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Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison
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One of the most tantalizing results from the Wilkinson Microwave Anisotropy P(@BdAP) experiment
is the suggestion that the power at large scales is anomalously low when compared to the prediction of the
“standard” A cold dark matte(CDM) model. The same anomaly, although with somewhat larger uncertainty,
was also previously noted in the COBE data. In this work we discuss possible alternate models that give better
fits on large scales and apply a model-comparison technique to select amongst them. We find that models with
a cutoff in the power spectrum at large scales are indeed preferred by data, but only by a factor of 3.6, at most,
in the likelihood ratio, corresponding to about “&xBif interpreted in the traditional manner. Using the same
technique, we have also examined the possibility of a systematic error in the measwepredictionof the
large-scale power. Ignoring other evidence that the large-scale modes are properly measured and predicted, we
find this possibility somewhat more likely, with roughly a 2¢78vidence.
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[. INTRODUCTION pole and octopole lowered to the observed levels, as also
shown in Fig. 2(In fact, the correlation function in this case
The recent Wilkinson Microwave Anisotropy Probe is actually flatter at#~180° than those computed from the
(WMAP) results[1] have provided a spectacular view of the actual data: the power in any of the correlation functions
early Universe. One of the most intriguing results offered bycalculated from real data shows a lower correlation ampli-
the WMAP team is that the cosmic microwave baCkgrOUﬂque than those calculated from smooth power spé@(an_
(CMB) anisotropy power on the largest angular scales seemgersely, raising the quadrupole and octopole in the observed
to be anomalously loyd,2]. In fact, the WMAP team reports  spectrum to the predicted levels removes the anomaly. This
that this result has a high statistical significance, quoting @&xercise implies that the low power is just that: Ipawerat
probability ranging from just under 1% tox210"° for such  |ow ¢, and due neither to a conspiracy of particulyr val-
a result, depending on the details of the analysis. This lowies nor to any non-Gaussian distribution of the multipole
power can be seen in two complementary ways. First, in thegnoments themselves. Moreover, the apparently striking dif-
CMB power spectrumC,, the quadrupole{=2) and oc-  ference between the measured and predi€¢d) is due
topole (¢=3) both seem low in comparison to the smoothentirely to the low values of the quadrupole and octopole. In
“best-fit” model, as shown in Fig. 1. The latter is selected this paper, we investigate the statistical significance of these
from the array of models with a flat geometry and nearly-measurements.

scale-invariant, adiabatic primordial fluctuations. In the f0||owing, we introduce the Bayesian model-
The low power seems particularly striking when the CMB comparison method in Sec. 1, discuss models with low pri-
anisotropy correlation function, mordial power in Sec. Ill, and a model of experimental or
C()=(T(NT(m)) with n-m=cos# 1) 00
ACDM

is examined: it is very near zero f&#=60°. Note that the

average implied by the angle brackets has several different
inequivalent, interpretations: The WMAP team estimates the 5%
correlation function calculated as the simple average ovekg
pixels at a given separation. If we interpret the average as a2
ensemble average, however, we can relate the correlatio § 1000 |
function to the power spectrung, : 2

1(1+1)C

500

20+1
C(o)= ; 2 CePe(cosd). )

For a Gaussian distribution with enough samples, these twc 0 i . . s
definitions are nearly equivalent, since the pixel average will 0 5 10 15
approximate the ensemble average. We were able to repro- !

duce the character of the correlation function from the pub- F|G. 1. The CMB power spectrum at lo& as measured by
lished angular power spectrum, by summing the LegendrgymAP. The solid line is the best fit using the “standard” power-
series in Eq(2). In fact, we obtained almost the same resultlaw ACDM model. Note that the error bars at low multipoles are
by using the smooth best-fit spectrum, but with the quadrualmost entirely due to cosmic variance.
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1500 ' T WMAD map (Benmett ot a12003) “Ockham factor” [3]. The Ockham factor is essentially the
G ratio of the prior probability volume to the posterior prob-
modified WMAP Cy ability volume. (This is most easily seen for the case where

