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Kasner and mixmaster behavior in universes with equation of statev=1
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We consider cosmological models with a scalar field with equation of atat& that contract towards a big
crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due
to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic
Friedmann equation ifr>1. We generalize the results to theories where the scalar field couglderos and
show that there exists a finite value wf depending on th@-forms, such that chaotic oscillations are sup-
pressed. We show that, orbifold compactification also contributes to suppressing chaotic behavior. In par-
ticular, chaos is avoided in contracting heterdfleheory models ifw>1 at the crunch.
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[. INTRODUCTION viewed as a generalization of the “cosmic no-hair theorem”
invoked in a rapidly inflating universe. Here we demonstrate

In cosmological models with a big-crunch—big-bang tran-analogous behavior in a slowly contracting universe with
sition, a key issue is the behavior as the Universe contracts 1. A related result of Dunsbyt al. [11-13 shows that
towards the crunch. From the classic studies of Belinskiimodels with 6G<w< 1 but with p? terms in the stress-energy
Khalatnikov, and Lifshitz(BKL) [1-3] and otherd4—8], it  tensor are also driven towards isotropy.
is known that the contraction can either proceed smoothly or The cosmic no-hair theorem for a contracting universe
chaotically. These studies have focused on models in whichontaining a perfect fluid witiv=1 is discussed in Sec. II. A
the universe contains matter and radiation, or, more genecommon example of a perfect fluid is a scalar figldvith a
ally, an energy component whose equation of statessl  potentialV(¢). In Sec. Il we consider the interaction of the
(Wherew=p/p is defined as the ratio of the pressprto the  scalar ¢ with a p-form field F,, ; through an exponential
energy density). If w<1, a contracting homogeneous and coupling,
isotropic solution is unstable to small perturbations in the
anisotropy and spatial curvature. As the overall volume e”‘f’F,Z,H, @
shrinks, the anisotropy causes the universe to expand along
one axis and contract along the others, a state that can béhere\ is a constanf14]. We consider this case because
approximated by the anisotropic Kasner solution. The spatiadcalar fields with exponential couplings peform fields are
curvature causes the axes and rates of contraction to undergommon in Kaluza-Klein, supergravity and superstring mod-
sudden jumps from one Kasner-like solution to another, arels. For the case/=1, it is known[3,7] that the contraction
effect known as “mixmaster(9,10] behavior. If the curva- is not chaotic if\ lies within a bounded interval. Here we
ture is not spatially uniform, then the chaotic behavior inshow that, fomny\ andp, there is a critical valugv;(\,p)
different regions is not synchronized and the universe befor which the chaotic behavior is suppressed wf
comes highly inhomogeneous at the big crunch. Hence, mixaw,;(\,p).
master behavior could potentially wreak havoc in cosmologi- Our results are of particular importance for the recent ek-
cal models with a big-crunch—big-bang transition, makingpyrotic [15] and cyclic[16] cosmological models, which
them inconsistent with the observed large scale homogeneityave a big-crunch—big-bang transition with a contraction
of the universe. phase dominated by a scalar field witk=1 [17]. The evo-

In this paper we show that the behavior of the universe afution of perturbations leading up to and passing through the
it approaches the big crunch is very different if there is antransition is an important aspect that remains unsefi&e-
energy component witiv>1. The chaotic behavior is sup- 24], and may depend on the precise physical conditions lead-
pressed and the universe contracts homogeneously and isag up to the bouncg25,26. The present work may be rel-
tropically as it approaches the singularity. The reason is thagvant since it suggests that the universe can remain
the anisotropy and curvature terms in the Einstein equationsomogeneous and isotropic on large scales. Once the evolu-
grow rapidly and become dominantif<1, but they remain tion becomes ultralocal, the whole universe is following the
negligible compared to the energy densitywit>1. In the  same homogeneous and isotropic evolution all the way to the
latter case, the Einstein equations converge to the Friedmariig crunch.
equations with purely time-dependent terms, a condition In Sec. IV we explore how the time variation wfaffects
sometimes referred to as “ultralocality.” The effect can beour conclusions, and in particular how approachingw,,;

from above may suppress chaotic behavior. In Sec. V we
discuss some specific models. In particular, we show how
*Electronic address: steinh@princeton.edu orbifolding can removep-forms that might induce chaotic
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behavior and discuss the special case of heteMtibeory, 1 9 1—w
which, to leading order in the 11-dimensional gravitational Pab+ ——(\/ﬁxab):+<7>p, (30
coupling x, is on boundary between chaotic and smooth be- vhdt
havior.
wherePab is the Ricci tensor on spacelike surfaces, ang
IIl. A COSMIC NO-HAIR THEOREM FOR CONTRACTING is defined by
UNIVERSES
19
The cornerstone of the inflationary paradigm is an argu- Kab= 5 Ehab‘ (48)

ment known as the cosmic no-hair theorem, according to

which a universe containing a perfect fluid component with b "

w< —1/3 will rapidly approach flatness, homogeneity and K = Kajh'”. (4b)
isotropy at late times, for a wide range of initial datamely

those for which the space curvature, inhomogeneity and an- Near the big crunch, the dynamics of the mets are
isotropy are not very largd27]. In the Friedmann equation, Ultralocal [2,7,8,28. That is, the evolution of adjacent spa-
the energy density for a component with equation of state tial points decouples because spatial gradients increase more
is proportional to 1%, where the exponemt=3(1+w). slowly than other terms in the equations of motion. There-
The anisotropy term is proportional @ © and the spatial fore, analyzing the dynamics of this metric near the singular-
curvature term is proportional ta~2. As the universe ex- ity and at fixed spatial coordinatg is equivalent to analyz-
pands, the contribution with the smallest values oédshifts  ing the much simpler system

