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From the production of primordial perturbations to the end of inflation
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In addition to generating the appropriate perturbation power spectrum, an inflationary scenario must take
into account the need for inflation to end subsequently. In the context of single-field inflation models where
inflation ends by breaking the slow-roll condition, we constrain the first and second derivatives of the inflaton
potential using this additional requirement. We compare this with current observational constraints from the
primordial spectrum and discuss several issues relating to our results.
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[. INTRODUCTION the inflaton dynamics gives no clue as to when it might hap-
pen. In that case, we can expect no useful extra information
With the increasing precision of cosmological observa-from the need to end inflation. If the underlying equations
tions, inflation has become the favored candidate for explaincan be modified, as in the steep inflation case, there are many
ing the origin of perturbations in the Univer§a]. While ~ Ways in Wh|ch_ this could happen and it is unlikely that any
some plausible scenarios have recently been introducedfeful model-independent statements can be made. In this
whereby adiabatic perturbations are generated after inflatiof2Per We thefefo“? restrict our attention to models_ with a
from isocurvature perturbations laid down during inflation single scalar field, in which inflation ends by breaking the

[2], the generation of adiabatic density perturbations durin low-roll cond'mon.' O“T aim s to assess Wh‘?thef the require-
inflation remains the simplest one. However, although infla- ent to end inflation imposes useful additional constraints

tionary models give an excellent fit to most recent data in.On the inflaton potential, and to discover whether there are

cluding that of the Wilkinson Microwave Anisotropy Probe (rjigf nwshiga g?éaimi?trej pth: s%?irsr?;ct?cﬂ bgnfjh?o ?;T;l:rg: tilr? "
(WMAP) [3,4], the perturbations are observable only over hi y

. . is manner.
fairly narrow range of scales, corresponding to about fou

orders of magnitude in wave number, thus allowing us tot0 ::\Z\'ﬁirﬁfgﬂgé% Tg;gg;:lat tg:frfrftﬁglg d“g?%rﬂlgggxat
constrain only a small segment of the inflationary potential.”, " inf .
Y 9 yp hich observable perturbations were generd@d In this

Nevertheless, there is one further piece of information that” K it th lue o t i
can be brought into play5], which is that we know that work, we aim 1o use the valué Qi to Set some conser-

inflation must come to an end soon after the observable pe}/_ative constraints on the first two derivatives of the inflaton
turbations are generated potential in the context of single-field inflation, which can be

The literature describes three ways in which inﬂationcompared o the region permitted by the observed perturba-

might end. In the simplest scenario, requiring just a singlet'ons' In other words we want to look at the generic predic-

scalar field, the logarithm of the potential driving inflation t|onz_o€ single-field |rt1flat|on by deImmg aregon in IT)T pn_‘th
becomes too steep to sustain inflation, leading to the end dford/al POWEr Spectium parameter space compatibie wi

the slow-roll regime and usually giving way to a series of he .pa;lra(ygm. 1’le5 goal IS similar to ;hat of gnalysles using
oscillations about a minimum in the potential. A secondt€ Inflationary flow eq“?"or@l such as Peirigt al. [4]
popular possibility is an instability, associated with a seconcEnd Kinney et _al. [10] which are bf?‘seF* on the method of
scalar field, which removes the potential energy driving in-. a;ther anq l_(mneﬂ/ll_], but as we will discuss our appro_ac.h
flation; this is the key idea of the hybrid inflation paradigm is different in its physical content and makes more restrictive

[6], where inflation ends by a phase transition. Much |eséels§ruhmptions ‘.”‘bOUt thg Sdhapi CI)If the' %otetntiall.l_ devoted t
discussed is a third possibility, that at some energy scale the € paper IS organized as toflows. Section 11 1S devoted to

underlying equations of motion are modified, an exampIeStatingl our assumptions and explaining our methodology,

being the steep inflation modg¥] where inflation is sus- Section III.gives .the results and a}nalysis, and Section IV is a
tained only by corrections to the Friedman equation at hig eneral discussion on related issues. We asstpe1
energies in a braneworld model, with inflation ending as th hroughout.
energy scale drops and these corrections become unimpor-
tant.

