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CMB polarization from secondary vector and tensor modes
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We consider a novel contribution to the polarization of the cosmic microwave background induced by vector
and tensor modes generated by the nonlinear evolution of primordial scalar perturbations. Our calculation is
based on relativistic second-order perturbation theory and allows us to estimate the effects of these secondary
modes on the polarization angular power spectra. We show that a nonvanishingB-mode polarization unavoid-
ably arises from pure scalar initial perturbations, thus limiting our ability to detect the signature of primordial
gravitational waves generated during inflation. This secondary effect dominates over that of primordial tensors
for an inflationary tensor-to-scalar ratior ,1026. The magnitude of the effect is smaller than the contamination
produced by the conversion of polarization of typeE into typeB, by weak gravitational lensing. However, the
lensing signal can be cleaned, making the secondary modes discussed here the actual background limiting the
detection of small amplitude primordial gravitational waves.
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I. INTRODUCTION

The generation of a stochastic background of primord
gravitational waves is a fundamental prediction of inflatio
ary models for the early Universe. Its amplitude is det
mined by the energy scale of inflation, which can wide
vary between different inflationary models. The detection
this gravitational radiation would provide a crucial test f
the validity of the whole scenario. Gravitational wave dete
tors, however, are quite unlikely to have enough sensitiv
to detect such a primordial signal, owing both to its sma
ness and to its extremely low characteristic frequencies.
existence of ultra low-frequency gravitational radiatio
however, can be indirectly probed thanks to the tempera
anisotropy and polarization it induces on the cosmic mic
wave background~CMB! radiation. In particular, the cur
component, calledB-mode, of the CMB polarization pro
vides a unique opportunity to disentangle the effect of ten
~gravitational-wave! from scalar perturbations, as this is on
excited by either tensor or vector modes@1,2#. From this
point of view, future satellite missions, such asPlanck,
which will have enough sensitivity to either detect or co
strain theB-mode CMB polarization predicted by the sim
plest inflationary models, might represent the first ‘‘spa
based gravitational-wave detector’’@3#. The main
complication in this context comes from the effect of gra
tational lensing on the CMB by the matter distributio
which implies the transformation ofE-mode into B-mode
polarization@4#: such a nonlinear effect might actually ob
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scure the signal due to primordial tensor modes. It has b
pointed out that the inflationary gravitational-wave bac
ground can only be detected by CMB polarization measu
ments if the tensor to scalar ratior>1024, which corre-
sponds to an energy scale of inflation larger than
31015 GeV @5–8#. Quite recently, however, a better tec
nique tocleanpolarization maps from the lensing effect h
been proposed, which would allow tensor-to-scalar ratios
low as 1026, or even smaller, to be probed@9,10#. Other
secondary contributions to theB-type polarization arising
during the reionization stage, though of much smaller am
tude, have been considered in@11#.

The case of vector modes is even more interesting, as
cannot be produced during inflation and are in general
tremely difficult to generate at early epochs, with the exc
tion of models which predict the existence of primord
tangled magnetic fields@12,13#.

This paper considers a new source ofB-mode polariza-
tion, coming from secondary vector and tensor modes.
contribution to temperature anisotropy arising from the
modes has already been analyzed in Refs.@14,15#. The evo-
lution of cosmological perturbations away from the line
regime is in fact characterized by mode-mixing, which n
only implies that different Fourier modes influence ea
other, but also that primordial density perturbations act a
source for curl vector perturbations and gravitational wa
@16,43#. Let us emphasize that these secondary vector
tensor modes always exist and that their amplitude ha
one-to-one relation with the level of density perturbation
which is severely constrained by both CMB anisotropy m
surements and large-scale structure observations. There
their properties are largely inflation model-independent, c
trary to primary tensor modes whose amplitude is not o
model-dependent, but is well-known to be suppressed
©2004 The American Physical Society02-1



o-
a

er
se
ct
s
s

a

ge

th

.

s
d

re

an
s

se
he
th
t

so
th
en
e

ic
n
y
er

rd

on

ity

n

ua-

ite
l

re
in

and
he

en-

to
d in
s-

MOLLERACH, HARARI, AND MATARRESE PHYSICAL REVIEW D69, 063002 ~2004!
some cases, like e.g. in the so-calledcurvatonmodel for the
generation of curvature perturbations@17#.

The plan of the paper is as follows. In Sec. II we intr
duce the second-order vector and tensor modes which
produced by the nonlinear evolution of primordial scalar p
turbations. In Sec. III we obtain the contribution of the
secondary modes to the polarization angular power spe
while in Sec. IV we compare these contributions to tho
from primordial gravitational waves and gravitational len
ing. Section V contains our main conclusions.

II. SECOND-ORDER VECTOR AND TENSOR MODES

The perturbed line-element around a spatially fl
Friedmann-Robertson-Walker~FRW! background takes a
particularly simple form in the so-called Poisson gauge@18#,
which to linear order reduces to the Newtonian gau
Adopting the conformal timedh5dt/a, one can write

ds25a2~h!$2~112C!dh222Vidhdxi

1@~122F!d i j 12Hi j #dxidxj%, ~1!

with d i j the Kronecker symbol. The lapse perturbation is
sum of a first-order or primary term~indicated by a label P!
and a second-order one~indicated by a label S!: C5CP
1CS.

