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Gauge theories on an interval: Unitarity without a Higgs boson
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We consider extra dimensional gauge theories on an interval. We first review the derivation of the consistent
boundary conditions~BC’s! from the action principle. These BC’s include choices that give rise to the breaking
of the gauge symmetries. The boundary conditions could be chosen to coincide with those commonly applied
in orbifold theories, but there are many more possibilities. To investigate the nature of gauge symmetry
breaking via BC’s we calculate the elastic scattering amplitudes for longitudinal gauge bosons. We find that
using a consistent set of BC’s the terms in these amplitudes that explicitly grow with energy always cancel
without having to introduce any additional scalar degree of freedom, but rather by the exchange of Kaluza-
Klein ~KK ! gauge bosons. This suggests that perhaps the standard model Higgs boson could be completely
eliminated in favor of some KK towers of gauge fields. We show that from the low-energy effective theory
perspective this seems to be indeed possible. We display an extra dimensional toy model, where BC’s introduce
a symmetry breaking pattern and mass spectrum that resembles that in the standard model.
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I. INTRODUCTION

A crucial ingredient of the standard model of partic
physics is the Higgs scalar. One of the main arguments
the existence of the Higgs scalar is@1–5# that without it the
scattering amplitude for the longitudinal components of
massiveW andZ bosons would grow with energy as;E2,
and thus violate unitarity at energies of order 4pMW /g
;1.5 TeV. It has been shown in Refs.@6#, @7# that higher
dimensional gauge theories maintain unitarity in the se
that the terms in the amplitude that would grow with energ
asE4 or E2 cancel~though the theory itself becomes strong
interacting at a cutoff scale which depends on the size of
extra dimension and the effective gauge coupling, and u
ally tree-level unitarity also breaks down at a scale relate
the cutoff scale due to the growing number of Kaluza-Kle
~KK ! modes that can contribute to the constant pieces
certain amplitudes!. For a related discussion see Ref.@8#.
This on its own is not so surprising, since one would naiv
expect that higher dimensional gauge theories behave we
the energy range where they can be valid effective theor
However, such higher dimensional theories can also be u
to break the gauge symmetries if one compactifies the the
on an interval instead of a circle. Then by assigning n
trivial boundary conditions~BC’s! to the gauge fields at th
end points of the interval one can reduce the number of
broken gauge symmetries, and thus effectively gene
gauge boson masses even for the modes that would re
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massless when only Neumann BC’s are imposed. This t
raises the question of whether the cancellation in the sca
ing amplitudes of the terms that grow with energy is ma
tained or not in the presence of such breaking of gauge s
metries. This issue is related to the question of whether
breaking of gauge invariance via boundary conditions is s
or hard. We would like to give a general analysis of th
question~which also has been recently addressed in so
particular examples in Refs.@9#, @10#, see also Ref.@11# for a
related discussion in the case of KK gravity!.

In this paper we investigate the nature of gauge symm
breaking via BC’s. First we review the derivation of the s
of equations that the boundary conditions have to obey
order to minimize the action, including a discussion of t
issue of gauge fixing. The possible set of BC’s include
commonly considered orbifold1 BC’s @12–15# but as it was
already noted in Ref.@14# there are more possibilities. Fo
example, it is easy to reduce the rank of the gauge gr
with more general BC’s@14#. The question that such theorie
raise is whether such a breaking of the gauge symmetries
BC’s yields a consistent theory or not. Since we are insist
that the BC’s be consistent with the variation of a gau
invariant Lagrangian that has no explicit gauge symme
breaking, one would guess that such breaking should be
In order to verify this, we investigate in detail the issue
unitarity of scattering amplitudes in such 5D gauge theor
compactified on an interval, with nontrivial BC’s. We deriv
the general expression for the amplitude for elastic scatte
of longitudinal gauge bosons, and write down the necess
conditions for the cancellation of the terms that grow w