In the hybrid inflation case, the inflaton field is normally  In this section we explain how we constrain the inflaton
unaware of the existence of the instability until its onset, ancpotential in the context of single-field inflation. The main

II. METHODOLOGY
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idea is to test whether it is possible to build a reasonablérying to find a region of th&/'/V-V"/V space that is com-

model that takes into account the upper limit on the numbepatible with a large class of single-field inflation models.

of e-foldings Nj¢ before the end of inflation, given the shape  Now, as explained above, our aim is to try to build a

of the potential in the range probed by observations. working single-field inflation modefi.e. an inflaton poten-
Given an inflationary potentia¥(¢) and an initial value tial) by expanding the potential as a Taylor series, fixing the

of the field ¢, (corresponding to the horizon crossing of a first two derivatives to reasonable values, and then varying

pivot scalek, ) we can compute a Taylor expansionMf¢)  the higher-order derivatives using a random process. We set

arounde, . In the context of slow roll and in the face of the the following rules to define a working model:

current observational data, one does not expect more than t?f) he sh fth ial shoul . ith th

first two or three derivatives to play an important role in theL) The shape of the potential should be consistent with the

range of scales probed by cosmic microwave background constraints on the_ pr|mord|_al perturbatlon_ power spec-

observations and galaxy distribution surveys. Before going UM, as well as with the prior on the running;.

into more detail, it is useful to note that the evolution of the(2) The potential should either be convex"(V>0)

f|e|d as a function of the number effo'd”f]gs does not de_ throughout the eVOIUtiOlﬂarge'ﬁeld |nﬂat|0|) or at ﬁrSt
pend on the normalization of the potential. Therefore, —concave Y¥”/V<0) and eventually convetsmall-field
throughout the paper we use the parametérd/, V'/V, inflation).
V"IV, etc., which are evaluated dt, . Also, by convention (3) The number of-foldings between the time the sc&g
we take the first derivative to be negative. leaves the horizon and the end of inflation;€ 1)
Now, let us introduce the set of slow-roll parameters  should be less thaN .
[12,13 Concerning the first rule, we look at a region of the
V'IV-V"IV parameter space approximately consistent with
- H(0) 1) observations ohs—1 andR—we will later contrast our re-
% H(N)’ sults with actual constraints from WMAP and the two degree

field (2dF) galaxy redshift survey15]. We initially impose
dinfe,| the theoretical prior—0.04<@g<0.02. In anticipation that
€n+17 TN for  n=0, 2 future observations will pin down the running more pre-
cisely, we then go on to examine successively the following
whereH is the Hubble parameter arld is the number of subcases(i) —0.04<ag<—0.02, (i) —0.02<ag<0, and
e-foldings since the crossing of the horizon by the pivot scalgiii) 0< ag<0.02, so as to investigate how future constraints
kK, . This particular choice of definition is known as the may affect the overall picture. As
horizon-flow parameters. We can compute first-ordejy

V'/V andV"/V as functions ok; ande,, Vi \/; ,
v’ vz 8_1(_2481+ 188182_38283)
v 4T, 3
o
Vi = 8_1[_24(81_8182)"'3“5], (7)
V247T(481_82)1 4)

these constraints on the running impose constraints on the
which relates the shape of the potential with the inflationarythird derivative of the potential. Then, we assume that higher
dynamics. Conversely, we can recover the slow-roll paramelerivatives are negligible in the range of values of the field

eters from the derivatives of the potential corresponding to observed scales. Specifically, we impose
1 \YA 2 1 V(4) 1 V"
sl_E(V) ' © TRV AN v A 8
1\ 2 "
Szzi V_) _ \L _ (6) where A ¢ is the distance run by the field when producing
4|\ V \ the observed perturbation&orresponding to roughly 7