The shift perturbationVi in this gauge is a pure vector, i.e
] iVi50, which only arises as a second~or higher!-order
contribution~i.e. Vi5VSi). The spatial metric perturbation
contain a scalar mode, which includes both a linear an
second-order term,F5FP1FS, and a tensor~i.e. trans-
verse and traceless! modeHi j (] iHi j 5H i

i 50), which also
contains first and second-order contributions, namelyHi j
5HPi j 1HSi j . Here and in what follows spatial indices a
raised by the Kronecker symbold j

i .
Hereafter we assume that the Universe is spatially flat

filled with a cosmological constantL and a pressureles
fluid—made of cold dark matter~CDM! plus baryons—
whose stress energy-tensor readsT n

m 5rumun (umum

521). This is a reasonable approximation for the purpo
of this paper, although the inclusion of the radiation in t
evolution equations would give more accurate results at
smaller scales considered, that entered the horizon during
radiation dominated era.

In this paper we will concentrate on vector and ten
perturbations. In the standard inflationary scenario for
origin of perturbations linear vector modes are not pres
but they are generated after horizon crossing as nonlin
combinations of primordial scalar modes.

Let us report here the second-order calculation wh
leads to the generation of these secondary vector and te
modes. For theL50 case, this problem was originall
solved in Ref.@16# starting from the results of second-ord
calculations in the synchronous gauge@19,20# and transform-
ing them to the Poisson gauge, by means of second-o
gauge transformations@21#. Here we will solve the problem
directly in the Poisson gauge and we will account for a n
vanishingL term ~see also@22#!.
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The background Friedmann equations read 3H 2

5a2(8pGr̄1L) and rG 523Hr̄, where dots indicate dif-
ferentiation with respect toh, H[ȧ/a and r̄ is the mean
mass-density. Also useful is the relation 2Ḣ52H 21a2L.

We then perturb the mass-density and fluid four-veloc
as r5 r̄(11d) and um5(d0

m1vm)/a, with d5dP1dS and
vm5vP

m1vS
m @16#.

Let us briefly report the results of linear perturbatio
theory in this gauge~for a detailed analysis, see e.g.@23#!.
The nondiagonal components ofi -j Einstein’s equations im-
ply CP5FP[w, for the scalar part, and

ḦPj
i 12HḢPj

i 2¹2HPj
i 50, ~2!

for the tensor part, while its trace gives the evolution eq
tion for the linear scalar potentialw, namely

ẅ13Hẇ1a2Lw50. ~3!

Selecting only the growing-mode solution, we can wr
w(x,h)5w0(x)g(h), wherew0 is the peculiar gravitationa
potential linearly extrapolated to the present time (h0) and
g5D1 /a is the so-called growth-suppression factor, whe
D1(h) is the linear growing-mode of density fluctuations
the Newtonian limit anda the scale-factor. In theL50 case
g51. An excellent approximation forg as a function of
redshiftz is given in Refs.@24,25#

g}Vm@Vm
4/72VL1~11Vm/2!~11VL/70!#21, ~4!

with Vm5V0m(11z)3/E2(z), VL5V0L /E2(z), E(z)
[@V0m(11z)31V0L#1/2 and V0m , V0L512V0m , the
present-day density parameters of nonrelativistic matter
cosmological constant, respectively. We will normalize t
growth-suppression factor so thatg(z50)51.

The energy and momentum constraints provide the d
sity and velocity fluctuations in terms ofw, namely

dP5
1

4pGa2r̄
@¹2w23H~ ẇ1Hw!#,

vPi52
1

4pGa2r̄
] i~ ẇ1Hw!. ~5!

Perturbations of the matter stress-energy tensor up
second-order in the Poisson gauge have been calculate
Ref. @26#, for a general perfect fluid. Specializing to the pre
sureless case, one has

T 0
0 52 r̄~11dP1dS1vP

2!,

T 0
i 52 r̄@vP

i 1vS
i 1~w1dP!vP

i #,

T i
0 5 r̄@vPi1vSi2Vi1~23w1dP!vPi #,

T j
i 5 r̄vP

i vPj , ~6!
2-2
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wherevP
2[vP

j vPj . Note that the second-order velocityvSi is
the sum of an irrotational componentvSi

(0) , which is the gra-
dient of a scalar, and a rotational vectorvSi

(1) , which has zero
divergence,] ivSi

(1)50.
For the purpose of obtaining secondary vector and ten

modes, we can start by writing the second-order moment
conservation equation@44#, T i ;m

m 50, which gives

~ v̇Si
(1)2V̇i !1H~vSi

(1)2Vi !52] iCS22ẇvPi2
1

2
] i~vP

21w2!.

~7!

For pure growing-mode initial conditionsẇ}w and vPi
}] iw, which makes the RHS of this equation the gradient
a scalar quantity; thus, the vector part only contains a dec
ing solution (vSi

(1)2Vi)}a21, and we can safely assum
vSi

(1)5Vi .
To proceed one needs the second-order perturbation

the Einstein tensor,d (2)G n
m : these can be found for an

gauge in Appendix A of Ref.@27#.
The second-order ‘‘momentum constraint’’d (2)G 0

i

58pGd (2)T 0
i gives

] i~HCS1ḞS!1
1

4
¹2Vi1ẇ] iw14w] i ẇ

524pGa2r̄@~w1dP!vP
i 1vS

(0)i #. ~8!

