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Deflection of light and particles by moving gravitational lenses
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Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but
the results presented so far do not appear to agree on the expected deflection angles. Some publications claim
a scaling of deflection angles with 12v to first order in the radial lens velocityv, while others obtained a
scaling with 122v. In this paper we generalize the calculations for arbitrary lens velocities and show that the
first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the
classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity,
including light as a limiting case. We show that the effect of radial motion of the lens is very different for
slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the
lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is
obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle
of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we
discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring
precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a
second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We dem-
onstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test
particles. Additionally we include the transversal motion of the source and observer to show that all three
velocities can be combined into an effective relative transversal velocity similar to the approach used in
microlensing studies.
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I. INTRODUCTION

The subject of gravitational lenses~light deflection by
gravitational fields in the Universe! is a well-established field
in modern astrophysical research~see, e.g.,@1–4#!. Applica-
tions include cosmology, dark matter, the large scale st
ture in the Universe, clusters of galaxies, galactic structu
the structure of the Milky Way, and even the search for
trasolar planets. Not to be forgotten, light deflection by
Sun’s gravitation was the first test of the then new theory
general relativity@5#.

In almost all of the studies, the deflecting masses
treated as being at rest in the cosmological Robertson-Wa
metric or ~in the limit of noncosmological lensing! at rest
with respect to the source and observer. This is well justifi
since most sufficiently massive astronomical lenses have
locities very small compared to the velocity of light, whic
leads only to minor gravitomagnetic corrections.

In addition to the potential astrophysical relevance, o
main motivation to study moving lenses is the desire to
derstand the fundamental physics governing the light defl
tion caused by such systems in an intuitive and poss
Newtonian interpretation. This leads us to the comparison
the deflection of light with the deflection of slowly movin
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particles and especially the effect any motion of the lens
on either.

In contrast to most previous work, we do not only co
sider effects to first order in velocity~FOV! but for the first
time calculate the deflection for arbitrary velocities of bo
lens and deflected particle~including light in the ultrarelativ-
istic limit!.

To our knowledge, the first calculations of the deflecti
of light in gravitational fields were done by Cavendish~see
Will @6#! and Soldner@7#. This early work is based on th
ansatz of Newtonian particles moving with the speed
light. Einstein@8# used the principle of equivalence to avo
the physically unsound picture of classical particles for
description of light. The result is naturally the same. On
after the formulation of general relativity the result had to
revised to betwiceas large as expected from classical theo
@9#. This relativistic result has been confirmed by numero
tests with very high accuracy, see, e.g.,@10,11#.

Earlier studies in the context of moving gravitation
lenses were undertaken by several authors. In 1993 Pyne
Birkinshaw@12# calculated the effects of the lens’ motion o
the deflection in a Minkowski background metric. For rad
motion with velocity v they found the deflection angle t
scale with a factor 12v in FOV approximation. The deflec
tion increases if light and lens are moving in opposite dir
tions ~as seen by the observer!. Interestingly, the leading
term is of first order; i.e., the effect is not merely a cons
quence of scaling with the special-relativistic parameterg
51/A12v2.
©2004 The American Physical Society01-1
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In contrast to this, Capozzielloet al. @13# found a different
scaling behavior of 122v for point-mass lenses. They late
generalized their calculations to other mass distributions w
the remarkable but questionable result that the scaling of
deflection caused by a rigidly moving lens does not o
depend on the mass distribution and velocity of the lens
also on its internal parameters@14#. This is of particular sig-
nificance because it would enable us to derive informat
from such observations about the inner structure of len
beyond their mass and momentum. The same scaling
point mass lenses was found by Sereno@15# and later gener-
alized for other mass distributions in@16#.

An alternative analytic method was used by Frittelliet al.
@17# which confirmed the result of@12#. Frittelli @18# also
discusses the discrepancy between the two results, agai
voring @12#. Below we will demonstrate how we find ou
results to agree with those of@12,17–19#, whereas our veloc-
ity corrections differ by a factor of 2 from the values
@13–16#.

A further interesting result of@12# concerns the effect of a
transversalmotion of the lens on the observed redshift of t
source. We believe this to be the most promising possib
of actually measuring gravitomagnetic effects in gravi
tional lensing and even utilizing them for astrophysical stu
ies. Concrete practical scenarios are discussed by Molnar
Birkinshaw @19#.

Kopeikin and Scha¨fer @20# presented an exhaustive calc
lation of light propagation in the field of an ensemble
arbitrarily moving point masses in terms of retarded Lie´nard-
Wiechert potentials, covering effects on both deflect
angles and redshifts.

Aside from gravitational lenses of standard astronom
origin, the deflection of light by topological defects in th
Universe, such as cosmic strings, has stimulated a great
of scientific investigation. Of most interest in the context
our work is the study of moving cosmic strings~see, for
example, de Laix and Vachaspati@21# and Uzan and Ber-
nardeau@22#!. Below we will discuss the similarities an
differences arising from such different types of lenses a
motions.

This paper is organized as follows. After a summary
the notation and approximations used in this work, we be
our discussion with the analysis of purely radial motion
the gravitational lens in Sec. III. In view of the fact that th
gravitational lensing effect is commonly described in t
framework of Newtonian physics, it will be important t
verify to what extent this approximation remains valid f
movinglenses. For this purpose we will present a Newton
calculation of the deflection of massive test particles in S
III A and contrast the results with the relativistic expressio
derived in Sec. III B and III C. The dependency of the d
flection on the test particle’s velocity will be studied in det
in Sec. III D. We then turn our attention to the effect
transversal motion of the lens in Sec. IV and conclude
Sec. V.

A comparison of our analytic results for radial motio
with more accurate numerical simulations is presented in
pendix A. An illustration of how some of the calculated e
fects can be understood in a more intuitive fashion in ter
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of moving refractive media is given in Appendix B. Finall
we discuss in Appendix C the dragging of inertial frames
the field of a moving lens by calculating the Lense-Thirri
precession in this case.

II. NOTATION AND APPROXIMATIONS

In this work we will measure velocities in units of th
speed of light, i.e., we setc51. The velocity of the lens is
denoted byv and that of the test particle byw. The deflection
of light is obtained in the limitw51. Without loss of gener-
ality we perform all calculations in ‘‘211’’ dimensions, de-
scribed by Cartesian coordinatesy andz and timet. For all
relativistic calculations we will use the metric signatu
(122).

