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CMB polarization from secondary vector and tensor modes
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We consider a novel contribution to the polarization of the cosmic microwave background induced by vector
and tensor modes generated by the nonlinear evolution of primordial scalar perturbations. Our calculation is
based on relativistic second-order perturbation theory and allows us to estimate the effects of these secondary
modes on the polarization angular power spectra. We show that a nonvariishinde polarization unavoid-
ably arises from pure scalar initial perturbations, thus limiting our ability to detect the signature of primordial
gravitational waves generated during inflation. This secondary effect dominates over that of primordial tensors
for an inflationary tensor-to-scalar ratiec 10~ 8. The magnitude of the effect is smaller than the contamination
produced by the conversion of polarization of typénto typeB, by weak gravitational lensing. However, the
lensing signal can be cleaned, making the secondary modes discussed here the actual background limiting the
detection of small amplitude primordial gravitational waves.
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[. INTRODUCTION scure the signal due to primordial tensor modes. It has been
pointed out that the inflationary gravitational-wave back-
The generation of a stochastic background of primordiaground can only be detected by CMB polarization measure-
gravitational waves is a fundamental prediction of inflation-ments if the tensor to scalar ratic=10"4, which corre-
ary models for the early Universe. Its amplitude is deter-sponds to an energy scale of inflation larger than 3
mined by the energy scale of inflation, which can widely x 10'° GeV [5-8]. Quite recently, however, a better tech-
vary between different inflationary models. The detection ofnique tocleanpolarization maps from the lensing effect has
this gravitational radiation would provide a crucial test for been proposed, which would allow tensor-to-scalar ratios as
the validity of the whole scenario. Gravitational wave detec-low as 10°°, or even smaller, to be probd®,10]. Other
tors, however, are quite unlikely to have enough sensitivitysecondary contributions to thB-type polarization arising
to detect such a primordial signal, owing both to its small-during the reionization stage, though of much smaller ampli-
ness and to its extremely low characteristic frequencies. Thiude, have been considered[itd].
existence of ultra low-frequency gravitational radiation, The case of vector modes is even more interesting, as they
however, can be indirectly probed thanks to the temperatureannot be produced during inflation and are in general ex-
anisotropy and polarization it induces on the cosmic microtremely difficult to generate at early epochs, with the excep-
wave backgroundCMB) radiation. In particular, the curl tion of models which predict the existence of primordial
component, called-mode, of the CMB polarization pro- tangled magnetic fieldsl2,13.
vides a unique opportunity to disentangle the effect of tensor This paper considers a new sourceBfmode polariza-
(gravitational-wavefrom scalar perturbations, as this is only tion, coming from secondary vector and tensor modes. The
excited by either tensor or vector modgks2]. From this  contribution to temperature anisotropy arising from these
point of view, future satellite missions, such &anck modes has already been analyzed in Reif4,15. The evo-
which will have enough sensitivity to either detect or con-lution of cosmological perturbations away from the linear
strain theB-mode CMB polarization predicted by the sim- regime is in fact characterized by mode-mixing, which not
plest inflationary models, might represent the first “space-only implies that different Fourier modes influence each
based gravitational-wave detector’[3]. The main other, but also that primordial density perturbations act as a
complication in this context comes from the effect of gravi- source for curl vector perturbations and gravitational waves
tational lensing on the CMB by the matter distribution, [16,43. Let us emphasize that these secondary vector and
which implies the transformation dé-mode intoB-mode tensor modes always exist and that their amplitude has a
polarization[4]: such a nonlinear effect might actually ob- one-to-one relation with the level of density perturbations,
which is severely constrained by both CMB anisotropy mea-
surements and large-scale structure observations. Therefore,

*Electronic address: mollerach@cab.cnea.gov.ar their properties are largely inflation model-independent, con-
"Electronic address: harari@df.uba.ar trary to primary tensor modes whose amplitude is not only
*Electronic address: matarrese@pd.infn.it model-dependent, but is well-known to be suppressed in

0556-2821/2004/68)/06300211)/$22.50 69 063002-1 ©2004 The American Physical Society



MOLLERACH, HARARI, AND MATARRESE PHYSICAL REVIEW D69, 063002 (2004

some cases, like e.g. in the so-calledvatonmodel for the The background Friedmann equations read- 23
generation of curvature perturbatiofts’]. =a?(87Gp+A) and p=—3Hp, where dots indicate dif-

The plan of the paper is as follows. In Sec. Il we intro- ferent|at|on with respect to;, H=a/a and p is the mean
duce the second-order vector and tensor modes which are ’
mass-density. Also useful is the relatiofit2 — 2+ a?A.