The pure vector part of this equation can be isolated
first taking its divergence to solve for the combinati

HCS1ḞS and then replacing it in the original equation. W
obtain

¹2¹2Vi516pGa2r̄] j~vPj] idP2vPi] jdP!. ~9!

We can further simplify this equation and write

¹2Vi52
8

3
F~z!~] iw0¹2w02] i] jw0] jw012] iQ0!,

~10!

with

F~z!5
2g2~z!E~z! f ~Vm!

V0mH0~11z!2
,

where @24,25# f (Vm)[d ln D1 /d ln a'Vm(z)4/7, H0 is the
Hubble constant and

¹2Q052
1

2
@~¹2w0!22] i]kw0] i]kw0#. ~11!

For L50, the above expression forVi reduces to Eq.~6.8!
of Ref. @16#, noting thatF(z)5h in that case.

Finally, we can solve for the second-order tensor mo
by looking at the traceless part ofi -j Einstein’s equations
d (2)G j

i 2 1
3 d (2)G k

k d j
i 58pG(d (2)T j

i 2 1
3 d (2)T k

k d j
i ), namely
06300
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3
¹2~FS2CS!1

2

3
~¹w!21

4

3
w¹2wGd j

i 1] i] j~FS2CS!

12] iw] jw14w] i] jw1
1

2
~] i V̇ j1] j V̇

i !

1H~] iVj1] jV
i !1~ḦSj

i 12HḢSj
i 2¹2HSj

i !

58pGa2r̄S vP
i vPj2

1

3
vP

2d j
i D . ~12!

To deal with this equation, we first apply the operat
] j] i , which allows to solve for the combinationFS2CS,
and then replace it in the original equation, together with
expression for the vector modeVi . After a lengthy but
straightforward calculation we obtain

¹2¹2~ḦSj
i 12HḢSj

i 2¹2HSj
i !

5¹2]k],R k
, d j

i 12¹2~¹2R j
i 2] i]kR j

k 2]k] jR k
i !

1] i] j]
k],R k

, , ~13!

where we introduced the traceless tensor

R k
, [],w]kw2

1

3
~¹w!2dk

,14pGa2r̄S vP
,vPk2

1

3
vP

2dk
,D

5g2S 11
2E2~z! f 2~Vm!

3V0m~11z!3 D S ],w0]kw02
1

3
~¹w0!2dk

,D .

~14!

Equation~13! can be solved by Green’s method, as t
corresponding homogeneous equation is the one for lin
tensor modes, whose analytical solutions are known in
limiting casesVm→1 or VL→1. In the L→0 limit one
recovers the result of Ref.@16#, namely

HSi j ~x,h!5
1

~2p!3E d3keik•x
40

k4
Si j ~k!S 1

3
2

j 1~kh!

kh D ,

~15!

where j , are spherical Bessel functions of order, and
Si j (k)5*d3ye2 ik•ySi j (y), with

Si j 5¹2Q0d i j 1] i] jQ012~] i] jw0¹2w02] i]kw0]k] jw0!.

~16!

For the purpose of the present analysis, the main con
bution comes from the early evolution ofHSi j , when the
cosmological constant term can be neglected. One can
adopt the Einstein–de Sitter result above, up to an ove
correction factorg`

2 [g2(z→`).
It proves convenient to express the previous quantitie

Fourier space. Let us define
2-3
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Vj~x,h!5
1

~2p!3E d3k@V(11)~k,h!Qj
(11)~k,x!

1V(21)~k,h!Qj
(21)~k,x!#, ~17!

where@29#

Qj
(61)~k,x!5

i

A2
~ ê16 i ê2! jexp~ ik•x!, ~18!

with ê1 , ê2 and ê35 k̂ forming an orthonormal basis and

V(61)~k,h!5
A2

3

F~z!

k2 E d3k8

~2p!3
~ ê17 i ê2!•k8~k2

22k•k8!w0~k8!w0~k2k8!. ~19!

The peculiar gravitational potentialw0 is a Gaussian ran
dom field with Fourier space correlation

^w0~k!w0~k8!&5~2p!3d (3)~k1k8!Pw~k!, ~20!

where Pw(k) is the gravitational potential power spectru
Pw(k)5P0wk23(k/k0)ns21Ts

2(k), k0 is some pivot wave-
number andTs is the usual matter transfer function@30#,
which is unity on large scales and drops off likek22 on small
scales because of the stagnation effect of matter pertu
tions on subhorizon scales during radiation dominance.
later convenience we can relatePw to the dimensionless
power spectrum of the comoving curvature perturbation~see
e.g. @31#! R, namely DR

2 (k)5DR
2 (k0)(k/k0)ns21, where

DR
2 (k0)5(25/9)(P0w/2p2) @45#.
The vectorsV(61) are two independent,chi-squaredis-

tributed random fields each one with a power spectrum

PV~k,h!5
1

9p2

F~z!2

k4 E
21

1

d cosu~12cos2u!

3E
0

`

dk8k84~k222kk8cosu!2Pw~k8!