Unless stated otherwise we use the weak-field and sm
angle approximation as is common in gravitational le
theory. We restrict our discussion to thin lenses so that i
sufficient to calculate the deflection of light in a cosmolog
cally small region around the lens only. We are thus able
describe the surroundings of the lens by the Minkowski m
ric. The local deflection angle calculated in this way can th
be used as part of the cosmological lens equation in whic
is related with cosmological distances and theobservedpo-
sitional displacement, see, e.g.,@4#.

In the weak-field limit, the line element in therest frame
of the lenscan be written as

ds25~112F!dt822~122F!~dy821dz82!. ~1!

Here we have used primed coordinates to distinguish the
frame of the lens from that of the observer~unprimed coor-
dinates!. The static Newtonian gravitational potentialF is
linear in the mass distribution and satisfiesuFu!1.

The unperturbed light/particle is traveling in the positivez
direction at y50 with velocity w as measured in the
unprimed observer system. The deflected trajectories
therefore be directed at small angles relative to thez axis.
The only requirement we impose on the velocity of the t
particle is that it travels faster than the lens, i.e.,w.v, so
that it passes the lens in the usual direction.

The approximations imply that deviations ofy from the
unperturbed pathy[0 need to be calculated to first orde
only. This ‘‘first order in deflection’’~FOD! approximation is
not to be confused with FOV. Below, these approximatio
will allow us to integrate along the unperturbed path inste
of the deflected~and then still unknown! path itself. We will
further be able to compare the deflection of light for lenses
different velocities without changing the light path close
the lens, i.e., without changing the impact parameter. In
approximation we can also relate the coordinates along
path of the test particle by

dz5wdt. ~2!

The deflection angle is the difference of the propagat
directions before and after passing the lens. For small an
and propagation close to thez direction, this can be written
as
1-2
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DEFLECTION OF LIGHT AND PARTICLES BY MOVING . . . PHYSICAL REVIEW D69, 063001 ~2004!
a5
dy

dz U
out

2
dy

dzU
in

. ~3!

For the ingoing path we havez→2`, for the outgoingz
→1`.

For the radial velocity of the lens and the test particle
will adopt the sign-convention that they are positive if d
rected towards the observer so thatv andw are measured in
the same direction. This definition is opposite to the us
astronomical definition of radial velocities but is common
used in the literature on moving gravitational lenses.

III. RADIAL MOTION

A. Nonrelativistic calculation based on the principle
of equivalence

We begin our discussion of the effect of purely rad
motion of the lens on the resulting deflection angle with
Newtonian discussion. Aside from providing an intuitive i
sight into the effect, the results thus obtained will also ena
us below to highlight the quantitative and qualitative mo
fications arising in a general relativistic treatment.

In order to avoid a description of light in terms of class
cal particles, we follow the lines of Einstein@8# and apply
the principle of equivalence to the gravitational effects a
use nonrelativistic kinematics otherwise. At each point of
path of a test particle, we can define a freely falling obser
who is momentarily at rest and who views the deflected p
in her vicinity as a straight line. The equations of motion
this observer are given by

d2y

dt2
52Fy ,

d2z

dt2
52Fz , ~4!

whereFy andFz denote partial derivatives of the potenti
with respect toy and z, respectively. In the frame of thi
observer, the acceleration of the test particles vanishes
that they follow the same equations of motion~4! as the
falling observer.

In order to calculate the deflection angle defined in Eq.~3!
we need to calculate dy/dz. In FOD this is obtained from Eq
~4! by replacing time derivatives withz derivatives according
to Eq.~2! and integrating once overz. We thus obtain for the
deflection angle

aw
cl~v !52

1

w2E2`

`

dz Fy~y,z!. ~5!

Next we transform the integral to primed coordinates. F
we note that the boost does not affect they direction, so that
Fy(y,z)5Fy8(y8,z8). Secondly we can use Eq.~2! together
with the nonrelativistic limit of the Lorentz transformatio
~11! below to obtain dz85(12v/w) dz. This gives us the
deflection angle as

aw
cl~v !52

1

w~w2v !
E

2`

`

dz8 Fy8~y8,z8!. ~6!
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The integral is now expressed entirely in terms of the co
dinates of the lens’ rest frame and is therefore independen
the velocity v ~the perturbation of the gradientFy8 on a
perturbed path is of second order in the deflection angle
is thus ignored in FOD!. We can therefore express the depe
dency of the deflection angle on the velocityv of the lens in
FOV approximation as

aw
cl~v !

aw
cl~0!

5
w

w2v
, ~7!

aw
cl~0!52

1

w2E2`

`

dz8Fy8 . ~8!

The factor 1/w2 in the last equation can be interpreted
follows. One factor 1/w originates from Eqs.~2! and~3! and
represents the geometrical effect that the transversal ac
eration due to the gradientFy8 and the resulting change i
velocity along they direction Dw' correspond to a large
deflection angle the smaller the velocity-componentw along
the z direction. The second factor 1/w is due to the interac-
tion time which scales inversely with the velocityw. The first
contribution is unchanged for moving lenses while the int
action time now scales inversely with therelative velocity
w2v, leading to the correction factor in Eq.~7!.

This result is not only exact in the nonrelativistic lim
(w→0) but still provides a decent approximation for th
deflection angle oflight for lensesat rest: The only modifi-
cation caused by general relativity is an additional fac
of 2. One may ask whether this remains true formoving
lenses — can one simply apply the missing scaling facto
2 to the deflection angle of light in the moving case as we
Below we will learn that this is not the case.

As a qualitative result for slowly moving particles, w
find from Eq. ~7! that the deflection increases~due to the
change in interaction time! if the test particle and lens ar
moving in the same direction. We will see that the oppos
holds for light, so there exists a test particle velocitywc for
which motion of the lens has no effect on the deflecti
angle in FOV approximation. We will study this feature
more detail in the next sections when we calculate the
flection in the framework of general relativity.

B. Relativistic calculation in the observer frame

In order to calculate the trajectories of test particles in
observer’s rest frame, in which the lens is moving, we ne
to find the line element in this system. For this purpose
transform the line element~1! from the rest frame of the len
~primed! to that of the observer~unprimed coordinates!. The
corresponding Lorentz transformation is given by

dt85g~dt2vdz!, ~9!

dy85dy, ~10!

dz85g~dz2vdt !, ~11!
1-3
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where g51/A12v2. We drop the FOV approximation fo
this calculation so that the line element for arbitrary veloc
v in the observer’s rest frame is given by

ds25@112~11v2!g2F#dt22~122F!dy2

2@122~11v2!g2F#dz228vg2Fdt dz. ~12!