away more slowly than components with larger values of
and comes to dominate the Friedmann equation; the compo-
nents with the smallest value afoverall ultimately domi-
nate. If the energy component with the smallest valuevof
hasw< —1/3, thenx<<2 and this component dominates. For

a wide range of initial data, convergence to a homerneo“iﬁdependent at each point and forrh@mogeneougout pos-

antélslotropm e>.<”pand|ngtun|verscla IS assured.. hair th sibly curved space such as Bianchi type P40]. The g;; ,
elow, we will present an analogous cosmic no-hair theoy, yjep o net depend on, describe thegenerally aniso-
rem for contracting universes. In a contracting universe, th

§ropic) contraction of this space. Both the) and theg;

. . . . i
component With f[he Iarge_st value ‘Xfw.'" dominate the epend on the parametey, the spatial point being studied.
Friedmann equation. Starting from an inhomogeneous an

anisotropic initial state, we will show that the existence of & he dynamics of the inhomogeneous universe at a fixed spa-
perfect fluid withw>1 (or x>6) will suppress chaotic be- lal point can be approximated, ne&ar 0, by the dynamics

, . . . of a homogeneousbut curved and anisotropicuniverse.
havior, and enable a smooth and isotropic contraction to th 9 ¢ P

. o NBitferences in curvature and anisotropy between differgnt
big crunch. We will find that curvature plays a more compli- Py ®

. _are encoded in the different!) and g;; associated with
cated role compared to the case of expansion. Hence, we f'rq‘[ese points

obtain a cosmic no-hair theorem for the case of zero spatia In each Kasner-like epoch, we may perform a rotation so

cuiare s hen generie Lo e case of sy S0t 15 ciagonal, Furthermore, we may separte ot e
) Y pedagog bp Frace of3 and write it as the “volume scale factog(t), in

encompasses known resullts fo1 to makg our @scussmn analogy to the isotropic Friedman-Robertson-Walker uni-
self-contained. Our analysis assumes the initial inhomogene- : :
o o . ; verse, to obtain the metric
ity is small; it is possible that the universe evolves towards

other attractors for sufficiently large deviations from homo-

d?=—dt?+ >, e?PitgW(y:x)aD(y;xp),  (5)
]

where thes(" are y-dependent one-forms that are linearly

geneity. Our conventions are given[ib4]. d?=—dt2+a(t) S e?hiO (M2, )
All of our computations are performed in synchronous i
gauge,
+ + =
dSZZ _dt2+ hab(t,X)ande, (2) ﬁl(t) BZ(t) ﬁ3(t) 01 (6b)

where we use our freedom to choose a spatial slicing t§’here the dependence aft), the ; and thea") onx, has
ensure that the big crunch occurs everywheretat been suppressed. The combinatiefi can be thought of as
(deth,,—0 ast—0). For a perfect, comoving fluid with the effective scale factor along thi¢h direction, and the

equation of statg=wp, the Einstein equations afé] functions ,Bi_ then d_escribe the contraction or expan_sion of
each direction relative to the overall volume contraction. We

J . " 1+3w may use our freedom to rescale tinedo ensure that at some
Sk el == =5 p, (Ba  time ty, a(ty)=1, Bi(t)=0 and det¢g®),c®,c®)=1.
Quantities with a subscript zer@uch aspg) refer to their
P P values at this fixed time.
— = —wl,=0, (3b) The Einstein equation8) close with the equation of en-
ax? ax! ergy conservation for the fluid,
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dlogp o?lab

———=—3(1+w). (7 Q=———or. 14b
dloga @t olla (14b)
For constantv, this equation has the familiar solution, These quantities represent the contribution of the perfect
3(1+w) ) fluid and anisotropy to the critical density for closure of the

a)=poad . . .
p(@)=po universe. Since we are neglecting curvatdeg+ ) ,=1.

While we could have included several perfect fluids, with ~ The solution for thes; as a function of the scale factar
different equations of state;, the fluid with the largest 'S

equation of state will always dominate near the crunch, so it ! dar

is sufficient to consider only one energy component. We have _ INat6 27—1/2

taken this fluid to be com0)</ing, beca%);e smF;II perturbations ’Bi(a)_ciﬁja ?[p(a Jat o] (15
of a comoving background are suppressed w>a0, con-

tracting universe. In particular, tHE’; terms that would ap- The limits of integration have been chosen to ensg(e)

pear on the right-hand side of Eq3b) grow only as =0. For the remainder of the paper, we will assume a uni-
t~ 2™ - which is slower than thé 2 rate at which the verse contracting towards—0 ast approaches zero from
diagonal terms grov29]. below. Let us now examine the behavior of these solutions