3Pw~Ak82 1k222k8k cosu! , ~21!

which, after numerical integration yields

PV~k!5
36p2

~25!2
CV~ns!DR

4 ~k0!

3@kF~z!#2k23S k

k*
D 21S k*

k0
D 2(ns21)

WV~k/k* !,

~22!

wherek* 5V0mh2 Mpc21, with h the Hubble constantH0 in
units of 100 km s21 Mpc21; the coefficientCV(nS) ranges
from 0.062 to 0.29 forns between 1 and 0.8, respectivel
The functionWV(x) ~which is also weakly dependent onns)
is unity for x!1 and drops to zero atx'1; its form is
plotted in Fig. 1~for ns51). A good fit, useful for the nex
06300
a-
or

section’s calculations, is given byWV(x)5(115x
13x2)25/2.

For tensor modes we similarly define

Hi j ~x,h!5
1

~2p!3E d3k@H (12)~k,h!Qi j
(12)~k,x!

1H (22)~k,h!Qi j
(22)~k,x!#, ~23!

where@29#

Qi j
(62)~k,x!52A3

8
~ ê16 i ê2! i~ ê16 i ê2! jexp~ ik•x!.

~24!

The primary tensor modes can be expressed as

HP
(62)~k,h!5xP

(62)~k!
3 j 1~kh!

kh
, ~25!

for the Einstein–de Sitter case, wherexP
(12) and xP

(22) are
two independent Gaussian fields each one with pow
spectrumPxP

(k)5P0xP
k23(k/k0)ntTt

2(k). The tensor trans-

fer function Tt(k) readsTt(k)5@111.34y12.5y2#1/2 @32#,
wherey[k/keq andkeq50.073V0mh2 Mpc21 is the horizon
scale at matter radiation equality. In theLÞ0 case the evo-
lution of primary tensor modes is more complicated and w
be dealt with usingCMBFAST @33#.

We can similarly relatePxP
(k) to the dimensionless ten

sor power spectrum~see e.g. @31#!, D t
2(k)5D t

2(k0)
3(k/k0)nt, where D t

2(k0)5(P0xP
/2p2). Defining the

‘‘tensor-to-scalar’’ ratio as in Ref.@31#, we find

r[24
D t

2~k0!

DR
2 ~k0!

. ~26!

In single-field slow-roll inflation models the standard cons
tency relationnt52r /8 also applies@34#.

The secondary tensor modes are instead characterize

FIG. 1. The functionsWV ~dashed line! andWx ~solid line! for
ns51.
2-4
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HS
(62)~k,h!'S 12

3 j 1~kh!

kh Dg`
2 xS

(62)~k!, ~27!

where we have introduced the factorg`
2 that makes this a

good approximation in theLÞ0 case forz. few as dis-
cussed above. The secondary tensors in Eq.~27! are given by

xS
(62)~k!5

10

3A6k2E d3k8

~2p!3
@k8•~ ê17ê2!#2w0~k8!w0~k

2k8!, ~28!

and arechi-square distributed independent random field
with power spectra

PxS
~k!5

25

27p2

1

k4
E

21

1

d cosu sin4uE
0

`

dk8k86Pw~k8!

3Pw~Ak821k222k8k cosu!, ~29!

which can be numerically integrated to give

PxS
5

12p2

25
CxS

DR
4 ~k0!k23S k

k*
D 21S k*

k0
D 2(ns21)

WxS
~k/k* !,

~30!

where the coefficientCxS
(nS) ranges from 0.062 to 0.29 fo

ns between 1 and 0.8, respectively. The functionWxS
(x)

~which weakly depends onns) is unity for x!1 and drops to
zero atx'1; its form is also plotted in Fig. 1~for ns51). It
can be well fitted byWx(x)5(117x15x2)23.

III. POLARIZATION ANGULAR POWER SPECTRA

Polarization of the CMB arises from Thomson scatter
of anisotropic radiation by free electrons. The generation
temperature and polarization anisotropies in the CMB fr
gravitational perturbations has been studied in detail by s
eral authors@1,2,29,35#. A simple and powerful formalism is
the total angular momentum method@29,35#, which includes
the effect of scalar, vector and tensor modes on an e
footing. This is the most convenient approach for our cal
lations, and we are going to extensively use the results
Ref. @29#. The temperature and polarization fluctuations
expanded in normal modes that take into account the de
dence on both the angular direction of photon propagation
and the spatial positionx, sG,

m(x,n)

Q~h,x,n!5E d3k

~2p!3 (
,

(
m522

2

Q,
(m)

0G,
m ,

~Q6 iU !~h,x,n!5E d3k

~2p!3 (
,

(
m522

2

~E,
(m)

6 iB,
(m)! 62G,

m , ~31!

with spin s50 describing the temperature fluctuation ands
562 describing the polarization tensor andm50,61,62
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denoting scalar, vector and tensor perturbations, respecti
E,

(m) and B,
(m) are the angular moments of the electric a

magnetic polarization components and

sG,
m~x,n!5~2 i !,A 4p

2,11
@sY,

m~n!#exp~ ik•x!. ~32!

