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Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but
the results presented so far do not appear to agree on the expected deflection angles. Some publications claim
a scaling of deflection angles with-Iv to first order in the radial lens velocity, while others obtained a
scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the
first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the
classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity,
including light as a limiting case. We show that the effect of radial motion of the lens is very different for
slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the
lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is
obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle
of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we
discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring
precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a
second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We dem-
onstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test
particles. Additionally we include the transversal motion of the source and observer to show that all three
velocities can be combined into an effective relative transversal velocity similar to the approach used in
microlensing studies.
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[. INTRODUCTION particles and especially the effect any motion of the lens has
on either.
The subject of gravitational lensdfight deflection by In contrast to most previous work, we do not only con-

gravitational fields in the Universés a well-established field ~ Sider effects to first order in velocitfFOV) but for the first

in modern astrophysical resear@ee, e.g.[1—4]). Applica- time calculate the deflection for arbitrary velocities of both

tions include cosmology, dark matter, the large scale strucI_ens and deflected particlencluding light in the ultrarelativ-

. X . ; istic limit).
ture in the Universe, clusters of galaxies, galactic structure, To our knowledge, the first calculations of the deflection

the structure of the Milky Way, and even the search for eX-y¢ light in gravitational fields were done by Cavendisiee

tras?lar plgne_ts. Not to be_ forgotten, light deflection by the\NiII [6]) and Soldnef7]. This early work is based on the
Sun’s gravitation was the first test of the then new theory of, 54tz of Newtonian particles moving with the speed of
general relativity5]. , _ light. Einstein[8] used the principle of equivalence to avoid
In almost all of the studies, the deflecting masses arghe physically unsound picture of classical particles for the
treated as being at rest in the cosmological Robertson-Walkefescription of light. The result is naturally the same. Only
metric or (in the limit of noncosmological lensingat rest  after the formulation of general relativity the result had to be
with respect to the source and observer. This is well justifiedevised to bewice as large as expected from classical theory
since most sufficiently massive astronomical lenses have v§9]. This relativistic result has been confirmed by numerous
locities very small compared to the velocity of light, which tests with very high accuracy, see, e[d0,11].
leads only to minor gravitomagnetic corrections. Earlier studies in the context of moving gravitational
In addition to the potential astrophysical relevance, oudenses were undertaken by several authors. In 1993 Pyne and
main motivation to study moving lenses is the desire to unBirkinshaw([12] calculated the effects of the lens’ motion on
derstand the fundamental physics governing the light defledhe deflection in a Minkowski background metric. For radial
tion caused by such systems in an intuitive and possiblynotion with velocityv they found the deflection angle to
Newtonian interpretation. This leads us to the comparison o$cale with a factor v in FOV approximation. The deflec-
the deflection of light with the deflection of slowly moving tion increases if light and lens are moving in opposite direc-
tions (as seen by the obseryernterestingly, the leading
term is of first order; i.e., the effect is not merely a conse-
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In contrast to this, Capozzielket al. [13] found a different  of moving refractive media is given in Appendix B. Finally
scaling behavior of +2v for point-mass lenses. They later we discuss in Appendix C the dragging of inertial frames in
generalized their calculations to other mass distributions witfihe field of a moving lens by calculating the Lense-Thirring
the remarkable but questionable result that the scaling of therecession in this case.
deflection caused by a rigidly moving lens does not only
depend on the mass distribution and velocity of the lens but II. NOTATION AND APPROXIMATIONS
also on its internal parametdr&4]. This is of particular sig- , , o )
nificance because it would enable us to derive information M this work we will measure velocities in units of the
from such observations about the inner structure of lensesP€€d Of light, i.e., we sat=1. The velocity of the lens is
beyond their mass and momentum. The same scaling fgfenoted by and that of the test particle . The deflection

point mass lenses was found by Sergh§] and later gener- of light is obtained in the limitv= 1. Without loss of gener-
alized for other mass distributions a6]. ality we perform all calculations in “21” dimensions, de-

An alternative analytic method was used by Frittetlial. ~ SCribed by Cartesian coordinatgsndz and timet. For all
[17] which confirmed the result of12]. Frittelii [18] also relativistic calculations we will use the metric signature

discusses the discrepancy between the two results, again fat ——)- . i
voring [12]. Below we will demonstrate how we find our Unless stated otherwise we use the weak-field and small-

results to agree with those [f2,17—19, whereas our veloc- anglé approximation as is common in gravitational lens

ity corrections differ by a factor of 2 from the values of theory. We restrict our discussion to thin lenses so that it is

[13-16. sufficient to calculate the deflection of light in a cosmologi-
Afurther interesting result dfL2] concerns the effect of a Cally small region around the lens only. We are thus able to

transversalmotion of the lens on the observed redshift of thedescribe the surroundings of the lens by the Minkowski met-

source. We believe this to be the most promising possibilityic- The local deflection angle calculated in this way can then

of actually measuring gravitomagnetic effects in gravita-°€ Used as part of the cosmological lens equation in which it

tional lensing and even utilizing them for astrophysical stud-S related with cosmological distances and digservedpo-

ies. Concrete practical scenarios are discussed by Molnar arfifional displacement, see, e.f4]. _

Birkinshaw[19]. In the weak-field limit, the line element in threst frame
Kopeikin and Schier [20] presented an exhaustive calcu- Of the lenscan be written as

lation of light propagation in the field of an ensemble of

arbitrarily moving point masses in terms of retardedaie- ds?=(1+2®)dt'>~(1-2®)(dy'?+dz'?). (1)
Wiechert potentials, covering effects on both deflection ) ) o
angles and redshifts. Here we have used primed coordinates to distinguish the rest

Aside from gravitational lenses of standard astronomicaffame of the lens from that of the observ@nprimed coor-
origin, the deflection of light by topological defects in the dinates. The static Newtonian gravitational potenti®l is
Universe, such as cosmic strings, has stimulated a great deilear in the mass distribution and satisfjds<1.
of scientific investigation. Of most interest in the context of ~ The unperturbed light/particle is traveling in the positve
our work is the study of moving cosmic stringsee, for ~direction aty=0 with velocity w as measured in the
example, de Laix and Vachasp#fil] and Uzan and Ber- unprimed observer system. The deflected trajectories will
nardeau[22]). Below we will discuss the similarities and therefore be directed at small angles relative to zteis.
differences arising from such different types of lenses and he only requirement we impose on the velocity of the test
motions. particle is that it travels faster than the lens, iw>uv, so