1In orbifold theories one starts with a theory on a circle and th
projects out some states not invariant under a symmetry of
theory on the circle.
©2004 The American Physical Society06-1



th

y.
he

ld
c

hi
lly
e

a
an

i
fo
b
o
n
ith

e
t a
pl
au
o

av
te
a

or
x

er
k
re
o
tic
de
l i
ec
m
a
to
ew
ea

n

C
u

m

u

elds

r
on
ve

s in
a

m-
we
e
are

the
-

rat-
ve
off
l

has
ary

ove
her
the
is-
t

CSÁKI et al. PHYSICAL REVIEW D 69, 055006 ~2004!
energy. We find that all the consistent BC’s are unitary in
sense that all terms proportional toE4 andE2 vanish. In fact,
any theory with only Dirichlet or Neumann BC’s is unitar
Surprisingly, this would also include theories where t
boundary conditions can be thought of as coming from
very large expectation value of a brane localized Higgs fie
in the limit when the expectation value diverges. For su
theories with ‘‘mixed’’ BC’s, even when theE4 terms cancel,
theE2 term in the amplitude does not cancel in general. T
is not surprising, since such mixed BC’s would generica
come from an explicit mass term for the gauge field localiz
on the boundary. Thus cancellation of theE2 term would
happen only if the explicit mass term is completed into
gauge invariant scalar mass term, in which case the exch
of these boundary scalar fields themselves have to be
cluded in order to recover a good high-energy behavior
the theory. Indeed, we find that in some cases it may
possible to introduce such boundary degrees of freed
which would exactly enforce the given BC’s, and their co
tribution cancels the remaining amplitudes that grow w
energy.

These arguments suggest that it should be possibl
build an effective theory which has no Higgs field presen
all, but where the unitarity of gauge boson scattering am
tudes is ensured by the presence of additional massive g
fields. We show a simple example of an effective theory
this sort where a single KK mode for theW’s and theZ is
needed to ensure unitarity, and which are sufficiently he
and sufficiently weakly coupled to have evaded direct de
tion and would not have contributed much to electrowe
precision observables.

In order to actually make an effective theory of this s
appealing one would have to give a UV completion, for e
ample at least in terms of an extra dimensional theory. Th
fore we will consider several toy models of symmetry brea
ing with extra dimensions. The first two models a
prototype examples of orbifold vs brane Higgs breaking
symmetries, which we combine in the final semirealis
model based on the breaking of a left-right symmetric mo
by an orbifold using an outer automorphism. This mode
similar to the standard model, in that it has unbroken el
tromagnetism, the lightest massive gauge bosons rese
the W and theZ, and their mass ratio could be close to
realistic one. However, the masses of the KK modes are
light, and their couplings too strong. Nevertheless, we vi
this model as a step toward a realistic theory of electrow
symmetry breaking without a Higgs boson.

Interesting related observations about higher dimensio
gauge theories have been made in Ref.@16#, where the ap-
pearance of an infinite tower of vector meson states in Q
has been modeled out using a higher dimensional ga
theory.

II. GAUGE THEORIES ON AN INTERVAL:
CONSISTENT BC’S

We consider a theory with a single extra dimension co
pactified on an interval with endpoints 0 andpR. We want to
study in this section what are the possible BC’s that the b
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gauge fields have to satisfy. We denote the bulk gauge fi
by AM

a (x,y), wherea is the gauge index,M is the Lorentz
index 0, 1, 2, 3, 5,x is the coordinate of the ordinary fou
dimensions andy is the coordinate along the extra dimensi
~we will use from time to time a prime to denote a derivati
with respect to they coordinate!. We will assume a flat
space-time background. We will consider several case
this section. First we will look at the simplest example of
scalar field in the bulk, which does not have any of the co
plications of gauge invariance and gauge fixing. Then
will look at pure 5D Yang-Mills theory on an interval. Th
cases of gauge theory with a bulk or brane scalar field
discussed in Appendix A.

A. Bulk scalar

To start out, let us consider a bulk scalarf field on an
interval with an action

S5E d4xE
0

pR

dyS 1

2
]Nf]Nf2V~f! D

1E
y50

d4x
1

2
f2M1

21E
y5pR

d4x
1

2
f2M2

2. ~2.1!

In order to find the consistent set of BC’s we impose that
variation of Eq.~2.1! vanishes. Varying the action and inte
grating by parts we get

dS52E d4xE
0

pR

dydfS h5f1
]V

]f D2E d4x

3@df~]5f2M2
2f!upR2df~]5f1M1

2f!u0#50.

~2.2!

Note that we kept the boundary terms obtained from integ
ing by parts along the finite extra dimension, while we ha
assumed as usual that the fields and their derivatives die
asxm→`. The variation of the bulk terms will give the usua
bulk equation of motion,

h5f1
]V

]f
50. ~2.3!

