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Kasner and mixmaster behavior in universes with equation of statewÐ1
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We consider cosmological models with a scalar field with equation of statew>1 that contract towards a big
crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due
to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic
Friedmann equation ifw.1. We generalize the results to theories where the scalar field couples top forms and
show that there exists a finite value ofw, depending on thep-forms, such that chaotic oscillations are sup-
pressed. We show thatZ2 orbifold compactification also contributes to suppressing chaotic behavior. In par-
ticular, chaos is avoided in contracting heteroticM-theory models ifw.1 at the crunch.
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I. INTRODUCTION

In cosmological models with a big-crunch–big-bang tra
sition, a key issue is the behavior as the Universe contr
towards the crunch. From the classic studies of Belins
Khalatnikov, and Lifshitz~BKL ! @1–3# and others@4–8#, it
is known that the contraction can either proceed smoothl
chaotically. These studies have focused on models in wh
the universe contains matter and radiation, or, more ge
ally, an energy component whose equation of state isw<1
~wherew[p/r is defined as the ratio of the pressurep to the
energy densityr). If w,1, a contracting homogeneous an
isotropic solution is unstable to small perturbations in
anisotropy and spatial curvature. As the overall volu
shrinks, the anisotropy causes the universe to expand a
one axis and contract along the others, a state that ca
approximated by the anisotropic Kasner solution. The spa
curvature causes the axes and rates of contraction to und
sudden jumps from one Kasner-like solution to another,
effect known as ‘‘mixmaster’’@9,10# behavior. If the curva-
ture is not spatially uniform, then the chaotic behavior
different regions is not synchronized and the universe
comes highly inhomogeneous at the big crunch. Hence, m
master behavior could potentially wreak havoc in cosmolo
cal models with a big-crunch–big-bang transition, maki
them inconsistent with the observed large scale homogen
of the universe.

In this paper we show that the behavior of the universe
it approaches the big crunch is very different if there is
energy component withw.1. The chaotic behavior is sup
pressed and the universe contracts homogeneously and
tropically as it approaches the singularity. The reason is
the anisotropy and curvature terms in the Einstein equat
grow rapidly and become dominant ifw,1, but they remain
negligible compared to the energy density ifw.1. In the
latter case, the Einstein equations converge to the Friedm
equations with purely time-dependent terms, a condit
sometimes referred to as ‘‘ultralocality.’’ The effect can
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viewed as a generalization of the ‘‘cosmic no-hair theore
invoked in a rapidly inflating universe. Here we demonstr
analogous behavior in a slowly contracting universe withw
.1. A related result of Dunsbyet al. @11–13# shows that
models with 0,w,1 but withr2 terms in the stress-energ
tensor are also driven towards isotropy.

The cosmic no-hair theorem for a contracting unive
containing a perfect fluid withw>1 is discussed in Sec. II. A
common example of a perfect fluid is a scalar fieldf with a
potentialV(f). In Sec. III we consider the interaction of th
scalarf with a p-form field Fp11 through an exponentia
coupling,

elfFp11
2 , ~1!

wherel is a constant@14#. We consider this case becau
scalar fields with exponential couplings top-form fields are
common in Kaluza-Klein, supergravity and superstring mo
els. For the casew51, it is known@3,7# that the contraction
is not chaotic ifl lies within a bounded interval. Here w
show that, foranyl andp, there is a critical valuewcrit(l,p)
for which the chaotic behavior is suppressed ifw
.wcrit(l,p).

Our results are of particular importance for the recent
pyrotic @15# and cyclic @16# cosmological models, which
have a big-crunch–big-bang transition with a contract
phase dominated by a scalar field withw>1 @17#. The evo-
lution of perturbations leading up to and passing through
transition is an important aspect that remains unsettled@18–
24#, and may depend on the precise physical conditions le
ing up to the bounce@25,26#. The present work may be rel
evant since it suggests that the universe can rem
homogeneous and isotropic on large scales. Once the ev
tion becomes ultralocal, the whole universe is following t
same homogeneous and isotropic evolution all the way to
big crunch.

In Sec. IV we explore how the time variation ofw affects
our conclusions, and in particular howw approachingwcrit
from above may suppress chaotic behavior. In Sec. V
discuss some specific models. In particular, we show h
orbifolding can removep-forms that might induce chaotic
©2004 The American Physical Society14-1
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behavior and discuss the special case of heteroticM theory,
which, to leading order in the 11-dimensional gravitation
couplingk, is on boundary between chaotic and smooth
havior.

II. A COSMIC NO-HAIR THEOREM FOR CONTRACTING
UNIVERSES

The cornerstone of the inflationary paradigm is an ar
ment known as the cosmic no-hair theorem, according
which a universe containing a perfect fluid component w
w,21/3 will rapidly approach flatness, homogeneity a
isotropy at late times, for a wide range of initial data~namely
those for which the space curvature, inhomogeneity and
isotropy are not very large! @27#. In the Friedmann equation
the energy density for a component with equation of statw
is proportional to 1/ax, where the exponentx53(11w).
The anisotropy term is proportional toa26 and the spatial
curvature term is proportional toa22. As the universe ex-
pands, the contribution with the smallest values ofx redshifts
away more slowly than components with larger values ox
and comes to dominate the Friedmann equation; the com
nents with the smallest value ofx overall ultimately domi-
nate. If the energy component with the smallest value ow
hasw,21/3, thenx,2 and this component dominates. F
a wide range of initial data, convergence to a homogene
and isotropic expanding universe is assured.