The Boltzmann equation describing the time evolution
the radiation distribution under gravitation and scatter
processes can be written as a set of evolution equations
the angular moments of the temperature,Q,

(m) ~for ,>m),
and both polarization types,E,

(m) and B,
(m) ~for ,>2 and

m>0),

Q̇,
(m)5kF 0k,

m

~2,21!
Q,21

(m) 2
0k,11

m

~2,13!
Q,11

(m) G2 ṫQ,
(m)1S,

(m) ,

~33!

Ė,
(m)5kF 2k,

m

~2,21!
E,21

(m) 2
2m

,~,11!
B,

(m)2
2k,11

m

~2,13!
E,11

(m) G
2 ṫ@E,

(m)1A6P(m)d,,2#, ~34!

Ḃ,
(m)5kF 2k,

m

~2,21!
B,21

(m) 1
2m

,~,11!
E,

(m)2
2k,11

m

~2,13!
B,11

(m) G
2 ṫB,

(m) , ~35!

where the coupling coefficients are

sk,
m5A~,22m2!~,22s2!

,2
. ~36!

The fluctuation sources are given by

S0
(0)5 ṫQ0

(0)2Ḟ, S1
(0)5 ṫvB

(0)1kC, S2
(0)5 ṫP(0),

S1
(1)5 ṫvB

(1)1V̇, S2
(1)5 ṫP(1), S2

(2)5 ṫP(2)2Ḣ,
~37!

with

P(m)5
1

10
@Q2

(m)2A6E2
(m)#. ~38!

The modes withm52umu satisfy the same equations wit
B,

(2umu)52B,
(umu) and all the other quantities unchanged.

These equations can be formally integrated, leading
simple expressions in terms of an integral along the line-
sight @29#. The temperature fluctuations are given by

Q,
(m)~h,k!

2,11
5E

0

h
dh8e2t(

,8
S,8

(m)
~h8! j ,

(,8m)
„k~h2h8!…,

~39!
2-5
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where j ,
(,8m) are given in Ref.@29#. For the polarization, we

have

E,
(m)~h0 ,k!

2,11
52A6E

0

h0
dhṫe2tP

(m)
~h!e,

(m)
„k~h02h!…,

B,
(m)~h0 ,k!

2,11
52A6E

0

h0
dhṫe2tP

(m)
~h!b,

(m)
„k~h02h!…,

~40!

where the radial functions read

e,
(61)~x!5

1

2
A~,21!~,12!F j ,~x!

x2
1

j ,8~x!

x G ,

e,
(62)~x!5

1

4F2 j ,~x!1 j ,9~x!12
j ,~x!

x2
14

j ,8~x!

x G , ~41!

b,
(11)~x!52b,

(21)~x!5
1

2
A~,21!~,12!

j ,~x!

x
,

b,
(12)~x!52b,

(22)~x!5
1

2 F j ,8~x!12
j ,~x!

x G . ~42!

Here the differential optical depthṫ5nesTa sets the colli-
sion rate in conformal time, withne the free electron density
and sT the Thomson cross section andt(h0 ,h)
[*h

h0ṫ(h8)dh8 the optical depth betweenh and the presen

time. The combinationṫe2t is the visibility function and
expresses the probability that a photon last scattered betw
dh of h and hence is sharply peaked at the last scatte
epoch. In early reionization models, a second peak is
present at more recent times.

Scalar modes do not contribute toB-polarization, thus
B,

(0)50. We are interested in the contribution to the angu
power spectrum for theE andB modes arising from vecto
(m51) and tensor (m52) perturbations,

C,
(E)5

2

pE dk

k (
m522

2

k3
uE,

(m)~h0 ,k!u2

~2,11!2
,

C,
(B)5

2

pE dk

k (
m522

2

k3
uB,

(m)~h0 ,k!u2

~2,11!2
. ~43!

A. Effects of decoupling

Before recombination, photons, electrons and baryons
have as a single tightly coupled fluid, so we can find appro
mate expressions for the polarization sourceP(m) using a
perturbative expansion in inverse powers of the differen
optical depthṫ (k/ ṫ!1) @36#. For the vector modes we nee
to consider the Euler equation for the velocity perturbation
baryons to close the system
06300
en
g
o

r

e-
i-

l

f

v̇B
(1)5V2̇

ȧ

a
~vB

(1)2V!1
ṫ

R
~Q1

(1)2vB
(1)!. ~44!

To leading order in the tight coupling approximation we o
tain

Q1
(1)5vB

(1) , ~45!

and from the baryon Euler equation

vB
(1).V. ~46!

To this perturbative order the quadrupole vanishes. Howe
it does not vanish to the next order, and thus alsoP(1)Þ0.
An appropriate expression for our calculation can be
tained by combining the equations forQ2

(1) andE2
(1) to ob-

tain an evolution equation forP(1), and replacing in it the
leading order solution we get

Ṗ(1)1
3

10
ṫP(1)2

k

10A3
V50. ~47!

This can be integrated to give

P(1)~k,h!5
k

10A3
E

0

h
dh8V~k,h8!expS 2

3

10
t~h8,h! D .

~48!

Then, theB-mode polarization multipoles can be estimat
by

B,
(1)~h0 ,k!

2,11
52

kA2

10 E
0

h0
dhṫe2tb,

(1)
„k~h02h!…

E
0

h
dh8V~k,h8!expS 2

3

10
t~h8,h! D .