produced by the nonlinear evolution of primordial scalar per- )
turbations. In Sec. Il we obtain the contribution of these 'V then perturb the mass-density and fluid four-velocity
secondary modes to the polarization angular power spectr@s p=p(1+ ) and u#= (55 +v*)/a, with 5= p+ ds and
while in Sec. IV we compare these contributions to thoser*=vj+v% [16].

from primordial gravitational waves and gravitational lens- Let us briefly report the results of linear perturbation

ing. Section V contains our main conclusions. theory in this gaugefor a detailed analysis, see e[@3]).
The nondiagonal componentsief Einstein’s equations im-
Il. SECOND-ORDER VECTOR AND TENSOR MODES ply Wp=®p= ¢, for the scalar part, and
The perturbed line-element around a spatially flat Hpj+ 2HHp— V2Hp =0, 2)

Friedmann-Robertson-WalkefFRW) background takes a
particularly simple form in the so-called Poisson galiy®,  for the tensor part, while its trace gives the evolution equa-
which to linear order reduces to the Newtonian gaugetion for the linear scalar potential, namely
Adopting the conformal timel»=dt/a, one can write _
o+3He+a’Ap=0. 3
ds?=a%(p){—(1+2W¥)d»?—2V,dpdx
o Selecting only the growing-mode solution, we can write
+[(1-2®)6; +2H;; Jdx'dxX'}, D) o(x,7) = 0o(X)g(7), Whereg, is the peculiar gravitational
potential linearly extrapolated to the present timg)( and
with Sij the Kronecker symbol. The lapse perturbation is theg: D. /a is the so-called growth-suppression factor, where
sum of a first-order or primary teritindicated by a label P D _ () is the linear growing-mode of density fluctuations in
and a second-order ongndicated by a label 5§ W=Wp  the Newtonian limit and the scale-factor. In thd =0 case
+¥s. g=1. An excellent approximation fog as a function of
~ The shift perturbatio; in this gauge is a pure vector, i.e. redshiftz is given in Refs[24,25
d'V;=0, which only arises as a secoridr highep-order
contribution(i.e. V;=Vg). The spatial metric perturbations goch[Q‘r;”—QAJr(1+Qm/2)(1+QA/7O)]‘1, (4)
contain a scalar mode, which includes both a linear and a
second-order termp=®p+dg, and a tensoli.e. trans-  with Q,=Qon(1+2)%E*(2), Q,=Q0\/E*(2), E(2)
verse and tracelessnodeH;; (9'H;;=H'=0), which also  =[Qon(1+2)°+Q0,]"* and Qom, Qoy=1-Qgn, the

contains first and second-order contributions, nantely present-day density parameters of nonrelativistic matter and
=Hpj+Hg;. Here and in what follows spatial |nd|ces are cosmological constant, respectively. We will normalize the
raised by the Kronecker symb6| growth-suppression factor so thg¢z=0)=1.

Hereafter we assume that the Universe is spatially flat and The energy and momentum constraints provide the den-
filled with a cosmological constanh and a pressureless Sity and velocity fluctuations in terms of, namely
fluil—made of cold dark mattefCDM) plus baryons—
whose stress energy-tensor readg,=pu“u, (utu _ 1 2
=—1). This is a reasonable approximation for the purl[soses Op= 47Ga2 ;[V ¢=3H(e+He)l,
of this paper, although the inclusion of the radiation in the
evolution equations would give more accurate results at the 1
smgllgr scaleg considered, that entered the horizon during the vpi=— 2 (¢+H¢,) (5)
radiation dominated era. 47Ga

In this paper we will concentrate on vector and tensor
perturbations. In the standard inflationary scenario for the Perturbations of the matter stress-energy tensor up to
origin of perturbations linear vector modes are not presengecond-order in the Poisson gauge have been calculated in
but they are generated after horizon crossing as nonlined®ef.[26], for a general perfect fluid. Specializing to the pres-

combinations of primordial scalar modes. sureless case, one has

Let us report here the second-order calculation which o _ )
leads to the generation of these secondary vector and tensor T o= —p(1+ 6p+ S5t vp),
modes. For theA=0 case, this problem was originally
solved in Ref[16] starting from the results of second-order T 0= —;[vi:+vis+(<p+ 5p)vip],

calculations in the synchronous gadd®,20 and transform-

ing them to the Poisson gauge, by means of second-order 0 _T1. RV _
gauge transformatiorf21]. Here we will solve the problem Ti=ploptvs=Vit (=3¢t pval,

directly in the Poisson gauge and we will account for a non- o=

vanishingA term (see alsd22]). T i=pvpp, (6)
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Wherevﬁzujpvpj. Note that the second-order velocity is 1, 2 , 4,
the sum of an irrotational componer{’, which is the gra- |3V (Ps= Vo) +3(Ve) ™+ 3¢V
dient of a scalar, and a rotational vectd}’, which has zero
divergenceg'v{’=0.

