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Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison

Anastasia Niarchou, Andrew H. Jaffe, and Levon Pogosian
Blackett Laboratory, Imperial College London, SW7 2AZ, United Kingdom

~Received 26 August 2003; published 24 March 2004!

One of the most tantalizing results from the Wilkinson Microwave Anisotropy Probe~WMAP! experiment
is the suggestion that the power at large scales is anomalously low when compared to the prediction of the
‘‘standard’’ L cold dark matter~CDM! model. The same anomaly, although with somewhat larger uncertainty,
was also previously noted in the COBE data. In this work we discuss possible alternate models that give better
fits on large scales and apply a model-comparison technique to select amongst them. We find that models with
a cutoff in the power spectrum at large scales are indeed preferred by data, but only by a factor of 3.6, at most,
in the likelihood ratio, corresponding to about ‘‘1.6s ’’ if interpreted in the traditional manner. Using the same
technique, we have also examined the possibility of a systematic error in the measurementor predictionof the
large-scale power. Ignoring other evidence that the large-scale modes are properly measured and predicted, we
find this possibility somewhat more likely, with roughly a 2.75s evidence.
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I. INTRODUCTION

The recent Wilkinson Microwave Anisotropy Prob
~WMAP! results@1# have provided a spectacular view of th
early Universe. One of the most intriguing results offered
the WMAP team is that the cosmic microwave backgrou
~CMB! anisotropy power on the largest angular scales se
to be anomalously low@1,2#. In fact, the WMAP team reports
that this result has a high statistical significance, quotin
probability ranging from just under 1% to 231023 for such
a result, depending on the details of the analysis. This
power can be seen in two complementary ways. First, in
CMB power spectrum,C, , the quadrupole (,52) and oc-
topole (,53) both seem low in comparison to the smoo
‘‘best-fit’’ model, as shown in Fig. 1. The latter is selecte
from the array of models with a flat geometry and near
scale-invariant, adiabatic primordial fluctuations.

The low power seems particularly striking when the CM
anisotropy correlation function,

C~u![^T~ n̂!T~m̂!& with n̂•m̂5cosu ~1!

is examined: it is very near zero foru*60°. Note that the
average implied by the angle brackets has several differ
inequivalent, interpretations: The WMAP team estimates
correlation function calculated as the simple average o
pixels at a given separation. If we interpret the average a
ensemble average, however, we can relate the correla
function to the power spectrum,C, :

C~u!5(
,

2,11

4p
C,P,~cosu!. ~2!

For a Gaussian distribution with enough samples, these
definitions are nearly equivalent, since the pixel average
approximate the ensemble average. We were able to re
duce the character of the correlation function from the p
lished angular power spectrum, by summing the Legen
series in Eq.~2!. In fact, we obtained almost the same res
by using the smooth best-fit spectrum, but with the quad
0556-2821/2004/69~6!/063515~6!/$22.50 69 0635
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pole and octopole lowered to the observed levels, as
shown in Fig. 2.~In fact, the correlation function in this cas
is actually flatter atu;180° than those computed from th
actual data: the power in any of the correlation functio
calculated from real data shows a lower correlation am
tude than those calculated from smooth power spectra.! Con-
versely, raising the quadrupole and octopole in the obser
spectrum to the predicted levels removes the anomaly. T
exercise implies that the low power is just that: lowpowerat
low ,, and due neither to a conspiracy of particularC, val-
ues nor to any non-Gaussian distribution of the multip
moments themselves. Moreover, the apparently striking
ference between the measured and predictedC(u) is due
entirely to the low values of the quadrupole and octopole
this paper, we investigate the statistical significance of th
measurements.

In the following, we introduce the Bayesian mode
comparison method in Sec. II, discuss models with low p
mordial power in Sec. III, and a model of experimental

FIG. 1. The CMB power spectrum at low, as measured by
WMAP. The solid line is the best fit using the ‘‘standard’’ powe
law LCDM model. Note that the error bars at low multipoles a
almost entirely due to cosmic variance.
©2004 The American Physical Society15-1
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theoretical systematic errors in Sec. IV. We conclude wit
discussion in Sec. V.

II. MODEL COMPARISON

The question remains, then: How significant is this o
served low power? Here, we shall answer this question u
the technique of Bayesian model comparison@3,4#. This
technique has been used before in various cosmological
texts @5–8#.

We start, as usual, with Bayes’ theorem, which gives
posterior probability of some theoretical parametersu given
dataD under the hypothesis of some modelm:

P~uuDI m!5P~uuI m!
P~DuuI m!