for variousw.
A. The curvature-free case

1. w<1
We first examine the case of Ricci flat spatial 3-surfaces, v ) ) )
for which P,°=0. In this case, we write')=dx. Then, the Whenw<1, thep(a) part of the integral15) is negli-
Einstein equation$3) reduce to gible asa—0, and so the solution converges to the vacuum
(p=0) Kasner universe during contraction,
\ 2
a 1. . .
3| =| —=(B2+B5+BH=p, 9 t)13
(a) 2(/31 B>+ B3)=p (99 a(t)=(t—) (163
0
B +3é,8 =0 (9b) c t
U (t =—jln(—). 16b)
Bm=—ginlg (
where a dot indicates a derivative with respect to the proper
time t. Integration of Eq(9b) gives The Kasner universe is parametrized by thikesner ex-
ponents p,
Bi=cia 3, (10)
. 1 n Cj (17)
while the constrain{6b) implies, Pi 3 U\/§-
CyHCotCs=0. (1D The scale factors in Ed6) are powers of,
Combining these results, Eq9a) becomes a Friedmann aefi=|t/ty|P), (18)
equation,
5 5 5 and the relation$11) and(13) become
3 2) —pay+ T=—Lo T (12)
a =r(a ab  g3tw) g6’ p1+ptps=1 (193
where we define pi+ps+p3=1, (19b)

5 s o known as th&kasner conditionsThese describe the intersec-
o°=5(c1+C+Cy). (13)  tion of a plane, theKasner plane and a unit sphere, the
Kasner sphereas illustrated in Fig. 1. We will denote the

An anisotropic universe hg8;#0, i.e.c;#0. The constant Intersection, Wh.'Ch represents the allgwed_ Vall.JeS ofthe
as theKasner circle The outermost circle in Fig. 1 corre-

o? parametrizes the anisotropic contribution to the Fried-S onds to the limit wherar< 1. as the enerav density scales
mann equation in Eq12). The anisotropy evolves asaf/or P : 9y y

x—6. We define the fractional energy densities and (), away and only a vacuum, anisotropic universe remains.
as There are three degenerate solutions where exactly one of

the p; is one, and the other exponents are zéhe solid
black circles in Fig. 1 At all other points on thédashed
=La) (149 Kasner circle exactly one of thp; is negative. Thus, al-
P p(a)+02/a6' though the geometric mean of the three scale facagt$
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FIG. 1. The Kasner planp;+p,+ps=1 and its intersections
(the Kasner circles with various spheresp?+ p3+p3=1-q?
where ?=3(1-Q,); see Eq.(22). The vacuum solution corre-
sponds toQ) ,=1 (the outermost circle The inner circles are rel-
evant to the case where=1 and(),<1. In the white regions, the
Kasner exponents are all positit@rresponding to contracti@nn
gray regions, one exponent is negatiexpanding. If the spatial

PHYSICAL REVIEW D 69, 063514 (2004

The Kasner conditions are different. If we define

=2 o a-a, (22
then the Kasner conditions are

P1t P2t ps=1, (239

pi+pz+pi=1-0°=5+30Q,. (23

The first condition is unchanged from EG9b) but the right-
hand side of the second condition has been modified. In-
creasing(, corresponds to increasing the radius of the Kas-
ner sphere.

Thew=1 model allows us to explore the behavior of the
contracting universe as a function Qf,. The perfectly iso-
tropic case corresponds @,=0, which is the usual flat
Friedmann-Robertson-Walker soluti¢tihe innermost circle,
in the limit where the circle has shrunk to a point, in Fig. 1
Unlike the vacuum Kasner case, all of the Kasner exponents
are positive(i.e., they lie within the white region of Fig.)1
provided thatQ),<1/4 (within the larger, solid circle in-

curvature is non-zero, points along the circles in the white regiorscribed in the triangle For this range, none of the scale
(thick parts of circles are stable but points in the gray regions factors is increasing during the contraction, although they are
(dashed parts of circlgsire unstable, jumping to new values after a decreasing at different rates. Whéh,>1/4 (third largest

short period of contraction. If a modéle. a circlg has an open set

circle), then some points on the Kasner circle have a negative

of stable pointgthe three innermost circles but not the outermostKasner exponernidashed part of circleand other points may
circle), the contracting phase does not exhibit chaotic mixmastehave all positive Kasner exponentsolid, thick parts of

behavior.

circle).
Thus, ignoring the curvature, the=1 case with non-zero

=|t] is contracting, a single scale factor corresponding to tha),, contracts smoothly but anisotropically to the crunch. In
negative Kasner exponent is undergoing expansion to infinthe special case whef@,=0, the contraction is isotropic.

ity.

For the curvature-free case, the universe becomes increas-

ingly anisotropic near the big crunchvf<1. In particular,
the isotropic solutionp,=p,=p;=1/3, is inconsistent with
the Kasner condition&19a and(19bh).
2.w=1
Inspection of Eq(8) reveals that, whew=1, the matter

density and the anisotropy terms in the Friedmann equation

(12) scale with the same power af so(}, and(}, remain
fixed. The solutions are

t 1/3
a<t>=(5) (209
Bi(t) S (t) (20b)
()= ——=In| —|.
V3(a2+pg) Mo

This solution is very similar to the=0 case, and indeed we
may define the Kasner exponents,

—-1/2

1+22
g

1 Cj
p=x+——

(21)

3.w>1

For w>1, the energy density dominatef (—1) asa
—0, and the metric approaches the approximate form

£\ 28(1+w)
a(t)= (—) : (2439
to
2 1 t (w—1)/(w+1)
ﬁ*”:“Tpom{(E) }
(24b)

where we have chosen the constants of integratiorn3;so
=0 att=ty. The crucial feature is that the time-varying part
of the B; is proportional tot* where « is positiveif w>1.
This means that thg; approach a constant and the universe
becomes isotropic at the crungBo].

