;a)

—r[r(r?+a?+4a?]+r¥qr?+a? Y (r?+a?)(r3+4a?) +8a?r?]¥?

= ) 89
2a’r?(r?+a?) ®9
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0.12 merical procedune—we can conclude that up to three zero-
angular-momentum orbits can exist in the corresponding
0.1 Kerr—de Sitter spacetimes. In the naked-singularity space-
times all three orbits with zero angular momentum are rel-
T 0.08 evant and the middle orbit is stable. In black-hole space-
fi 0. 06 times, however, two of these orbits are hidden under the
o black-hole horizons and only the unstable one, located
20 04 nearby the static radius, is physically important. The plus-
family orbits between the zero-angular-momentum orbit and
0.02 the static radius are counterrotating. Comparison of the func-
tionsy —qy(r;a) andyn4r;a) (determining the position of

the outermost marginally stable orbit for a given cosmologi-
cal parametery) reveals that the discussed orbits are un-
stable.

FIG. 12. Circular orbits with zero angular momentum. The func-  In naked-singularity spacetimes, the behavior of the plus-
tion y(L-oy(r;a) is plotted fora®={1,1.8,2.4406 Fora’=1,  family orbits is more intriguing. Except for the unstable
when the black-hole spacetimes are allowed, the first two orbits argounterrotating orbits located nearby the static radilis-
hidden under the black-hole event horizon. The dashed curve detegyssed aboye some stable counterrotating plus-family cir-
mines horizons of Kerr—de Sitter spacetimes wath=1. In the  cyjar orbits exist in the vicinity of the ring singularity of
other cases or_lly naked-sn_ngulargy spacetimes are allzowed and eVefaked-singularity spacetimes with rotational parameter low
threel. =0 orbits are possible fa®<2.4406. The casa®=2.4406 o ,gh. Spacetimes admitting such orbits belong to the dash-
(the curve with an inflex point ag=0.03998) corresponds to the dotted naked-singularity region of the parametric space
maximum vglue of the _rotatio_nal parameter admitting the stable(y’ag) presented in Fig. 3. The limitingdash-dottericurve
counterrotating plus-family orbits. was obtained by solving simultaneously the conditions for
the marginally stable orbits given by EF.6) and the condi-
tion for the orbits with zero angular momentum given by Eq.
(89).

In a given Kerr—de Sitter naked-singularity spacetime re-
lations (76),(89) determine the innermost and outermost
az(Lzo)(r)Erlﬂ[lﬂl_r)1/2] (90)  stable counterrotating plus-family orbits, respectively.

At these orbits, the locally nonrotating observers follow cir-
cular geodesics at the equatorial plane.

The physically relevant zero points of the functipp -,
are given by the function

determining circular orbits with. =0 in the asymptotically B. Circular orbits with negative energy

flat Kerr backgrounds. A detailed study reveals that such or- |, the rotating naked-singularity spacetimes the potential
bits exist only in Kerr naked-singularity spacetimes with 1g|| can be deep enough nearby the ring singularity to allow
<a/M=33. (In Kerr black-hole spacetimes orbits of this the existence of stabl@lus-family) counterrotating circular

kind are hidden under the event horizofihe typical behav-  orbits with negative specific energy, indicating an extremely
ior of the functiony —o)(r;a) is presented in Fig. 12 for high efficiency of conversion of the rest mass into heat en-
some appropriately chosen values of the rotational parametektgy during accretion in a corotatirg@r, more precisely, a

a’. The function has a local extremum foa®<aZ  plus-family) thin disk. The plus-family circular orbits with

=2.4406(where the critical valu&'ag,_ is obtained by a nu- zero energy are given by the relation

r[2(r?+a?)(r—2)—a%r]+ar¥4(r?+a??2—r?[4(r>+a?)(r—2)—a?r|}*?

=YE=o)la)= . 91
Y=YE=0)(r;a) 2r2(r2+a?)? 0D
|
The reality conditions of the functiope—y(r;a) are given . o r2 ) y
by the relations a*=apine-o)(1)= g [3r —16+(9r’~ 32 +64) 2],
(94
r=0, (92

which is relevant forr>3. For O<r<3 the function

amine=0)(r) is negative. The zero points of the function
A(r*+a’)?—r’[4(r*+a%)(r-2)-a’r]=0. (93 Y(e=0)(r;a) are given by the function