This paper is organized as follows. After a summary ofthat it passes the lens in the usual direction.
the notation and approximations used in this work, we begin The approximations imply that deviations pffrom the
our discussion with the analysis of purely radial motion ofunperturbed patly=0 need to be calculated to first order
the gravitational lens in Sec. lIl. In view of the fact that the only. This “first order in deflection’(FOD) approximation is
gravitational lensing effect is commonly described in thenot to be confused with FOV. Below, these approximations
framework of Newtonian physics, it will be important to Will allow us to integrate along the unperturbed path instead
verify to what extent this approximation remains valid for of the deflectedand then still unknownpath itself. We will
movinglenses. For this purpose we will present a Newtoniarfurther be able to compare the deflection of light for lenses at
calculation of the deflection of massive test particles in Secdifferent velocities without changing the light path close to
Il A and contrast the results with the relativistic expressionsthe lens, i.e., without changing the impact parameter. In this
derived in Sec. Il B and Il C. The dependency of the de-approximation we can also relate the coordinates along the
flection on the test particle’s velocity will be studied in detail path of the test particle by
in Sec. Ill D. We then turn our attention to the effect of
transversal motion of the lens in Sec. IV and conclude in dz=wt. (]
Sec. V.

A comparison of our analytic results for radial motion  The deflection angle is the difference of the propagation
with more accurate numerical simulations is presented in Apéirections before and after passing the lens. For small angles
pendix A. An illustration of how some of the calculated ef- and propagation close to tlzedirection, this can be written
fects can be understood in a more intuitive fashion in termss
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dy The integral is now expressed entirely in terms of the coor-
T4z ©)) dinates of the lens’ rest frame and is therefore independent of
in the velocityv (the perturbation of the gradier,, on a
N _ perturbed path is of second order in the deflection angle and
For the ingoing path we have— —, for the outgoingz g 5 ignored in FOD We can therefore express the depen-

: . . . dency of the deflection angle on the veloaityf the lens in
For the radial velocity of the lens and the test patrticle WeFOVépproximation as g X

will adopt the sign-convention that they are positive if di-
rected towards the observer so thaandw are measured in o
the same direction. This definition is opposite to the usual aw(v): W )
astronomical definition of radial velocities but is commonly ad(0) w-v’

used in the literature on moving gravitational lenses.

dy

“q

out

Ill. RADIAL MOTION aSJ(O): - if“ dZ'(I)y/ . (€]
w2J -

A. Nonrelativistic calculation based on the principle

f ival . . .
ot equivaience The factor W? in the last equation can be interpreted as

We begin our discussion of the effect of purely radialfollows. One factor M originates from Egs(2) and(3) and
motion of the lens on the resulting deflection angle with arepresents the geometrical effect that the transversal accel-
Newtonian discussion. Aside from providing an intuitive in- eration due to the gradiert,, and the resulting change in
sight into the effect, the results thus obtained will also enab|Q/e|ocity a|ong they direction AWL Correspond to a |arge|’
us below to hlghllght the quantitative and qualitative mOdi-deﬂection ang|e the smaller the Ve|ocity_comporwra|ong
fications arising in a general relativistic treatment. the z direction. The second factorwi/is due to the interac-

In order to avoid a description of light in terms of classi- tion time which scales inversely with the velocity The first
cal particles, we follow the lines of Einste[®] and apply  contribution is unchanged for moving lenses while the inter-
the principle of equivalence to the gravitational effects andaction time now scales inversely with thelative velocity
use nonrelativistic kinematics otherwise. At each point of they — leading to the correction factor in E(f).
path of a test particle, we can define a freely falling observer Thjs result is not only exact in the nonrelativistic limit
WhO iS momentarily at rest and WhO ViEWS the deﬂected paﬂewﬂo) but still provides a decent approximation for the
in her vicinity as a straight line. The equations of motion of geflection angle ofight for lensesat rest The only modifi-

this observer are given by cation caused by general relativity is an additional factor
5 ) of 2. One may ask whether this remains true fooving
d_y: —® E __ 4) lenses — can one simply apply the missing scaling factor of
dt? A “

2 to the deflection angle of light in the moving case as well?
Below we will learn that this is not the case.

where®, and®, denote partial derivatives of the potential ~ AS & qualitative result for slowly moving particles, we
with respect toy and z, respectively. In the frame of this find from Eq. (7) that the deflection increasedue to the
observer, the acceleration of the test particles vanishes, $&:ange in interaction timeif the test particle and lens are
that they follow the same equations of motié#) as the moving in the same direction. We will see that the opposite
falling observer. holds for light, so there exists a test particle veloaityfor

In order to calculate the deflection angle defined in@®y. Which motion of the lens has no effect on the deflection
we need to calculateyddz. In FOD this is obtained from Eq. angle in FOV approximation. We will study this feature in
(4) by replacing time derivatives withderivatives according more detail in the next sections when we calculate the de-
to Eq.(2) and integrating once over We thus obtain for the flection in the framework of general relativity.
deflection angle

B. Relativistic calculation in the observer frame

alv)=— izfm dz ®(y,2). (5) In ord(?r to calculate the trajectories of test particles in the
w=J —e observer’s rest frame, in which the lens is moving, we need
to find the line element in this system. For this purpose we
Next we transform the integral to primed coordinates. Firstransform the line elemerit) from the rest frame of the lens
we note that the boost does not affect yhdirection, so that  (primed to that of the observeunprimed coordinatesThe
®(y,z)=dy(y',2"). Secondly we can use E@) together  corresponding Lorentz transformation is given by
with the nonrelativistic limit of the Lorentz transformation
(11) below to obtain @' =(1—v/w) dz. This gives us the dt’ = y(dt—vdz), ©)
deflection angle as
dy’=dy, (10)

al __; * ’ oo
ay(v)= w(w—u),[_mdz Py (y'2'). ® dz' = y(dz—vdt), 11)
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where y=1/\/1-v?. We drop the FOV approximation for o (P,
this calculation so that the line element for arbitrary velocity ay(0)=—(1+w )f_xdz Dy (20
v in the observer’s rest frame is given by

ds?=[1+2(1+v?)y?®]dt?— (1—2P)dy? As before, the integral in Eq20) is evaluated to FOD by
o 5 5 using the unperturbed path. We emphasize that in this ap-
—[1-2(1+v%)y*®]dz°—8v y“Pdt dz. (120 proximation the impact parameter, and thus the integral in