R modified ACDM . . . . . .
1000 [ § % both prior and posterior are uniform distributions. When both
are Gaussian distributions, the Ockham factor is the ratio of
N% the determinants of the covariance matrices, which is indeed
2 sl the ratio of the b volumes)
& In order to select among models, one usually employs the
Q . . A
ratio of their probabilities:
0 P(m[DI) P(m|l) P(D|ly,) P(mll) 6
P(mDI) Pl PO, Py o ©
S T 1 o 0 1o 10 0 160 10 An_y experimental information is contained in the ratio of the
0 (deg) evidence B,,,, which is referred to as the “Bayes factor.”

. . Lacking any prior information preferring one model over the

WMAP team, from the pixelized masolid line); using theC/'s  (4)_(g) imply that the Bayes factor incorporates the essence
measured by WMARIong dashed ling using WMAP's best fiC, ¢ the Ockham razor: since the evidence is an average of the
(short dashed using the WMAP data witlC, and C, changed 1o | alihood function with respect to the prior on the param-
equal those of the best fitlotted, and using the best-fit,'s with eters, simpler models having a more compact parameter
lowered values o€, and C; (dot-das. space are favored, unless more complicated models fit the
. . , ... _data significantly better. Bayes factors are likelihood ratios
theoretlpal ;ystematlc errors in Sec. IV. We conclude with aand ca% be inte)ipreted roué]/hly as follows, as suggested in
discussion in Sec. V. Ref.[9]: If 1<B,,,=3, there is evidence in favor of model
m when compared withn, but it is almost insignificant. If
3=<B,,,=20, the evidence fom is definite, but not strong.

The question remains, then: How significant is this ob-Finally, if 20=Bn,=150, this evidence is strong and for
served low power? Here, we shall answer this question usinBmn=150 it is very strong.

II. MODEL COMPARISON

the technique of Bayesian model comparig@y]. This We can also interpret the likelihood ratio in the same
technique has been used before in various cosmological cofanner as we compute the “number of sigma” by which a
texts[5—8]. value or hypothesis is favored. In this case the model is

We start, as usual, with Bayes’ theorem, which gives thefavored byv o with »= /2 In|B,,,]. Another useful interpre-
posterior probability of some theoretical parametgrgiven  tation, perhaps more familiar to the engineering community,
dataD under the hypothesis of some moael would be to use decibels, 0.1 g8, [3].

The model-comparison formalism outlined heegjuires
P(D|6lm) 3 Us to specify alternatives to the “fiducial” standard model.
P(D|ly) Thus a sharper version of our question might be: Is it more
) . . . probable that the data do reflect a standard Big Bang, with
whereP(A|B) gives the probability or probability density of nearly-scale-invariant, adiabatic, isotropic, Gaussian fluctua-
a propositionA given a propositior, and hereall probabili-  tjons, or do they come from a universe with, say, a cutoff in
ties are conditional, at least on the background informatiofgpe power spectrum? Or could there be a problem in the data
Im,» which refers to the background information for a specificanalysis so that, say, the error bars are larger than thought, or
model m. The model parameterg (the list of which may the reported results somehow exhibit an oversubtraction of

actually depend on which modet we consider have prior  |arge-scale power? In the following we shall examine these
probability P(6|1,,). The likelihood function isP(D|61,),  possibilities.

P(0|D|m)zp(0||m)

and the so-called “evidence” is The “fiducial” standard model is the best-fit model from
Ref. [2]. It is a flat ACDM Friedmann-Robertson-Walker

P(D|Im)=f doP(a|l,)P(D|6l,,), (4)  (FRW) universe, with baryon densit2,=0.046 and “dark

energy” densityQ) , =0.73(in units of the FRW critical den-

rsity). It has a power-law initial matter power spectrum with
spectral indexn;=0.99 and a present-day expansion rate of
Ho=100h km sec¢ * Mpc™! with h=0.72. The power spec-

which enforces the normalization condition for the posterio
but is also quite properly the probability of the data given
modelm, the “model likelihood.”