Below, we will present an analogous cosmic no-hair th
rem for contracting universes. In a contracting universe,
component with the largest value ofx will dominate the
Friedmann equation. Starting from an inhomogeneous
anisotropic initial state, we will show that the existence o
perfect fluid withw.1 ~or x.6) will suppress chaotic be
havior, and enable a smooth and isotropic contraction to
big crunch. We will find that curvature plays a more comp
cated role compared to the case of expansion. Hence, we
obtain a cosmic no-hair theorem for the case of zero spa
curvature and then generalize to the case of arbitrary sp
curvature. We intentionally take a pedagogical approach
encompasses known results forw<1 to make our discussion
self-contained. Our analysis assumes the initial inhomoge
ity is small; it is possible that the universe evolves towa
other attractors for sufficiently large deviations from hom
geneity. Our conventions are given in@14#.

All of our computations are performed in synchrono
gauge,

ds252dt21hab~ t,x!dxadxb, ~2!

where we use our freedom to choose a spatial slicing
ensure that the big crunch occurs everywhere att50
(dethab→0 as t→0). For a perfect, comoving fluid with
equation of statep5wr, the Einstein equations are@1#

]

]t
k j

j1k j
kkk

j52S 113w

2 D r, ~3a!

]

]xa
k j

j2
]

]xj
k j

a50, ~3b!
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Pa
b1

1

Ah

]

]t
~Ahka

b!51S 12w

2 D r, ~3c!

wherePa
b is the Ricci tensor on spacelike surfaces, andkab

is defined by

kab5
1

2

]

]t
hab , ~4a!

ka
b5ka jh

jb. ~4b!

Near the big crunch, the dynamics of the metric~2! are
ultralocal @2,7,8,28#. That is, the evolution of adjacent spa
tial points decouples because spatial gradients increase
slowly than other terms in the equations of motion. The
fore, analyzing the dynamics of this metric near the singu
ity and at fixed spatial coordinatex0 is equivalent to analyz-
ing the much simpler system

ds252dt21(
i j

e2b i j (t;x0)s ( i )~y;x0!s ( j )~y;x0!, ~5!

where thes ( i ) are y-dependent one-forms that are linear
independent at each point and form ahomogeneous~but pos-
sibly curved! space such as Bianchi type IX@10#. The b i j ,
which do not depend ony, describe the~generally aniso-
tropic! contraction of this space. Both thes ( i ) and theb i j
depend on the parameterx0, the spatial point being studied
The dynamics of the inhomogeneous universe at a fixed
tial point can be approximated, neart50, by the dynamics
of a homogeneous~but curved and anisotropic! universe.
Differences in curvature and anisotropy between differentx0
are encoded in the differents ( i ) and b i j associated with
these points.

In each Kasner-like epoch, we may perform a rotation
that b is diagonal. Furthermore, we may separate out
trace ofb and write it as the ‘‘volume scale factor’’a(t), in
analogy to the isotropic Friedman-Robertson-Walker u
verse, to obtain the metric

ds252dt21a2~ t !(
i

e2b i (t)~s ( i )!2, ~6a!

b1~ t !1b2~ t !1b3~ t !50, ~6b!

where the dependence ofa(t), theb i and thes ( i ) on x0 has
been suppressed. The combinationaeb i can be thought of as
the effective scale factor along thei th direction, and the
functions b i then describe the contraction or expansion
each direction relative to the overall volume contraction. W
may use our freedom to rescale thes to ensure that at som
time t0 , a(t0)51, b i(t0)50 and det(s (1),s (2),s (3))51.
Quantities with a subscript zero~such asr0) refer to their
values at this fixed time.

The Einstein equations~3! close with the equation of en
ergy conservation for the fluid,
4-2
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d logr

d loga
523~11w!. ~7!

For constantw, this equation has the familiar solution,

r~a!5r0a23(11w). ~8!

While we could have included several perfect fluids, w
different equations of statewi , the fluid with the largest
equation of state will always dominate near the crunch, s
is sufficient to consider only one energy component. We h
taken this fluid to be comoving, because small perturbati
of a comoving background are suppressed in aw.0, con-
tracting universe. In particular, theT0

i terms that would ap-
pear on the right-hand side of Eq.~3b! grow only as
t22/(11w), which is slower than thet22 rate at which the
diagonal terms grow@29#.

A. The curvature-free case

We first examine the case of Ricci flat spatial 3-surfac
for which Pa

b50. In this case, we writes ( i )5dxi . Then, the
Einstein equations~3! reduce to

3S ȧ

a
D 2

2
1

2
~ ḃ1

21ḃ2
21ḃ3

2!5r, ~9a!

b̈ i13
ȧ

a
ḃ i50, ~9b!

where a dot indicates a derivative with respect to the pro
time t. Integration of Eq.~9b! gives

ḃ i5cia
23, ~10!

while the constraint~6b! implies,

c11c21c350. ~11!

Combining these results, Eq.~9a! becomes a Friedman
equation,

3S ȧ

a
D 2

5r~a!1
s2

a6
5

r0

a3(11w)
1

s2

a6
, ~12!

where we define

s25
1

2
~c1

21c2
21c3

2!. ~13!