P~DuI m!
, ~3!

whereP(AuB) gives the probability or probability density o
a propositionA given a propositionB, and hereall probabili-
ties are conditional, at least on the background informat
I m , which refers to the background information for a spec
model m. The model parametersu ~the list of which may
actually depend on which modelm we consider! have prior
probability P(uuI m). The likelihood function isP(DuuI m),
and the so-called ‘‘evidence’’ is

P~DuI m!5E duP~uuI m!P~DuuI m!, ~4!

which enforces the normalization condition for the poster
but is also quite properly the probability of the data giv
modelm, the ‘‘model likelihood.’’

We can further factor the evidence as

P~DuI m!5Lm~umax!Om , ~5!

whereumax are the parameters that maximize the likeliho
for model m, Lm(u)5P(DuuI m), and Om is the so-called

FIG. 2. The correlation functionC(u) as computed from the
WMAP team, from the pixelized map~solid line!; using theC,’s
measured by WMAP~long dashed line!, using WMAP’s best fitC,

~short dashed!, using the WMAP data withC2 andC3 changed to
equal those of the best fit~dotted!, and using the best-fitC,’s with
lowered values ofC2 andC3 ~dot-dash!.
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‘‘Ockham factor’’ @3#. The Ockham factor is essentially th
ratio of the prior probability volume to the posterior pro
ability volume.~This is most easily seen for the case whe
both prior and posterior are uniform distributions. When bo
are Gaussian distributions, the Ockham factor is the ratio
the determinants of the covariance matrices, which is ind
the ratio of the 1s volumes.!

In order to select among models, one usually employs
ratio of their probabilities:

P~muDI !

P~nuDI !
5

P~muI !

P~nuI !

P~DuI m!

P~DuI n!
5

P~muI !

P~nuI !
Bmn . ~6!

Any experimental information is contained in the ratio of t
evidence,Bmn , which is referred to as the ‘‘Bayes factor.
Lacking any prior information preferring one model over t
other, Eq.~6! only depends on the Bayes factor. Equatio
~4!–~6! imply that the Bayes factor incorporates the esse
of the Ockham razor: since the evidence is an average o
likelihood function with respect to the prior on the param
eters, simpler models having a more compact param
space are favored, unless more complicated models fit
data significantly better. Bayes factors are likelihood rat
and can be interpreted roughly as follows, as suggeste
Ref. @9#: If 1 ,Bmn&3, there is evidence in favor of mode
m when compared withn, but it is almost insignificant. If
3&Bmn&20, the evidence form is definite, but not strong
Finally, if 20&Bmn&150, this evidence is strong and fo
Bmn*150 it is very strong.

We can also interpret the likelihood ratio in the sam
manner as we compute the ‘‘number of sigma’’ by which
value or hypothesis is favored. In this case the mode

favored byn s with n5A2 lnuBmnu. Another useful interpre-
tation, perhaps more familiar to the engineering commun
would be to use decibels, 0.1 log10Bmn @3#.

The model-comparison formalism outlined hererequires
us to specify alternatives to the ‘‘fiducial’’ standard mode
Thus a sharper version of our question might be: Is it m
probable that the data do reflect a standard Big Bang, w
nearly-scale-invariant, adiabatic, isotropic, Gaussian fluct
tions, or do they come from a universe with, say, a cutoff
the power spectrum? Or could there be a problem in the d
analysis so that, say, the error bars are larger than though
the reported results somehow exhibit an oversubtraction
large-scale power? In the following we shall examine the
possibilities.

The ‘‘fiducial’’ standard model is the best-fit model from
Ref. @2#. It is a flat LCDM Friedmann-Robertson-Walke
~FRW! universe, with baryon densityVb50.046 and ‘‘dark
energy’’ densityVL50.73~in units of the FRW critical den-
sity!. It has a power-law initial matter power spectrum wi
spectral indexns50.99 and a present-day expansion rate
H05100h km sec21 Mpc21 with h50.72. The power spec
trum amplitude isAs50.855, as defined in theCMBFAST pro-
gram @10# and as used by the WMAP team@11#, related to
the amplitude of fluctuations atk050.05 Mpc21.

The evidence for this model is simply the likelihoo
P(DuuI fiducial) evaluated at the best-fit values of the para
eters. We calculate the likelihood using the code provided
5-2
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the WMAP team@11#, which correctly accounts for correla
tions between values of, and the non-Gaussian shape of t
distribution. For the fiducial model it is equal to 0.0009
which is the value that we will need when comparing
other models.