This simple result is a “no-hair theorem” for universes
without spatial curvature: Whew>1, an initially aniso-
tropic universe becomes isotropi€)(—0) near the big
crunch. Thew>1 case is stable under anisotropic perturba-
tions. Forw<1, the universe becomes increasingly aniso-
tropic in the sense thdd,—1 asa—0. Forw=1, Q_ re-
mains fixed asa—0. Evolution is smoothlno mixmaster
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behavioj in all cases, and is well approximated as a KasneiThe leading term is more divergent thar?, since the Kas-

metric with constant coefficients for sufficiently small ner conditiong19g and (19b) imply p, is always negative.
Therefore, our smoothly contracting solutions are not stable
B. Curvature and chaos to perturbations in the spatial 3-curvature. A small amount of

. . . curvature will grow and come to dominate the dynamics be-
Complex behavior can arise when there is non-zero SP&yre the big crunch

tial curvature in a contracting universe. This may seem sur- The behavior of the universe in this regime has been ex-
prising at first, since the spatial curvature for a homerneouﬁensively studied and is known to be chadi-6,8. The
and isotropic universe grows asa/ which increases more spatial curvature terms cause the Kasner expo’rne;nand

slowly than eiFher the anisotropy or the energy density of &he principal directionsr' to become time-dependent during
component withw>—1/3. However, we have seen above contraction

that the contracting phase for<1 is anisotropic. we wil More precisely, the exponents and principal directions are
Show belpw that this can produce_ rapidly growing CurVaturenearly constant for stretches of Kasner-like contraction, dur-
pgrturbatlons and .ChaOt'C .behawor. On the _other hand, Wﬁ1g which the curvature is negligible. These Kasner-like ep-
will see _that chaotic beh_aV|or is suppressed/#1 and the ochs are punctuated by short intervals when the curvature
contraction approach%? isotropy &s>0. momentarily dominates. The exponents and principal direc-
_ We now allow thes™’ to have arx dependence and con- iqng 5iddenly jump to new values, and then a new stretch of
sider a curved manifold. The spatial Ricci tensor for the mety jcner-like contraction begins during which the curvature

ric (6) has the forn{1] terms are again negligible. The universe undergoes an infi-
nite number of such jumps before the big crunch. The cha-

p bzi 2 S b__k(a)ez(ﬁi—ﬁj—ﬁk)_ (25) otic, non-integrable evolution is equivalent to that of a bil-

2 a2 M e liard ball [8], which experiences free motion interrupted by

_ collisions with walls. Models with this oscillatory behavior

The functionsSabijk depend only on ther' and their space are calledchaotic
derivatives, and are independent of time. This presents a problem for cosmological models, as one

The expressiofi25) reveals a crucial connection between expects curvature perturbations in any realistic universe will
the behavior of anisotropy and curvature near the big crunctcause the local value of the curvature to vary from point to
In the isotropic limit, 3;=0 and Eg.(25) reduces to the point. If each spatial point evolves independently and chaoti-
homogeneous and isotropicaf/ scaling discussed above. cally, the evolution of nearby points diverges very quickly as
However, the terms in Eq25) are essentially ratios of scale contraction continues, and the universe rapidly becomes
factors. Thus, if the anisotropy is growing as-0, some highly inhomogeneous as—0. If w<1 throughout the con-
terms—involving ratios of expanding and contracting scaleracting phase, it seems unlikely that the observed homoge-
factors—uwill grow, and the corresponding curvature compo-neous universe could emerge from this state after the bounce
nents will scale faster thand9. For w<1 the anisotropy to an expanding phag&1i].
dominates near the crunch, and, as we will discuss below,
this causes the curvature to grow and induce chaos. By con- 2. w=1
trast, in thew>1 model, the anisotropy vanishes at the The chaotic behavior is mitigated in the=1 case. Re-
crunch, and the curvature scales as the usted, Which  calling our discussion of the curvature-free scenario, it is
may be neglected. clear that there are regions of non-zero measure on the Kas-

ner circle for which all of thep; are positive. We will refer to
1 w<l these points astable All choices ofp; whenQ,<1/4 are

In this case we begin by assuming that the behavior neatable. If the universe begins at a stable point, the curvature
the crunch is described by the vacuum Kasner solution, witfierm remains negligible asa—0 and the contraction is
Kasner conditiong19a and (19b). Using the Kasner solu- smoothly Kasner-like.
tion, it is readily seen that the Einstein equati8a) contains However, when(),>1/4, some choices of thg; will
a leading order term with time dependericé. have ong;<0. If the universe begins at one of these points,

The second Einstein equati®Bb) is a consistency check the curvature term will grow and become dominant, causing
for our assumption of ultralocality. For an appropriate choicethe values op; and the principal axes; to change. We refer
of the o(V—a basis for one of the Bianchi universes—thisto these points asinstable A more complete analysig3]
equation vanishes identically and the meti@ solves the reveals that, after a finite number of jumps, the universe hits
Einstein equations. a point in the open set of stabpe. From this point onwards,

The third Einstein equatio(8c) indicates that the simple the universe contracts smoothly and without any further
Kasner solutions must break down near the big crunch. If wgumps.
order the Kasner exponents pg<p,<ps, then the most We call these modelson-chaoti¢ since the universe is
divergent term in the third Einstein equation comes fromguaranteed to arrive at a stable pointaas 0. Non-chaotic
terms in the spatial curvatuf@5), with leading time depen- models(Kasner circlesmay contain both stable and unstable
dence, points, but they will always oscillate only a finite number of

times before arriving in the set of stable points, after which
t=2(172py), (26)  the behavior is integrable.
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3. w>1 stant. The potentiaV(¢) is chosen to give a fixed equation