L . ) Eq. (20), is a background quantity, i.e., remains constant for
In the limit of smallv this metric reduces to the FOV result jizoent values of, andw. In all our comparisons of deflec-

of Schneidert al. [4]. tion angles obtained for different velocities we will therefore

The geodesic equation with a given metric is equivalent 19, iqer the impact parameter as being kept constant, even

an Euler-Lagrange system of equations with Lagrange, e nymerical calculations below which go beyond FOD.

function For the special case of light and a lens at regt(, v
ds\ 2 =0), the comparison of Eq20) with the classical resuli8)
L= (— , (13)  vyields the additional factor of 2 introduced by general rela-
dh tivity. In the nonrelativistic limit|v|,w<1 we recover the

where\ is an affine parameter of the test particle’s world classical resul?).

line. We denote the derivative with respect to this parameter

by a dot, e.g., y]/d)\zy_ Using the line element12), the C. Relativistic calculation in the lens frame
equation fory in FOD approximation becomes In view of the discrepancy between the results presented
in the literature(see, e.g.[12] and [13]), we consider it
iﬁ_ ﬁ_o (14) appropriate to calculate the same effect again in the lens’
d\ gy gy reference frame.

For this purpose we consider EO) which remains
valid in the rest frame of the lensven for nonzera and
which can be derived directly from the usual static weak-
field metric(1).

We must take into account in that case, however, that the

y=—[(1+v?)(t?+2%) - dvtz]y*®,. (19

Terms likedy, ®y, andy? are neglected here because they

are of higher order in the deflection. : : e
From ?he corresponding equations foandt we learn that particle velocity now isv’ (instead ofw) and that the result-
ing deflection angle will bex’, i.e., the angle as viewed in

deviations from the undeflected path in these coordinates arg ; o . .
T the lens’ system. In order to facilitate a comparison with the
of the same order as the deflectionyiso that they become

insignificant after multiplication withb, in Eq. (15). We can results of the previous section we need to Lorentz-transform

. both quantities into the observer’s rest frame. We first con-
therefore applyt =z/w from Eq. (2) for the undeflected path  gjqer the velocityw’ .

and use\ =z as the affine parameter. Equatici) can then Because of the FOD approximation we can consider the
be written as velocitiesw,w’ as the components along taeaxis for this
transformation. This is reflected by E@®) and its analogue

in primed coordinates Zil=w’dt’. Combining these rela-
tions with the Lorentz transformatio(®)—(11) we directly
obtain the relativistic addition of velocities

After integration we can use E@3) and find the deflection

d’y

_2:_

(1+UZ)(1+W2)—4%}'y2(I>y. (16

angle w' = th__Ul\)N (21)
fa® s
aw(v)= —w z E (7 We simplify the transformation of the deflection angle
by defining the direction of the ingoing path as that of zero
1 o dy deflection. We therefore need to transform the outgoing path
= - dz’ —=. (18 only which is parametrized by
(I-viw)y) =" dz2

In the final step we applied a parameter transformation from dz' =w'dt’, (22)

z to z’ using the unperturbed particle pat? and the Lor-
entz transformatioiill). This result can again be written as a dy’ = a\:v,(O)dz’ (23
correction to the deflection angte,(0) caused by a lens at

rest, so that we obtain [cf. Egs.(2) and(3)]. Again we use the Lorentz transforma-

tion (9)—(11) to eliminate the primed coordinate differentials
, (19 and Eq.(3) to express the result in terms of the deflection
angle in theobserver’s rest frameéNe thus obtain

a’w(v)_ Y 9 4ow
a'W(O)_ 1-vlw w2
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FIG. 1. The null-geodesicdeft pane) and the(logarithmig deflection angléright pane) are plotted for various velocities of the lens.
In the right panel the crosses<{ are the numerically calculated deflection angles, the solid curve is given by the analytic(2&sult
obtained in FOD approximation. Even though these deflection angles are larger than typical astronomical values by several orders of
magnitude(for this calculationag=0.027), the FOD approximation still provides excellent results. Following the arguments in Sec. lll C it
can be shown that, even forquite close to- 1, the relative errofdue to the FOD approximatipof a(v) as defined in Eq(3) is the same
as that ofa(0) even though the small-angle approximation would not holdaftr) directly.

(V) v istic velocity will not deflect the passing light at all even
,W =< - —) v (24)  though the effective mass-energy of the lens as viewed by
a,,(0) w the observer diverges in this limit.

In view of the counterintuitive nature of this result one
may ask whether the approximation of small deflection
angles(FOD) underlying this calculation is still justified in
the limit of v—1. In order to clarify this point we have
numerically solved the full geodesic equations, e.g.,(E4),
for the case of a point mass$E —M/r) without FOD ap-

Eventually we want to compare deflection angles dqual
test particle velocities wso that we still need to express
@y (o) IN terms ofa,,(0). From Eq.(20) we directly obtain

a,,(0) 1+w "2

aw(0) 14w 2 proximation. Instead of Eq(15) we obtain in this case a
72 system of three nontrivial second order ordinary differential
:(1_ 1) 1+p2— dow ) (25) equations fot, y, andz. These equations together with more
w 1+w2/’ details of the numerical treatment are listed in Appendix A.