~49!

An analogous expression holds forE,
(1) replacingb,

(1) by
e,

(1) . Because of the sharpness of the visibility functi
around the time of decouplinghD , V(k,h8) andb,

(1)
„k(h0

2h)… ~or e,
(1)) can be evaluated athD and taken out of the

integration. The remaining integral can be evaluated ana
cally approximating the visibility function by a Gaussian
width DhD @36#

B,
(1)~h0 ,k!

2,11
52

kA2

3
0.51DhDV~k,hD!b,

(1)
„k~h02hD!….

~50!

Then, the resulting angular power spectrum ofB modes from
vector perturbations results

C,
(B)(1)5

8

9p
0.512DhD

2

E dkk4$b,
(1)
„k~h02hD!…%2PV~k,hD!, ~51!
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FIG. 2. Angular power-spectrum ofB ~left panel! andE ~right panel! polarization by secondary vector~solid lines! and tensor modes
~dashed lines!, in a LCDM model without reionization~thin lines! and with an optical depth to reionizationt ri50.17 ~thick lines!.
on

K

-
in
he

to
where we have added the contribution coming from them
561 modes. ForC,

(E)(1) we obtain an analogous expressi
with e,

(1)
„k(h02hD)… replacingb,

(1)
„k(h02hD)…. Replac-

ing Eq. ~22! we obtain

,~,11!C,
(B)(1)

2p

5,~,11!16
0.512

252
DR

4 ~k0!S k*
k0

D 2(ns21)

CV~ns!S DhD

h0
D 2

3S F~zD!

h0
D 2

h0k* E dxx2@b,
(1)~x!#2WVS x

h0k*
D .

~52!

The integral can be conveniently evaluated using the W
approximation for the Bessel functions appearing inb,

(1) and
e,

(1) , leading to

^~b,
(1)!2~x!&.

1

8
~,21!~,12!

1

x3Ax22,2
~53!

^~e,
(1)!2~x!&.

1

8
~,21!~,12!S 1

x5Ax22,2
1

Ax22,2

x5 D ,

~54!

for x.,, and 0 forx,,. The results for the vector contri
bution to theB andE angular power spectrum are shown
Fig. 2, where we have used the following values for t
parameters, for the concordanceLCDM model (VL50.7,
Vm50.3, Vbh250.022, h50.71): DhD /hD5DzD/2zD

50.09, h0 /hD530, k* 50.135 Mpc21 and DR
2 (k0)52.3

31029 at k050.002 Mpc21.
06300
B

For the tensor modes, the tight coupling approximation
the leading order givesP(2)5Q2

(2)/452Ḣ (2)/3ṫ. To the next
order we obtain the following evolution equation forP(2):

Ṗ(2)1
3

10
ṫP(2)1

Ḣ (2)

10
50, ~55!

that can be integrated

P(2)~k,h!52
1

10E0

h
dh8Ḣ (2)~k,h8!expS 2

3

10
t~h8,h! D .

~56!

Proceeding as for the vector case, we obtain for theB modes

B,
(2)~h0 ,k!

2,11
5A2

3
0.51DhDḢ (2)~k,hD!b,

(2)
„k~h02hD!…

~57!

and the same result changingb,
(2) by e,

(2) for the E modes.
Using Eq.~27! we can write

ḢS
(2)~k,hD!523g`

2 j 2~khD!

hD
xS

(2)~k!. ~58!

Then, for the angular power spectrum, we obtain

,~,11!C,
(B)(2)

2p
5,~,11!

12

p20.512S DhD

hD
D 2

g`
4 E dkk2

3$b,
(2)
„k~h02hD!…%2PxS

~k! j 2
2~khD!,

~59!
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for the B modes~and the same expression withb,
(2)→e,

(2)

for theE modes!, with PxS
(k) given by Eq.~30!. To perform

the remaining integration it is convenient to use the WK
approximated expressions

^~b,
(2)!2~x!&.

1

8 S Ax22,2

x3
1

4

x3Ax22,2D
^~e,

(2)!2~x!&

.
1

8 F S 12
11,~,11!/2

x2 D 2
1

xAx22,2
1

Ax22,2

x5 G ,

~60!

for x.,, and 0 forx,,. The results are shown in Fig. 2
The dominant contribution comes from the tensor modes
low multipoles,,,20, while the vector contribution domi
nates for larger,.

B. Effects of reionization

The recent detection by WMAP of excess power on la
angular scales in the correlation between temperature
E-polarization of the CMB is strong evidence that the U
verse was reionized at relatively early times@37,38#. The
best fit to the Thomson scattering optical depth due to re
ization is given byt ri50.17, with still large uncertainties. In
a spatially flatLCDM model with VL50.7, reionization
would have happened at a redshiftzri517, if it took place in
a single step.

Early reionization provides another opportunity f
Thomson scattering to modify the polarization properties
the CMB. Its effects can be approximately decomposed
two parts@39#. On the one hand, rescattering damps alre
present anisotropies and polarization by a factore2tri. On
the other hand, rescattering of the existing quadrupole an
ropy significantly enhances the polarization signal at l
multipoles.