) _efoldings, 3.5 on each side ap,). This means that the
These slow-roll parameters can then be related to primordighrth-order term in the Taylor expansion is assumed not to

power spectrum parameters such as the scalar and tens@fertake the third-order term until the field runs about twice
spectral indicesis— 1=—2s;,—&, andnr=—2¢y, the ten-  he distance to the edge of the observed region. Note that as
sor to scalar ratidR=16¢,, etc. Therefore, we will inter- 5 regylt, the fourth derivative term cannot contribute signifi-
changeably use any independent pair of these parametegntly to the curvature of the potential inside the observed

Note that since the constraint on the running=—2¢1¢,  regjon. In addition, in order to find working models more
—e,e3 is too weak at the momerisee Ref[14] for com- easily, we use the practical recipe

ments on this issyewe will assume some theoretical prior

on this parameter. It is important to stress that in this work 1 v® 1 v@®

we do not want to constrain higher derivatives; rather, we are = 7A¢§'A‘ <z 7A¢‘3"A‘ , 9
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where A ¢34 is the value of the field for which the fourth
order term equals the third order term in the Taylor expan-
sion. Note that ifV'/V andV"/V are fixed, the uncertainty
on ag still allows V”/V to vary and therefore the possibility
of havingV”/V=0 [and hence Eq9¥8) and (9) being too
strong constrainisis avoided.

The second rule is assumed in order to maintain the sim=
plicity of the model, as this is the main reason for consider-5
ing single-field inflation. Also, most models in the literature
are of this form. We consider Taylor expansions of third,
fourth and fifth order. It is important to note that our class of
models is broader than a set of polynomial potentials, since
the expansion need only approximate the true potential ove
a limited range, with the order of the expansion reflecting the
number of degrees of freedom we have to shape the potentic -1 -0.5 0
in order to fulfil our set of rules. We checked that a fifth \A%
degree polynomial can fit a wide range of potentials frém . . . .
to the value of the field corresponding to the end of inflation, F!G: 1. Boundaries between the regions where it is possible to

We also investigated the effect of imposing the constrain?u'!d a working modelshadegl and regions where smgle-ﬁ_eld in-
that V=0 at the minimum of the potential. However we lation is excluded. We assume0.04< «g<0.02. The black line at

. i, . . . "=0 separates small-field and large-field models, and the dashed
found that this condition complicates the analysis WlthOUtIine showse,=0. The other lines show the different orders in the

adding anything useful,_ since after |nflat|qn ends it is usuallyexpansion of the potential, with the labels always placed outside the
not hard for the potential to then shape itself to form a sat-

. - - . . allowed region. The dots show models from the Markov chain
isfactory minimum. In any case it is not our intention to 1o carlo fitting the perturbation data.
address the post-inflationary dynamics.

Finally, concerning the third rule, inflation must end by
breaking of the slow-roll conditions;=1) and this should and in the as—1)-R space. In other words, we are seeking
happen within a certain number effoldings Nj,;< N af- to make some falsifiable predictions for our class of single-
ter the scalé, crosses the horizon. The uncertaintyp;  field inflation models.
comes mainly from the reheating process, which can be very The main result is displayed in Fig. 1, for which we as-
brief or alternatively can last until nucleosynthesis. Assum-Sume—0.04<as<0.02. For each order in the expansion of
ing instantaneous reheating and with=0.72, Q,,=0.27, the potential there is a line that represents the boundary be-
the amplitude of scalar perturbatioAs=2.3x 10 ° and the ~ tween the region where it is possible to build a working
pivot scalek, =0.01 Mpc ! (see Ref[14]) we have model(shadeg and the region where single-field inflation is
excluded. The dots are independent samples from the Monte
Carlo Markov chain used in Ref14] to fit WMAP and 2dF,
and thus represent models providing a good fit to the pertur-
] ) ) _bation data. We also plot the lirg=0 to compare with the
whereD is the drop in the energy density between the timenajve expectation that only models wit3>0 are suitable