Note that the only approximation in this numerical calcula-
which becomes unity in the special case of lighi={w’ tion is the assumption of a weak gravitational field in test
=1). The combination of Eq924) and (25) confirms the frame of the lensin Fig. 1 we plot the resulting geodesics
above result(19) calculated directly from the viewpoint of and the deflection angles obtained for different velocities of
the observer. the lens together with the analytic result in FOD approxima-

tion as given by Eq(26). For these calculations source and

D. Discussion of radial motion observer are located at=*10 000M, respectively, while
the impact parameter, which equals theposition of the
source with high accuracy, is 199. The precise values of
We now turn our attention to the interpretation of thethese parameters do not affect our results. The lens is always
deflection of light for a rigidly moving gravitational lens to positioned aty=0 and moves along the axis, so that it
FOD. For this purpose we consider the limit of Eg9) for reachesz=0 at the same time as the null-geodesics. Note

1. Rigidly moving lenses

w— 1. In that case the scaling has the simple form that they position of the observer depends on the deflection
angle since the impact parameter is kept constant as the lens’
a(v) 1w velocity v is varied.
a(0) (1-v)y= 1+v (26) The excellent agreement between the numerical deflection

angle and that predicted by the approximate FOD result dem-
To FOV this becomes 4 v which confirms the result dfLl2]  onstrates the validity of the FOD approximation in our cal-
while it differs by a factor of 2 from that given ifiL3]. We  culations even for strongly relativistic velocities
further note that the quotient(v)/«(0) diverges forv— With regard to the deflection of light by cosmic strings we
—1 but vanishes in the limit — + 1. Thus, rather surpris- first note that such types of lenses induce vector and tensor
ingly, a lens approaching the observer with a highly relativ-perturbations of the metric in addition to the scalar perturba-
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FIG. 2. The deflection angle caused by a moving lens in units of FIG. 3. Effect of small lens velocities on the deflection angle.
that arising from a lens at rest as given by Ep) is shown as a  According to Eq.(27) the deflection scales with-1(v/w)f, where
function of v. The graphs are obtained fow=1 (light),  f=(3w?—1)/(1+w?). The graph showas a function of the test
0.9, 0.57%1/{/3 (=w,), and 0.1. We note that the curve far particle velocityw. The effect has opposite signs far—0 andw
=W, is stationary ab =0, i.e., small lens velocities have no effect =1 and there is a critical particle velocity.= 1//3 for which the
for this critical test particle velocity. lens motion has no effect to FOV.

tions in our Eq.(1) [cf. Eq. (38) of Uzan and Bernardeau
[22]] which can be combined into an effective deflectingWe have already mentioned above that the deflection of light

potential. The deflection angle can be expressed in terms aficales with +-v to FOV whereas the Newtonian result of
this deflection potential and our res[iigs.(16),(17)] corre-  Eq. (7) predicts a scaling of +v/w for nonrelativistic test
sponds to the limit of their Eq45) for purely scalar pertur- particles satisfyingv>v. Hence there must be a critical ve-
bations and linear motion of the lens. In genej2] find the  |ocity w,, of the test particle for which the deflection angle is
vector and tensor perturbations to be negligible as long as thﬁdependent of the lens’ velocity to FOV. From Eq.(27)
thin lens approximation is valid but not necessarily for the\,s see that this critical particle velocity is,=1/y/3. We
case of extended lenses. A time dependence of the deﬂeCtiri‘lﬂJstrate the functional behavior of E€7) in Fig. 3.

potential which is of particular interest for string type lenses Only after finishing our calculations we learned that spe-

(because they are expected to move with relativistic Veloc'bial properties of the velocity 3B have been discussed be-

ties) is that of an oscillating loop. For this scenario the de- ) . .
flection of light passing sufficiently far outside the loop hasfore by Carmeli([23], and_ problem 5_'5'1 in24). T_here It :
was found that the coordinate velocity of a massive particle

been found to be identical to that of a point mass so(see . . T .
[21,22 for detaild. In contrast, the linear motion studied in approaching the center of a Schwarzschild metric in a radial

this work gives rise to a vector perturbation of the metric,direction increasesonly for asymptotic starting velocities
which manifests itself in thetdiz cross term of the boosted Smaller than 1y3 but decreasestherwise, all in a FOD
line element(12). The analogy between this term and rota- approximation. The same was later independently rediscov-
tional effects will be studied in more detail in Appendix C. ered by Blinnikovet al. [25,26]. It can indeed be shown

It remains therefore to obtain a better understanding oeasily that the same is true for any-1 dimensional weak
how the deflection vanishes in the limit of a lens movingfield with a metric of &*=(1+2®)dt>—(1—2®)dr?. To
towards the observer at highly relativistic velocities. For thisfirst order in®, there is no coordinate acceleration for
purpose we provide in Appendixes Bca@ a description in - =w,. This effect can in principle be detected by measuring
terms of refractive media and the dragging of inertial framesound trip travel times.
similar to the frame dragging close to rotating bodies. With regard to the observation of the deflection caused by

We now return to the general behavior of the deflectiong radially moving lens we note that it is not possible to
angle for arbitrary velocities andw which is shown in Fig. distinguish the scaling of the deflection angle with
2. Thig graphic demonstrates the_ singular behavior of th?vw(v)/aw(O) from a scaling with the total mass of the lens.
deflection angle at =—1 and(providedw#1) v=w. The g o given test particle, the effect can therefore be used to
singularity at.—l arses from the diverging factoy .Wh.'le infer a radial motion of the lens only if an accurate and
the secon'd'smgulgnty IS a consequence pf th? vanishing reI?ﬁdependent estimate of the lens’ mass is available. An alter-
F'V‘? v elocities which causes the interaction time to beCOm%ative way to disentangle the two effects would consist of
infinitely large. ing deflection angles of test particles wdifferent

We next discuss the limit of small lens velocitiggFOV) measuring detiect 9 L partl .
combined with a comparatively larger, but otherwise arbi-VeIOC'.t'eSW' Unfortunately, appropna}te test part!cles othe_r
trary speed of the test particle, i.ev>v. In this case the than light are currently npt a\_/allable n a§trophy3|cs. .E\'/en i
scaling of Eq.(19) simplifies to we cquld measure the d'lrectlon of cosmic rays cons'lstlngiof

massive particles with higher accuracy than is possible with

existing instruments, they would not serve our purpose as

ay(v) 3w?-1v
= (27)  they travel at highly relativistic speeds and would be subject

aw(0) T 14w W
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to practically the same deflection as light. Furthermore, theyroblem? Following this approach, we use the equivalent
are also deflected by electric and magnetic fields. formulation of light propagation in an Euclidean metric with

an effective index of refractiom (cf. Appendix B. For a

rigidly moving lens with gravitational potentidh, this index

2. Compound lenses can be calculated from setting=0 in Egs.(B2) and (B3)

) _ i . _ ~and is given by
It is an interesting question whether the gravitomagnetic
correction to the deflection of light or particles could be used n—-1=-2(1-2v)®, (28)

to deduce information about the inner struct ., the ve- . . .
(&g which does indeed contain the factor-2v. In order to

locity field) of a lens as suggested by the results of Ca- . . .
pozziello and Ré14] for the deflection of light. We address obtain the correct scaling, however, we must further take into