An anisotropic universe hasḃ iÞ0, i.e. ciÞ0. The constant
s2 parametrizes the anisotropic contribution to the Frie
mann equation in Eq.~12!. The anisotropy evolves as 1/a6 or
x56. We define the fractional energy densitiesVr andVs

as

Vr5
r~a!

r~a!1s2/a6
, ~14a!
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s2/a6

r~a!1s2/a6
. ~14b!

These quantities represent the contribution of the per
fluid and anisotropy to the critical density for closure of t
universe. Since we are neglecting curvature,Vr1Vs51.

The solution for theb i as a function of the scale factora
is

b i~a!5ciA3E
a

1 da8

a8
@r~a8!a861s2#21/2. ~15!

The limits of integration have been chosen to ensureb i(1)
50. For the remainder of the paper, we will assume a u
verse contracting towardsa→0 as t approaches zero from
below. Let us now examine the behavior of these solutio
for variousw.

1. wË1

When w,1, ther(a) part of the integral~15! is negli-
gible asa→0, and so the solution converges to the vacu
(r50) Kasner universe during contraction,

a~ t !5S t

t0
D 1/3

~16a!

b i~ t !5
cj

sA3
lnS t

t0
D . ~16b!

The Kasner universe is parametrized by threeKasner ex-
ponents pi ,

pi5
1

3
1

cj

sA3
. ~17!

The scale factors in Eq.~6! are powers oft,

aeb i5ut/t0upj , ~18!

and the relations~11! and ~13! become

p11p21p351 ~19a!

p1
21p2

21p3
251, ~19b!

known as theKasner conditions. These describe the interse
tion of a plane, theKasner plane, and a unit sphere, the
Kasner sphere, as illustrated in Fig. 1. We will denote th
intersection, which represents the allowed values of thepi ,
as theKasner circle. The outermost circle in Fig. 1 corre
sponds to the limit wherew,1, as the energy density scale
away and only a vacuum, anisotropic universe remains.

There are three degenerate solutions where exactly on
the pi is one, and the other exponents are zero~the solid
black circles in Fig. 1!. At all other points on the~dashed!
Kasner circle exactly one of thepi is negative. Thus, al-
though the geometric mean of the three scale factorsa(t)
4-3
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5utu is contracting, a single scale factor corresponding to
negative Kasner exponent is undergoing expansion to in
ity.

For the curvature-free case, the universe becomes incr
ingly anisotropic near the big crunch ifw,1. In particular,
the isotropic solution,p15p25p351/3, is inconsistent with
the Kasner conditions~19a! and ~19b!.

2. wÄ1

Inspection of Eq.~8! reveals that, whenw51, the matter
density and the anisotropy terms in the Friedmann equa
~12! scale with the same power ofa, so Vr andVs remain
fixed. The solutions are

a~ t !5S t

t0
D 1/3

~20a!

b i~ t !5
cj

A3~s21r0!
lnS t

t0
D . ~20b!

This solution is very similar to ther50 case, and indeed w
may define the Kasner exponents,

pi5
1

3
1

cj

sA3
S 11

r0

s2D 21/2

. ~21!

FIG. 1. The Kasner planep11p21p351 and its intersections
~the Kasner circles! with various spheresp1

21p2
21p3

2512q2

where q25
2
3 (12Vs); see Eq.~22!. The vacuum solution corre

sponds toVs51 ~the outermost circle!. The inner circles are rel-
evant to the case wherew51 andVs,1. In the white regions, the
Kasner exponents are all positive~corresponding to contraction!; in
gray regions, one exponent is negative~expanding!. If the spatial
curvature is non-zero, points along the circles in the white reg
~thick parts of circles! are stable but points in the gray region
~dashed parts of circles! are unstable, jumping to new values after
short period of contraction. If a model~i.e. a circle! has an open se
of stable points~the three innermost circles but not the outerm
circle!, the contracting phase does not exhibit chaotic mixma
behavior.
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The Kasner conditions are different. If we define

q2[
2

3

r0

s21r0

5
2

3
~12Vs! ~22!

then the Kasner conditions are

p11p21p351, ~23a!

p1
21p2

21p3
2512q25 1

3 1 1
3 Vs . ~23b!

The first condition is unchanged from Eq.~19b! but the right-
hand side of the second condition has been modified.
creasingVs corresponds to increasing the radius of the K
ner sphere.

Thew51 model allows us to explore the behavior of th
contracting universe as a function ofVs . The perfectly iso-
tropic case corresponds toVs50, which is the usual flat
Friedmann-Robertson-Walker solution~the innermost circle,
in the limit where the circle has shrunk to a point, in Fig. 1!.
Unlike the vacuum Kasner case, all of the Kasner expone
are positive~i.e., they lie within the white region of Fig. 1!
provided thatVs,1/4 ~within the larger, solid circle in-
scribed in the triangle!. For this range, none of the sca
factors is increasing during the contraction, although they
decreasing at different rates. WhenVs.1/4 ~third largest
circle!, then some points on the Kasner circle have a nega
Kasner exponent~dashed part of circle! and other points may
have all positive Kasner exponents~solid, thick parts of
circle!.

Thus, ignoring the curvature, thew51 case with non-zero
Vs contracts smoothly but anisotropically to the crunch.
the special case whereVs50, the contraction is isotropic.

3. wÌ1

For w.1, the energy density dominates (Vr→1) as a
→0, and the metric approaches the approximate form

a~ t !5S t

t0
D 2/3(11w)

, ~24a!

b i~ t !5cj

2

A3r0

1

w21
F S t

t0
D (w21)/(w11)

21G ,

~24b!

where we have chosen the constants of integration sob i
50 at t5t0. The crucial feature is that the time-varying pa
of the b i is proportional tota wherea is positive if w.1.
This means that theb i approach a constant and the univer
becomes isotropic at the crunch@30#.