We can further factor the evidence as trum amplitude isA;=0.855, as defined in theMBFAST pro-
gram[10] and as used by the WMAP teafhl], related to
P(D|l'm)=Lm( Omay) Om (5)  the amplitude of fluctuations &,=0.05 Mpc *.

The evidence for this model is simply the likelihood
where 6, are the parameters that maximize the likelihoodP(D| 6l 4.ia) €valuated at the best-fit values of the param-
for modelm, £,,(6)=P(D|6l,), and O,, is the so-called eters. We calculate the likelihood using the code provided by

063515-2



LARGE-SCALE POWER IN THE CMB AND NEW . .. PHYSICAL REVIEW D59, 063515 (2004

0.006 T T T .
5 0.005 |
k=500
WMAP data
o~ 4000 | 0.004 |
£
E
§ 3000 = 0003
g 2
I
= 2000 | 0.002 |
P
1000 | 0.001 k
0 ! ! 0 . . . .
1 10 100 1000 0 0.0002 0.0004 0.0006 0.0008 0.001

1 k. Mpch

FIG. 3. CMB power spectra for various values of the cutoff  F|G. 4. The likelihood as a function of the cutoff wave number
parametek, of Eq. (7), measured in units of I¢ Mpc™ 2. k. for the model of Sec. Il A.

the WMAP team[11], which correctly accounts for correla- CMB likelihood as a function of the cutoff scalke,. These
tions between values df and the non-Gaussian shape of thefigures essentially reproduce the results of Contatdil.
distribution. For the fiducial model it is equal to 0.00094, It is clear that the cutoff allows for a better fit than the
which is the value that we will need when comparing toso-called best fit. Next we evaluate the evidence for this
other models. model withk, as the only parameter, with the prip(k;)
=P(k.|cutoff) chosen to be flat in the region
Il. LOW-POWER MODELS [0,0.009 Mpc™*. We obtain

A. A flat universe with a cutoff in the primordial spectrum
) P(D|cutoff)= | dk.p(kc)L(k.)=0.0025. 8
The most obvious way to lower the CMB power spectrum

's to lower the power in the primordial density power This value is 2.6 times the evidence for the fiducial model,

spectrumP (k) [12-16. Since the CMB is the product of S T -
small fluctuations in the primordial plasma, we can usewhlch implies that the cutoff model is preferred only at the

" th T h ltinold th approximately 1é& level. We h'ave r?llso calculated the Ock-
tlrr;?]i:‘er eofrgnctignea% (kr)nu Ips?uf:gh (iLeatcozr&SE(i?(éi a ham factor for this model, defined in E(), to be 0.441.

—27fdInk T,(KKP(K). The transfer function depends on Choosing a flat prior over this region emphasizes values

— -3 -1 ; ; .
the cosmological parameters, but is peaked at approximate the cutoff neaﬂfc O'5>.< 10 Mpq » SO 1N fact imple .
kyo~€, where n, is the current size of the Universe, of ents a sort of fine tuning. We might instead use a prior

order ~1.5x10* Mpc. Lowering power at k<6 proportional to K. (i.e., linear in Ink.), which also has the
%104 7,\7; c*.1 thus Iowe.rs the CMB power spectruﬁrin for advantage of having the same form if we switch variables to
(=4 P P the cutoff lengthl ><1/k.. If we choose a lower limit of

A simple model where such a cutoff was imposed by fiat10 Mpc™~, the evidence is unchanged from the value for

: the flat prior, but as we decrease the lower limit the evidence
was considered by Contaldt al.[16]. They used the follow- e
ing form for the primordial spectrum: becomes dominated by the plateakat>-0, where the mod-

els approach the fiducial best fit. The limiting value of the
P(K) = Pa(K)[1— e (Kk)® 7 evidence is thus the same value as for the fiducial model
(k)=Po(k)[1~e 1 @) itself: the maximum likelihood for this model may be quite