In the limit of smallv this metric reduces to the FOV resu
of Schneideret al. @4#.

The geodesic equation with a given metric is equivalen
an Euler-Lagrange system of equations with Lagran
function

L5S ds

dl D 2

, ~13!

wherel is an affine parameter of the test particle’s wo
line. We denote the derivative with respect to this parame
by a dot, e.g., dy/dl5 ẏ. Using the line element~12!, the
equation fory in FOD approximation becomes

d

dl

]L

] ẏ
2

]L

]y
50, ~14!

ÿ52@~11v2!~ ṫ21 ż2!24v ṫ ż#g2Fy . ~15!

Terms likeḞ ẏ, F ÿ, andẏ2 are neglected here because th
are of higher order in the deflection.

From the corresponding equations forz andt we learn that
deviations from the undeflected path in these coordinates
of the same order as the deflection iny so that they become
insignificant after multiplication withFy in Eq. ~15!. We can
therefore applyṫ5 ż/w from Eq. ~2! for the undeflected path
and usel5z as the affine parameter. Equation~15! can then
be written as

d2y

dz2
52F ~11v2!~11w22!24

v
wGg2Fy . ~16!

After integration we can use Eq.~3! and find the deflection
angle

aw~v !5E
2`

`

dz
d2y

dz2
~17!

5
1

~12v/w!gE2`

`

dz8
d2y

dz2
. ~18!

In the final step we applied a parameter transformation fr
z to z8 using the unperturbed particle path~2! and the Lor-
entz transformation~11!. This result can again be written as
correction to the deflection angleaw(0) caused by a lens a
rest, so that we obtain

aw~v !

aw~0!
5

g

12v/w S 11v22
4vw

11w2D , ~19!
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`

dz8Fy8 . ~20!

As before, the integral in Eq.~20! is evaluated to FOD by
using the unperturbed path. We emphasize that in this
proximation the impact parameter, and thus the integra
Eq. ~20!, is a background quantity, i.e., remains constant
different values ofv andw. In all our comparisons of deflec
tion angles obtained for different velocities we will therefo
consider the impact parameter as being kept constant, e
in the numerical calculations below which go beyond FO

For the special case of light and a lens at rest (w51, v
50), the comparison of Eq.~20! with the classical result~8!
yields the additional factor of 2 introduced by general re
tivity. In the nonrelativistic limit uvu,w!1 we recover the
classical result~7!.

C. Relativistic calculation in the lens frame

In view of the discrepancy between the results presen
in the literature~see, e.g.,@12# and @13#!, we consider it
appropriate to calculate the same effect again in the le
reference frame.

For this purpose we consider Eq.~20! which remains
valid in the rest frame of the lenseven for nonzerov and
which can be derived directly from the usual static wea
field metric ~1!.

We must take into account in that case, however, that
particle velocity now isw8 ~instead ofw) and that the result-
ing deflection angle will bea8, i.e., the angle as viewed in
the lens’ system. In order to facilitate a comparison with t
results of the previous section we need to Lorentz-transfo
both quantities into the observer’s rest frame. We first c
sider the velocityw8.

Because of the FOD approximation we can consider
velocitiesw,w8 as the components along thez axis for this
transformation. This is reflected by Eq.~2! and its analogue
in primed coordinates dz85w8dt8. Combining these rela-
tions with the Lorentz transformation~9!–~11! we directly
obtain the relativistic addition of velocities

w85
w2v

12vw
. ~21!

We simplify the transformation of the deflection anglea
by defining the direction of the ingoing path as that of ze
deflection. We therefore need to transform the outgoing p
only which is parametrized by

dz85w8dt8, ~22!

dy85aw8
8 ~0!dz8 ~23!

@cf. Eqs.~2! and ~3!#. Again we use the Lorentz transforma
tion ~9!–~11! to eliminate the primed coordinate differentia
and Eq.~3! to express the result in terms of the deflecti
angle in theobserver’s rest frame. We thus obtain
1-4
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FIG. 1. The null-geodesics~left panel! and the~logarithmic! deflection angle~right panel! are plotted for various velocities of the len
In the right panel the crosses (3) are the numerically calculated deflection angles, the solid curve is given by the analytic resu~26!
obtained in FOD approximation. Even though these deflection angles are larger than typical astronomical values by several
magnitude~for this calculationa050.027), the FOD approximation still provides excellent results. Following the arguments in Sec. I
can be shown that, even forv quite close to21, the relative error~due to the FOD approximation! of a(v) as defined in Eq.~3! is the same
as that ofa(0) even though the small-angle approximation would not hold fora(v) directly.
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aw~v !

aw8
8 ~0!

5S 12
v
wDg. ~24!

Eventually we want to compare deflection angles forequal
test particle velocities w, so that we still need to expres
aw8(0)

8 in terms ofaw(0). From Eq.~20! we directly obtain

aw8
8 ~0!

aw~0!
5

11w822

11w22

5S 12
v
wD 22S 11v22

4vw

11w2D , ~25!

which becomes unity in the special case of light (w5w8
51). The combination of Eqs.~24! and ~25! confirms the
above result~19! calculated directly from the viewpoint o
the observer.

D. Discussion of radial motion

1. Rigidly moving lenses

We now turn our attention to the interpretation of t
deflection of light for a rigidly moving gravitational lens t
FOD. For this purpose we consider the limit of Eq.~19! for
w→1. In that case the scaling has the simple form

a~v !

a~0!
5~12v !g5A12v

11v
. ~26!

To FOV this becomes 12v which confirms the result of@12#
while it differs by a factor of 2 from that given in@13#. We
further note that the quotienta(v)/a(0) diverges forv→
21 but vanishes in the limitv→11. Thus, rather surpris
ingly, a lens approaching the observer with a highly relat
06300
-

istic velocity will not deflect the passing light at all eve
though the effective mass-energy of the lens as viewed
the observer diverges in this limit.

In view of the counterintuitive nature of this result on
may ask whether the approximation of small deflecti
angles~FOD! underlying this calculation is still justified in
the limit of v→1. In order to clarify this point we have
numerically solved the full geodesic equations, e.g., Eq.~14!,
for the case of a point mass (F52M /r ) without FOD ap-
proximation. Instead of Eq.~15! we obtain in this case a
system of three nontrivial second order ordinary differen
equations fort, y, andz. These equations together with mo
details of the numerical treatment are listed in Appendix
Note that the only approximation in this numerical calcu
tion is the assumption of a weak gravitational field in therest
frame of the lens. In Fig. 1 we plot the resulting geodesic
and the deflection angles obtained for different velocities
the lens together with the analytic result in FOD approxim
tion as given by Eq.~26!. For these calculations source an
observer are located atz5610 000M , respectively, while
the impact parameter, which equals they position of the
source with high accuracy, is 150M . The precise values o
these parameters do not affect our results. The lens is alw
positioned aty50 and moves along thez axis, so that it
reachesz50 at the same time as the null-geodesics. N
that they position of the observer depends on the deflect
angle since the impact parameter is kept constant as the
velocity v is varied.