For the purpose of obtaining secondary vector and tensor
modes, we can start by writing the second-order momentum- _ _ . . ,
conservation equatiop4], T4, =0, which gives +H(J'V;+ V') +(Hg+2HHg — V?Hg)

S+ da(Ps—Vy)

, . 1 . -
+2(9|(,D(9J'(,D+4QD(9|(9J'(,D+ E(&'V]+&JV')

. . . 1 _ 2 i 24
(0= V) + HE - V) = = ¥ 5= 260~ 5 di(vE+ 9?). S’TGa#”P”PJ 3”P51)' 12

7
@ ~To deal with this equation, we first apply the operator
For pure growing-mode initial conditiongxe and vy ¢ ¢ Which allows to solve for the combinatiohs—V's,
«3,¢, which makes the RHS of this equation the gradient ofand therj replace it in the original equation, together with the
a scalar quantity; thus, the vector part only contains a decay2XPression for the vector modé;. After a lengthy but
ing solution ¢&—V;)=xa 1, and we can safely assume straightforward calculation we obtain
aQ)_
vg'=Vi. . . .
To proceed one needs the second-order perturbations of V2V2(Hg+2HHg— V?Hy)
the Einstein tensorg?G* : these can be found for any
gauge in Appendix A of Ref.27]. _ =V29,R" 5+ 2VH(V?R' | = § R, = ;R )
The second-order “momentum constraints?G',

_ DT ni .
=87G 52T, gives + a0k R,., (13)
I(HYgt+dg+ ZVZV'+¢&'¢+4¢¢9'¢> where we introduced the traceless tensor
= —4nGa%p(o+ Sp)vht v, 8) ¢ _ o L vor2st I
PTTS RY=d €Df7k<P—§(V<P) kT 4mGa’p| vpup— 3URd
The pure vector part of this equation can be isolated by
first taking its divergence to solve for the combination 20\ £2
. C o ) 5 2ES(D)F Q) | [ _, 1 2
HWV s+ dg and then replacing it in the original equation. We =0 1+ —————— || 9" eodkpo— 5(Veo) Sk |-
obtain 3Qom(1+2) 3
(14
V2V2V,= 167G apd! (vp; 9 p— v pid; Op). 9)

Equation(13) can be solved by Green’s method, as the
corresponding homogeneous equation is the one for linear

We can further simplify this equation and write : . .
tensor modes, whose analytical solutions are known in the

8 o limiting casesQ,,—1 or Q,—1. In the A—0 limit one
V2V,=— §F(Z)((9i(p0V2(p0—(7'(9] @odj@ot2,00), recovers the result of Ref16], namely
(10 40 1 jy(kp)
i J1(K7
. . — Bl akx_"c. -
o= s | e il -G
E(z)= 29%(2)E(2)f(Qp) (15
(2= QomHo(1+2)2 ' where j, are spherical Bessel functions of ordérand
Sij(k)=fd3ye *YS; (y), with
where [24,25 f(Q,)=dInD,/dIna~Q(2*, H, is the
Hubble constant and Sij=V?005;; + 9,09+ 2(39; 00V > 90— didx@0d ] @o).-

(16)

For the purpose of the present analysis, the main contri-
bution comes from the early evolution éfg;, when the
For A=0, the above expression fof reduces to Eq(6.8) cosmological constant term can be neglected. One can then

V20 =—3[(V2 )2— 3, 0kpod @0l (11
0 2 ®o i7k®Po ®ol-

of Ref.[16], noting thatF(z) = » in that case. adopt the Einstein—de Sitter result above, up to an overall
Finally, we can solve for the second-order tensor modesorrection factogZ=g?(z— ).
by looking at the traceless part ofj Einstein’s equations, It proves convenient to express the previous quantities in

§IG! -3 6GK 5, =87G (6 DT - 55DT54)), namely Fourier space. Let us define
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Vi(x,7)= 7Qf V(k,x)

+VEDK,7) Q™ Pk, x)], (17)

where[29]

N i .
Qf k= (e igexiik . (19

with e;, e, ande;=k forming an orthonormal basis and
d3k’
(2m)3
—2k-K")@o(k") po(k—k").

V2 F(2)

(el+|ez) k' (k?

(19

The peculiar gravitational potential, is a Gaussian ran-

dom field with Fourier space correlation

(@o(k)o(k"))=(2m)* 6 (k+k")P,(k), (20

where P (k) is the gravitational potential power spectrum

Po(K)=Pok 3(kiko)"s T3(k), ko is some pivot wave-
number andT is the usual matter transfer functidB80],
which is unity on large scales and drops off like? on small

scales because of the stagnation effect of matter perturba-
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FIG. 1. The functiondVy, (dashed lingandW, (solid line) for
n=1.

section’s
+ 3X2) —5/2
For tensor modes we similarly define

calculations, is given byW,(x)=(1+5x

tions on subhorizon scales during radiation dominance. For

later convenience we can relai, to the dimensionless

power spectrum of the comoving curvature perturbatsee
e.g. [31]) R, namely A%(k)=A%(ko)(k/ko)"s*, where
A3 (ko) =(25/9) (Pof/2772) [45].