In order to ensure that the action is minimized, one also
to ensure that the variation of the action from the bound
pieces also vanish~the sign is1 for the boundary aty50
and it is2 for the boundary aty5pR):

df~]5f6Mi
2f!u0,pR50. ~2.4!

A consistent BC is one that automatically enforces the ab
equation. There are two ways to solve this equation: eit
the variation of the field on the boundaries is zero, or
expression multiplying the variation. Therefore the cons
tent set of BC’s that respects 4D Lorentz invariance ay
50, pR are
6-2



to

e
s

nd

er
o

di
n

4
-

os

u

D

at

-
l a

of

nd-
nts

atis-
lds
dary
d of

nt
ere
cel-
ntz

dual
e
Eq.
of

l
ym-

ts
for

re-
s is
cal
g
al
g

C’s
t its

he
ed
at
alog

ce
, as

GAUGE THEORIES ON AN INTERVAL: UNITARITY . . . PHYSICAL REVIEW D69, 055006 ~2004!
~ i! ~]5f6Mi
2f!uy50,pR50; ~2.5!

~ ii ! fuy50,pR5const. ~2.6!

Equation~2.5! corresponds to a mixed BC and it reduces
Neumann for vanishing boundary massMi

2; the value off at
y50, pR is not specified. The second type of BC corr
sponds to fixing the values off on the boundary, and reduce
to a Dirichlet BC when const50. It is a matter of choice
which one of these conditions one is imposing on the bou
aries. One could pick one of these conditions aty50 and the
other aty5pR. When several scalar fields are present, th
is also the more interesting possibility to cancel the sum
all the boundary terms without having to require that in
vidually each term is vanishing by itself. We will see a
example for this in Sec. VI of this paper.

B. Pure gauge theory in the bulk

In this case the 5D gauge boson will decompose into a
gauge bosonAm

a and a 4D scalarA5
a in the adjoint represen

tation. Since there is a quadratic term mixingAm andA5 we
need to add a gauge fixing term that eliminates this cr
term. Thus we write the action after gauge fixing inRj gauge
as

S5E d4xE
0

pR

dyS 2
1

4
Fmn

a Famn

2
1

2
F5n

a Fa5n2
1

2j
~]mAam2j]5A5

a!2D , ~2.7!

where FMN
a 5]MAN

a 2]NAM
a 1g5f abcAM

b AN
c , and the f abc’s

are the structure constants of the gauge group. The ga
fixing term is chosen such that~as usual! the cross terms
between the 4D gauge fieldsAm

a and the 4D scalarsA5
a cancel

~see also Ref.@18#!. Taking j→` will result in the unitary
gauge, where all the KK modes of the scalars fieldsA5

a are
unphysical~they become the longitudinal modes of the 4
gauge bosons!, except if there is a zero mode for theA5’s.
We will assume that everyA5

a mode is massive, and thus th
all the A5’s are eliminated in unitary gauge.

The variation of the action~2.7! leads, as usual after in
tegration by parts, to the bulk equations of motion as wel
to boundary terms„we denote by@F# the boundary quantity
F(pR)2F(0)…:

dS5E d4xdyS ]MFaMn2g5f abcFbMnAM
c 1

1

j
]n]sAs

a

2]n]5A5
aD dAn

a2E d4xdy~]sFs5
a 2g5f abcFs5

b Acs

1]5]sAas2j]5
2A5

a!dA5
a

1E d4x$@F5n
a dAan#1@~]sAas2j]5A5

a!dA5
a#%.

~2.8!
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The bulk terms will give rise to the usual bulk equations
motion:

]MFaMn2g5f abcFbMnAM
c 1

1

j
]n]sAs

a2]n]5A5
a50,

]sFs5
a 2g5f abcFs5

b Acs1]5]sAas2j]5
2A5

a50.
~2.9!

However, one has to ensure that the variation of the bou
ary pieces vanish as well. This will lead to the requireme

Fn5
a dAan

u0,pR50, ~2.10!

~]sAas2j]5A5
a!dA5u0,pR

a 50. ~2.11!