The excellent agreement between the numerical deflec
angle and that predicted by the approximate FOD result d
onstrates the validity of the FOD approximation in our c
culations even for strongly relativistic velocitiesv.

With regard to the deflection of light by cosmic strings w
first note that such types of lenses induce vector and te
perturbations of the metric in addition to the scalar pertur
1-5
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O. WUCKNITZ AND U. SPERHAKE PHYSICAL REVIEW D69, 063001 ~2004!
tions in our Eq.~1! @cf. Eq. ~38! of Uzan and Bernardea
@22## which can be combined into an effective deflecti
potential. The deflection angle can be expressed in term
this deflection potential and our result@Eqs.~16!,~17!# corre-
sponds to the limit of their Eq.~45! for purely scalar pertur-
bations and linear motion of the lens. In general,@22# find the
vector and tensor perturbations to be negligible as long as
thin lens approximation is valid but not necessarily for t
case of extended lenses. A time dependence of the defle
potential which is of particular interest for string type lens
~because they are expected to move with relativistic velo
ties! is that of an oscillating loop. For this scenario the d
flection of light passing sufficiently far outside the loop h
been found to be identical to that of a point mass source~see
@21,22# for details!. In contrast, the linear motion studied
this work gives rise to a vector perturbation of the metr
which manifests itself in the dt dz cross term of the booste
line element~12!. The analogy between this term and rot
tional effects will be studied in more detail in Appendix C

It remains therefore to obtain a better understanding
how the deflection vanishes in the limit of a lens movi
towards the observer at highly relativistic velocities. For t
purpose we provide in Appendixes B and C a description in
terms of refractive media and the dragging of inertial fram
similar to the frame dragging close to rotating bodies.

We now return to the general behavior of the deflect
angle for arbitrary velocitiesv andw which is shown in Fig.
2. This graphic demonstrates the singular behavior of
deflection angle atv521 and~providedwÞ1) v5w. The
singularity at21 arises from the diverging factorg while
the second singularity is a consequence of the vanishing
tive velocities which causes the interaction time to beco
infinitely large.

We next discuss the limit of small lens velocitiesv ~FOV!
combined with a comparatively larger, but otherwise ar
trary speed of the test particle, i.e.,w@v. In this case the
scaling of Eq.~19! simplifies to

aw~v !

aw~0!
512

3w221

11w2

v
w

. ~27!

FIG. 2. The deflection angle caused by a moving lens in unit
that arising from a lens at rest as given by Eq.~19! is shown as a
function of v. The graphs are obtained forw51 ~light!,
0.9, 0.57751/A3 (5wc), and 0.1. We note that the curve forw
5wc is stationary atv50, i.e., small lens velocities have no effe
for this critical test particle velocity.
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We have already mentioned above that the deflection of l
scales with 12v to FOV whereas the Newtonian result o
Eq. ~7! predicts a scaling of 11v/w for nonrelativistic test
particles satisfyingw@v. Hence there must be a critical ve
locity wc of the test particle for which the deflection angle
independent of the lens’ velocityv to FOV. From Eq.~27!
we see that this critical particle velocity iswc51/A3. We
illustrate the functional behavior of Eq.~27! in Fig. 3.

Only after finishing our calculations we learned that sp
cial properties of the velocity 1/A3 have been discussed b
fore by Carmeli~@23#, and problem 5.5.1 in@24#!. There it
was found that the coordinate velocity of a massive part
approaching the center of a Schwarzschild metric in a ra
direction increasesonly for asymptotic starting velocities
smaller than 1/A3 but decreasesotherwise, all in a FOD
approximation. The same was later independently redisc
ered by Blinnikov et al. @25,26#. It can indeed be shown
easily that the same is true for any 111 dimensional weak
field with a metric of ds25(112F)dt22(122F)dr 2. To
first order in F, there is no coordinate acceleration forw
5wc . This effect can in principle be detected by measur
round trip travel times.

With regard to the observation of the deflection caused
a radially moving lens we note that it is not possible
distinguish the scaling of the deflection angle wi
aw(v)/aw(0) from a scaling with the total mass of the len
For a given test particle, the effect can therefore be use
infer a radial motion of the lens only if an accurate a
independent estimate of the lens’ mass is available. An a
native way to disentangle the two effects would consist
measuring deflection angles of test particles withdifferent
velocities w. Unfortunately, appropriate test particles oth
than light are currently not available in astrophysics. Even
we could measure the direction of cosmic rays consisting
massive particles with higher accuracy than is possible w
existing instruments, they would not serve our purpose
they travel at highly relativistic speeds and would be subj

f FIG. 3. Effect of small lens velocitiesv on the deflection angle
According to Eq.~27! the deflection scales with 12(v/w) f , where
f 5(3w221)/(11w2). The graph showsf as a function of the tes
particle velocityw. The effect has opposite signs forw→0 andw
51 and there is a critical particle velocitywc51/A3 for which the
lens motion has no effect to FOV.
1-6
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DEFLECTION OF LIGHT AND PARTICLES BY MOVING . . . PHYSICAL REVIEW D69, 063001 ~2004!
to practically the same deflection as light. Furthermore, t
are also deflected by electric and magnetic fields.

2. Compound lenses

It is an interesting question whether the gravitomagne
correction to the deflection of light or particles could be us
to deduce information about the inner structure~e.g., the ve-
locity field! of a lens as suggested by the results of C
pozziello and Re@14# for the deflection of light. We addres
this question by considering a compact~relative to the im-
pact parameterr ) lens which we treat as a collection of poi
masses located close to each other. In terms of our form
ism, the argument in favor of the possibility to probe t
inner structure of the lens can be summarized as follo
Consider a lens with two components of equal massm mov-
ing in opposite directions with the same speed. Compare
a lens at rest with mass 2m, we expect a deflection angl
larger by a factorg because the compound lens will appe
as a lens of mass 2mg in the observer’s rest frame. Becau
of the more complicated dependence of its right-hand side
v, however, Eq.~19! will predict a different deflection angle
for this scenario. It appears therefore that the deflection is
uniquely determined by the total four-momentum of the le

This argument is not valid, however, because the co
pound lens must be compact not only momentarily but
the whole interval during which the test particle passes
and is deflected significantly. Otherwise the lens would
fectively be extended so that the deflection would test ra
the mass distribution than the internal velocity field of t
lens. Measurable effects are not surprising in that case.