The vectorsV(*1) are two independenthi-squaredis-

tributed random fields each one with a power spectrum

1 F(2)?
Pv(kﬂ?)zﬁ

fl d cosf(1—cos6)
-1

X f dk’k4(k?— 2Kk’ cos6)P (k")
0

<P, (V2 +Kk2-2K'kcoso),  (21)
which, after numerical integration yields
0= 2™ A% (K
P = Cy(n
V0= 3 Culng (ko)
k -1 k* 2(ng—1)
x[kF(z)]Zk—3(—) (—) Wy (k/Ky ),
k* I(0
(22)

wherek, =Qy,h? Mpc™ 2, with h the Hubble constart in
units of 100 km s Mpc™1; the coefficientC,(ng) ranges

from 0.062 to 0.29 fomg between 1 and 0.8, respectively.

The functionW,,(x) (which is also weakly dependent o)
is unity for x<1 and drops to zero at~1; its form is
plotted in Fig. 1(for ng=1). A good fit, useful for the next

Hij(x7) = —— f d*k[H2(k, ) QY2 (k%)
2)
+HEA(k, 7)Q 2 (k,x)], (29
where[29]

Q2 (k,x) \/>(e1_|e2 )i(e1+i6,)exp(ik-X).

(24)
The primary tensor modes can be expressed as
. . ja(kn)

HE 2, m) =Xk 0= =, (25

for the Einstein—de Sitter case, wheyg™ and x5 2 are
two independent Gaussian fields each one with power-
spectrumPXP(k) = POXPk*3(k/ko) ntTf(k). The tensor trans-
fer function Ty(k) readsTy(k)=[1+ 1.34y+ 2.5y?]*2 [32],
wherey=k/k¢qand keq:O.07:ﬂomh2 Mpc ™1 is the horizon
scale at matter radiation equality. In the# 0 case the evo-
lution of primary tensor modes is more complicated and will
be dealt with usingoMBFAST [33].

We can similarly relatePXP(k) to the dimensionless ten-

sor power spectrum(see e.g. [31]), AZ(k)=AZ(ko)
X (kl/ko)™, where Atz(kO)Z(POXP/Z’]TZ). Defining the
“tensor-to-scalar” ratio as in Ref.31], we find
Af(ko)
r=24— (26)
A%(ko)

In single-field slow-roll inflation models the standard consis-
tency relationn,= —r/8 also applie$34].
The secondary tensor modes are instead characterized by
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(+2) jikm)\ (+2) denoting scalar, vector and tensor perturbations, respectively.

Hs (kﬂ?)“( 1= = |9=xs 7K, (27 E(™ andB{™ are the angular moments of the electric and
" magnetic polarization components and

where we have introduced the factgi that makes this a

good approximation in the\ #0 case forz> few as dis- m e 4
cussed above. The secondary tensors in(Eg.are given by SGexn=(=1) 20+ 1[ sYZ(mlexp(ik-x). (32)
dk’ . The Boltzmann equation describing the ti lution of
D (k) = 2 , quation describing the time evolution o
Xs “(K)= 3\/_k2J 2 )s[k (@7 &)Peo(k ) ok the radiation distribution under gravitation and scattering
processes can be written as a set of evolution equations for
—k’), (28)  the angular moments of the temperatufg™ (for £=m),
and both polarization type€£!™ and B{™ (for £=2 and
and arechi-square distributed independent random fields m=0) P ypes o
with power spectra ’
[ m m
25 - QM| 0 _gm _ 0K gm) | gm), gm)
P (k)= dmwmwd.wm“mmw CT@ey T ey T TR TR
2772 k* (33
X P, (Vk'2+k2—2k'k cos6), (29 N N
: : , . B | 25 Em) _Z_mB(m)_ K641 (m)
which can be numerically integrated to give CTN(20-1) Y ge+1)Ct (2€+3)
1272 k| "k, |27 —EM (m)
- 4 _ * T E + \/gp 5 y (34)
Pk_—ﬁickAﬂk@k3“§J EJ W, (K/k, ), LB 2]
(30) " o "
. 2Ky 2Ke+1
where the coefficien€, (ns) ranges from 0.062 to 0.29 for Bfem):k[mB(m) T erD) 1) E{™— 20+3) B{m
ns between 1 and 0.8, respectively. The functiW}S(x) o
m
(which weakly depends omy) is unity forx<<1 and drops to — 7By, (39
zero atx~1; its form is also plotted in Fig. for ng=1). It ) o
can be well fitted byW,(x) = (1+7x+ 5x2) 3. where the coupling coefficients are
lll. POLARIZATION ANGULAR POWER SPECTRA m (P =m?)(€7—s%)