Here we estimate the effects of reionization on the po
ization signal induced by secondary vector and tensor mo
We shall assume, for simplicity, that reionization took pla
in a single step. We can then approximate in Eq.~40! that the
visibility function ṫe2t is sharply peaked ath ri and thus
evaluateb,

(m)
„k(h02h)… ~ande,

(m)) at h5h ri and take them
out of the integral. The coupling between photons and e
trons after reionization is, however, not very tight, and th
we cannot proceed with the same approximations as in
previous section to compute the polarization sour
P(m)(h). Indeed, ṫ52sTnea with ne50.88nb0(1
1z)3X(z) and X(z) the ionization fraction. Thusṫ
50.0019H0(11z)2X(z)(Vbh2/0.022)(0.71/h), and for the
cosmological parameters under consideration,k/ ṫ'0.5kh0
at z5zri , and the tight coupling approximation is not app
cable at any relevant wavelength.

The polarization produced after reionization is essentia
due to the scattering of existing quadrupole anisotrop
generated by scattering at earlier times or by gravitatio
06300
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effects during propagation. Since the quadrupole polariza
E2 generated during decoupling is typically smaller than
temperature quadrupoleQ2, we can approximate the pola
ization source asP(m)'Q2

(m)/10, and use forQ2
(m) the for-

mal solution of Eq.~39!, dropping in the fluctuation source
S of Eq. ~37! the terms proportional toṫ againstV̇ ~in the
case of vectors! or againstḢ ~for the tensors!, since the
coupling is not tight.

The contribution of secondary vectors toB-polarization
after reionization is then given by

B,
(1)~h0 ,k!

2,11
52

A6

2 E
hri

h0
dhṫe2tb,

(1)@k~h02h!#E
0

h
dh8

3exp„2t~h8,h!…V̇~k,h8! j 2
(11)

„k~h2h8!…,

~61!

where j 2
(11)(x)5A3 j 2(x)/x. For a single step reionization

scenario, we can approximate

B,
(1)~h0 ,k!

2,11
52

3

A2
Dh riV̇~k,h ri!

3b,
(1)
„k~h02h ri!…

1

kh ri
S j 1~kh ri!

kh ri
2

1

3D . ~62!

We have defined an effective‘‘reionization width’’Dh ri

[h ri*hri

h0dhṫe2t, which for the Vm50.3, spatially flat

LCDM model with single-step reionization and optic
deptht ri50.17 isDh ri50.16h ri . This can be calculated tak
ing into account that, forz<zri ,

t~z!50.0042
Vbh2

0.022

0.71

h

0.3

Vm
@A12Vm1Vm~11z!321#.

~63!

Notice thatt ri50.17 forzri517 if Vm50.3. The reionization
contribution to the power spectrum ofB-polarization by vec-
tor modes is finally approximately given by

,~,11!C,
(B)(1)

2p

5,~,11!S 18

25D
2

DR
4 ~k0!S k*

k0
D 2(ns21)

3CV~ns!S Dh ri

h ri
D 2S F~zri!

h ri
D 2

~h02h ri!k* E dx

x2

3@b,
(1)~x!#2S j 1~y!

y
2

1

3D 2

WVS x

~h02h ri!k*
D ,

~64!

wherey5xh ri /(h02h ri). An analogous expression holds o
course forC,

(E)(1) with e,
(1) in place ofb,

(1) .
The contribution of secondary tensor modes to the po

ization induced after reionization can be estimated with si
lar approximations:
2-8
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B,
(2)~h0 ,k!

2,11

52
A6

2 E
hri

h0
dhṫe2tb,

(2)@k~h02h!#E
0

h
dh8

3exp„2t~h8,h!…Ḣ (2)~k,h8! j 2
(22)

„k~h2h8!…, ~65!

where j 2
(22)(x)53 j 2(x)/x2. We approximate

B,
(2)~h0 ,k!

2,11
52

A6

10
Dh ri~11d!Ḣ (2)~k,h ri!b,

(2)

3„k~h02h ri!…D~kh ri!. ~66!

We have defined an additional coefficientd such that
dDh ri[*hri

h0dhṫe2t*hri

h dh8e2t(h,h8). It accounts for the fact

that in this case~opposite to the vector case! the time depen-
dence of the source after reionization is not negligible. F
the model parameters used throughout this work to estim
the effects,d'0.4. The damping factorD(x)[4/x if x<4
~andD51 otherwise! arises becausej 2

(22)(x) can be approxi-
mated as 1/5 only for smallx; larger values lead to oscilla
tions that make the integral decay as 1/k. Finally, the reion-
ization contribution to the power spectrum ofB-polarization
by secondary tensor modes is approximately given by

,~,11!C,
(B)(2)

2p

5,~,11!
27

25p2 S Dh ri

h ri
D 2

~11d!2g`
4 E dkk2

3$b,
(2)
„k~h02h ri!…%

2PxS
~k! j 2

2~kh ri!D
2~kh ri!. ~67!

The numerical result for the angular power spectrum oE
and B polarization by secondary vector and tensor mo
produced after reionization, in the concordanceLCDM
model, is displayed in Fig. 2, added to the polarization t
was produced during decoupling, damped by a factore22tri.