This simple result is a ‘‘no-hair theorem’’ for universe
without spatial curvature: Whenw.1, an initially aniso-
tropic universe becomes isotropic (Vs→0) near the big
crunch. Thew.1 case is stable under anisotropic perturb
tions. Forw,1, the universe becomes increasingly anis
tropic in the sense thatVs→1 asa→0. For w51, Vs re-
mains fixed asa→0. Evolution is smooth~no mixmaster

n

t
r
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behavior! in all cases, and is well approximated as a Kas
metric with constant coefficients for sufficiently smalla.

B. Curvature and chaos

Complex behavior can arise when there is non-zero s
tial curvature in a contracting universe. This may seem s
prising at first, since the spatial curvature for a homogene
and isotropic universe grows as 1/a2, which increases more
slowly than either the anisotropy or the energy density o
component withw.21/3. However, we have seen abo
that the contracting phase forw<1 is anisotropic. We will
show below that this can produce rapidly growing curvat
perturbations and chaotic behavior. On the other hand,
will see that chaotic behavior is suppressed ifw.1 and the
contraction approaches isotropy asa→0.

We now allow thes ( i ) to have anx dependence and con
sider a curved manifold. The spatial Ricci tensor for the m
ric ~6! has the form@1#

Pa
b5

1

a2 (
i jk

Sa
b

i jk~s!e2(b i2b j 2bk). ~25!

The functionsSa
b

i jk depend only on thes i and their space
derivatives, and are independent of time.

The expression~25! reveals a crucial connection betwee
the behavior of anisotropy and curvature near the big crun
In the isotropic limit, b i50 and Eq.~25! reduces to the
homogeneous and isotropic 1/a2 scaling discussed above
However, the terms in Eq.~25! are essentially ratios of scal
factors. Thus, if the anisotropy is growing asa→0, some
terms—involving ratios of expanding and contracting sc
factors—will grow, and the corresponding curvature comp
nents will scale faster than 1/a2. For w,1 the anisotropy
dominates near the crunch, and, as we will discuss be
this causes the curvature to grow and induce chaos. By
trast, in thew.1 model, the anisotropy vanishes at t
crunch, and the curvature scales as the usual 1/a2, which
may be neglected.

1. wË1

In this case we begin by assuming that the behavior n
the crunch is described by the vacuum Kasner solution, w
Kasner conditions~19a! and ~19b!. Using the Kasner solu
tion, it is readily seen that the Einstein equation~3a! contains
a leading order term with time dependencet22.

The second Einstein equation~3b! is a consistency chec
for our assumption of ultralocality. For an appropriate cho
of the s ( i )—a basis for one of the Bianchi universes—th
equation vanishes identically and the metric~6! solves the
Einstein equations.

The third Einstein equation~3c! indicates that the simple
Kasner solutions must break down near the big crunch. If
order the Kasner exponents asp1<p2<p3, then the most
divergent term in the third Einstein equation comes fro
terms in the spatial curvature~25!, with leading time depen-
dence,

t22(122p1). ~26!
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The leading term is more divergent thant22, since the Kas-
ner conditions~19a! and ~19b! imply p1 is always negative.
Therefore, our smoothly contracting solutions are not sta
to perturbations in the spatial 3-curvature. A small amoun
curvature will grow and come to dominate the dynamics
fore the big crunch.

The behavior of the universe in this regime has been
tensively studied and is known to be chaotic@2–6,8#. The
spatial curvature terms cause the Kasner exponentspi and
the principal directionss i to become time-dependent durin
contraction.

More precisely, the exponents and principal directions
nearly constant for stretches of Kasner-like contraction, d
ing which the curvature is negligible. These Kasner-like e
ochs are punctuated by short intervals when the curva
momentarily dominates. The exponents and principal dir
tions suddenly jump to new values, and then a new stretc
Kasner-like contraction begins during which the curvatu
terms are again negligible. The universe undergoes an
nite number of such jumps before the big crunch. The c
otic, non-integrable evolution is equivalent to that of a b
liard ball @8#, which experiences free motion interrupted b
collisions with walls. Models with this oscillatory behavio
are calledchaotic.

This presents a problem for cosmological models, as
expects curvature perturbations in any realistic universe
cause the local value of the curvature to vary from point
point. If each spatial point evolves independently and cha
cally, the evolution of nearby points diverges very quickly
contraction continues, and the universe rapidly becom
highly inhomogeneous asa→0. If w,1 throughout the con-
tracting phase, it seems unlikely that the observed homo
neous universe could emerge from this state after the bou
to an expanding phase@31#.

2. wÄ1

The chaotic behavior is mitigated in thew51 case. Re-
calling our discussion of the curvature-free scenario, it
clear that there are regions of non-zero measure on the
ner circle for which all of thepi are positive. We will refer to
these points asstable. All choices of pi when Vs,1/4 are
stable. If the universe begins at a stable point, the curva
term remains negligible asa→0 and the contraction is
smoothly Kasner-like.

However, whenVs.1/4, some choices of thepi will
have onepi,0. If the universe begins at one of these poin
the curvature term will grow and become dominant, caus
the values ofpi and the principal axess i to change. We refer
to these points asunstable. A more complete analysis@3#
reveals that, after a finite number of jumps, the universe
a point in the open set of stablepi . From this point onwards
the universe contracts smoothly and without any furth
jumps.