Polarization of the CMB arises from Thomson scattering
of anisotropic radiation by free electrons. The generation of
temperature and polarization anisotropies in the CMB from! N fluctuation sources are given by
gravitational perturbations has been studied in detail by sev- . _ _ .
eral authorg1,2,29,35. A simple and powerful formalism is SO=r00-d, SP=rQ+k¥, SP=7pO),
the total angular momentum methfi2b,35, which includes
the effect of scalar, vector and tensor modes on an equal 1)_ (1), 1)_ p (2)_ p(2)_1
footing. This is the most convenient approach for our calcu- SU=mgl V. SP=7PY, §0=7P-H,

lations, and we are going to extensively use the results of 37
Ref.[29]. The temperature and polarization fluctuations ar
expanded in normal modes that take into account the depen-
dence on both the angular direction of photon propagation 1
and the spatial positior, (G7'(x,n) P(m)=ﬁ[®(2m)— VBES™1. (39
O(7n,x,n)= 2 E oM ,GI The modes withm= —|m| satisfy the same equations with
" 21)3 . o (—Imh)— _ g(Im)
(2m) B! M) =—B{™) and all the other quantities unchanged.
) These equatlons can be formally integrated, leading to
+iu _ dk £(m) simple expressions in terms of an integral along the line-of-
(Q=iU)(7.x.n)= 3 el (B¢ sight[29]. The temperature fluctuations are given b
(2m)3 T m=-2 g p g y
dy'e 7> V(7)) ™ (k(n—7")),
with spins=0 describing the temperature fluctuation and 2€+1 f 2 (75 P (k(n=2"))
= *+2 describing the polarization tensor ant=0,+1,*+2 (39
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wherej{‘'™ are given in Ref[29]. For the polarization, we
have

EM(70,k) . "
%= - \/Ef:od nre” P™ ()™ (k(no— ),
B{™(70,k) . "
e 6 | "dyre P () BN Ko )
(40)
where the radial functions read
£90= 5 (6—1>(e+2>[”(;()+@ ,
X
. 1. je(x)  Je(x)
e%-z’<x)=Z{—n(x)m(xwzjfxz ra ] (@D
(F1)ron . a(=1)yoy_ L Je(X)
B0 == B0 = SV(E-1)(€+2) = —,
1 j o(X
By P00 =By D0 = 5[1@(x>+2”(x )}. (42)

Here the differential optical depth=n.ora sets the colli-
sion rate in conformal time, with, the free electron density
and o7 the Thomson cross section and(g,7)

Ef:’]("r(n’)dn’ the optical depth between and the present
time. The combinationre™ 7 is the visibility function and

PHYSICAL REVIEW D69, 063002 (2004

b a r
VBV g VT (00 (4

To leading order in the tight coupling approximation we ob-
tain

of=of, (45)
and from the baryon Euler equation
vP=V. (46)

To this perturbative order the quadrupole vanishes. However
it does not vanish to the next order, and thus @§0+0.

An appropriate expression for our calculation can be ob-
tained by combining the equations fexs") and ESY to ob-

tain an evolution equation foP*), and replacing in it the
leading order solution we get

(47)

This can be integrated to give

PM(k )=Lf”d V(K ’)exp(—if( ' ))
177 10\/§ 0 7] !7] 10 77 !7] N
(48)

Then, theB-mode polarization multipoles can be estimated
by

Bg’l)( 7]01k)
2¢+1

k\/i 70

10 Jo

dyre” "B (k(no— 1))

expresses the probability that a photon last scattered between

d#n of » and hence is sharply peaked at the last scattering
epoch. In early reionization models, a second peak is also

present at more recent times.

Scalar modes do not contribute ®polarization, thus
B{”=0. We are interested in the contribution to the angula
power spectrum for th& and B modes arising from vector
(m=1) and tensori=2) perturbations,

2
cE-2 [k B I
( 1
m) kKm=2 (20+1)?
2 (dk & B{™ (70,k)|2
C(eB):_ _ kBM (43)
m) Km=2  (20+1)2

A. Effects of decoupling

f”d (k5 p( S )
, 97 (k,")exp = 757(n" ) |.
(49)

"An analogous expression holds faf? replacing ¥ by

eV, Because of the sharpness of the visibility function
around the time of decouplingp , V(k,7") and BV (k( 7,

— 7)) (or V) can be evaluated ajp, and taken out of the
integration. The remaining integral can be evaluated analyti-
cally approximating the visibility function by a Gaussian of
width A 7 [36]