III. LOW-POWER MODELS

A. A flat universe with a cutoff in the primordial spectrum

The most obvious way to lower the CMB power spectru
is to lower the power in the primordial density pow
spectrumP(k) @12–16#. Since the CMB is the product o
small fluctuations in the primordial plasma, we can u
linear theory. To each multipole, there corresponds
transfer function T,(k), such that ,(,11)C,

52p*d ln k T,(k)k3P(k). The transfer function depends o
the cosmological parameters, but is peaked at approxima
kh0;,, where h0 is the current size of the Universe, o
order h0;1.53104 Mpc. Lowering power at k&6
31024 Mpc21 thus lowers the CMB power spectrum fo
,&4.

A simple model where such a cutoff was imposed by
was considered by Contaldiet al. @16#. They used the follow-
ing form for the primordial spectrum:

P~k!5P0~k!@12e2(k/kc)a
#, ~7!

whereP0(k)5Akn is the usual power law primordial spec
trum. They rightly determine that the data favor a cutoff
kc.(5 –6)31024 Mpc21. In Ref. @16# Contaldi et al. con-
sidered another class of models with the cutoff produced
altering the shape of the inflaton potential. Here, we conc
trate on the lower multipoles alone and consider the effec
varying only the location of the power cutoff using Eq.~7!
with a51.8. This reasonably assumes that there is eno
freedom in the model space to allow the high-, spectra to
adjust to fit the data, and that the transfer function,T,(k),
does not change much at low,.

In Fig. 3 we show the CMB power spectrum at low mu
tipoles with several cutoff models, and in Fig. 4 we show

FIG. 3. CMB power spectra for various values of the cut
parameterkc of Eq. ~7!, measured in units of 1026 Mpc21.
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CMB likelihood as a function of the cutoff scale,kc . These
figures essentially reproduce the results of Contaldiet al.

It is clear that the cutoff allows for a better fit than th
so-called best fit. Next we evaluate the evidence for t
model with kc as the only parameter, with the priorp(kc)
[P(kcucutoff) chosen to be flat in the regio
@0,0.001# Mpc21. We obtain

P~Ducutoff!5E dkcp~kc!L~kc!50.0025. ~8!

This value is 2.6 times the evidence for the fiducial mod
which implies that the cutoff model is preferred only at t
approximately 1.4s level. We have also calculated the Oc
ham factor for this model, defined in Eq.~5!, to be 0.441.

Choosing a flat prior over this region emphasizes val
of the cutoff nearkc;0.531023 Mpc21, so in fact imple-
ments a sort of fine tuning. We might instead use a pr
proportional to 1/kc ~i.e., linear in lnkc), which also has the
advantage of having the same form if we switch variables
the cutoff lengthl c}1/kc . If we choose a lower limit of
1024 Mpc21, the evidence is unchanged from the value
the flat prior, but as we decrease the lower limit the evide
becomes dominated by the plateau atkc→0, where the mod-
els approach the fiducial best fit. The limiting value of t
evidence is thus the same value as for the fiducial mo
itself: the maximum likelihood for this model may be qui
large, but the Ockham factor is small.

B. Geometry: A closed universe

CMB measurements indicate that the geometry of
Universe is very nearly flat. This is consistent with the infl
tionary paradigm in which the Universe, unless additiona
fine-tuned, would be expected to be infinitesimally close
flat today. However, a slightly closed universe is also con
tent with the current data and is actually marginally prefer
by the WMAP experiment@2#, whose best-fit value wasVk
520.0260.02.

When calculating theoretical predictions for CMB aniso
ropy spectra one is faced with the so-called geometric deg

FIG. 4. The likelihood as a function of the cutoff wave numb
kc for the model of Sec. III A.
5-3
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eracy among the values of matter density, curvature,
dark energy density@17#. Given fixed values forVCDMh2,
Vbh2, and the acoustic peak location parameter one can
duce almost identical CMB spectra by choosing the value
h andVk along a degeneracy line in the (h,Vk) space. The
differences between spectra are only notable on large sc
(,&20) where the integrated Sachs-Wolfe contribution
the anisotropy due to the dark energy component is do
nant.

A closed universe contains a characteristic scale—the
vature scaleRc . The eigenvaluesb of the Laplacian are,
therefore, discrete and related to the physical wave numbk
via b2511k2R2 with modes corresponding tob51 and 2
being unphysical pure gauge modes. As argued in Ref.@18#,
if the Universe was indeed marginally closed, in the abse
of a concrete model it is not obvious how the concept
scale invariance should be extended to scales comparab
the curvature scale. One of the possibilities could be that
spectrum would truncate on scales close toR. A heuristic
formula for the primordial spectrum, illustrating such a po
sibility, was suggested in Ref.@18#:

P~b!}
~b224!2

b~b221!
F12expS 2

b23

4
D G . ~9!

We have used Eq.~9! to generate CMB anisotropy spect
for various values ofVk chosen to lie along the same ge
metrical degeneracy line that contained WMAP’s best-fit
LCDM model. The results are shown in Fig. 5. As can
seen from the plot, the truncated closed models fit the d
considerably better than WMAP’s best-fit model. We sh
the likelihood as a function of the Hubble constant in Fig.