The time scale for the passage isr /w and the displace-
ments of the lens’ components during this interval arerv/w.
Because these displacements must be!r to preserve the
compactness of the lens, we obtain an upper limit for
velocities of its components,uvu!w. In this limit, however,
the right-hand side of Eq.~19! becomes approximatelyg(1
1constv) and the total deflection is indeed determined
the total four-momentum. We thus conclude that no inform
tion about the internal structure beyond the mass and t
momentum of a compact lens can be obtained from the le
ing effect. In the case of light (w→1) this is also demon-
strated by Eq.~26!, where the deflection is always dete
mined by the total four-momentum,a}pt2pz5( j (1
2v j )g jmj .

E. Comparison with previous results

We will now address the question of what causes the
crepancies between our results and those in@13,15# where
the velocity effects appear to be overestimated by a facto
2. Note that this also affects the ensuing results publishe
@14,16# which generalize to mass distributions other th
point masses. Both these groups exclusively use light as
particles, work in a FOV approximation, and use essenti
the same approach as Schneideret al. @4# in formulating the
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problem.1 Following this approach, we use the equivale
formulation of light propagation in an Euclidean metric wi
an effective index of refractionn ~cf. Appendix B!. For a
rigidly moving lens with gravitational potentialF, this index
can be calculated from settingu50 in Eqs.~B2! and ~B3!
and is given by

n21522~122v !F, ~28!

which does indeed contain the factor 122v. In order to
obtain the correct scaling, however, we must further take i
account that the motion of the lens affects the potentialF
which now becomes time-dependent in the observer’s
frame. It is most convenient to calculate the total deflect
integral over the path of light in the primed coordinates
the lens’ rest frame. We thus replaceF(t,y,z)5F(y8,z8)
with z85z2vt from Eq. ~11! and substitutez8 for z in the
integral. The same procedure has been used in Eq.~7! for the
classical and in Eq.~18! for the relativistic calculation. This
correction describes the scaling of time of interaction cau
by the different relative velocity. The resulting addition
factor 11v wasnot applied in@13# and@15# but would oth-
erwise have changed their scaling factor 122v to the correct
result of a 12v scaling of light deflection in FOV approxi
mation. Frittelli@18#, on the other hand,did apply this factor
in her Eqs.~33! and~34! and arrives at the same result as w
do in Secs. III B and III C above.

IV. TRANSVERSAL MOTION

A. Deflection angle

Until now we have restricted our discussion to a rad
motion of the lens, because this velocity component is
only one affecting the deflection angle to FOV. In this secti
we will discuss the effects of transversal motion. For th
purpose we use the same approximations as in the discus
of radial velocity effects, i.e., we allow for weak deflection
only and work in the FOD approximation. For radially mo
ing lenses, the light path across the lens does not depen
the velocity so that a nonzero velocity merely gives rise to
overall scaling factor. This is no longer the case for lar
transversal velocities. Due to aberration, the direction
light propagation in the lens’ rest framedoesdepend on the
velocity so that an additional term involving the radial d
rivative Fz8 appears in the geodesic equation. The result
scaling law would therefore depend on the mass distribu
and is not of general validity and immediate interest.

By using the methods of Secs. III B and III C, however,
can be shown that to FOV the deflection angle isnot modi-
fied at all by transversal motion.

B. Redshift

Even though a transversal motion of the lens does
affect the deflection angle to FOV, there is an interest
effect on the observed redshift of the source. This can
illustrated as follows. When the test particle approaches

1An alternative derivation based on integration of the geode
equation is presented additionally in@13#. Our arguments are valid
for this approach as well.
1-7



ng
pe
el
o
it
e
th

g
n

s

th
wi
th

y

n

cs

te

i

rs
te

he

a

n,
al

de-
a

t. In
ive
. It
n of
ed-
-

ov-

us,
e

ve-
m-
to

t
ci-

ition

-
f

n

ted
th

t

O. WUCKNITZ AND U. SPERHAKE PHYSICAL REVIEW D69, 063001 ~2004!
lens it falls into the potential well and gains energy. Duri
the passage, the lens is moving, so that the potential ex
enced by the particle as it climbs out of the potential w
will differ from that before. The associated loss in energy
the test particle will therefore not exactly compensate for
earlier gain. The resulting net change in energy can be m
sured as a change in the velocity of the test particle or
energy, i.e., wavelength, in the case of a photon.

Alternatively one can view the effect in the followin
way. The test particle traveling on the rear side of the le
~with respect to the transversal motion! will be deflected to-
wards the lens and slow down the motion of the lens so a
preserve total momentum. The energy loss of the lens~which
is proportional to its initial velocity, see below! has to be
transferred to the particle. For particles passing on the o
side of the lens, this effect has the opposite sign. We
now quantify these ideas straightforwardly by calculating
effect in the framework of special relativistic kinematics.

The transversal momentum transferred from the lens
the test particle in the course of the deflection is given b

Dp'5api , ~29!

where pi is the radial momentum of the particle. We ca
calculate the accompanying transfer of energyDE by using
the fundamental equations of special-relativistic kinemati

E25m21p2, p5Ev, E5mg. ~30!

From the first of these equations we deriveEDE5p•Dp to
first order inDE and thus, together with the second one,

DE5v•Dp. ~31!

We now apply this equation both to the lens and the
particle to write the equation of energy conservation as

v i Dpi1v'Dp'5w Dpi . ~32!

The left-hand side is the energy loss of the lens, written
terms of a possible radial velocity component of the lensv i
and its transversal velocityv' . On the right-hand side we
have the energy gain of the test particle. Here the transve
part is of higher order in the deflection and can be neglec
Combining Eqs.~29! and~32! we directly obtain the relative
change in radial momentum of the particle

Dpi

pi
5a

v'

w2v i
. ~33!

Even though this relation is valid for arbitrary values of t
velocities, we will assumev i50 for the following discus-
sion.