B (m0.k)  ky2

TEs 3 0-518 7pV(K, 70) B (K( 770~ 7))

(50

Then, the resulting angular power spectrunBahodes from

Before recombination, photons, electrons and baryons bgjactor perturbations results

have as a single tightly coupled fluid, so we can find approxi
mate expressions for the polarization souR@’ using a

perturbative expansion in inverse powers of the differential

optical depthr (k/7<1) [36]. For the vector modes we need

to consider the Euler equation for the velocity perturbation of

baryons to close the system

06300

8
C%B)(l)=%0.512A 772D

f dkk* BV (K( 79— 17p)}2Py(K, 7p),  (51)

2-6
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FIG. 2. Angular power-spectrum @& (left pane) and E (right panel polarization by secondary vect@olid lineg and tensor modes
(dashed lines in a ACDM model without reionizatiorgthin lines and with an optical depth to reionizatiaR=0.17 (thick lines.

where we have added the contribution coming from rine For the tensor modes, the tight coupling approximation to

=+1 modes. FoC{®™ we obtain an analogous expression the leading order giveB® = ©@)/4= — H®)/37. To the next
with €D (k( 70— 7p)) replacing B{"(k(70— 7p)). Replac-

order we obtain the following evolution equation fBf?):
ing Eq.(22) we obtain
: 3. H®
¢(¢+1)cP® P 4 F)Tp<2>+ <5 =0 (55
2
5P Kk, | 206D Azg)? that can be integrated
=€(€+1)16——A%(ko) —) Cv(ns)( )
25 Ko 7o ) L7, 0 3
P )(k’”):_F)J'O dy'H®(k, 7" )exp = 757(7" 1) |.
F(zp)\? X
X ) 70K« f oo BHOO W — = . (56)
0 oK«
(52) Proceeding as for the vector case, we obtain folBmeodes
The integral can be conveniently evaluated using the WKB B®( . k)
Y . ; (70, )
a(plp))roxmgnon for the Bessel functions appeannqﬁ}ﬁ? and e \ﬁ0-5JA 1oH@(K, WD)B(gz)(k( 70— 70))
e, leading to + 3
(57)
(12 1 = ) 2
v =sU= i and the same result changi y €, for the E modes.
(B (X)) =g({-1)(£+2) N (53 d th It ch ) by €{? for the E mod
XEVX Using Eq.(27) we can write
1 1 x°— {2 ;
(1)y2 ~_(¢— . J2(kmp)
() 0N=g =42 et — 5| HY (kmo) = ~3¢2 = @k (6B
(59)

~ Then, for the angular power spectrum, we obtain
for x>¢, and 0 forx<<€¢. The results for the vector contri-
bution to theB andE angular power spectrum are shown in

_ ! +1)c®@ 2

Fig. 2, where we have used the following values for the w:g(5+1)1_30,512(m7[’) gif dk k2
parameters, for the concordanaeCDM model 2, =0.7, 2m ™ b}

Q,=03, Q,h?=0.022, h=0.71): Anp/np=~Azp/22p <1 B 2P (K)i2(k
—0.09, 70/ 75=30, k,=0.135 Mpc'* and AZ%(ko)=2.3 1B k(0= m0)) P (K)i2(k 7o),

X 107° at ko=0.002 Mpc . (59
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for the B modes(and the same expression wiB}?—e{?)  effects during propagation. Since the quadrupole polarization
for the E modes, with P, (k) given by Eq.(30). To perform E, generated during decoupling is typically smaller than the
the remaining integration it is convenient to use the WKBemperature quadrupold,, we can approximate the polar-

approximated expressions ization source a®™~@®{™/10, and use fo®{™ the for-
mal solution of Eq(39), dropping in the fluctuation sources
@220 L WXZ—¢2 4 S of Eq. (37) the terms proportional to againstV (in the
(B O=g x3 +X3\/W case of vectojsor againstH (for the tensorg since the
coupling is not tight.
<(6§;2))2(X)> The _contriputiqn of secpndary vectors Bypolarization
' after reionization is then given by
1 (1— 1He(e+1)2\% 1 e B (nok) 6 L) "
8 X2 X\x2— €2 5| vl 7Ln nre” "By k(70— n)]fo dy
(60)

xexp(— (7", MV(k, 75 Uk(n—7")),
for x>¢, and 0 forx<€. The results are shown in Fig. 2. 61)
The dominant contribution comes from the tensor modes for

low multipoles, ¢ <20, while the vector contribution domi- wherej(zll)(x)z V3j,(x)/x. For a single step reionization

nates for larger. scenario, we can approximate
B. Effects of reionization B(fl)( 70,K) _ -
_ vl FAmiVka)
The recent detection by WMAP of excess power on large V2