. i o . . account that the motion of the lens affects the potenbial
this question by considering a compdoglative to the im-\hich now becomes time-dependent in the observer’s rest
pact parameter) lens which we treat as a collection of point frame. It is most convenient to calculate the total deflection
masses located close to each other. In terms of our formaintegral over the path of light in the primed coordinates of
ism, the argument in favor of the possibility to probe thethe lens’ rest frame. We thus repladg(t,y,z)=®(y’,z')
inner structure of the lens can be summarized as followswith z’=z—wvt from Eq. (11) and substitute’ for z in the
Consider a lens with two components of equal massov-  integral. The same procedure has been used iri&dor the

ing in opposite directions with the same speed. Compared télassical and in Eq(18) for the relativistic calculation. This

a lens at rest with massn2 we expect a deflection angle Ccorrection describes the scaling of time of interaction caused

; by the different relative velocity. The resulting additional
larger by a factory because the compound lens will appear -
as a lens of massn2y in the observer’s rest frame. Because factor 1+v wasnotapplied in[13] and[15] but would oth-

. o . erwise have changed their scaling facter dv to the correct
of the more complicated dependence of its right-hand side Ofsult of a v sc%ling of light dgflection in FOV approxi-

v, however, Eq(19) will predict a different deflection angle  ation. Frittelli[18], on the other handjid apply this factor

for this scenario. It appears therefore that the deflection is ngh her Egs.(33) and(34) and arrives at the same result as we
uniquely determined by the total four-momentum of the lensdo in Secs. Ill B and Il C above.

This argument is not valid, however, because the com-
pound lens must be compact not only momentarily but for IV. TRANSVERSAL MOTION
the whole interval during which the test particle passes by
and is deflected significantly. Otherwise the lens would ef-

fectively be extended so that the deflection would test rather LtJ_nt|I r}oz’r‘]’ vvle havtt)a restrlcttehq ourl d|§tcu35|on to atrad{ﬁl
the mass distribution than the internal velocity field of themotion of the lens, because this velocity component is the

I M ble effect i ising in that only one affecting the deflection angle to FOV. In this section
ens. Measurable eflects are not surprising in that case. " il discuss the effects of transversal motion. For this

The time scale for the passagerisv and the displace- ,rpose we use the same approximations as in the discussion
ments of the lens’ components during this intervalarév.  of radial velocity effects, i.e., we allow for weak deflections
Because these displacements must<oe to preserve the only and work in the FOD approximation. For radially mov-
compactness of the lens, we obtain an upper limit for theng lenses, the light path across the lens does not depend on
velocities of its component$y|<w. In this limit, however, the velocity so that a nonzero velocity merely gives rise to an
the right-hand side of Eq19) becomes approximately(1 ~ overall scaling factor. This is no longer the case for large
+consty) and the total deflection is indeed determined byt_ransversal vglocities. Due to aberration, the direction of
the total four-momentum. We thus conclude that no informalight propagation in the lens’ rest franumesdepend on the
tion about the internal structure beyond the mass and tot€l0City so that an additional term involving the radial de-
momentum of a compact lens can be obtained from the lendivative ®;: appears in the geodesic equation. The resulting
ing effect. In the case of lightw—1) this is also demon- scaling law would therefore depend on the mass distribution

PR d is not of general validity and immediate interest.
strated by Eq.26), where the deflection is always deter- an . .
. ) Ay By using the methods of Secs. 11l B and Ill C, however, it
mined by the total four-momentume=py—pz=2;(1 can be shown that to FOV the deflection angled modi-

—v)ym;. fied at all by transversal motion.

A. Deflection angle

E. Comparison with previous results B. Redshift

Even though a transversal motion of the lens does not

We will now address the question of what causes the disaffect the deflection angle to FOV, there is an interesting
crepancies between our results and thos¢lB15 where  effect on the observed redshift of the source. This can be
the velocity effects appear to be overestimated by a factor dflustrated as follows. When the test particle approaches the
2. Note that this also affects the ensuing results published in
[14,16 which generalize to mass distributions other than
point masses. Both these groups exclusively use light as testan alternative derivation based on integration of the geodesic
particles, work in a FOV approximation, and use essentiallyequation is presented additionally [ih3]. Our arguments are valid
the same approach as Schneideal. [4] in formulating the  for this approach as well.
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lens it falls into the potential well and gains energy. During
the passage, the lens is moving, so that the potential experi %i-..
enced by the particle as it climbs out of the potential well e .-
will differ from that before. The associated loss in energy of g e
the test particle will therefore not exactly compensate for its ¥
earlier gain. The resulting net change in energy can be mea
sured as a change in the velocity of the test particle or the Ap A6
energy, i.e., wavelength, in the case of a photon.
Alternatively one can view the effect in the following s D o
way. The test particle traveling on the rear side of the lens{seuree) (deflector) (observer)
(with respect to the transversal mOt)ON_'” be deflected to- FIG. 4. The lensing geometry. The solid line shows the deflected
wards the lens and slow down the motion of the lens so as Ryt path while the horizontal axis is the undeflected light path
preserve total momentum. The energy loss of the (@M8ch  from the source to the observer. The deflection angle &nd the
is proportional to its initial velocity, see belgvhas to be  apparent position of the sourceA®. The true position would be at

transferred to the particle. For particles passing on the othefn angle of zero. As shown in the figure, is negative while
side of the lens, this effect has the opposite sign. We willa g, A ¢, andyy,y. are positive.

now quantify these ideas straightforwardly by calculating the
effect in the framework of special relativistic kinematics. ) )
The transversal momentum transferred from the lens t§veN depend on the physical process which causes the de-

the test particle in the course of the deflection is given by flection but instead are valid for any kind of scattering by a
massive moving target.