The BC’s have to be such that the above equations be s
fied. For example, one can fix all the variations of the fie
to vanish at the end points, in that case the above boun
terms are clearly vanishing. However, one can also instea
setting dA5u0,pR

a 50 require that its coefficient]sAas

2j]5A5
a vanishes. The different choices lead to differe

consistent BC’s for the gauge theory on an interval. Th
are different generic choices of BC’s that ensure the can
lation of variation at the boundary and preserve 4D Lore
invariance:

~ i! Amu
a 50,A5u

a 5const; ~2.12!

~ ii ! Amu
a 50,]5A5u

a 50; ~2.13!

~ iii ! ]5Amu
a 50,A5u

a 5const. ~2.14!

However, besides these general choices where the indivi
terms in the sum of Eq.~2.11! vanish, there could be mor
interesting situations where only the sum of the terms in
~2.11! vanish. We will see an example for this in Sec. VI
this paper. While conditions~2.12! and~2.13! are exact, con-
dition ~2.14! only satisfies Eq.~2.11! to linear order. The
exact solution requiresFn5

a 50 which imposes additiona
constraints especially in the case of an unbroken gauge s
metry ~i.e., zero mode gauge fields!.

Generically, it is a choice which of these BC’s one wan
to impose. One can impose a different type of condition
every different field, meaning for the different colorsa and
for Am vs A5 , as long as certain consistency conditions
lated to the gauge invariance of massless gauge field
obeyed. Different choices correspond to different physi
situations. An analogy for this is the theory of a vibratin
rod. The equation of motion is obtained from a variation
principle minimizing the total mechanical energy, includin
the terms appearing from the boundaries. Which of the B
one chooses depends on the physical circumstances a
ends: if it is fixed at both ends the BC is clearly that t
displacement at the end points is zero. However, if it is fix
only on one end, then one will get a nontrivial equation th
the displacement on the boundaries has to satisfy, the an
of which is the conditionFn5

a 5 in Eq. ~2.11!.
Similarly in the case of gauge theories, it is our choi

what kind of physics we are prescribing at the boundaries
6-3
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CSÁKI et al. PHYSICAL REVIEW D 69, 055006 ~2004!
long as the variations of the boundary terms vanish.A priori,
one can impose different BC’s for different gauge directio
However, some consistency conditions on the gauge st
ture may exist. For instance, if one wants to keep a mass
vector, then in order to preserve 4D Lorentz invariance
action should possess a gauge invariance. This means
the massless gauge bosons should form a subgroup of th
gauge group.

One should note that there is a wider web of consist
BC’s than the one encountered in orbifold theories. For
stance, within each gauge direction, the BC~2.12! would
have never been consistent with the reflection symmetry
→2y symmetry of an orbifold. The full gauge structure
the BC’s is also much less constrained: in orbifold theori
the gauge structure was dictated by the use of an autom
phism of the Lie algebra, which was a serious obstacle
achieving a rank reducing symmetry breaking. As we w
see explicitly in Secs. V B and VI, these difficulties are eas
alleviated when considering the most general BC’s~2.12!–
~2.14!.

In order to actually quantize the theory one also need
add the Faddeev-Popov ghosts to the theory. One can ad
FP ghost fieldsca and c̄a using the gauge fixing function
from Eq. ~2.7!

LFP5 c̄a@2~]mDm!ab1j~]5D5!#cb. ~2.15!

The ghost fields have their own boundary conditions as w
In order for the gauge theory to be consistent, one need
restrict the gauge transformationva parameter such that i
will satisfy the same boundary condition as the gauge fi
following from Eq. ~2.11!:

]mDmva2j]5D5va50, ~2.16!

and similarly for the FP ghost

]mDmca2j]5D5ca50. ~2.17!

These conditions and Eqs.~2.10! and ~2.11! are boundary
conditions, which are conceptually different from gauge fi
ing conditions that are imposed in the path integral by add
the bulk term2(1/2j)(]mAam2j]5A5

a)2 to the action.
The cases for gauge theories with bulk scalars or locali

scalars are discussed in Appendix A. For the case of a sc
localized at the end point the generic form of the BC for t
gauge fields~in unitary gauge! will be of the form

]5Amu0,pR
a 5V0,pR

ab Amu0,pR
b . ~2.18!