We call these modelsnon-chaotic, since the universe is
guaranteed to arrive at a stable point asa→0. Non-chaotic
models~Kasner circles! may contain both stable and unstab
points, but they will always oscillate only a finite number
times before arriving in the set of stable points, after wh
the behavior is integrable.
4-5



he

lu
te

-
rs
o
a

n

rs
u
he
o

fo
e
u
o

er

fo
ic
re

a-

n

we

the

els

e-
se

e

ll
nd

he
e
con-

us

en
ec.

-
lo-
all

e

-
ial

,

ERICKSONet al. PHYSICAL REVIEW D 69, 063514 ~2004!
3. wÌ1

For w.1, curvature does not affect the contraction. T
key is the time dependence of theb i in Eq. ~24!, which
approach zero as a positive power oft as t→0. Conse-
quently, the exponential factorseb i in the metric approach
constants. The leading order time-behavior ofPa

b is simply
that of a homogeneous and isotropic universe,

P;
1

a2
;utu2[4/3(11w)] . ~27!

This is always less divergent thatt22 for w.1. Thus, even
in the presence of initial anisotropy and curvature, the so
tion for w.1 converges to the isotropic solution represen
by the central point on the Kasner sphere in Fig. 1.

We can generalize our cosmic no-hair theorem~described
at the end of Sec. II A! to include models with spatial cur
vature. The Einstein equations for a contracting unive
with anisotropy and inhomogeneous spatial curvature c
verge to the Friedmann equation for a homogeneous, flat
isotropic universe if it contains energy withw.1, and that
for a homogeneous, flat but anisotropic universe ifw51.
The w,1 case becomes highly inhomogeneous and the
hair theorem is inapplicable.

III. COUPLING TO p-FORMS AND CHAOS

In Sec. II we assumed that the evolution of the unive
was dominated by an energy component with a fixed eq
tion of state evolving independently of other matter in t
universe. The component could have been a scalar field
perfect fluid. We found chaotic behavior forw,1 in the
presence of curvature but non-chaotic behavior forw>1.

In this section we want to consider how the behavior
w>1 can change if the fluid is imperfect or couples to oth
components. In many theories, including Kaluza-Klein, s
pergravity and superstring models, the relevant energy c
sists of a scalar field that is coupled top-forms. Conse-
quently, we will focus on this important example, as oth
have in the past@3,5–8#.

To determine the effect of the coupling top-forms on
chaotic behavior, our approach is similar to our analysis
spatial curvature, where we assume an initial state in wh
the spatial curvature is negligible and then check that it
mains small. Here we assume that thep-form field strength is
initially negligible and ask how its contribution evolves rel
tive to the energy density with equation of statew. Our ac-
tion is

S5E d4xA2gS 1

2
R2

1

2
~]f!22V~f!

2
1

2~p11!!
elfFm1•••mp11

2D , ~28!

whereg is the metric,R is the scalar curvature,V is a poten-
tial for the scalar fieldf, p is the rank of thep-form, F is the
associated field strength tensor andl is the coupling con-
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stant. The potentialV(f) is chosen to give a fixed equatio
of statew>1 in the absence ap-form coupling:

V~f!52V0e2A3(11w)f, ~29!

whereV0 is a positive constant. Throughout this paper,
assume without loss of generality thatf→2` asa→0.

For a given equation of statew andp-form rank, the be-
havior of the system ast→0 depends on the couplingl. We
can extend the terminology introduced earlier to describe
properties for a givenl. We classify thep-form coupling
parameterl as supercritical if the p-form terms grow rela-
tive to the scalar field energy density. We call these mod
supercritical, as opposed to chaotic, because ifw.1 it is not
known whether chaos occurs or whether thep-forms merely
play a non-negligible role in integrable dynamics. In the sp
cial casew51, chaos is known to occur, and we call the
modelschaotic@5–8#. Values ofl for which the contracting
solution with negligiblep-forms is stable are callednon-
chaotic ~some authors usesubcritical!. These two cases ar
analogous to those introduced in Sec. II. Ifl is on the
boundary between supercritical and non-chaotic, we cal
critical. The behavior of critical models may be novel, a
will be discussed at the end of this section.

We are assuming that initially the spatial curvature, t
anisotropy and thep-form terms are small, and then w
check if these conditions are maintained as the universe
tracts. Since we are considering models wherew>1, the
model is non-chaotic if thep-forms are negligible. The uni-
verse may be approximated initially by the homogeneo
isotropic Friedmann-Robertson-Walker form in Eq.~6! with
b i'0 ands ( i )5dxi . If w.1 and thep-form terms are neg-
ligible, Vs→0 as the crunch approaches. Forw51, Vs

remains small but finite. If the isotropic case is unstable, th
adding anisotropy cannot restore stability; just as in S
II B, the isotropic scale factors are the most stable.

It can be shown that thep-form terms involving the spa-
tial gradients ofF grow slower than the leading homoge
neous time-derivative terms, another example of the ultra
cal behavior discussed previously. Hence, we neglect
spatial derivatives of the field strength.