Next we calculate the evidence for this model withh as
the free parameter. The priorp(h) was taken to be a Gauss
ian with meanh̄50.72 and variancesh50.10, and addition-
ally constrained to be in the range@0.52,0.72#. The lower
bound is dictated by current experimental constraints on
value ofh, while the upper bound follows from the fact th
along the geometric degeneracy line higher values oh
would correspond toVk>0. We find that the evidence fo
this model is

FIG. 5. The CMB power spectrum for different curvature valu
in the closed model of Sec. III B.
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P~Duclosed!5E dhp~h!L~h!50.0034, ~10!

whereL(h) is the likelihood of data given a particular valu
of h. The obtained evidence is approximately 3.6 times t
of WMAP’s best-fit model. This can be interpreted as t
closed model being preferred over the best-fit model a
1.6s level, which, considering the absence of a robust mo
of a marginally closed universe, is insufficient to warra
abandoning simple inflation as the base model for fitt
data. The Ockham factor for this model@Eq. ~5!# is 0.370.

In addition, we have considered the same closed unive
model but with the spectral indexns and also the value ofs8
allowed to vary to see if the fit could be improved furthe
The prior onns was chosen to be Gaussian withn̄50.97 and
sn50.07 and restricted to the interval@0.83,1.11#. The prior
on s8 was also Gaussian with the mean value of 0.95 a
variance 0.05 restricted to the range@0.6,1#. We found the
evidence in this case to be

P~Duclosed!5E dndhds8 p~n!p~h!p~s8! L~n,h,s8!

50.0008, ~11!

which is lower than the evidence for the fiducial model. T
likelihood contours for this model, after marginalizing ov
s8, are shown in Fig. 7. This illustrates how adding mo
parameter freedom can dramatically dilute the evidence
the model, even if it fits the data very well. This is reflect
in a very low value of the Ockham factor for this mode
which is only 0.069.

IV. THEORETICAL AND EXPERIMENTAL SYSTEMATICS

Having examined the possibility that the observed lack
power on large scales points in the direction of new phys
we now turn to the alternative that it can be attributed to d
analysis methodology. The simplest case would be an un

FIG. 6. The likelihood as a function ofH0 for the closed model
of Sec. III B.
5-4
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LARGE-SCALE POWER IN THE CMB AND NEW . . . PHYSICAL REVIEW D69, 063515 ~2004!
estimation of the errors corresponding to low multipole
This would mean that we live in a universe described by
best-fit power-law model and that the discrepancy betw
its predictions and the WMAP data emanates from our m
calculating the aforementioned errors. Of course, we h
copious evidence from the work done by the WMAP tea
itself as well as from comparison with other data that
WMAP data are likely to be reliable on these scales. C
versely, we could instead interpret this as saying that th,
52,3 multipoles are correctly measured, but have an
known origin outside the standard cosmology. That is, th
is some model like those considered in the previous secti
but we do not yet know what it is.

We implement this idea by multiplying the diagonal el
ments of the curvature matrix corresponding toC2 andC3 by
two constants~hereafter referred to asr 2 and r 3) that serve
as the free parameters of our model. This has the effec
increasing the error bars ofC2 andC3. Figure 8 shows con-
tours of the likelihood function for various values of the

FIG. 7. Likelihood contours in the (n,h) parameter space for th
closed model of Sec. III B, marginalized over the value ofs8.
Shown are the 1 and 2s contours, defined by the equivalent likel
hood ratio for a two-parameter Gaussian distribution. The point
maximizes the likelihood function is marked with an asterisk(*).

FIG. 8. Contours of the likelihood as a function of the para
etersr 2 andr 3. Shown are the 1 and 2s contours. The likelihood is
maximized in the upper right corner, wherer 2 and r 3 are largest.
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parameters. We have also evaluated the evidence for
model to be

P~Dusyst.!5E dr2dr3p~r 2!p~r 3!L~r 2 ,r 3!50.0387,

~12!

using flat priors onr 2 and r 3 in the intervals@1,200# and
@1,150# respectively; these maxima are chosen for numer
convenience but the results are insensitive to them as lon
r i@1. It is also insensitive to whether we use a uniform pr
on the r i or on lnri . The latter are equivalent toP(r i)
}1/r i , the so-called ‘‘Jeffreys’ prior’’ appropriate for a sca
parameter.