In the case of light and assumingv i50 we can relate the
relative change in momentum to a shift in frequency or
additional redshift ofDz52a v' , which agrees with the
FOV results of Pyne and Birkinshaw@12# and Kopeikin and
Schäfer @20#. In spite of the remarkably simple derivatio
however, our results remain valid for arbitrary lens potenti
and lens and particle velocities. Equations~29!–~33! do not
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even depend on the physical process which causes the
flection but instead are valid for any kind of scattering by
massive moving target.

C. Geometry

So far we have only considered a transversal motionof
the lensbut assumed that source and observer are at res
reality, source, lens, and observer will all be moving relat
to the cosmological Robertson-Walker background metric
is therefore necessary to also take into account the motio
source and observer. We will calculate the resulting total r
shift in the framework of the FOV approximation. The fun
damental geometry is shown in Fig. 4. If the source is m
ing with a transversal velocityvs, this will lead to a velocity
component in the direction of the real path of light and, th
a Doppler velocity ofvsDf. We have already seen in th
discussion of Eq.~33! that a transverse velocityvd of the lens
leads to a Doppler shift analogous to an apparent radial
locity vda of the source. The motion of the observer the
self gives rise to an additional contribution corresponding
a radial velocity ofvoDu. In FOV approximation, the ne
Doppler effect is obtained by linear addition of these velo
ties because (11Dz) acts multiplicatively, see Eq.~38! be-
low.

If we denote the apparent size distance parameter2 from a
to b ~angle measured ata, size measured atb) with Dab , we
can use two equations each to express the apparent pos
of the sourceys8 and the position of the lensyd using differ-
ent angles and distances~cf. Fig. 4!

ys852a Dds5Du Dos, ~34!

yd5Du Dod5Df Dsd. ~35!

These equations can be used to expressa andDf in terms
of the apparent displacementDu ~also called apparent de
flection angle! to write the total Doppler velocity in terms o

2The apparent size distanceD is defined as the relation betwee
the physical size of a distant objectl and the~small! angleu under
which it is seen by an observer:D5 l /u.

FIG. 4. The lensing geometry. The solid line shows the deflec
light path while the horizontal axis is the undeflected light pa
from the source to the observer. The deflection angle isa and the
apparent position of the source isDu. The true position would be a
an angle of zero. As shown in the figure,a is negative while
Du,Df, andyd ,ys8 are positive.
1-8
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DEFLECTION OF LIGHT AND PARTICLES BY MOVING . . . PHYSICAL REVIEW D69, 063001 ~2004!
this angle. Because of the expansion of the Universe,
tance parameters depend on the direction, i.e.,DsdÞDds.
The two can easily be related, however, using the redshifzs
andzd of source and lens so that we obtain

Dsd

Dds
5

11zs

11zd
. ~36!

This leads to the final expression for the total Dopp
velocity

vDopp5S 11zd

11zs

Dod

Dds
vs2

Dos

Dds
vd1voDDu. ~37!

Remember that our sign convention forvDopp is opposite to
that commonly used for astronomical radial velocities,
that the observed redshiftzs8 is given as a modification of the
unperturbed redshiftzs in the following way:

11zs85~11zs!~11Dz!5~11zs!~12vDopp!. ~38!

In the case of a surrounding Minkowski metric, the redsh
factors become unity and the distance parameters bec
additive. In this case Eq.~37! predicts a zero Doppler veloc
ity if source, lens, and observer are all moving with the sa
velocity, as expected. The combination of velocities is v
similar to the effective transversal velocityV defined by
Kayser, Refsdal, and Stabell@@27# Eq. ~B9!# to discuss ef-
fects of microlensing. The only difference~besides the mul-
tiplication with Du) is that their V is projected into the
source plane and incorporates a cosmological time dila
factor, so that

vDopp5~11zd!
Dod

Dds
VDu. ~39!

If more than one lensed image of the source is observ
the effect of the transversal motion can be separated from
a priori unknown radial velocity~including cosmological
redshift! of the source, which usually contributes a mu
larger Doppler effect. In this case the radial velocity w
have the same effect on all images while the effect of tra
versal motion depends on the position of the image. T
latter can therefore be measured unambiguously by com
ing the Doppler shifts of at least two images. This possibi
makes the situation conceptually very different from the
fects of radial motion on deflection angles which cannot
distinguished from a scaling of the total mass of the lens

Unfortunately the effects are so small that it is hard
possible to detect them with current state-of-the-art ins
ments, see, e.g.,@19#. However, telescopes planned for th
future, in particular radio arrays like ALMA~‘‘Atacama
Large Millimeter Array’’! or SKA ~‘‘Square Kilometer Ar-
ray’’ !, will provide sufficient sensitivity and spectral resol
tion to measure the effect for sources with sharp spec
features to facilitate a sufficiently accurate determination
redshifts.
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V. SUMMARY

In this work we used different methods to calculate t
effect of radially moving lenses on the deflection of light a
well as test particles with arbitrary velocity. These calcu
tions are valid for arbitrary lens velocities and thus gene
ize the results of previous publications~e.g., @12,17–19#!
dealing with the deflection of light by slowly moving lense
~FOV!. At the same time we have demonstrated how negle
ing the time dependence of the potential of a moving le
~which is equivalent to the scaling of the interaction tim!
accounts for the discrepancy between our results and thos
@13–16#. In agreement with@18# we find the inclusion of this
time dependence essential for obtaining correct deflec
angles.

Our study of the deflection of light and particles by rad
ally moving lenses has revealed some rather surprising
sults. While a motion of the lens parallel to the test parti
velocity increases the deflection of slowly moving particle
as is intuitively expected from the decreasing relative vel
ity and increasing interaction time, the opposite is true
the deflection of light. As a consequence there exists a c
cal particle velocity ofwc51/A3 for which the motion of the
lens does not have any effect on the deflection to first or
These results imply that the classical approach of trea
light as classical particles, while providing qualitatively co
rect results for lenses at rest~see, e.g., Soldner@7#!, does not
facilitate a satisfactory description for the case of radia
moving lenses. This behavior seems to be related to the
fects found by Carmelli@23,24# and Blinnikovet al. @25,26#
for radial motion in the Schwarzschild metric where mass
particles are accelerated when approaching the center
for w,wc but decelerated otherwise.

As a further surprising result we find that the deflecti
angle of light vanishes in the limit of gravitational lens
approaching the observer with highly relativistic velocitie
even though the effective mass-energy of the lens diverge
this limit. Intuitively one would have rather expected a d
verging deflection angle in this scenario. In Appendix B w
provide a descriptive explanation of this effect by demo
strating how gravitational lensing can be formulated in ter
of light propagating in a refractive medium, both for sta
and moving lenses. In this picture the coordinate velocity
light is reduced in the rest frame of the lens. For the case
a relativistically moving lens, however, this reduction is e
fectively compensated by the motion of the rest frame of
lens with respect to the observer, so that the net reduc
vanishes. The unchanged velocity of light in turn implies
vanishing deflection angle.