Forw>1, curvature does not affect the contraction. TheOf Statew=1 in the absence p-form coupling:

key is the time dependence of th& in Eq. (24), which
approach zero as a positive power tofs t—0. Conse- V(p)=—Voe V3ETWe (29
quently, the exponential factoei in the metric approach

constants. The leading order time-behaviolPgf is simply  whereV, is a positive constant. Throughout this paper, we
that of a homogeneous and isotropic universe, assume without loss of generality that> —« asa—0.
For a given equation of state and p-form rank, the be-
havior of the system as—0 depends on the coupling We
can extend the terminology introduced earlier to describe the
properties for a giverh. We classify thep-form coupling
parametef as supercriticalif the p-form terms grow rela-
|u'_[ive to the scalar field energy density. We call these models
upercritical, as opposed to chaotic, becausesifl it is not
nown whether chaos occurs or whether ghiflorms merely
We can generalize our cosmic no-hair theor@tascribed p_Iay a non-negligible rqle in integrable dynamics. In the spe-
cial casew=1, chaos is known to occur, and we call these

at the end of Sec. Il Ato include models with spatial cur- delschaoticl5—8] Val i f hich th )
vature. The Einstein equations for a contracting universénodeIsc a_ot|c[ _.]'. alues of\ for which the contracting
solution with negligiblep-forms is stable are calledon-

with anisotropy and inhomogeneous spatial curvature con?

verge to the Friedmann equation for a homogeneous, flat an@a?tlc(some a#thors_ use(;lbcrglc_al). These tvx;c_) caseshare
isotropic universe if it contains energy with>1, and that analogous to those Iniro uced in Sec. IL.N IS on the
for a homogeneous, flat but anisotropic universavié 1. boundary between supercritical and non-chaotic, we Xxall

Thew<1 case becomes highly inhomogeneous and the nOc_ritical. The behavior of critical models may be novel, and
hair theorem is inapplicable. will be discussed at the end of this section.

We are assuming that initially the spatial curvature, the
anisotropy and the-form terms are small, and then we
lil. COUPLING TO  p-FORMS AND CHAOS check if these conditions are maintained as the universe con-

In Sec. Il we assumed that the evolution of the universdracts. Since we are considering models where 1, the
was dominated by an energy component with a fixed equam0d9| is non-chaotic |f_ th@-for.m.s. are negligible. The uni-
tion of state evolving independently of other matter in theVerse may be approximated initially by the homogeneous
universe. The component could have been a scalar field origotropic Friedmann-Robertson-Walker form in E6) with
perfect fluid. We found chaotic behavior fov<1 in the Bi~0 ande®=dx. If w>1 and thep-form terms are neg-
presence of curvature but non-chaotic behaviornor1. ligible, ,—0 as the crunch approaches. Ror1, O,

In this section we want to consider how the behavior forrf€mains small but finite. If the isotropic case is unstable, then
w=1 can change if the fluid is imperfect or couples to other2dding anisotropy cannot restore stability; just as in Sec.
components. In many theories, including Kaluza-Klein, su-!! B: the isotropic scale factors are the most stable.
pergravity and superstring models, the relevant energy con- !t can be shown that thg-form terms involving the spa-
sists of a scalar field that is coupled pforms. Conse- tal gradients ofF grow slower than the leading homoge-
quently, we will focus on this important example, as others€0US tlmg—derl_vatlve terms, qnother example of the ultralo-
have in the pasi3,5—8. cal _behaw_or _dlscussed p_rewously. Hence, we neglect all

To determine the effect of the coupling tforms on  SPatial derivatives of the field strength. S
chaotic behavior, our approach is similar to our analysis for Th€ components off with purely spatial indices,
spatial curvature, where we assume an initial state in whicffi,---i,,, aré calledmagneticand the components with one
the spatial curvature is negligible and then check that it retime index,F% 1" "'», are calledelectric, in analogy with the
mains small. Here we assume that fafarm field strength is  Maxwell action. We will use the labels and B to indicate
initially negligible and ask how its contribution evolves rela- their respective contribution§. has a vanishing exterior de-
tive to the energy density with equation of stateOur ac- rivativedF=0. In coordinate notation, neglecting the spatial

1
P"’;"’|t|_[4/3(1+w)]. (27)

This is always less divergent theit? for w>1. Thus, even
in the presence of initial anisotropy and curvature, the so
tion for w>1 converges to the isotropic solution represente
by the central point on the Kasner sphere in Fig. 1.