The components ofF with purely spatial indices,
Fi 1••• i p11

are calledmagneticand the components with on

time index,F0i 1••• i p, are calledelectric, in analogy with the
Maxwell action. We will use the labelsE and B to indicate
their respective contributions.F has a vanishing exterior de
rivative dF50. In coordinate notation, neglecting the spat
derivatives ofF, this corresponds to

] [0Fi 1••• i p11]50, ~30!

where the brackets@•••# indicate antisymmetrization. Thus
the magnetic components are constant,

Fi 1••• i p11
5~const!. ~31!

The equation of motion forF is
4-6



nt

s,
rg

-
W

ti
,

f

o-

ality
-

sity

e

to

et

ag-

KASNER AND MIXMASTER BEHAVIOR IN UNIVERSES . . . PHYSICAL REVIEW D 69, 063514 ~2004!
¹m~elfFmm2•••mp11!5]m~elfFmm2•••mp11!

1Gm
mselfFsm2•••mp1150.

~32!

Only one set of Christoffel symbols appears due to the a
symmetry ofF. SinceGm

m05]/]t logA2g andGm
m i50, we

can integrate to find,

F0i 1••• i p5
e2lf

A2g
3~const!. ~33!

The p-form part of the stress-energy tensor is

Tmn5
elf

~p11!! S ~p11!Fmm2•••mp11
Fn

m2•••mp112
1

2
gmnF2D .

~34!

Decomposing~34! into electric and magnetic component
and including factors of the metric, we compute the ene
density for thep-forms rp52T0

0, which is,

rp5
elf

~p11!! S p11

2
F0i 1••• i pF0 j 1••• j pgi 1 j 1

•••gi pj p

1
1

2
Fi 1••• i p11

F j 1••• j p11
gi 1 j 1

•••gi p11 j p11D ~35!

5
e2lf

a2(32p)
aE

21
elf

a2(p11)
aB

2 , ~36!

where the positive constantsaE
2 and aB

2 represent the mag
nitude of the electric and magnetic energy, respectively.
can now define a new set of fractional energy densities,

Vf5r21@ḟ2/21V~f!#, ~37a!

VE5r21
e2lf

a2(32p)
aE

2 , ~37b!

VB5r21
elf

a2(p11)
aB

2 , ~37c!

r5
1

2
ḟ21V~f!1

e2lf

a2(32p)
aE

21
elf

a2(p11)
aB

2 , ~37d!

whereVf is the energy density in the scalar field andVE
and VM are the energy densities in electric and magne
modes. We are assuming that the anisotropy is negligible
Vs'0.

The solution for af-dominated universe with equation o
statew is

f5q lnutu, q5A 4

3~11w!
, ~38!
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anda5ut/t0u2/3(11w). Substituting in Eq.~36!, two terms in
rp may be written as

rp5aE
2 utupE1aB

2 utupB, ~39!

wherepE andpB are called the electric and magnetic exp
nents, respectively. They are

pE52
4~32p!

3~11w!
2lA 4

3~11w!
, ~40!

pB52
4~p11!

3~11w!
1lA 4

3~11w!
. ~41!

Note that these expressions are invariant under a du
transformation, which takesp→22p, interchanges the elec
tric and magnetic modes, and takesf→2f.

In the Friedmann equation, the scalar field energy den
scales ast22. Consequently,Vf→1 and VE,B→0 as the
universe contracts if bothpE and pB are both greater than
22. In this case, thep-form contribution is negligible andl
is non-chaotic. Alternatively, if eitherpE or pB is less than
22, the respectivep-form terms become large and alter th
dynamics.

For w51, the non-chaotic values ofl are

2A8/3,l,0, p50

2A2/3,l,A2/3, p51 ~42!

0,l,A8/3, p52.

Increasingw causes the interval of non-chaotic couplings
grow, as shown in Fig. 2. In particular, for anyp andl, there
exists a critical value wcrit(l,p) such that, for w
.wcrit(l,p) thep-form terms remains negligible. For any s

FIG. 2. The four dimensional electric and magnetic couplingsl
as a function of the critical equation of state forp50,1,2. The
upper and lower three curves represent the critical electric and m
netic exponents, respectively. A form with givenp andl is stable in
a universe with equation of statew if the point (w,l) lies between
the two curves for the givenp.
4-7
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of p-forms and couplings there exists aw̄crit , the maximum
of 1 ~the critical equation of state for curvature! and the
wcrit(l,p) for eachp and l. Then the contraction is non
chaotic if w.w̄crit .

The behavior can be understood in terms of aneffective
equation of state for the action~28!, using the conservation
equation

ṙ523
ȧ

a
~11weff!r, ~43!

wherer is given by Eq.~37d!. Using Eqs.~37!, the equation
of motion for f and the Friedmann equation, we find

weff5wfVf1
322p

3
VE1

2p21

3
VB , ~44!

where

wf5
ḟ2/22V~f!

ḟ2/21V~f!
~45!

is the equation of state for the decoupled scalar field
Vf1VE1VB51. The expression~44! is exact, valid for all
values of theV i assuming the background is homogeneo
flat and isotropic. For the electric and magnetic contrib
tions, we can introducewE5(322p)/3 and wB5(2p
21)/3, respectively. Theweff is just theV-weighted average
of wf , wE andwB .

All the l dependence ofweff is contained in the time
evolution of theV i ; wf , wE and wB do not depend onl.
Both wE andwB are always less than or equal to unity, and
least one is strictly less.

If the p-form couplingl is non-chaotic, the behavior i
simple. The quantitiesVE andVB rapidly approach zero a
Vf approaches one, and the universe is dominated by
scalar field, with the equation of statewf . This is the non-
chaotic case, discussed in Sec. III.