The condition(93) can be transferred into the relation aZ(E=O)(r)Er1’2(2—r), (95
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which determines the circular orbits with zero specific en- VI. CONCLUDING REMARKS
ergy in Kerr spacetimes. Fgr=0, such orbits exist only in
Kerr naked-singularity spacetimes with<h/M<3%+/2, Many properties of Kerr—de Sitter spacetimes and circular

which are a subset of spacetimes with zero-angularorbits of both families can be clearly viewed from figures
momentum orbits; in fact, orbits witE=0 havelL <0 (for ~ Which are presented in the paper. Table | contains a certain
details se¢29]). The behavior of the functiope—q)(r;a) is classification of the figures which could be helpful for quick
presented for some typical values of the rotational parameté¥ientation in the topic. _ _ _

a in Fig. 13. In Kerr—de Sitter spacetimes with<@2 Both black-hole and naked-singularity Kerr—de Sitter
<1.47, the functiory(g_) has two local extrema leading up spacetimes can be separated into three classes according to
to three circular orbits with zero energy. The ending points ofh€ existence of stabl@and, equivalently, marginally bound

the curves are given by the conditid84) and are repre- circular orbits(see Fig. 3. Stable orbits of both the plus
sented by the function family and minus family exist in the spacetimes of class |

(black hole$ and class Mnaked singularities Solely stable
orbits of the plus family exist in the spacetimes of classes Il
YminEe=0)(") =Y (E=0)(T;8=aminE=0)) (black hole$ and VI (naked singularities No stable orbits
2 9 2 exist in the spacetimes of classes Ill and IV. In dependence
_8r°—-10r+16-(r—2)(9r"—3r +64) _ on the cosmological parameter, there are three qualitatively
2r4 different types of the behavior of the loci of the marginally
(96) stable, marginally bound, and photon circular orbits as func-
tions of the rotational parameter. These functions are illus-
trated for three representative valuegaf Fig. 11, enabling
Details of the properties of the plus-family orbits with  us to make in a straightforward way separation of Kerr—de
=0 can be inferred from Fig. 13. Here, we give a shortSitter spacetimes into classes I-VI. In the special case of
overview of them. Kerr spacetimesy=0), these functions can be found in
In the black-hole spacetimes, there is always one orbif13,29.
with E=0 located under the inner black-hole horizon, and The marginally stable circular orbits are crucial in the
there can exist, for properly chosen parameteasndy, one  context of Kepleriangeometrically thin accretion disks as
orbit with E=0 located above the outer black-hole horizon.these orbits determine the efficiency of conversion of rest
Both the orbits must be unstable relative to radial perturbamass into heat energy of any element of matter transversing
tions. the disks from their outer edge located on the outer margin-
In the naked-singularity —spacetimes, ifa®  ally stable orbit to their inner edge located on the inner mar-
<a§(E=0 =1.18518, there can exist one orbit with=0  ginally stable orbit.
(unstable, two such orbitgthe inner one unstable, the outer  Clearly, accretion disks constituted from minus-family or-
one stablg or three such orbitéthe inner and outer being bits are everywhere counterrotating relative to the locally
unstable, the intermediate being stablea?> ag(EZO) andy  nonrotating frames. For the minus-family disks, the specific
is properly chosen, there can be an additional possibility oenergy of both the outer and inner marginally stable circular
the nonexistence of the circular orbit with=0. If a>  orbits and the efficiency parameter. =Ego)— — Emgi)-
>aZg_)=1.47000, there can exist no stable zero-energyare given for three typical values gfas functions ofa in
orbits for anyy (cf. Fig. 3. Fig. 16. In the limit ofa—0 with y being fixed, we obtain
Examples of naked-singularity spacetimes admittingthe known values of the specific ener@,yo),Emyi) and
stable counterrotating plus-family circular orbits with nega-the efficiency parameter of the accretion procegstor the
tive energy are presented in Fig. 14. The efficiency of conSchwarzschild—de Sitter black holg36]. Both the specific

version of the rest mass into heat energy during accretiorgnergy parametetS;,q.)- (@), Engiy- (@) and the efficiency
given by the relation n_(a) vary smoothly at values of the rotational parameter