. . . I , but the Ockham factor i Il.
where Py(k)=AKk" is the usual power law primordial spec- arge, but the Ockham factor is sma

trum. They rightly determine that the data favor a cutoff at
k.=(5-6)x10 % Mpc!. In Ref.[16] Contaldiet al. con-
sidered another class of models with the cutoff produced by CMB measurements indicate that the geometry of the
altering the shape of the inflaton potential. Here, we concendniverse is very nearly flat. This is consistent with the infla-
trate on the lower multipoles alone and consider the effect ofionary paradigm in which the Universe, unless additionally
varying only the location of the power cutoff using E)  fine-tuned, would be expected to be infinitesimally close to
with «=1.8. This reasonably assumes that there is enougfiat today. However, a slightly closed universe is also consis-
freedom in the model space to allow the highspectra to tent with the current data and is actually marginally preferred
adjust to fit the data, and that the transfer functiop(k), by the WMAP experimenf2], whose best-fit value waQ
does not change much at lofv =—0.02+0.02.

In Fig. 3 we show the CMB power spectrum at low mul-  When calculating theoretical predictions for CMB anisot-
tipoles with several cutoff models, and in Fig. 4 we show theropy spectra one is faced with the so-called geometric degen-

B. Geometry: A closed universe
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FIG. 5. The CMB power spectrum for different curvature values

in the closed model of Sec. Il B. FIG. 6. The likelihood as a function @i, for the closed model

of Sec. Il B.
eracy among the values of matter density, curvature, and
dark energy density17]. Given fixed values fof)cpyh?,
Q,h?, and the acoustic peak location parameter one can pro- P(D|c|osed=f dhp(h)£(h)=0.0034, (10
duce almost identical CMB spectra by choosing the values of

h and{), along a degeneracy line in thé,(),) space. The \herer(h) is the likelihood of data given a particular value

differences between spectra are only notable on large scalg$ i, The obtained evidence is approximately 3.6 times that
(£=20) where the integrated Sachs-Wolfe contribution to4¢ \y\AP's best-fit model. This can be interpreted as the

the anisotropy due to the dark energy component is domig|osed model being preferred over the best-fit model at a

nar:. losed uni , h . | h 1.60 level, which, considering the absence of a robust model
closed universe contains a characteristic scale—the CUlss 5 marginally closed universe, is insufficient to warrant

vature scaleR;. The eigenvalueg of the Laplacian are, ahandoning simple inflation as the base model for fitting
therefore, discrete and related to the physical wave nukiber yai4 The Ockham factor for this modéq. (5)] is 0.370

- 2_ 2 2 . . _ . . . .
via f7=1+k°R” with modes corresponding {8=1 and 2 In addition, we have considered the same closed universe
being unphysical pure gauge modes. As argued in[Rél, 1 oqe| put with the spectral index and also the value afg
if the Universe was indeed marginally closed, in the absencgioeq to vary to see if the fit could be improved further.

of a concrete model it is not obvious how the concept of . . —
: : e prior onng was chosen to be Gaussian witk 0.97 and
scale invariance should be extended to scales comparable Tg: 0.07 and restricted to the inter0.83,1.11. The prior

the curvature scale. One of the possibilities could be that th&n 150 G ) it th I £ 0.95 and
spectrum would truncate on scales closeR0A heuristic N og wag 8550 ta_u?stlja:l V;'r'] € mgaln Vvé\l/uef 0 d.th an
formula for the primordial spectrum, illustrating such a pos_varlance 05 restricted to the rang@6,1]. We found the

sibility, was suggested in Reff18]: evidence in this case to be

(B?—4)? p( /3’—3)
“m 1-ex —T .