The discrepancy between this equation and the results givedk, /dN=¢,¢,).
?n Ref._ [8] comes from choosing a different scale as a start- |, Fig. 2 we make more restrictive assumptions on the
Ing point. running, with the three graphs showing the cagg<ii) and

Our procedure is as follows: We fix the pai'/V and i) as described in Sec. Il. Figure 3 shows the same infor-
V"IV, randomly choose the higher derivatives, and then teshation but displayed in the space of observable parameters,

the resulting potential against our set of rules. We repeat thigat is ns—1 andR. We comment on small-field and large-
step until we find a working model. If we cannot build a fie|d inflation separately.

potential fulfilling the three rules stated above after a certain
number of tries1es, then we say that this pair of parameters
is not consistent with single-field inflation, and move onto A. Small-field inflation
the next values oWV'/V and V"/V. We took ny;es= 300,

1 1
Nimax=60+ 7 In(€1) — 7 In(D), (10)

wherewv is the number of degrees of freedom describing the First, let us consider potentials with a negative second
v g 9 derivativeV"< 0, which are found in the lower part of each

potential after the first two derivatives have been chdsen of the panels in Fig. 1 and Fig. 2, and at the left lower corner

v=1, 2 or 3, and tested other values to ensure that ouly; . panels in Fig. 3. We can see in Fig. 1 that these models
results do not depend on this choice.

are currently not constrained by the upper bodg,,. In-
deed, it is always possible to build a working model even
Ill. RESULTS o . . g
when considering only a third-order expansion. This is be-
In this section we present our results as boundaries besause as long as its slope is not bounded outside the region
tween allowed and excluded regions in #/¢V-V"/V space probed by observations, nothing prevents the potential from
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VOV

V'V

FIG. 2. Same as Fig. 1 but with more restrictive assumptions on the runfiing: 0.04< as<—0.02, (ii) —0.02<as<0 and
(iii) 0<ag<0.02.

steepening enough in order to violate slow roll before thewe have available to shape the potential into a linearlike
number ofe-foldings reache®N .. potential, and the extra degrees of freedom can conspire to
Even when tightening our assumptions about the runnindpuild an extreme model in order to end inflation as quickly as
(see Fig. 2, models that fit the perturbation data remain al-possible. If such a model does not end inflation in time for
most unconstrained as long as the running is negative. Hov@iven values ol/’/V andV"/V, then we can be sure that this
ever if the running is positive, panéli), the third derivative Pair of parameters is inconsistent with our class of single-
prevents inflation from ending in time, and unless we use afi€ld inflation models. Note that the allowed models lying
least a fourth-order expansion, it is difficult to build a work- ¢lose to the fifth-order boundary already require a certain
ing model consistent with observations. Nevertheless, it i@Mount of fine tuning between the different derivatives. One
fair to say that so far small-field inflation is consistent with could of course expand the potential to sixth order, but the

observations even when taking into account the constraint oF?S“'“F‘g enlargement of the aII_owed_reglon WOUld be due to
N potentials that are even more linearlike and fine-tuned.
max-

Figure 1 shows that a significant fracticeround 30% of
large-field models that fit the WMAP and 2dF data sets are
excluded by the need to end inflation in time. This proportion

In the case of potentials with a positive curvature, theincreases even mofe around 60%when considering only
situation is very different. The modulus of the slope of thefourth-order expansion potentials and in the third-order case
potential is bounded from abovébecause of the second almost all of them(around 90% are excluded. It is some-
rule), and the quickest, and therefore somewhat unrealistiovhat unfortunate that the constraints coming from observa-
way to end inflation would be for the potential to become ations and from the need to end inflation lie in the same di-
linear potential as soon as the field leaves the observablection, but it is fair to say that large-field inflation models
region. We studied this kind of potential but it did not lead to are under pressure.
any interesting constraint. Now, it is clear that the more de- This becomes clearer when we consider tighter con-
rivatives we take into account, the more degrees of freedorstraints on the running. We can see in Fig. 2 that a large