Note that the likelihood is maximized when these para
eters reach their largest values: the data always become
likely when the error bars increase. Indeed, this implies t
we can consider an even simpler model with parame
fixed atr i→`. This model has a likelihood of 0.0414, givin
it a Bayes factor of 44 with respect to the conventional b
fit. This model corresponds to ignoring the data at,52,3:
there isno modelthat can improve the fit here by more tha
this roughly 2.75s level. The evidence for these models im
plies that if the correct model at low, was indeed other than
the ‘‘best fit,’’ there would be a roughly 2.75s level evidence
that the error bars onC2 andC3 were underestimated.

V. DISCUSSION

We summarize our results in Table I, presenting the Ba
and Ockham factors for the models we have discussed. N
that these numbers explicitly do not consider prior inform
tion about these models. Indeed, all of these models w
explicitly constructed in response to the observed low pow
In particular, the models with low primordial power consi
ered in Sec. III require that the scale of the power cutoff
fine tuned with respect to the horizon scale in order to red
power at just the right angular scale, either by fiat or
determining the location of the curvature scale.A priori,
such models would be strongly disfavored. However, it h
been recently pointed out in Ref.@19# that a cross-correlation
between CMB and cosmic-shear patterns, as well as betw
CMB and low-redshift tracers of the mass distribution, c
provide supplemental evidence for a large scale cutoff in
primordial spectrum. Such a cutoff would generally increa
the cross-correlation.

at

-

TABLE I. Summary of the results of the paper. The Bayes fa
tors, B, are all defined with respect to the ‘‘best fit’’ model of th
first row, and the column ‘‘s ’’ is defined asA2u ln Bu. The Ockham
factors are defined in the text, Sec. I.

Model Ockham factor Bayes factor s

Best fit - 1 -
Flat with cutoff 0.441 2.66 1.40s
Closed (h) 0.370 3.62 1.60s
Closed (h s8 n) 0.069 0.85 0.57s
Large error bars 0.945 41.2 2.73s
5-5
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There are models with similar characteristics that ha
been discussed separately from these low-power issues
class of models with nontrivial topologies@20–26#. We
might assign a greater prior to such models, although ag
to explain the observations requires fine tuning of the top
ogy scale. In a recent paper Tegmarket al. @27# argued that
the low power on large scales is unlikely to be a sign
nontrivial topology. We did not include these models into o
analysis; however, one can expect them to have evide
similar to the cutoff models we have considered. Indeed,
type of CMB spectra that these two models produced
essentially the same and the difference in the values of
evidence comes mainly from the prior on the free parame
Note that models with nontrivial topology will also hav
other signatures, possibly observable in the CMB by con
ering properties beyond the power spectrum~see e.g., Ref.
@25# and references therein!.

Other analyses of these data have reached similar con
sions. In Ref.@28# Gaztañagaet al. performed a full covari-
ance analysis of the WMAP data using the two-point angu
correlation and its higher-order moments. They have arg
that the WMAP data are in reasonable agreement with
LCDM model if WMAP data were considered as a particu
realization of realisticLCDM simulations with the corre-
sponding covariance.

We have also considered a model that considers a pos
systematic error in the determination of the large-sc
power. Although this model is experimentally unlikely, w
can instead consider it as thereductio ad absurdumof all the
possibilities we are considering: What happens if we j
s,

n.

.

.

a
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throw away the large scale data? From the Bayes facto
about 44 we see that there is likelyno modelat all that will
ever improve the fit to the large scale by more than ab
2.75s, in agreement with the somewhat different analysis
Ref. @29# and to some extent with that of the WMAP tea
itself @1,2#. It is worth noting that the phases of low harmo
ics could provide additional information about the plausib
ity of a cosmological model; for instance, a model predicti
an alignment of the,52,3 harmonics~according to Ref.
@26#! would be favored with respect to a model making
such prediction, given that both models had the same po
at low ,. But we should point out that features like th
alignment of the low harmonics would not have any impa
on the power at large scales. Consequently, no model
ever fare better than about 2.75s as far as power at large
scales is concerned.

However, there are other possibilities for probing t
physics on the largest scales. In particular, a better meas
ment of the polarization of the CMB and its correlation wi
the intensity at these same multipoles will certainly enable
to clarify the interpretation of the anisotropy at the sam
scales.
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