tion is derivatives off, this corresponds to
4 1 1 5 doFi....i =0, (30
S= | d™V=g|5R=5(d¢)"=V(¢) 1erl
where the brackets - - ] indicate antisymmetrization. Thus,
T A\ 2 .
2(pr 1) e F,Ll.“,;p+l , (28 the magnetic components are constant,
whereg is the metricR is the scalar curvaturd/ is a poten- Fij.. dpr1 (cons). (31)

tial for the scalar fieldp, pis the rank of thep-form, F is the
associated field strength tensor axds the coupling con- The equation of motion foF is
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Vﬂ(e)“f’FﬂMZ"‘/‘p+1):aM(e)\(ﬁF/‘“ﬂZ“'ﬂerl) 4 T T T T T T ! ______
g | E-modes . ;,l----""'_-_';___-—: E
—I—FMMUe)“’}F‘T”Z"'”pH:O_ unstable __.___-.----"" ____ |t
(32) S S
1 b
Only one set of Christoffel symbols appears due to the anti- 0 ke stable
symmetry off. Sincel'# o= d/dtlogy—g andI'*,;=0, we |
can integrate to find, -1 [T 1
-2 e ST .
o A 3 | B-modes T T,
FY1lp= X(COHSD. (33) - unstable 000 PS0 e Tmme- B
vV—0 4 1 ] 1 ] ] ] 1
_ 1 2 3 4 5
The p-form part of the stress-energy tensor is Wery
crl
A
T = et? (p+1)F E M2 Hpii_ Eg £2 FIG. 2. The four dimensional electric and magnetic couplings
By (p+1)! HboHpr1 ¥V 25K ' as a function of the critical equation of state fpr=0,1,2. The
(34) upper and lower three curves represent the critical electric and mag-

netic exponents, respectively. A form with givpand\ is stable in
Decomposing(34) into electric and magnetic components, a universe with equation of staieif the point (w,\) lies between
and including factors of the metric, we compute the energythe two curves for the givep.

density for thep-forms p,= — To%, which is,

anda=|t/ty|?**W) Substituting in Eq(36), two terms in

e (p+1 . may be written as
- | T EOigipEOittipy. L. Pp y
Pp (p+D)!\ 2 PR g, Yiip
. ppzaé|t|p5+ a3lt|Pe, (39
* EFil'"ip+1Fjl"'ip+1gi1jl' ’ 'gip*lijrl (35)

wherepg and pg are called the electric and magnetic expo-
nents, respectively. They are

e e S (36) 4(3-p) [ 4
= 26-m % e %8 __ 7P BRI
a?7 gerh Pe=" 31w " V3arw) (40
where the positive constan@ and aé represent the mag-
nitude of the electric and magnetic energy, respectively. We _ 4(p+1) N / 4 (41)
can now define a new set of fractional energy densities, Pe= 3(1+w) 3(1+w)’
Q¢=p*1[¢2/2+v(¢)], (379 Note that these expressions are invariant under a duality
transformation, which takgs— 2 — p, interchanges the elec-
e M tric and magnetic modes, and takés- — ¢.
QE:p—lTaé, (37b In the Friedmann equation, the scalar field energy density
a7 ") scales ag 2. Consequently() ,—1 and g g—0 as the
universe contracts if botpg and pg are both greater than
. ehd , —2. In this case, the-form contribution is negligible ana
Qp=p JETETLLE (370 s non-chaotic. Alternatively, if eithepg or pg is less than
— 2, the respectiv@-form terms become large and alter the
dynamics.

~\¢ ehd

1. e Forw=1, the non-chaotic values af are
_ 42 2 2 y
p= 2¢ +V(¢)+a2(37p) agt aZ(P+1)aB' (370

—\/8/3<\<0, p=0
where (), is the energy density in the scalar field afi¢

and ), are the energy densities in electric and magnetic —V2/3<\<V2/3, p=1 (42
modes. We are assuming that the anisotropy is negligible, so
Q,~0. _ _ _ , 0<\<\8/3, p=2.
The solution for ap-dominated universe with equation of
statew Is Increasingw causes the interval of non-chaotic couplings to
grow, as shown in Fig. 2. In particular, for apyand\, there
b=qlnlt| _ [ 4 (39) exists a critical value wg(N,p) such that, for w
q 4 3(1+w)’ >Wgil(A,p) the p-form terms remains negligible. For any set
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of p-forms and couplings there existszTQrit, the maximum dence ofw can be significant. In this section we assume
of 1 (the critical equation of state for curvatiirand the wg;=1, as this is the most important case, and analyze what
Weit(N,p) for eachp and A. Then the contraction is non- happens whew— 1 at the crunch. We can expamg, as

chaotic ifw>w;.

The behavior can be understood in terms ofediective wy(a)=1+y(a), (46)
equat!on of state for the actid28), using the conservation wherey is a small function of the scale factor such that
equation

—0 asa—0.
a If there is nop-form with critical coupling, then using
b=—3—(1+Weff)P, (43 Egs. (7) and (15) it can be shown that ify(a)loga ap-
a

proaches a constant as-0, the behavior is essentially the
same as thev=1 case, i.e. non-chaotic. The radius of the
Kasner circle in Fig. 1 shrinks iv—1* or expands ifw
—17. If y—0 so slowly thaty(a)loga diverges aa—0,

wherep is given by Eq.(37d). Using Eqs(37), the equation
of motion for ¢ and the Friedmann equation, we find

3-2p 2p—1 then the anisotropy is eliminated 4f approaches zero from
Wei=W () 4+ 3 Qe+ 3 Qg, (44) above or the chaos is restoredyifapproaches from below.
Alternatively, if the model has p-form with critical cou-
where pling, the Kasner contraction will be stable if theform
contribution to the equations of motion remain subdominant,
B22-N(p) or, equivalently, if the ratio of th@-form terms to the other
Wy="g—— (45)  terms vanishes in tha— 0 limit. For magnetic modes with
12+ V() critical coupling\ ;4=<0, we find
is the equation of state for the decoupled scalar field and ehciitd) g2(p+1) a da’
Q,+Qg+Qg=1. The expressiof¥4) is exact, valid for all Iog—M= log———— ~— f —y(a"),
values of theQ); assuming the background is homogeneous, Qy %12+ V() a a'
flat and isotropic. For the electric and magnetic contribu- (47

tions, we can introducewg=(3—2p)/3 and wg=(2p
—1)/3, respectively. Thav is just the)-weighted average
of w,, wg andwg.