angular scales in the correlation between temperature and 1
E-polarization of the CMB is strong evidence that the Uni- xﬁ%l)(k( No— ,7“))_<
verse was reionized at relatively early timg%7,38. The kn
_bes_t fit _to the Thomson scattering _optical depth dL_Je_to reion\-Ne have defined an effective“reionization widthA 7,
ization is given byr,;=0.17, with still large uncertainties. In Tom o r i - )
a spatially flatACDM model with Q,=0.7, reionization = 7l d77e ", which for the 0,=0.3, spatially flat
would have happened at a redshift=17, if it took placein ACDM model with single-step reionization and optical
a single step. depth7,;=0.17 isA 5,;=0.16%,;. This can be calculated tak-
Early reionization provides another opportunity for ing into account that, for<z,,
Thomson scattering to modify the polarization properties of Q.h2 0.710.3
the CMB. lts effects can be approximately decomposed in _ g — 3_
two parts[39]. On the one hand, rescattering damps already 7(2)=0.004 )5 22 h Qm[\/l Ot Qn(1+2)°1].
present anisotropies and polarization by a fa@ofi. On (63

the other hand, rescattering of the existing quadrupole anisof\'lotice thatr;=0.17 forz;= 17 if Q.= 0.3. The reionization

[T?Elytlipsg?enslflcantly enhances the polarization signal at IOWcontribution to the power spectrum Bfpolarization by vec-

Here we estimate the effects of reionization on the polar:mr modes is finally approximately given by

ization signal induced by secondary vector and tensor modes. ¢(¢+1)c{®®
We shall assume, for simplicity, that reionization took place BT
in a single step. We can then approximate in @) that the

visibility function 7" is sharply peaked ap, and thus
evaluateB{™ k(70— 7)) (ande™) at = 7, and take them =€(L+ 1)(2—5
out of the integral. The coupling between photons and elec-
trons after reionization is, however, not very tight, and thus Ani\?(F(z)\? X
we cannot proceed with the same approximations as in the ><Cv(ns)( ) ( _ ) (10— ﬂri)k*J -
previous section to compute the polarization sources K K X
P(M(5). Indeed, 7=—oin.a with n,=0.88,,(1 W af12Y) 1) X
+2)%X(z) and X(z) the ionization fraction. Thusr xR (x)] (T_ §) v m)
=0.001H,(1+2)2X(2) (2,h?/0.022) (0.714), and for the 64
cosmological parameters under consideratio;~ 0.5 7,
at z=z,, and the tight coupling approximation is not appli- wherey=x%,;/(7o,— 7). An analogous expression holds of
cable at any relevant wavelength. course forC{®® with € in place of 8.

The polarization produced after reionization is essentially The contribution of secondary tensor modes to the polar-

due to the scattering of existing quadrupole anisotropiesization induced after reionization can be estimated with simi-
generated by scattering at earlier times or by gravitationalar approximations:

jalkyg) 1
k7]ri _§> (62)

2 k ) 2(ng—1)

A%(k())(k—’;

rn
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B (70,k)
26+1 1e-19
\/g 70 . 7 ;
== 3 "anre k(o= 1 | "y s
2 i 0 @\
. Q
xexp(— (7', )HO(K 752 k(n—7"), (65 I 1e20f
wherej{?2(x) =3 j(x)/x2. We approximate
2 2
BP(no.k) 6 .
LA A ) (2) ) g(2) e e R
2€+1 10A77rl(1+6)H (ka77r|)ﬁe 1e-21 1I0 1|00 1000

X (K( 70— 17:))D(K7y). (66)
FIG. 3. Angular power-spectrum of secondary tdtadctor plus
We have defined an additional coefficiedt such that tensoy B-polarization(thick solid line compared with that induced

SAp;=["dnpre” [7dyp'e (77) |1t accounts for the fact PY primor_dial gravita_tional wavesgdashed ling with a tensor to

. i " . scalar ratior=10"%, in a flat ACDM model (,,=0.3) with 7;
that in this cas¢opposite to th_e V_eCt_Or Cf"‘)sme time _depen- =0.17. The thin solid line is the signal due to gravitational lensing
dence of the source after reionization is not negligible. Foraaned by a factor 40.