Alternatively, if thep-form coupling is supercritical,VE
and VB grow. The averaging of theE and B component
ensuresweff,wf . If wf51 thenweff,1. In this case, the
anisotropy grows and chaotic oscillations occur. It is n
known if this happens in thewf.1 case. If in addition, the
p-form coupling is critical~so wcrit51), it turns out that the
model is equivalent to an infinite-dimensional hyperbo
Toda system. There are an infinite number of jumps from
Kasner-like solution to the next, but the system may be
mally integrable@7,8#. It is not clear what the physical ram
fications of this behavior are.

IV. TIME-VARYING EQUATION OF STATE AND CHAOS

In a realistic cosmological model, the equation of st
will not be constant, but will depend on the scale factor a
approach some limiting valuew→w̄ as a→0. If w̄Þwcrit ,
none of the above analysis changes substantially. The m
is supercritical ifw̄,wcrit or non-chaotic ifw̄.wcrit . The
critical case,w̄5wcrit , is more subtle, and the time depe
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dence ofw̄ can be significant. In this section we assum
wcrit51, as this is the most important case, and analyze w
happens whenwf→1 at the crunch. We can expandwf as

wf~a!511g~a!, ~46!

whereg is a small function of the scale factor such thatg
→0 asa→0.

If there is nop-form with critical coupling, then using
Eqs. ~7! and ~15! it can be shown that ifg(a)loga ap-
proaches a constant asa→0, the behavior is essentially th
same as thew51 case, i.e. non-chaotic. The radius of t
Kasner circle in Fig. 1 shrinks ifw→11 or expands ifw
→12. If g→0 so slowly thatg(a)loga diverges asa→0,
then the anisotropy is eliminated ifg approaches zero from
above or the chaos is restored ifg approaches from below.

Alternatively, if the model has ap-form with critical cou-
pling, the Kasner contraction will be stable if thep-form
contribution to the equations of motion remain subdomina
or, equivalently, if the ratio of thep-form terms to the other
terms vanishes in thea→0 limit. For magnetic modes with
critical couplinglcrit,0, we find

log
VM

Vf
5 log

elcritf/a2(p11)

ḟ2/21V~f!
;2CE

a

a0 da8

a8
g~a8!,

~47!

whereC is a positive constant and by ‘‘; ’’ we mean up to
terms finite in thea→0 limit. The behavior is identical if the
electric modes have critical coupling. Ifg→0 very slowly,
for example,

g~a!;u logau21 ~48!

so that the integral diverges asa→0, then the ratio goes to
zero andVM becomes negligible in thea→0 limit. This
ensures that the term is small, and never grows to influe
the dynamics.

Let us investigate what conditions on the potential w
give us ag of this form. If we combine the Friedmann equ
tion and equation of motion forf, we obtain

dc

d loga
53S c2

V,f

A6V
D ~c21!~c11!, ~49!

wheref denotes a derivative byf and

A6c5
df

d loga
. ~50!

The equation of state~45! can be expressed in terms ofc,

wf511g52c221. ~51!

We can obtainwf→11 asa→0 for any negative poten
tial which is bounded~for large negative values off) by
2Ce2A6f, whereC is a positive constant@see Eq.~29!#. The
kinetic energy increases more rapidly than the potential
ergy in these cases, and sowf approaches unity at the
4-8
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crunch. In particular, the potential need not be bounded
low. In general, any potential which can be expressed in
form

V~f!52W8~f!223W~f!2 ~52!

satisfies positive energy@32#. Hertoget al. @33# have shown
that the potential

2V0e2cf, ~53!

whereV0 and c are positive constants, can be expressed
this form providedc,A6, and so satisfies positive energ
For c>A6, solutions exist with total ADM energy that i
unbounded below.

For the potential~53!, V,f /V5c. In the casec,A6, we
find

g}ay, ~54!

wherey is a positive constant. Consequently,g loga→0 as
a→0 and thep-form with critical coupling is not suppressed
However, whenc5A6, the solution to the equations of mo
tion show thatg loga approaches a constant, so thep-form
can be suppressed when positive energy is violated.

The potential

V~f!52V0e2A6fufun, ~55!

~or more generally, an exponential times any finite ord
polynomial! satisfies positive energy@i.e., can be expresse
in the form~52!# for n<21. Solving the equation of motion
~49! for large f, we find that forn<21 the p-form with
critical coupling is not suppressed. Surprisingly, forn.21
the ratio~47! goes to zero, and the solution is stable. For
broad class of potentials~53! and ~55!, the parameters fo
which they satisfy positive energy turn out to be exac
those which do not suppress thep-form. It is an open ques
tion whether any potential can be constructed which w
suppress thewcrit51 p-form and satisfy positive energy.

V. EXTRA DIMENSIONS, ORBIFOLDS AND CHAOS

In models in which gravity is fundamentally higher d
mensional, the detailed global structure of the extra dim
sions can suppress or enhance chaos in the four dimens
theory. We consider two simple compactifications of fiv
dimensional gravity, onS1 andS1/Z2. In the first, the chaotic
nature of pure five-dimensional gravity descends to the fo
dimensional theory. In the second, the chaotic behavio
suppressed. Models of quantum gravity also generally
clude additional matter fields in the extra dimensions. As
example, we discuss the compactification of hetero
M theory to four dimensions and find that its behavior dur
gravitational contraction is on the borderline between smo
and chaotic.