All the N dependence ofve; is contained in the time
evolution of the();; w,, wg andwg do not depend on.
Foth Wg arllde.are always less than or equal to unity, and at y(a)~|logal "t (48)
east one is strictly less.

_ If the p-form coupling is non-chaotic, the behavior is sg that the integral diverges as-0, then the ratio goes to
simple. The quantitie§)e and (g rapidly approach zero as zerg and(,, becomes negligible in tha—0 limit. This
1, approaches one, and the universe is dominated by thehsyres that the term is small, and never grows to influence
scalar field, with the equation of state,. This is the non-  the dynamics.
chaotic case, discussed in Sec. lll. y Let us investigate what conditions on the potential will
Alternatively, if the p-form coupling is supercriticallle  gjve us ay of this form. If we combine the Friedmann equa-

and Qg grow. The averaging of th& and B component  tjon and equation of motion fop, we obtain
ensureswgg<w,. If wy=1 thenwg<1. In this case, the

whereC is a positive constant and by~”" we mean up to
terms finite in thea— O limit. The behavior is identical if the
electric modes have critical coupling. #—0 very slowly,

for example,

anisotropy grows and chaotic oscillations occur. It is not di V.,
known if this happens in thes,>1 case. If in addition, the dloaa —— [ (y—1)(y+1), (49
p-form coupling is critical(sow;;=1), it turns out that the 9 5Y

model is equivalent to an infinite-dimensional hyperbolic

Toda system. There are an infinite number of jumps from Ongvhereqb denotes a derivative by and

Kasner-like solution to the next, but the system may be for- b
mally integrabl€[7,8]. It is not clear what the physical rami- V6= ——. (50)
fications of this behavior are. dloga

The equation of statél5) can be expressed in terms of
IV. TIME-VARYING EQUATION OF STATE AND CHAOS

— — 2
In a realistic cosmological model, the equation of state Wy=1+y=2¢"~1. (52)
will not be constant, but will depend on the scale factor and . . .
We can obtainv,— 1" asa—0 for any negative poten-

approach some limiting value—w asa—0. If W#Weit, g which is boundedfor large negative values ap) by
none of the above analysis changes substantially. The mongCe— 8% whereC is a positive constarisee Eq(29)]. The

is supercritical ifw<wcg or non-chaotic ifw>we. The  kinetic energy increases more rapidly than the potential en-
critical casew=Ww,;;, is more subtle, and the time depen- ergy in these cases, and $o, approaches unity at the
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crunch. In particular, the potential need not be bounded befield. The scalar field describes the volume of Ste—it is a
low. In general, any potential which can be expressed in theimple example of a moduli field. As all of our preceding
form arguments regarding gravitational contraction are local in na-
s 5 ture, we expect that the resulting system should be chaotic as
V() =2W'(¢)"—3W(¢) 52 well. However, a free scalar field has equation of state
=1. According to our analysis in Sec. Il, one might think
that the behavior should be non-chaotic. What has happened
to the chaos?
—Ve %9, (53) The resolution lies in the fact that we have neglected
many of the degrees of freedom of the higher-dimensional
whereV, and c are positive constants, can be expressed irtheory. A general five-dimensional metii&,y can be writ-
this form providedc< 6, and so satisfies positive energy. ten
For c=/6, solutions exist with total ADM energy that is
unbounded below. G=
For the potential53), V ,/V=c. In the case< J6, we
find

satisfies positive enerdy82]. Hertoget al. [33] have shown
that the potential

h,,+e??A A, e*’A,

=0y 20 (56)

If we neglect the dependence of the metric on the fifth di-

yxay, (54 mension, we may integrate out this dimension and perform a

. N conformal transformation to canonically normalize the four-

wherey is a positive constant. Consequentjloga—0 as  dimensional Ricci scalar. The coefficienis then chosen to

a—0 and thep-form with critical coupling is not suppressed. canonically normalize the scalar field kinetic energy in the

However, wherc= /6, the solution to the equations of mo- resulting action

tion show thatyloga approaches a constant, so {éorm

can be suppressed when positive energy is violated. B 4y [ rip 1 2 1 VBor2

V(¢p)=—Voe ®|g|", (55  which describes a vector field coupled to a free scalar and to
o . gravity. The coupling\ = /6 is outside the stable range for a
(or more generally, an exponential times any finite order_form in four dimensions. Therefore, the four-dimensional
polynomia) satisfies positive enerdy.e., can be expressed theory is chaotic, as we would have guessed, but we have to
in the form(52)] for n<—1. Solving the equation of motion jnclyde the interactions witp-forms to see that this is so.
(49 for large ¢, we find that forn<—1 the p-form with Next, instead of compactifying the fifth dimension 8h
critical coupling is not suppressed. Surprisingly, foF —1 |t ys compactify on the orbifol&/Z,. If the coordinates
the ratio(47) goes to zero, and the solution is stable. For thegn St ryuns from— #r to ar, this orbifold can be realized &
broad class of potential3) and (55), the parameters for together with the reflectiorx®— —x5. This takes G s
which they satisfy positive energy turn out to be exactly ,_ g s, or equivalentlyA,——A . Thus, the KaIuMza-
: ; 5 M w '

those which do not suppress thdorm. It is an open ques- giein zero-mode vector fieldh, is absent in the effective
tion whether any potential can be constructed which willacion (57). The absence of this vector field in the effective

suppress theve;=1 p-form and satisfy positive energy.  action thus implies that the four-dimensional theory is no
longer chaotic.
V. EXTRA DIMENSIONS, ORBIFOLDS AND CHAOS While orbifolding suppresses some gauge fields and