We have addressed the question whether the deflectio
test particles or light can provide information about the
ternal structure of a rigidly moving, compact lens beyond
mass and total momentum. We find that this is not possibl
the case of lenses that remain compact during the passa
the test particle.

In Appendix C we additionally extend our discussion b
yond the pure deflection of test particles and calculate
effects of a moving lens on the inertial system of an obser
1-9
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O. WUCKNITZ AND U. SPERHAKE PHYSICAL REVIEW D69, 063001 ~2004!
at rest. We find the motion of the lens to give rise to
dragging of this local inertial frame similar to the fram
dragging known in the case of rotating stars or Kerr bla
holes.

In order to study the effects caused bytransversallymov-
ing lenses we have used kinematic arguments in the fra
work of special relativity. These calculations predict
change of the radial momentum of the deflected test part
In the case of light this manifests itself in a change of wa
length. In spite of their simplicity our kinematic calculation
extend previous discussions~using general relativistic inte
grations along the geodesics! to arbitrary velocities of the
lens and the test particles.

Finally, we have investigated the total Doppler shift ar
ing from a moving lens in combination with a transvers
motion of the source and the observer. The resulting effec
Doppler velocity is similar to the total effective transvers
velocities as commonly defined in studies of microlens
effects in cosmological lenses. We have thus been abl
directly relate observable quantities with transversal velo
ties of source, lens, and observer. The required accurac
apply this method to measure transversal velocities of as
nomical objects, especially galaxies, is beyond the capab
of current astronomical instruments but will be reached w
the next generation of telescopes.
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APPENDIX A: THE GEODESIC EQUATIONS WITHOUT
FOD APPROXIMATION

We consider the boosted weak-field limit of the Schwa
schild metric Eq.~12!. The geodesic equations are deriv
from the Euler-Lagrange equation~14! and the analogues fo
t andz. In contrast to the analytic treatment of Sec. III B w
do not use the FOD approximation and obtain the equat

05S 214
11v2

12v2
F D ẗ28

v

12v2
F z̈22

v~11v2!

~12v2!3/2
Fz8 ṫ

2

14
11v2

12v2
Fy8 ṫ ẏ14

11v2

~12v2!3/2
Fz8 ṫ ż12

v

A12v2
Fz8ẏ

2

28
v

12v2
Fy8ẏż22

v~32v2!

~12v2!3/2
Fz8ż

2, ~A1!
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12v2
Fy8 ṫ
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v

A12v2
Fz8 ṫ ẏ

18
v

12v2
Fy8 ṫ ż12Fy8ẏ

214
1

A12v2
Fz8ẏż

22
11v2

12v2
Fy8ż

2, ~A2!

0528
v

12v2
F ẗ1S 2214

11v2

12v2
F D z̈

22
123v2

~12v2!3/2
Fz8 ṫ

228
v

12v2
Fy8 ṫ ẏ

24
v~11v2!

~12v2!3/2
Fz8 ṫ ż22

1

A12v2
Fz8ẏ

214
11v2

12v2
Fy8ẏż

12
11v2

~12v2!3/2
Fz8ż

2. ~A3!

In order to complete this set of equations we still need o
further condition which is given by the requirement that t
geodesics be null:

05gtt ṫ
21gyyẏ

21gzzż
212gtzṫ ż. ~A4!

The potential of the lens is assumed to be that of a po
mass given in the weak-field limit by

F~ t8,y8,z8!52
M

Ay821z82
~A5!

in the lens’ rest frame. The resulting potential in the obse
er’s frame is obtained from Lorentz transformation. For t
derivatives that implies

Fy5Fy8 , ~A6!

Fz5g Fz8 , ~A7!

F t52vg Fz8 , ~A8!

which has already been incorporated into Eqs.~A1!–~A3!. In
order to numerically obtain a solution we need to spec
boundary conditions for the null geodesic. At the point
emission of the light we demand

t50, ~A9!

z5zs, ~A10!

y5ys, ~A11!

ẏ50, ~A12!
1-10
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DEFLECTION OF LIGHT AND PARTICLES BY MOVING . . . PHYSICAL REVIEW D69, 063001 ~2004!
wherezs andys give the position of the source and have be
set to210 000 and 150, respectively, in our calculations.
the observer’s position we impose the boundary conditio

z5zo ~A13!

with the position of the observer being set tozo510 000 in
our calculation. Note that they position of the observer de
pends on the deflection of the light ray and cannot be fre
specified.

We solve this two-point-boundary value problem with
second order accurate relaxation scheme. For our calc
tions we have set the mass of the lens toM51, so that all
distances are given in units of the lens’ mass~remember that
c515G). These parameters lead to deflection angles m
larger than those observed in astronomical lenses. We th
fore expect this test of the FOD approximation to provi
upper bounds on the error and the FOD approximation to
even more accurate in all scenarios of practical interest.

APPENDIX B: INDEX OF REFRACTION

In this section we will provide an alternative descripti
explanation of the counterintuitive result obtained in Se
III B and III C that a gravitational lens moving towards th
observer at highly relativistic speed leads to a vanishing
flection angle. We have not found an intuitive explanation
this effect based on the components of the energy momen
tensor which diverge in the limit ofv→1, but whose contri-
butions must cancel to explain the vanishing total effect.
stead we describe the deflection in terms of light moving i
refractive medium.

It is a well known fact that the deflection of light in wea
static gravitational fields can be described by the analog
scenario of light moving in Euclidean space filled with
refractive medium. We therefore consider a refractive m
dium in the rest frame of the lens. We denote the propaga
speed of light in the medium byc8 so that the refractive
index is given by

n85
1

c8
5

dt8

dl 8
. ~B1!

As before we use primed coordinates for the rest frame of
lens. Note, however, that the spatial geometry is viewed
Euclidean now, so that dl 825dy821dz82. The gravitational
effect on the light propagation is absorbed in the refract
index

n821522F, ~B2!

which follows from the combination of Eq.~B1! and the line
element~1! for the case of light~i.e., ds250). This descrip-
tion can be extended to the nonstatic scenario in the
frame of the observer either by applying the Lorentz tra
formation~9!–~11! or by directly calculatingn as before but
now using the unprimed analogue of Eq.~B1! and the metric
~12! for the moving lens. Both approaches lead to the rat
simple scaling law
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n21

n821
5g2~12v cosu!2. ~B3!