AP P 9 C. Geometry

where p) is the radial momentum of the particle. We can 5o far we have only considered a transversal motibn
calculate the accompanying transfer of enefdy by using  the lensbut assumed that source and observer are at rest. In
the fundamental equations of special-relativistic kinematics reality, source, lens, and observer will all be moving relative
to the cosmological Robertson-Walker background metric. It
is therefore necessary to also take into account the motion of
source and observer. We will calculate the resulting total red-
shift in the framework of the FOV approximation. The fun-
damental geometry is shown in Fig. 4. If the source is mov-
AE=v-Ap. (31) ing with a trgnsvers_al ve_zlocitys, this will lead toa velocity

component in the direction of the real path of light and, thus,

We now apply this equation both to the lens and the tes® DoPpler velocity ofv A¢. We have already seen in the

particle to write the equation of energy conservation as ~ discussion of Eq(33) that a transverse velocity of the lens
leads to a Doppler shift analogous to an apparent radial ve-

vjApj+v, Ap, =wApy. (32)  locity vqer of the source. The motion of the observer them-
self gives rise to an additional contribution corresponding to

The left-hand side is the energy loss of the lens, written ira radial velocity ofv,A 6. In FOV approximation, the net
terms of a possible radial velocity component of the leps Doppler effect is obtained by linear addition of these veloci-
and its transversal velocity, . On the right-hand side we ties because (¥Az) acts multiplicatively, see E¢38) be-
have the energy gain of the test particle. Here the transversIw.
part is of higher order in the deflection and can be neglected. If we denote the apparent size distance pararhétem a
Combining Eqs(29) and(32) we directly obtain the relative to b (angle measured at size measured &) with D, we

E2=m?+p? p=Ev, E=my. (30)

From the first of these equations we derFAE=p-Ap to
first order inAE and thus, together with the second one,

change in radial momentum of the particle can use two equations each to express the apparent position
of the sourcey; and the position of the leng; using differ-
Apy v, ent angles and distancéd. Fig. 4)
p— = m (33)
| | yé:_aDdS:AaDOSI (34

Even though this relation is valid for arbitrary values of the _ _

velocities, we will assume =0 for the following discus- Ya=A0Dog=A¢ Dea: (35

sion. These equations can be used to expresnd A ¢ in terms
In the case of light and assumimg=0 we can relate the of the apparent displacementd (also called apparent de-

relative change in momentum to a shift in frequency or arflection angl¢ to write the total Doppler velocity in terms of

additional redshift ofAz=—« v, , which agrees with the

FOV results of Pyne and BirkinshaM2] and Kopeikin and

Schder [20]. In spite of the remarkably simple derivation, 2The apparent size distan@is defined as the relation between

however, our results remain valid for arbitrary lens potentialshe physical size of a distant objdcand the(smal) angle under

and lens and particle velocities. Equatid29)—(33) do not  which it is seen by an observeb=1/4.
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this angle. Because of the expansion of the Universe, dis- V. SUMMARY
tance parameters depend on the direction, Deg# D ys. _ _
The two can easily be related, however, using the redshifts ~ In this work we used different methods to calculate the

andz, of source and lens so that we obtain effect of radially moving lenses on the deflection of light as
well as test particles with arbitrary velocity. These calcula-
Dy 1+z tions are valid for arbitrary lens velocities and thus general-

(36) ize the results of previous publicatiorie.g., [12,17-19)
dealing with the deflection of light by slowly moving lenses
(FOV). At the same time we have demonstrated how neglect-

This leads to the final expression for the total Dopplering the time dependence of the potential of a moving lens

D_ds_ 1+Zd.

elocit S . . . .
v 'y (which is equivalent to the scaling of the interaction tjime
142.D D accounts for the discrepancy between our results and those of
v = Zod oS A (377 [13-18. In agreement witfi18] we find the inclusion of this
Dopp 1+7z.D S D d o . . . .. .
s Mds ds time dependence essential for obtaining correct deflection
. _ . _ angles.
Remember that our sign convention fa,,, is opposite to Our study of the deflection of light and particles by radi-

that Commonly used for astronomical radial VeIOCitieS, SOa”y moving |enses has reveaied some rather Surprising re-
that the observed redshif is given as a modification of the - gyits. While a motion of the lens parallel to the test particle
unperturbed redshift in the following way: velocity increases the deflection of slowly moving particles,
as is intuitively expected from the decreasing relative veloc-
1+2z{=(1+29)(1+Az)=(1+29)(1—vpepp. (38) ity and increasing interaction time, the opposite is true for
the deflection of light. As a consequence there exists a criti-
In the case of a surrounding Minkowski metric, the redshiftcal particle velocity ofv.= 1/y/3 for which the motion of the
factors become unity and the distance parameters beconiens does not have any effect on the deflection to first order.
additive. In this case Ed37) predicts a zero Doppler veloc- These results imply that the classical approach of treating
ity if source, lens, and observer are all moving with the samgight as classical particles, while providing qualitatively cor-
velocity, as expected. The combination of velocities is veryrect results for lenses at resee, e.g., Soldngi]), does not
similar to the effective transversal velocity defined by tacilitate a satisfactory description for the case of radially
Kayser, Refsdal, and Stab¢[l27] Eq. (B9)] to discuss ef-  qying lenses. This behavior seems to be related to the ef-
f_eC,tS O_f mmrplensmg_. The only .d|ffe_renctb_e5|des t,he mul- fects found by Carmelli23,24 and Blinnikovet al.[25,26
tiplication with Aa). is that theirV is prOJe(_:ted into the_ for radial motion in the Schwarzschild metric where massive
f:cﬂgiesgiﬂgtand incorporates a cosmological time dllatlorE)articles are accelerated when approaching the center only
' for w<w, but decelerated otherwise.
As a further surprising result we find that the deflection
vDopp=(1+Zd)%j VA 6. (399  angle of light vanishes in the limit of gravitational lenses
ds approaching the observer with highly relativistic velocities,
even though the effective mass-energy of the lens diverges in

If more than one lensed image of the source is observedhis limit. Intuitively one would have rather expected a di-
the effect of the transversal motion can be separated from theerging deflection angle in this scenario. In Appendix B we
a priori unknown radial velocity(including cosmological provide a descriptive explanation of this effect by demon-
redshif) of the source, which usually contributes a muchstrating how gravitational lensing can be formulated in terms
larger Doppler effect. In this case the radial velocity will of light propagating in a refractive medium, both for static
have the same effect on all images while the effect of transand moving lenses. In this picture the coordinate velocity of
versal motion depends on the position of the image. Thdight is reduced in the rest frame of the lens. For the case of
latter can therefore be measured unambiguously by compaa relativistically moving lens, however, this reduction is ef-
ing the Doppler shifts of at least two images. This possibilityfectively compensated by the motion of the rest frame of the
makes the situation conceptually very different from the ef-lens with respect to the observer, so that the net reduction
fects of radial motion on deflection angles which cannot bevanishes. The unchanged velocity of light in turn implies a
distinguished from a scaling of the total mass of the lens. vanishing deflection angle.