We have used Eq9) to generate CMB anisotropy spectra =0.0008, (12)

for various values of), chosen to lie along the same geo-

metrical degeneracy line that contained WMAP’s best-fit flatwhich is lower than the evidence for the fiducial model. The

ACDM model. The results are shown in Fig. 5. As can bejikelihood contours for this model, after marginalizing over

seen from the plot, the truncated closed models fit the datg,, are shown in Fig. 7. This illustrates how adding more

considerably better than WMAP's best-fit model. We showparameter freedom can dramatically dilute the evidence for

the likelihood as a function of the Hubble constant in Fig. 6.the model, even if it fits the data very well. This is reflected
Next we calculate the evidence for this model witlas  in a very low value of the Ockham factor for this model,

the free parameter. The prip(h) was taken to be a Gauss- which is only 0.069.

ian with mearh=0.72 and variance,=0.10, and addition-

ally constrained to be in the ran§@.52,0.73. The lower \\; tHEORETICAL AND EXPERIMENTAL SYSTEMATICS

bound is dictated by current experimental constraints on the

value ofh, while the upper bound follows from the fact that  Having examined the possibility that the observed lack of

along the geometric degeneracy line higher valueshof power on large scales points in the direction of new physics,

would correspond t€),=0. We find that the evidence for we now turn to the alternative that it can be attributed to data
this model is analysis methodology. The simplest case would be an under-

P(B) (9) P(D|c|osed=f dndhdog p(n)p(h)p(ag) L£(n,h,og)
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F J T J 1 1.10 TABLE |. Summary of the results of the paper. The Bayes fac-
- . tors, B, are all defined with respect to the “best fit” model of the
e 4 1.05 first row, and the column &” is defined asy2|In B|. The Ockham
; factors are defined in the text, Sec. I.
s 4 1 1.00
e n Model Ockham factor  Bayes factor o
I 19 Best fit - 1 -
i d 0.90 Flat with cutoff 0.441 2.66 1.40
e ) Closed f) 0.370 3.62 1.6Gr
LT / {0385 Closed f og 1) 0.069 0.85 0.5%
< : L L Large error bars 0.945 41.2 2.78
55 60 65 70
Hy  (km/sec/Mpc) parameters. We have also evaluated the evidence for this
FIG. 7. Likelihood contours in then(h) parameter space for the model to be
closed model of Sec. Ill B, marginalized over the value ogf
Shown are the 1 andacontours, defirjed py the gquivalent Ii_keli- P(D|syst) = f dr,drap(r,)p(rg) £(r,,r3)=0.0387,
hood ratio for a two-parameter Gaussian distribution. The point that
maximizes the likelihood function is marked with an astelisk (12

using flat priors onr, andry in the intervals[1,200 and
estimation of the errors corresponding to low multipoles.[1,15(] respectively; these maxima are chosen for numerical
This would mean that we live in a universe described by thesonvenience but the results are insensitive to them as long as
best-fit power-law model and that the discrepancy betweep > 1. Itis also insensitive to whether we use a uniform prior
its predictions and the WMAP data emanates from our mispn ther; or on Inr;. The latter are equivalent t&(r;)
calculating the aforementioned errors. Of course, we have: 1/, the so-called “Jeffreys’ prior” appropriate for a scale
copious evidence from the work done by the WMAP teamparameter.
itself as well as from comparison with other data that the Note that the likelihood is maximized when these param-
WMAP data are likely to be reliable on these scales. Coneters reach their largest values: the data always become more
versely, we could instead interpret this as saying thatfthe |ikely when the error bars increase. Indeed, this implies that
=2,3 multipoles are correctly measured, but have an unwe can consider an even simpler model with parameters
known origin outside the standard cosmology. That is, thergixed atr;— . This model has a likelihood of 0.0414, giving
is some model like those considered in the previous sectiong, a Bayes factor of 44 with respect to the conventional best
but we do not yet know what it is. fit. This model corresponds to ignoring the datafat2,3:

We implement this idea by multiplying the diagonal ele- there isno modefthat can improve the fit here by more than
ments of the curvature matrix correspondingtpandCz by this roughly 2.7% level. The evidence for these models im-
two constantghereafter referred to as andrs) that serve  piies that if the correct model at lo#vwas indeed other than
as the free parameters of our model. This has the effect ghe “best fit,” there would be a roughly 2.75level evidence

increasing the error bars @f, andCs. Figure 8 shows con-  that the error bars o, andC; were underestimated.
tours of the likelihood function for various values of these

V. DISCUSSION

3 1 100 We summarize our results in Table |, presenting the Bayes
and Ockham factors for the models we have discussed. Note
that these numbers explicitly do not consider prior informa-
tion about these models. Indeed, all of these models were
r explicitly constructed in response to the observed low power.
3 10 3 In particular, the models with low primordial power consid-
ered in Sec. Il require that the scale of the power cutoff be
fine tuned with respect to the horizon scale in order to reduce
K power at just the right angular scale, either by fiat or by
determining the location of the curvature scake.priori,
such models would be strongly disfavored. However, it has
been recently pointed out in R¢fL9] that a cross-correlation
between CMB and cosmic-shear patterns, as well as between
CMB and low-redshift tracers of the mass distribution, can

FIG. 8. Contours of the likelihood as a function of the param- provide supplemental evidence for a large scale cutoff in the
etersr, andr;. Shown are the 1 ands2contours. The likelihood is ~ primordial spectrum. Such a cutoff would generally increase
maximized in the upper right corner, whargandr ; are largest. the cross-correlation.

1 10 100

)
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There are models with similar characteristics that havehrow away the large scale data? From the Bayes factor of
been discussed separately from these low-power issues: ti@out 44 we see that there is liketp modelat all that will
class of models with nontrivial topologie20-26. We  ever improve the fit to the large scale by more than about
might assign a greater prior to such models, although agaip. 75y, in agreement with the somewhat different analysis of
to explain the observations requires fine tuning of the topolRef. [29] and to some extent with that of the WMAP team
ogy scale. In a recent paper Tegmatkal [27] argued that jtself[1,2]. It is worth noting that the phases of low harmon-
the low power on large scales is unlikely to be a sign ofics could provide additional information about the plausibil-
nontrivial topology. We did not include these models into ourity of a cosmological model; for instance, a model predicting
analysis; however, one can expect them to have evidenggh alignment of thef =2,3 harmonics(according to Ref.
similar to the cutoff models we have considered. Indeed, thez6]) would be favored with respect to a model making no
type of CMB spectra that these two models produced argych prediction, given that both models had the same power
essentially the same and the difference in the values of thgt |ow ¢. But we should point out that features like the
evidence comes mainly from the prior on the free parametegjignment of the low harmonics would not have any impact
Note that models with nontrivial topology will also have gn the power at large scales. Consequently, no model will
other signatures, possibly observable in the CMB by consideyer fare better than about 2#%s far as power at large
ering properties beyond the power spectr(sre e.g., Ref. gcales is concerned.

[25] and references thergin o However, there are other possibilities for probing the

~ Other analyses of these data have reached similar conclyhysics on the largest scales. In particular, a better measure-
sions. In Ref[28] Gaztamgaet al. performed a full covari-  ment of the polarization of the CMB and its correlation with
ance analysis of the WMAP data using the two-point angulagne intensity at these same multipoles will certainly enable us

correlation and its higher-order moments. They have arguegh clarify the interpretation of the anisotropy at the same
that the WMAP data are in reasonable agreement with thgggles.

A CDM model if WMAP data were considered as a particular
realization of realisticACDM simulations with the corre-
sponding covariance.

We have also considered a model that considers a possible
systematic error in the determination of the large-scale A.H.J. would like to thank G. Efstathiou for helpful con-
power. Although this model is experimentally unlikely, we versations. A.H.J. and L.P. were supported by PPARC in the
can instead consider it as theductio ad absurdurof allthe UK, and A.N. by EC network HPRN-CT-2000-00124,
possibilities we are considering: What happens if we justCMBnet.”
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