Hereu defines the direction of light propagation relative
the lens’ motion as seen by the observer, i.e., cou
5dz/dl , sinu5dy/dl . This result is the generalization of th
FOV expression of Schneideret al. @4#. It is also valid for
arbitrary directionsu, even though we are still working in
the FOD approximation.

We emphasize that we have obtained a description o
moving gravitational potential in terms of a refractive m
dium at rest but with an anisotropic refractive indexn given
by Eqs.~B2! and~B3!. In particular this scaling law demon
strates that the refractive indexn approaches unity in the
limit of the gravitational lens moving towards the observ
with highly relativistic velocity (u50, v→1). Translated
back to the deflection of light, however, a constant refract
index n[1 implies a vanishing of the deflection angle.

It is now not surprising at all that the refractive inde
becomes unity in this limit. The coordinate velocity of ligh
is reducedin the rest frame of the lens,but as the lens itself
is moving highly relativistically, the resulting net velocityin
the observer’s frameis obtained from relativistic velocity
addition @cf. Eq. ~21!# and approaches 1. In the limitv→1
we thus have no reduction of the velocity of light in th
refractive medium and consequently no deflection.

APPENDIX C: FRAME DRAGGING

The fact that the velocity of light is reducedin a moving
frame of reference~cf. Appendix B! suggests effects analo
gous to the ‘‘dragging of inertial frames’’ in the field of
rotating body with its extreme consequences close to K
black holes. A discussion of this effect helps in understa
ing the geometric effects in the field of a linearly movin
mass and is therefore included in this appendix. Gabrielet al.
@28# showed that the gravitomagnetic light deflection of r
tating bodies can be expressed as an integral over the Le
Thirring rotation rate which demonstrates the close relat
between both effects.

To simplify the discussion we consider regions with
stationary~static in the lens frame! gravitational field in they
direction, i.e.,Fz5F t50. It can be shown easily that
freely falling particle will gain a velocity component in thez
direction~parallel to the direction of motion of the lens! as a
result of its motion in they direction. This transversal acce
eration is similar to magnetic Lorentz forces and shows
gravitomagnetic effects directly. Such effects are, howev
coordinate dependent and thus not easy to interpret in a
eral way. We therefore want to discuss effects on a bodyat
rest with respect to the outside world,i.e., with constanty
andz coordinates.

The tetrad of a local Minkowski coordinate system can
derived by starting at one point of the world line and tran
forming the direction vectorsTn with the Fermi-Walker
transport which is defined by a vanishing Fermi derivativ

DTa

Dt
1gmnS ua

Dum

Dt
2um

Dua

Dt DTn50. ~C1!
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Here the four-velocity of the test particle is denoted byua

5dxa/dt ~with t being the proper time along the trajecto
of the test particle! and the covariant derivatives by an u
percase D:

DTa

Dt
5

dTa

dt
1Gmn

a Tmun. ~C2!

In order to derive the Christoffel symbols we write the Eule
Lagrange equations@e.g., Eq.~14!# for the Lagrange function
in Eq. ~13!. On the other hand we write the equations
motion by setting the covariant derivative of the veloc
vector Ta5ua in Eq. ~C2! to zero. Even though we stil
work in the FOD approximation, we now do allow for arb
trary directions of test particle velocities. By comparing c
efficients, we find the following nonvanishing Christoff
symbols:

G ty
t 5~11v2!g2Fy , Gyz

t 522vg2Fy , ~C3!

G tt
y 5~11v2!g2Fy , Gyy

y 52Fy ,

Gzz
y 5~11v2!g2Fy , G tz

y 522vg2Fy , ~C4!

G ty
z 52vg2Fy , Gyz

z 52~11v2!g2Fy, ~C5!

as well as those following from the symmetry properties. T
four-velocityua of a particle at rest is needed only to zero
order of the deflection~i.e., potential! and is given byut

51, uz5uy50 in unprimed coordinates. For the covaria
derivative ofua for the particle at rest, we obtain in FOD
approximation

Duy

Dt
5~11v2!g2Fy ~C6!

while all other components are vanishing. This covariant
rivative for the particle at rest is equivalent to the for
needed to support the particle and prevent it from fall
towards the lens.

In the next step we apply Eqs.~C1! and~C2! to derive the
transformation of the components of an arbitrary vectorTa.
For the metricgmn , the zeroth order approximation~i.e., the
Minkowski metric! is sufficient in this case. We arrive at th
final equations for the Fermi-Walker transport:

dTa

dt
5Ma

bTb ~C7!
o-

te

06300
-

f

-

e

t

-

~Ma
b!52vg2FyS 0 0 0

0 0 1

0 21 0
D . ~C8!

The ordering of indices ist,y,z, the row index isa, and the
column indexb. We note that the velocity vectorua itself
remains constant as required. Furthermore, we see thaty
and z coordinates evolve in a way which is equivalent to
rotation. Modulo an arbitrary time offset, the fundamen
solution of this part is

Ty5cos~vt!, Tz5sin~vt! ~C9!

with an angular velocity ofv522vg2Fy . As a conse-
quence a gyroscope~or any other device capable of sustai
ing a locally nonrotating reference system! will precess rela-
tive to the outside world with this angular velocity. Th
precession can be observed from great distance and re
sents a coordinate independent measure of the frame d
ging caused by the linear motion of the lens.3

Without presenting the calculations we note that the p
cession of a gyroscope could be obtained more directly
solving the equation of motion for the different parts of t
rotating mass. The mass elements approaching the lens
be dragged with the lens’ motion while elements movi
parallel to the lens will feel a reduced gravitational attra
tion. It is easy to show that this leads exactly to the prec
sion which we derived in a more formal but general way.

The effect is analogous to Lense-Thirring precession
the field of rotating bodies, especially in the field of a Ke
black hole. There is, however, one important difference.
our case, all gravitomagnetic terms of the metric vanish
the rest frame of the lens. The precession due to the fra
dragging does of course not disappear when viewed in
system. It would instead be interpreted as an incarnation
geodesic precession of amovingparticle in astatic gravita-
tional field. In the case of the Kerr metric, such a transf
mation is possible locally only as has been shown by Ash
and Shahid-Saless@29#.

3The assumption of constant spatial coordinates for the test
ticle is not coordinate dependent because it can be defined in
way that the test particle appears to be at rest when observed
distant observer whose coordinates are fixed by the backgro
Minkowski metric.
R.
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