IV. COMPARISON WITH PRIMARY TENSOR MODES
AND COSMIC SHEAR

The signal from the secondary modes computed in the
section must be compared with the signal from the prim
dial gravitational-wave background generated during in
tion. This depends on the model of inflation considered a
its amplitude is parametrized by the ‘‘tensor-to-scalar’’ ra
r @see Eq.~26!#. Its angular power spectrum can be acc
rately computed by available codes likeCMBFAST @33#,
against which we have tested the accuracy of our semi
lytic approximations in the previous sections. The polari
tion induced by primordial gravitational waves can be cal
lated as in Eq.~59! replacing the power spectrum o
secondary modesPxS

(k) by that of the primary modes
06300
r
te

s

t

st
r-
-
d

-

a-
-
-

PxP
(k). The approximate expressions, both with or witho

reionization, are in good agreement~with more than 20%
accuracy! with the numerical results obtained usin
CMBFAST. Notice that the polarization induced by primordi
gravitational waves may be slightly smaller than it was c
culated here due to damping by neutrino free-streaming@40#,
which we did not take into account.

In Fig. 3 we plot the numerical result~calculated with
CMBFAST! for the B-polarization induced by primordia
gravitational waves in a model with tensor to scalar ratior
51026, along with the total secondaryB-modes~vector plus
tensor! derived in this work. It is clear that the effects o
primary and secondary modes are comparable. Prim
modes have somewhat larger effects at the lowest (,,10)
multipoles, and also for, between 30 and 100, but secon
ary modes overcome them in intermediate and larger va
of ,. The power-spectrum induced by primordial gravit
tional waves scales asr. Thus, secondary vector and tens
fluctuations limit the ability to detect primordial gravitation
waves through measurements ofB-polarization if r ,1026.

The extraction of theB-polarization signature of primor
dial gravitational waves is seriously limited by weak grav
tational lensing effects, that convert the dominantE-type po-
larization intoB-modes@4#, which swamp the signature o
primordial tensor fluctuations unless they have a ratio to s
lar fluctuationsr of the order or larger than 1024. Fortu-
nately, the weak lensing effect can be accounted for, thro
reconstruction of the gravitational lensing potential by t
correlations ofB-polarization between large and small ang
lar scales, which primordial gravitational waves do not p
duce. ‘‘Cleaning’’ of the gravitational lensing signature ma
achieve factors of 40 in the power spectrum, or even lar
@10#. In Fig. 3 we display the predicted gravitational lensi
signal inB-polarization calculated withCMBFAST for the cos-
mological model under consideration, reduced by a fac
40. Clearly, an improvement in the cleaning algorithm wou
convert the secondary vector and tensor modes derived

FIG. 3. Angular power-spectrum of secondary total~vector plus
tensor! B-polarization~thick solid line! compared with that induced
by primordial gravitational waves~dashed line! with a tensor to
scalar ratior 51026, in a flat LCDM model (Vm50.3) with t ri

50.17. The thin solid line is the signal due to gravitational lens
cleaned by a factor 40.
2-9
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in the barrier to the detection of primordial gravitation
waves throughB-polarization of the CMB ifr ,1026.

V. CONCLUSIONS

The study of the magnetic-mode polarization of the CM
will become a fundamental and possibly unique tool
search for the stochastic gravitational-wave backgrou
whose detection would represent a clear signature of a pe
of inflation in the early Universe. In contrast with temper
ture anisotropies andE-type polarization of the CMB, scala
perturbations do not give rise toB polarization in a direct
way, so that measurements of theB-mode could be used to
probe rather small gravitational-wave background am
tudes. Because of this reason, much observational effo
taking place for its detection, and future dedicated missio
such as NASA’sBeyond EinsteinInflation Probe@41# or
ground-based experiments, likeBICEP @42# andPolarBeaR,
are being planned.

The main background for the detection of theB-mode is
represented by the gravitational lensing conversion of a f
tion of the dominantE-type into B-type polarization. How-
ever, it has been recently shown@10# that the lensing signa
can largely be cleaned, thus allowing us to probe inflation
models with tensor-to-scalar ratiosr<1026. As the largest
v

v.

v.

D

. R

06300
d,
od
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i-
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s,
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y

signal compared to the lensing one comes from low mu
poles, where the reionization contribution is dominant, t
limit depends on the Thomson scattering optical depth
reionization, that still has a large uncertainty.

At these sensitivity levels, there are other secondary
fects that can give rise to sizable contributions to theB-type
polarization. We estimated here the contribution com
from secondary vector and tensor modes, which originate
the mildly nonlinear evolution of primordial density pertu
bations. The amplitude and harmonic content of this con
bution is completely fixed, once the primordial power spe
trum of the density perturbations is known. For
concordanceLCDM model, and adopting the high reioniza
tion redshift implied by the WMAP data@37,38#, we found
that the effect of secondary vectors and tensors beco
comparable to that of primary gravitational waves forr
<1026, thus making it the actual background for the dete
tion of primordial gravitational waves throughB-mode po-
larization.
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@43# Also, primordial gravitational waves give rise to second-ord

scalar and vector perturbations, but this effect is usually n
ligible @16#.

@44# Second-order Christoffel symbols can be found in Appendix
of Ref. @27# ~see also@28#!.

@45# The relation with the inflation parameters isDR
2

5H2/(pemP
2 ), with mP[G21/2.
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