corresponding to the extreme black holes.
_ The Keplerian accretion disks constituted from the plus-
7=Emg0) ™ Emsi) (97) family orbits behave in much more complex way in compari-
son with those of the minus-family orbits. First, usually these
is limited by the specific energy of the outermost stable cir-disks could be considered as corotating relative to the locally
cular plus-family orbitE«,<1, which can be directly in- nonrotating frames; recall that in asymptotically flat Kerr
ferred from Fig. 15. Correspondingly, extraction of the rota-black-hole spacetimes the plus-family disks are corotating at
tional energy from a naked singularity with rotational all radii down to the marginally stable orbit, while in the field
parameter low enough is possible with subsequent convenf naked singularities witta/M < 2/3 the stable circular
sion of the naked singularity into a black holsee, e.g., orbits corotating at large distances are transformed into coun-
[44]). Spacetimes allowing such processes are contained terrotating orbits in vicinity of the marginally stable orbit
the shaded naked-singularity region of the parametric spad@9]. A similar behavior occurs in Kerr—de Sitter spacetimes;
(y,a?) in Fig. 3. The limiting(dotted curve was obtained by however, in the spacetimes With-Ykag » the stable plus-
solving simultaneously conditions for the marginally stablefamily orbits can be counterrotating even at all allowed radii
orbits (76) and the circular orbits witle=0 (91). (see, e.g., Fig. D4(Moreover, there are always counterrotat-
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FIG. 13. Location of the plus-family orbits with=0. The dashed curves determine the horizons of Kerr—de Sitter spacetimes. The solid
curves determine the orbits with=0. The rising(descendingpart ofyg_q)(r;a) corresponds to the stablenstablg orbits. The intervals
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FIG. 14. Naked-singularity spacetimes admitting stable circular orbits with negative specific energy. We can see that stable circular orbits

in vicinity of the innermost stable orbithe left and middle columnsor even all the stable orbit&éhe right column can have negative
energy. The behavior of the specific angular momentum reveals counterrotation of such orbits.

ing plus-family orbits in the vicinity of the static radius, trarily large radii, implying thu€ 40+ =1. In Kerr—de Sit-
where the plus-family orbits and the minus-family orbits ter spacetimes allowinde i)+ <0, the efficiency of the
coalesce; these orbits are, however, unstable relative to radiatcretion process can be baph»1 and»<1, as it depends
perturbations and cannot be related to accretion disks. strongly OnE, )+ , Which fory~yqg can be even nega-
Second, the specific enerdy,giy+(y,a) of the inner tive (see Fig. 14 For three typical values of the functions
marginally stable plus-family orbit can be negative. RecallE g+ (a),Engiy+(@), 7+ (a) are illustrated in Fig. 17. The
thatE i)+ <0 in asymptotically flat Kerr naked-singularity specific energy functiok,j)+ () falls for a growing in the
spacetimes with the rotational parame##M <4+/%, indi- ~ Plack-hole region and fora descending in the naked-
cating the efficienty of the accretion process = Engo)+ singularity region. The specific energy functiéh, o)+ (a)
—Engy+>1, because in asymptotically flat Kerr space- has a local minimum at some value of the rotational param-

times the outer edge of the accretion disks can be at arbftera strongly dependent on the cosmological paramgpter
Fory being fixed, the accretion efficienay, (a) grows fora

1.5 . growing in the black-hole sector up to the critical value cor-
! responding to the extreme black-hole spacetime, and it also
1.25 N grows fora descending in the naked-singularity sector down
1} ms (o) to the critical value.
s 0.75 ™ \ Third, there is a strong discontinuity of the specific energy
A function E, i)+ (@) for spacetimes approaching the extreme
o = black hole state from the black-hole and the naked-
& 0.25 s (2 singularity sectors. For extreme Kerr black holeg (
0 =0,a/M=1), there is the limiting value of the specific en-
ns (i) ergy Engon = 1/\/3, while for naked singularities approach-
2 / ing the extreme hole statesa/M —1 from above, there is

WG Emsng=— 1/{/3. For extreme Kerr—de Sitter spacetimes,
the dependence of the specific energy of the inner marginally
stable orbit on the cosmological parameter is shown in Fig.
FIG. 15. Effective potential of the equatorial radial motion of 18a. Clearly, there i&yqng)(Y) = — Emgbn)(Y), Where for a
test particles in an appropriately chosen Kerr—de Sitter naked-
singularity spacetimey(=10"4,a°=1.05) allowing the stable cir-
cular orbits with negative energy. Marginally bou¢rdb) orbits are
given by the solid curve corresponding Xo= X,,,,+ = — 0.18444.
The curve has two local maxima of the same vaklg,=0.92857,
corresponding to the inngmbh(i)] and the outefmb(o)] marginally ~ Properties ¢) family (=) family
bound orbits. The dashed effective potential defines the inner maigf circular orbits
ginally stable orbifmg(i)] resulting from coalescence of the local

TABLE |. Classification of the figures.