Unfortunately the effects are so small that it is hardly We have addressed the question whether the deflection of
possible to detect them with current state-of-the-art instrutest particles or light can provide information about the in-
ments, see, e.g[19]. However, telescopes planned for the ternal structure of a rigidly moving, compact lens beyond its
future, in particular radio arrays like ALMA“Atacama  mass and total momentum. We find that this is not possible in
Large Millimeter Array”) or SKA (“Square Kilometer Ar-  the case of lenses that remain compact during the passage of
ray”), will provide sufficient sensitivity and spectral resolu- the test particle.
tion to measure the effect for sources with sharp spectral In Appendix C we additionally extend our discussion be-
features to facilitate a sufficiently accurate determination ofyond the pure deflection of test particles and calculate the
redshifts. effects of a moving lens on the inertial system of an observer
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at rest. We find the motion of the lens to give rise to a 1+p2
dragging of this local inertial frame similar to the frame 0=(—-2+4®)y—2 q)y,'t2_4 Oty
dragging known in the case of rotating stars or Kerr black 1-v? 1—v?
holes.
In order to study the effects caused tognsversallymov- v r : -
ing lenses we have used kinematic arguments in the frame- +81_vz®y,tz+2<by,y2+4 1— 2<I>Z,yz
work of special relativity. These calculations predict a v
change of the radial momentum of the deflected test particle. 1+p2
In the case of light this manifests itself in a change of wave- -2 (I)y,iz, (A2)
length. In spite of their simplicity our kinematic calculations 1-v?
extend previous discussiorigsing general relativistic inte-
grations along the geodesjc® arbitrary velocities of the v . 1+0% .
lens and the test particles. 0=—8——®t+| —2+4—— |z
Finally, we have investigated the total Doppler shift aris- 1-v 1-v
ing from a moving lens in combination with a transversal 1—13p2 v
motion of the source and the observer. The resulting effective -2, t2-8 CDy,'ty
Doppler velocity is similar to the total effective transversal (1-0v?)%? 1-v2
velocities as commonly defined in studies of microlensing
effects in cosmological lenses. We have thus been able to v(l+v?) 1 SN L
directly relate observable quantities with transversal veloci- _4(1_02)3/2 212=2 1_v2q)z’y +41_02<Dy,yz
ties of source, lens, and observer. The required accuracy to
apply this method to measure transversal velocities of astro- 1+v?
nomical objects, especially galaxies, is beyond the capability — +2———®,,72. (A3)

of current astronomical instruments but will be reached with (1-v?)%2

the next generation of telescopes. . . :
In order to complete this set of equations we still need one

further condition which is given by the requirement that the
geodesics be null:
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in the lens’ rest frame. The resulting potential in the observ-
er's frame is obtained from Lorentz transformation. For the
derivatives that implies

(A5)

APPENDIX A: THE GEODESIC EQUATIONS WITHOUT
FOD APPROXIMATION

We consider the boosted weak-field limit of the Schwarz- Dy=dyr, (A6)
schild metric Eq.(12). The geodesic equations are derived D=y D, (A7)
from the Euler-Lagrange equatiéh4) and the analogues for z z
t andz In contrast to the analytic treatment of Sec. lll B we P=—vyd,, (A8)

do not use the FOD approximation and obtain the equations

which has already been incorporated into E4d.)—(A3). In
order to numerically obtain a solution we need to specify

1+v2 |\ v oov(1+vd boundary conditions for the null geodesic. At the point of
0=|2+4—— @ |t-8—— D72 ” 3/2<I>Z,t2 emission of the light we demand
1-v 1-v (1-v9)
1+v .. 1+v . v 5
+41_vZCDy’ty+4(l_UZ)3/2q)zltZ+2 1_02(I)Z’y z=1,, (AlO)
v . v(3=vy) . Y=VYs, (A11)
-8 Qyyz—2—— 0,7, (A1) _
1_02 (1_v2)3/2 yzo, (A]_Z)
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wherezg andy, give the position of the source and have been -1
set to— 10000 and 150, respectively, in our calculations. At - =y?(1—v cosh)>. (B3)
the observer’s position we impose the boundary condition n'—-1

(A13) Here 0 defines the direction of light propagation relative to
the lens’ motion as seen by the observer, i.e., &cos

with the position of the observer being setzg=10 000 in =dz/dl, sin6=dy/dl. This result is the generalization of the
our calculation. Note that thg position of the observer de- FOV expression of Schneidet al. [4]. It is also valid for

pends on the deflection of the light ray and cannot be freelrbitrary directionss, even though we are still working in
specified. the FOD approximation.

We solve this two-point-boundary value problem with a We emphasize that we have obtained a description of a
second order accurate relaxation scheme. For our calcul&0Ving gravitational potential in terms of a refractive me-
tions we have set the mass of the lendvte=1. so that all dium at rest but with an anisotropic refractive indegiven
distances are given in units of the lens’ méssnember that PY Eds.(B2) and(B3). In particular this scaling law demon-
c=1=G). These parameters lead to deflection angles mucfitrates that the refractive index approaches unity in the
larger than those observed in astronomical lenses. We therdMit of the gravitational lens moving towards the observer
fore expect this test of the FOD approximation to provideWith highly relativistic velocity ¢=0,v—1). Translated
upper bounds on the error and the FOD approximation to phack to the deflection of light, however, a constant refractive

even more accurate in all scenarios of practical interest. Indexn=1 implies a vanishing of the deflection angle.
It is now not surprising at all that the refractive index

becomes unity in this limit. The coordinate velocity of light
is reducedn the rest frame of the lenbut as the lens itself
In this section we will provide an alternative descriptive is moving highly relativistically, the resulting net velocity
explanation of the counterintuitive result obtained in Secsthe observer's framas obtained from relativistic velocity
Il B and 11l C that a gravitational lens moving towards the addition[cf. Eq. (21)] and approaches 1. In the limit—1
observer at highly relativistic speed leads to a vanishing dewe thus have no reduction of the velocity of light in the
flection angle. We have not found an intuitive explanation forrefractive medium and consequently no deflection.
this effect based on the components of the energy momentum
tensor which diverge in the limit af — 1, but whose contri- APPENDIX C: FRAME DRAGGING
butions must cancel to explain the vanishing total effect. In-
stead we describe the deflection in terms of light moving in & a
refractive medium.
It is a well known fact that the deflection of light in wea

z=2,

APPENDIX B: INDEX OF REFRACTION

The fact that the velocity of light is reducéd a moving

me of referencécf. Appendix B suggests effects analo-

K gous to the “dragging of inertial frames” in the field of a
static gravitational fields can be described by the analogou otating body W'.th Its .extreme.consequences. close to Kerr
scenario of light moving in Euclidean space filled with a lack holes. A discussion of this effect helps in understand-

refractive medium. We therefore consider a refractive me:"Y the geometric effe_cts n th_e f'e.ld of a I|r_1early moving
ass and is therefore included in this appendix. Gaktial.