Consider a five-dimensional, flat universe without mat
fields. We know from the study of general Kasner univer
@4# that it will exhibit chaotic behavior. Now compactify on
dimension onS1. We know that the four-dimensional effec
tive theory describes Einstein gravity coupled to a free sc
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field. The scalar field describes the volume of theS1—it is a
simple example of a moduli field. As all of our precedin
arguments regarding gravitational contraction are local in
ture, we expect that the resulting system should be chaoti
well. However, a free scalar field has equation of statew
51. According to our analysis in Sec. II, one might thin
that the behavior should be non-chaotic. What has happe
to the chaos?

The resolution lies in the fact that we have neglec
many of the degrees of freedom of the higher-dimensio
theory. A general five-dimensional metricGMN can be writ-
ten

G5S hmn1e2qfAmAn e2qfAn

e2qfAm e2qf D . ~56!

If we neglect the dependence of the metric on the fifth
mension, we may integrate out this dimension and perfor
conformal transformation to canonically normalize the fou
dimensional Ricci scalar. The coefficientq is then chosen to
canonically normalize the scalar field kinetic energy in t
resulting action

S5E d4xA2g@ 1
2 R2 1

2 ~]f!22 1
4 eA6fF2#, ~57!

which describes a vector field coupled to a free scalar an
gravity. The couplingl5A6 is outside the stable range for
1-form in four dimensions. Therefore, the four-dimension
theory is chaotic, as we would have guessed, but we hav
include the interactions withp-forms to see that this is so.

Next, instead of compactifying the fifth dimension onS1,
let us compactify on the orbifoldS1/Z2. If the coordinatex5

on S1 runs from2p to p, this orbifold can be realized asS1

together with the reflectionx5→2x5. This takes Gm5
→2Gm5, or equivalentlyAm→2Am . Thus, the Kaluza-
Klein zero-mode vector fieldAm is absent in the effective
action ~57!. The absence of this vector field in the effectiv
action thus implies that the four-dimensional theory is
longer chaotic.

While orbifolding suppresses some gauge fields a
p-forms that would cause chaotic behavior, in some mod
there are additionalp-forms in the bulk. Thesep-forms, after
dimensional reduction, may themselves lead to chaotic
havior. An illustrative example is heteroticM theory, which
includes a three-form field.

The low-energy four-dimensional effective action h
been evaluated perturbatively by Lukaset al. @34#. To zeroth
order in the 11-dimensional gravitational couplingk, it is

S(0)5
prV

k2
E dx4A2g@R2~]a!22~]c!22e2A8/3c~]x!2

2e2A8a~]s!2#, ~58!

where we have rescaled the fields in Lukas’ action so
kinetic energies are canonically normalized. The scalar fi
c is the radion, which governs the brane separation. T
Calabi-Yau volume modulusa and scalar fields ~which
4-9
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comes from the 11-dimensional 3-form! do not couple toc,
and so can be ignored. However, the 3-form modulusx
couples toc and the exponent is criticall52A8/3. Hence,
the theory does not lead to stable Kasner contraction. Inc
ing the first order (k2/3) correction to the action does no
change the result.

As this theory is critical, it is quite conceivable that high
order corrections will lead to a different behavior during co
mological contraction. There are a number of kinds of c
rections to Eq.~58! that could push the theory away from
criticality and render it either chaotic or non-chaotic; ho
ever, it is not yet known which behavior occurs.

VI. CONCLUSIONS

The new results presented in this paper build on o
three decades of preceding research on the behavior of
mological models contracting to a big crunch. The clas
work focused on cases where the equation of state of
dominant energy component isw<1 andw is constant. The
essential results in this case are as follows.

For a perfect fluid withw,1, the contraction is smooth
and anisotropic in the absence of curvature and chaotic m
master if there is non-zero curvature.

For a perfect fluid withw51, the contraction is smooth
andanisotropicin the absence of curvature. With curvatur
the contraction is anisotropic also, although, depending
the initial anisotropy, the contraction may undergo a fin
number of jumps from one Kasner-like behavior to anoth

For a free scalar field coupled top-forms with coupling
elf, the contraction ischaotic mixmasterif the couplingl is
outside a finite interval of non-chaoticl. The mixmaster
case is non-integrableand thecritical case may be inte-
grable.

In this paper we have extended this work to include ca
wherew.1, a situation that arises naturally in some rec
.

n

m

-
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models with a big-crunch–big-bang transition, such as
cyclic and ekpyrotic models. We have added the followi
results.

For perfect fluid withw.1, the contraction is smooth an
converges toisotropic at the crunch. The Einstein equation
converge to ultralocal, homogeneous and isotropic Fri
mann equations.

For a scalar field coupled top-forms, there exists awcrit
such that the contraction is smooth andisotropic for w
.wcrit .

If w is time varying and approaches one from above s
ficiently slowly the contraction issmoothand non-chaotic,
even in the presence of ap-form with critical equation of
statewcrit51.

In models with an extra dimension, compactification g
nerically produces a scalar field andp-forms.Z2 orbifolding
forces somep-forms to zero and, thereby, suppresses th
contributions to chaos.

In this paper we have studied how chaotic mixmaster
havior may be suppressed in models involving a big-crunc
big-bang transition. In particular, the ekpyrotic and cyc
models already include some of the required ingredients
cluding a scalar field withw.1 andZ2 orbifolding. We did
not present a complete non-chaotic string-motivated mo
but we hope the considerations reported here will be help
in that regard.
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