: . Lo ; . p-forms that would cause chaotic behavior, in some models
In models in which gravity is fundamentally higher di there are additiongd-forms in the bulk. Thesp-forms, after

mensional, the detailed global structure of the extra dimen-. : . .
qirnensmnal reduction, may themselves lead to chaotic be-

sions can suppress or enhance chaos in the four dimensiorl1 An illustrati le is heterotld th hich
theory. We consider two simple compactifications of five-. avior. An Tiustrative exampie 1S hetero eory, whic

dimensional gravity, oi* andS/Z,. In the first, the chaotic includes a three-form field.

. : - . The low-energy four-dimensional effective action has
nature of pure five-dimensional gravity descends to the four: )
dimensional theory. In the second, the chaotic behavior Lpeen evaluated perturbatively by Luketsal. [34]. To zeroth

suppressed. Models of quantum gravity also generally ir]g)rder in the 11-dimensional gravitational couplirgit is

clude additional matter fields in the extra dimensions. As an 7oV

example, we discuss the compactification of heterotic oy """ _ _ 2_ 2_ a8 2

M theory to four dimensions and find that its behavior during S 2 f dx"'\/_g[R (92)"~(oc)"~e (9X)

gravitational contraction is on the borderline between smooth B

and chaotic. —e'83(9)2], (58)
Consider a five-dimensional, flat universe without matter

fields. We know from the study of general Kasner universesvhere we have rescaled the fields in Lukas’ action so the

[4] that it will exhibit chaotic behavior. Now compactify one kinetic energies are canonically normalized. The scalar field

dimension onSt. We know that the four-dimensional effec- ¢ is the radion, which governs the brane separation. The

tive theory describes Einstein gravity coupled to a free scalaCalabi-Yau volume modulus and scalar fieldo (which
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comes from the 11-dimensional 3-foydo not couple tc, models with a big-crunch—big-bang transition, such as the

and so can be ignored. However, the 3-form moduyjus cyclic and ekpyrotic models. We have added the following

couples toc and the exponent is critical= — /8/3. Hence, results.

the theory does not lead to stable Kasner contraction. Includ- For perfect fluid withw>1, the contraction is smooth and

ing the first order £%3) correction to the action does not converges tdsotropic at the crunch. The Einstein equations

change the result. converge to ultralocal, homogeneous and isotropic Fried-
As this theory is critical, it is quite conceivable that higher mann equations.

order corrections will lead to a different behavior during cos-  For a scalar field coupled tp-forms, there exists &

mological contraction. There are a number of kinds of cor-such that the contraction is smooth arsbtropic for w

rections to Eq.58) that could push the theory away from >Wwj;.

criticality and render it either chaotic or non-chaotic; how- If wis time varying and approaches one from above suf-

ever, it is not yet known which behavior occurs. ficiently slowly the contraction ismoothand non-chaoti¢
even in the presence of @form with critical equation of
VI. CONCLUSIONS statewiy=1.

) ] . In models with an extra dimension, compactification ge-

The new results presented in this paper build on ovenerically produces a scalar field apdforms. Z, orbifolding
three decades of preceding research on the behavior of cOogsces somep-forms to zero and, thereby, suppresses their
mological models contracting to a big crunch. The classiGontributions to chaos.
work focused on cases where the equation of state of the | this paper we have studied how chaotic mixmaster be-
dominant energy componentus<1 andw is constant. The  havior may be suppressed in models involving a big-crunch—
essential results in this case are as follows. big-bang transition. In particular, the ekpyrotic and cyclic

For a perfect fluid withw<<1, the contraction is smooth models already include some of the required ingredients in-
and anisotropic in the absence of curvature and chaotic mi)‘cluding a scalar field withw>1 andZ, orbifolding. We did
master if there is non-zero curvature. not present a complete non-chaotic string-motivated model,

For a perfect fluid withw=1, the contraction is smooth pyt we hope the considerations reported here will be helpful
and anisotropicin the absence of curvature. With curvature, jn that regard.

the contraction is anisotropic also, although, depending on
the initial anisotropy, the contraction may undergo a finite
number of jumps from one Kasner-like behavior to another.

For a free scalar field coupled fforms with coupling
eM?, the contraction ighaotic mixmasteif the coupling\ is We thank G. Horowitz and T. Damour for helpful discus-
outside a finite interval of non-chaotie. The mixmaster sions. This work was supported in part by NSERC of Canada
case is non-integrablend thecritical case may be inte- (J.K.BE), by the NSF Graduate Research Progri@rH.W.),
grable by U.S. Department of Energy Grant DE-FG02-91ER40671

In this paper we have extended this work to include caseand by PPARC(N.T.). P.J.S. was supported by the Wm.
wherew>1, a situation that arises naturally in some recentKeck Foundation and the Monell Foundation.
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