Spacetime properties Figs. 1-3

minimum and (innep local maximum, with X=Xqg. ~ General Figs. 7-11, 15 Figs. 7-9, 11

=-0.40713 and the specific enerd§y«i)+=—0.23321. In an  Specific energy Figs. 4, 6, 13, 14, 17-19  Figs. 4, 6, 16
analogous manner, the dash-dotted potential defines the outer m&pec. ang. mom. Figs. 5, 6, 12, 19 Figs. 5, 6, 12
ginally ~stable orbit [mso)] with the specific energy Accretion efficiency Figs. 17, 18 Fig. 16

quo)_'_ =0.94405 andX = quo)_'_ =2.40379.
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FIG. 16. Specific energy of the marginally stable minus-family orb{es Inner, (b) Outerl and (c) the accretion efficiencysy_
=Eng0)- —Emgi)- given as a function of the rotational parameter for three representative values of the cosmological parameter. For Kerr
spacetimesy=0, we assum&qq-=1.

given cosmological parametgithe rotational parameterof  are distributed at an infinitesimally small range of the radial
the corresponding extreme black hole is determined by theoordinate in the vicinity of the radius corresponding to the
upper branch of the limiting line separating black-hole andevent horizon of the extreme black hole. Of course, it is well
naked-singularity states in Fig. 3. Fgr-Y. s, there is  known that at these radii the physically relevant proper radial
Emgbny(¥Y)—0. For the specific energy function length, along which th accretion disk is distributed, be-
Emso)+(y,a) of the outer marginally stable orbits there is no comes veryalmost infinitely long (see[13]). If the conver-
discontinuity at the states corresponding to extreme blacksion of a hypothetical naked singularity into an extreme
hole spacetimegsee Fig. 18h The accretion efficiency black hole is realized, the part of the accretion disk located
7.(y) in the field of extreme black holdsy,,(y)] and in  under the marginally stable circular orbit of the created black
the field of the naked singularities infinitesimally close to thehole becomes unstable relative to radial perturbations and
extreme hole statefn,«(y)] is shown in Fig. 18c. Foy will be immediately swallowed by the black hole. It can be
=0 their difference takes the maximumy(=1+ 143, expect.ed that the gpllapse of the gnstable internal part of the
nen=1—1/\/3), while aty=Ykas the difference vanishes disk with the specific energy ranging froB,«ng(y) Up to
(77s=0,7p,=0). Emgobn)(Y) could be observationally |_mpo_rtant, leading to an
As a result of accretion in a plus-family or a minus-family abrupt fall down of observable luminosity of the accretion
Keplerian disk, a hypothetical naked singularity can be cond'Sk; . ]
verted into an extreme black hole. In the case of Kerr naked Finally, we shall give to our results proper astrophysical
singularities their evolution into an extreme hole state wagd€lévance by presenting numerical estimates for the observa-
discussed iM44-46. Such a conversion can be a r{juher'uor_lally established \{alue of the current value of the cosmo-
dramatic process in the case of the plus-family accretiod0gical constant. A wide range of recent cosmological obser-
disks, because of the discontinuity of the plus-family orbitsVations give a strong “concordance” indicati¢a7] that the
at the extreme black-hole state. We can understand this pr@Pserved value of the vacuum energy density is
cess if we show how the stable circular orbits are distributed 0 ~0.660/; (98)
in naked-singularity spacetimes approaching the extreme vac(0) crit(0)»
black-hole statéFig. 19. We can see that all the orbits with with present values of the critical energy density;; oy and
the specific energy ranging froB,gns(Y) Up toEqgpn(Y) the Hubble parametdt given by
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FIG. 18. Specific energy of the marginally stable orbits and accretion efficiency near the extreme black-hol@s&pesific energy
of the inner marginally stable plus-family orbit in extreme black-hole and related limiting naked-singularity spacetimes approaching the
extreme hole states as a function of the cosmological paramelbe solid curve corresponds to the extreme black holes; the dashed curve
corresponds to the limiting naked singularities. The curves are symmetric around the zero-energy axis and tend ty-zgygfey . In
extreme Kerr spacetimey € 0), the specific energies in the black-hole and naked-singularity casesy@raid— 1/\/3, respectively(b)
Specific energy of the outer marginally stable plus-family orbit in extreme Kerr—de Sitter black-hole spacetimes is the same as for
naked-singularity spacetimes approaching the extreme hole state; i.e., there is no discontinuity in this case. The specific energy tends to zero
for y—yckas - () Accretion efficiency for the extreme black holeg;, (solid curvg and for the limiting naked singularitieg, s (dashed
curve. For y=0 (pure Kerr spacetimg¢swve obtain the maximum value 0.42 for black holes and 1.58 for naked singularities; For
—Yekag the efficiency tends to zero for both black holes and naked singularities.
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FIG. 19. Distribution of the specific energy and the specific angular momentum of the equatorial circular orbits in naked-singularity
spacetimes approaching the extreme black-hole state. The orbits with the specific energy in theBptgryal E<E gy are located in
an extremely small interval of the radial coordinate having, however, an extremely long proper[lEBlgihfter conversion of a hypo-
thetical naked singularity into an extreme black hole all these circular orbits become unstable relative to radial perturbations and will be
immediately swallowed by the black hole. The figures are drawmfery(1+ 8) andy=yy(1— 6), wherey,=10"*% anda,=1.0001 are
chosen to correspond to an extreme black hole and, subsequiatl@ 3,104,106,