B. Large-field inflation
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(iii)
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FIG. 3. Same as Fig. 2 but in tha{—1)-R plane.

negative running a.s< —0.02, paneli)] is almost inconsis- t0 make a comparison with the increasingly restrictive obser-
tent with large-field inflation. This can be easily understoodvational constraints. However, as explained in R&6], the
by looking at Eq.(7); rule (2) plays a major role by prevent- flow equation formalism does not incorporate the underlying
ing the curvature of the potential from changing sign, and itinflationary physics via the Euler-Lagrange equation. In our
will be difficult to build a working model unless; is large  procedure this has been essential since we wanted to place a
(V'IV very negative In the case of a positive running the constraint on the qualitative shape of the inflation potential
possibility of a third-order working model is excluded and [via our rule(2)].
fourth-order models are difficult to achieve. _ Nevertheless, it is worth comparing with the results of
On the other hand, panél) in Fig. 2 (—0.02<as<0) is  Refs.[4,10] which used the flow-equation formalism. First of
exactly the same as Fig. 1. This means that it is much easigfll, both of those papers have included the running as a pa-
to end inflation if the running is between0.02 and O than if  rameter when generating their observational constraints. As a
it is positive or more negative. In other words, for large-field ;g5 1t the observationally favored region in thes¢ 1)-R
inflation modgls, Fhe running is tightly con.stralned by theplane is enlarged, giving the effect that the flow-equation
neled tot ;ahr)d '?ﬂat'o?'. Afxlsta resulté f?rthcommg SUIVEYS Ma%srmalism currently picks out a small preferred region. Com-
ru irmrjn Ecsssﬂ? tlinnallon mf ?%i w. when lookin tpared with observational constraints with no running, the
_From an observational point of View, en looking & flow-equation formalism actually generates a large class of
Fig. 3 we see that our conditions clearly favor models with . ;
i i . P models covering almost all of the observably favored region.
ns<1, and in particular we find that evens=1 is hard to ) .
- : Our method has generated a more restricted ensemble of in-
achieve unlesf is large. : . o ;
flation models, and from this perspective it can be considered
a small step forward. Moreover, we have not tried to display
any distribution of models, but instead just defined regions
We have been motivated by the flow-equation formalismcompatible with our class of single-field inflation models,
of Easther and Kinney11] to study the idea of randomly arguing that the models near the edges of these regions are in
generating a large class of slow-roll inflation models in ordersome sense already fine tuned. This presentation has also

IV. DISCUSSION
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allowed us to clarify the effect of adding further derivatives To summarize, while small-field models are poorly con-

to our expansion of the potential. strained by the maximum number efoldings, we can see a
Broadly speaking, we found it very easy to constructcertain tension against our large-field models and forthcom-

working models withV"/V<0, whereas for models with ing observations may actually rule them out. Obviously some

V"IV>0 the situation is more complex. Specifically, we fundamental theory could be responsible for a potential with

showed that a lower limit on the amplitude of the slope ofan unexpected shape, but for studying phenomenological

the potential does persist in the region classified as largenodels our assumptions seem reasonable. Finally we must

field inflation, analogous to the lower limit recently used to stress thaN,,,,is an upper bound and knowing details about

put pressure on thé“ inflation modeld 14]. This means that the reheating process may lower that bound and lead to even

the upper limit onN;,; does exert some pressure on inflation more constraining results.

model building efforts. In addition, we showed that our con-

strai.nts have a strong (_jependence on the runnjng of t_he spec- ACKNOWLEDGMENT

tral index as it determines the value of the third derivative.
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