dium in the rest frame of the lens. We denote the propagatio 8] showed that the gravitomagnetic light deflection of ro-

speed of light in the medium bg’ so that the refractive X ) )
index is given by tat[ng bodles.can be exp'ressed as an integral over the Lense-
Thirring rotation rate which demonstrates the close relation
, between both effects.
:dl_ (B1) To simplify the discussion we consider regions with a
d’ stationary(static in the lens framegravitational field in they
direction, i.e.,®,=®,=0. It can be shown easily that a
As before we use primed coordinates for the rest frame of th&eely falling particle will gain a velocity component in thze
lens. Note, however, that the spatial geometry is viewed adirection(parallel to the direction of motion of the lenas a
Euclidean now, so thatltf=dy’?+dz’'2. The gravitational result of its motion in the direction. This transversal accel-
effect on the light propagation is absorbed in the refractivesration is similar to magnetic Lorentz forces and shows the
index gravitomagnetic effects directly. Such effects are, however,
coordinate dependent and thus not easy to interpret in a gen-
n'—1=-29, (B2)  eral way. We therefore want to discuss effects on a batdy
rest with respect to the outside worlde., with constanty
which follows from the combination of E¢B1) and the line  andz coordinates.
element(1) for the case of lighti.e., &>=0). This descrip- The tetrad of a local Minkowski coordinate system can be
tion can be extended to the nonstatic scenario in the resferived by starting at one point of the world line and trans-
frame of the observer either by applying the Lorentz transforming the direction vectorsT” with the Fermi-Walker
formation(9)—(11) or by directly calculatingh as before but transport which is defined by a vanishing Fermi derivative,
now using the unprimed analogue of EB1) and the metric
(12) for the moving lens. Both approaches lead to the rather EJF
simple scaling law Dr 9w

!

1
c’

aDuM MDu“
u Dt u Dt

T'=0. (C1)
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Here the four-velocity of the test particle is denoted usy 0O 0 O
=dx“/dr (with 7 being the proper time along the trajectory

a N\ — 2
of the test particleand the covariant derivatives by an up- (M) =2vy*®y| O 0 1], (C8)
percase D: 0O -1 0
b1 _ £+Fa THy? (C2) The ordering of indices it,y,z, the row index ise, and the
Dr dr ey ' column indexB. We note that the velocity vectar® itself

) ) ) remains constant as required. Furthermore, we see that the
In order to derive the Christoffel symbols we write the Euler- 5,4 7 coordinates evolve in a way which is equivalent to a

Lagrange equatior(®.g., Eq.(14)] for the Lagrange function rotation. Modulo an arbitrary time offset, the fundamental
in Eq. (13). On the other hand we write the equations of 55 tion of this part is

motion by setting the covariant derivative of the velocity
vector T*=u“ in Eq. (C2) to zero. Even though we still y_ 2 o

work in the FOD approximation, we now do allow for arbi- T=cogen), T=sinwr) €9
trary directions of test particle velocities. By comparing co-
efficients, we find the following nonvanishing Christoffel
symbols:

with an angular velocity ofw=—2v yzcby. As a conse-
guence a gyroscop@r any other device capable of sustain-
ing a locally nonrotating reference systewill precess rela-
riy:(1+v2) 7,2<py, F;Z:_zv 7,2<py, (c3) tive to the outside world with this angular velocity. This
precession can be observed from great distance and repre-
sents a coordinate independent measure of the frame drag-
ging caused by the linear motion of the lehs.
Without presenting the calculations we note that the pre-
cession of a gyroscope could be obtained more directly by
ny:20 72<I>y, r;zz _(1+02)72q>y, (C5) solving the equation of motion for the different parts of the
rotating mass. The mass elements approaching the lens will
as well as those following from the symmetry properties. Thebe dragged with the lens’ motion while elements moving
four-velocityu® of a particle at rest is needed only to zeroth parallel to the lens will feel a reduced gravitational attrac-
order of the deflectior(i.e., potential and is given byu' tion. It is easy to show that this leads exactly to the preces-
=1, u*=uY=0 in unprimed coordinates. For the covariant sion which we derived in a more formal but general way.
derivative ofu® for the particle at rest, we obtain in FOD  The effect is analogous to Lense-Thirring precession in
approximation the field of rotating bodies, especially in the field of a Kerr
black hole. There is, however, one important difference. In
Du’ 14 12) 220 C6 our case, all gravitomagnetic terms of the metric vanish in
D_T_( vy Py (C6) the rest frame of the lens. The precession due to the frame
dragging does of course not disappear when viewed in this
while all other components are vanishing. This covariant desystem. It would instead be interpreted as an incarnation of
rivative for the particle at rest is equivalent to the forcegeodesic precession ofraovingparticle in astatic gravita-
needed to support the particle and prevent it from fallingtional field. In the case of the Kerr metric, such a transfor-
towards the lens. mation is possible locally only as has been shown by Ashby
In the next step we apply Eq&C1) and(C2) to derive the  and Shahid-Saled€9].
transformation of the components of an arbitrary veditr
For the metricg,,, , the zeroth order approximatidne., the
Minkowski metrig is sufficient in this case. We arrive at the  3The assumption of constant spatial coordinates for the test par-
final equations for the Fermi-Walker transport: ticle is not coordinate dependent because it can be defined in the
way that the test particle appears to be at rest when observed by a

Ii=(1+v%)y*®,, IY=—,

IY=(1+v%)y*D,, TIY,=-2vy*D,, (C4

are

__ —Ma T8
dTMﬁT

distant observer whose coordinates are fixed by the background
Minkowski metric.
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