3H3 (we have chosen some typical values of the black-hole

Qcrit(0) =g, » Ho=100h km s'Mpc™t. (99  mas$, the dimensions of the static radius and the outer mar-
ginally stable circular orbit of the plus-family accretion disk
are given in Table Il. For more detailed information in the

case of thick disks around Schwarzschild—de Sitter black
holes se¢38], where the estimates for primordial black holes

in the early Universe with a repulsive cosmological constant

Ao=8TQ ac(0)~1.1¢ 10756 cm 2. (100  related to a hypothetical vacuum energy density connected
with the electroweak symmetry breaking or the quark con-

Having this value ofA 5, we can determine the mass param-finement are presented.

eter of the spacetime corresponding to any valug param- It is well known (see, e.g.[48]) that dimensions of accre-

eters of the equatorial circular geodesics, and basic charation disks around stellar-mass black holéd {10M) in

teristics of the thin accretion disks. For extreme black holesinary systems are typically 16 pc, dimensions of large

galaxies with central black-hole mass~10°M,, of both

TABLE Il. Mass parameter, static radius, and radius of the outerspiral and elliptical type, are in the interval 50—100 kpc, and

ma_lrginally stgble pircu!ar orbit determining the outer edge of Coro'extremely large elliptical galaxies of cD type with central

tating Keplerian disks in extreme Kerr—de Sitter black-hole SPacep|ack-hole mas#l ~ 3% 109M® extend up to 1 Mpc. There-

times are given for the relict repulsive cosmological constant indi- . .
9 PUs gic ) fore, we can conclude that the influence of the relict cosmo-
cated by recent cosmological observationsAy~1.1

%105 cm 2. Note that accretion efficiency., is, in principle logical constant is quite negligible in the accretion disks in
smaller than the value for the pure Kerr cage=0) but, in prac-  Pinary systems of stellar-mass black holes as the static radius
tice, for small values of cosmological parameyezontained in the ~ €Xceeds in many orders dimension of the binary systems. But

Taking the value of the dimensionless paramétel0.7, we
obtain the “relict” repulsive cosmological constant to be

table, 7. is undistinguishable from the Kerr limip~0.42. it can be relevant for accretion disks in galaxies with large
active nuclei as the static radius puts limit on the extension
y M rs M ms(o) + of the disks well inside of the galaxies. Moreover, the agree-
[Mo] [kpc] [kpc] ment (up to one orderof the dimension of the static radius
related to the mass parameter of central black holes at nuclei
107 11 0.1 0.07 of large or extremely large galaxies with extension of such
107 1.1 0.2 0.15 galaxies suggests that the relict cosmological constant could
100% 111.4 0.5 0.3 play an important role in the formation and evolution of such
10 1.1x10° 11 0.7 galaxies. Of course, the first step in confirming such a sug-
10°% 1.1x10° 11.4 7.2 gestion is modeling of the influence of the repulsive cosmo-
107% 1.1x 10 24.5 15.5 logical constant on self-gravitating accretion disks. Some
10°% 1.1x1¢° 52.8 333 hints this way could be given by recent results of Rezzolla
10728 1.1x10° 113.8 71.7 et al. [49], based on sophisticated numerical hydrodynamic
1026 1.1x10%° 245.2 154.5 methods developed by Fo[#0,51], who showed that mass
10 %4 1.1x 101 528.3 332.9 outflow from the outer edge of thick accretion disks, induced
1022 1.1x 102 1138.4 7171 by the relict cosmological constant, could efficiently stabilize

the accretion disks against the runaway dynamical instability.
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