the model parameters used throughout this work to estimate
the effects,6~0.4. The damping factob(x)=4/x if x<4 P, (k). The approximate expressions, both with or without
(andD =1 otherwisg arises becausié*?(x) can be approxi- reionization, are in good agreemefwith more than 20%
mated as 1/5 only for smaX; larger values lead to oscilla- accuracy with the numerical results obtained using
tions that make the integral decay ak.1Finally, the reion-  cyigrasT. Notice that the polarization induced by primordial
ization contribution to the power spectrum Bfpolarization  gravitational waves may be slightly smaller than it was cal-
by secondary tensor modes is approximately given by cylated here due to damping by neutrino free-strearfdog
which we did not take into account.
€(e+1)cP@ In Fig. 3 we plot the numerical resuftalculated with
20 CMBFAST) for the B-polarization induced by primordial
gravitational waves in a model with tensor to scalar ratio
2 =10"%, along with the total secondaB:modes(vector plus
! (A””) (1+ 5)294f dk k2 tensoy derived in this work. It is clear that the effects of
2572 - primary and secondary modes are comparable. Primary
) ) 5 ) modes have somewhat larger effects at the lowést10)
X{BE k(0= 1))} Py (K)i2(k70)D*(ky). (67)  myltipoles, and also fof between 30 and 100, but second-
ary modes overcome them in intermediate and larger values
The numerical result for the angular power spectruriof of ¢. The power-spectrum induced by primordial gravita-
and B polarization by secondary vector and tensor modesional waves scales as Thus, secondary vector and tensor
produced after reionization, in the concordana€DM fluctuations limit the ability to detect primordial gravitational
model, is displayed in Fig. 2, added to the polarization thatvaves through measurementsBspolarization ifr <10 .

—0(€+1)

ri

was produced during decoupling, damped by a faetdr. The extraction of théB-polarization signature of primor-
dial gravitational waves is seriously limited by weak gravi-
IV. COMPARISON WITH PRIMARY TENSOR MODES tational lensing effects, that convert the dominﬁnype po-
AND COSMIC SHEAR larization into B-modes[4], which swamp the signature of

primordial tensor fluctuations unless they have a ratio to sca-

The signal from the secondary modes computed in the lasar fluctuationsr of the order or larger than 106. Fortu-
section must be compared with the signal from the primornately, the weak lensing effect can be accounted for, through
dial gravitational-wave background generated during inflateconstruction of the gravitational lensing potential by the
tion. This depends on the model of inflation considered andorrelations oB-polarization between large and small angu-
its amplitude is parametrized by the “tensor-to-scalar” ratiolar scales, which primordial gravitational waves do not pro-
r [see EQ.(26)]. Its angular power spectrum can be accu-duce. “Cleaning” of the gravitational lensing signature may
rately computed by available codes likemBFAST [33], achieve factors of 40 in the power spectrum, or even larger
against which we have tested the accuracy of our semian&10]. In Fig. 3 we display the predicted gravitational lensing
lytic approximations in the previous sections. The polarizasignal inB-polarization calculated witkmBFAST for the cos-
tion induced by primordial gravitational waves can be calcu-mological model under consideration, reduced by a factor
lated as in Eq.(59) replacing the power spectrum of 40. Clearly, an improvement in the cleaning algorithm would
secondary modesPXS(k) by that of the primary modes convert the secondary vector and tensor modes derived here

063002-9
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in the barrier to the detection of primordial gravitational signal compared to the lensing one comes from low multi-

waves througtB-polarization of the CMB ifr <107 5. poles, where the reionization contribution is dominant, this
limit depends on the Thomson scattering optical depth to
V. CONCLUSIONS reionization, that still has a large uncertainty.

] o At these sensitivity levels, there are other secondary ef-

_The study of the magnetic-mode polarization of the CMBfects that can give rise to sizable contributions to Bagype
will become a fundamental and possibly unique tool topgarization. We estimated here the contribution coming
search for the stochastic gravitational-wave backgroundirom secondary vector and tensor modes, which originate by
whose detection would represent a clear signature of a perio$le mildly nonlinear evolution of primordial density pertur-
of inflation in the early Universe. In contrast with tempera-pations. The amplitude and harmonic content of this contri-
ture anisotropies anB-type polarization of the CMB, scalar pytion is completely fixed, once the primordial power spec-
perturbations do not give rise # polarization in a direct {ym of the density perturbations is known. For a
way, so that measurements of tBemode could be used t0 concordance\ CDM model, and adopting the high reioniza-
probe rather small gravitational-wave background amplition redshift implied by the WMAP datf37,3§, we found
tudes. Because of this reason, much observational effort igyat the effect of secondary vectors and tensors becomes
taking place for its detection, and future dedicated missionsgomparable to that of primary gravitational waves for
such as NASAsBeyond Einsteininflation Probe[41] or <1076, thus making it the actual background for the detec-

ground-based experiments, liI#CEP [42] andPolarBeaR tjon of primordial gravitational waves througd-mode po-
are being planned. larization.

The main background for the detection of tBenode is
represented by the gravitational lensing conversion of a frac-
tion of the dominanE-type into B-type polarization. How-
ever, it has been recently shoyt0] that the lensing signal This work was partially supported by ANPCyT, Funda-
can largely be cleaned, thus allowing us to probe inflationargion Antorchas and MIUR. We thank Paolo Natoli for dis-
models with tensor-to-scalar ratios<10°°. As the largest cussions.
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