These are mixed BC’s that still ensure the hermiticity~self-
adjointness! of the Hamiltonian. In the limitVab→0 the
mixed BC reduces to a Neumann BC, while the limitVab

→` produces a Dirichlet BC.
Finding the KK decomposition of the gauge field reduc

to solving a Sturm-Liouville problem with Neumann or D
richlet BC’s, or in the case of boundary scalars with mix
BC’s. Those general BC’s lead to a Kaluza-Klein expans
of the gauge fields of the form
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Am
a ~x,y!5(

n
em f n

a~y!eipnx, ~2.19!

wherepn
25Mn

2 and em is a polarization vector. These wav
functions~due to the assumption of 5D Lorentz invarianc
i.e., of a flat background! then satisfy the equation

f n
a9~y!1Mn

a2f n
a~y!50, f n

a8~0,pR!5V0,pR
ab f n

b~0,pR!.
~2.20!

The couplings between the different KK modes can then
obtained by substituting this expression into the Lagrang
~2.7! and integrating over the extra dimension. The result
couplings are then the usual 4D Yang-Mills couplings, w
the gauge couplingg4 in the cubic and gauge couplin
square in the quartic vertices replaced by the effective c
plings involving the integrals of the wave functions of th
KK modes over the extra dimension:

gcubic→gmnk
abc5g5E dy fm

a ~y! f n
b~y! f k

c~y!,

~2.21!

gquartic
2 →gmnkl

2abcd5g5
2E dy fm

a ~y! f n
b~y! f k

c~y! f l
d~y!.

~2.22!

Herea, b, c, d refer to the gauge index of the gauge boso
andm, n, k, l to the KK number.

III. UNITARITY OF THE ELASTIC-SCATTERING
AMPLITUDES FOR LONGITUDINAL GAUGE BOSONS

We have seen above that gauge theories with BC’s lea
various patterns of gauge symmetry breaking. The obvi
question is whether these should be considered spontan
~soft! or explicit ~hard! breaking of the gauge invariance
Since we have obtained the BC’s from varying a gauge
variant Lagrangian, one would expect that the break
should be soft. We will now investigate this question by e
amining the high-energy behavior of the elastic-scatter
amplitude of longitudinal gauge bosons in the theory d
scribed in the previous section. Using the couplings obtai
above we are now ready to analyze these amplitudes. F
we will extract the terms that grow with energy in the
amplitudes, then discuss what BC’s will enable us to can
the terms which grow with energies. We will restrict o
analysis to elastic scattering.2

A. Elastic-scattering amplitude

We want to calculate the energy dependence of the am
tude of the elastic scattering of the longitudinal modes of
KK gauge bosonsn1n→n1n with gauge index structure

2Working in the unitary gauge, there is a pole in the inelas
scattering amplitude when a massless gauge boson is exchang
the u and t channels. Technically, this requires us to work in
generalj gauge and more computations are needed to derive
rules equivalent to the ones we present for the elastic scatterin
6-4
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a1b→c1d ~see Fig. 1!, where this process involves bot
exchange of thek’ th KK mode from the cubic vertex and th
direct contribution from the quartic vertex. We will also a
sume that the BC’s corresponding to the external modes
gauge indicesa, b, c, d are of the same type, that is, the
have the same KK towers~however, we willnot assume this
for the modes that are being exchanged!. There are four dia-
grams as shown in Fig. 2: thes-, t-, andu-channel exchange
of the KK modes, and the contribution of the quartic verte
The kinematics assumed for this elastic scattering is in
center-of-mass frame, where the incoming momentum v

tors arepm5(E,0,0,6AE22Mn
2), while the outgoing mo-

menta are (E,6AE22Mn
2 sinu,0,6AE22Mn

2 cosu). E is
the incoming energy andu the scattering angle with forwar
scattering foru50. The longitudinal polarization vectors ar
as usualem5(upu/M ,E/Mp/upu) and accordingly the contri
bution of each diagram can be as bad asE4/Mn

4. It is
straightforward to evaluate the full scattering amplitude, a
extract the leading behavior for large values energies of
amplitude. The general structure of the expansion in ene
contains three terms:

FIG. 1. Elastic scattering of longitudinal modes of K
gauge bosons,n1n→n1n, with the gauge index structur
a1b→c1d.

FIG. 2. The four gauge diagrams contributing at tree level to
gauge boson elastic-scattering amplitude.
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A5A~4!
E4

Mn
4 1A~2!

E2

Mn
2 1A~0!1OS Mn

2

E2 D . ~3.1!

It may seem inconsistent to formally expand the amp
tude in energies, when for any fixed energy there are
modes that are much heavier and the series is potent
nonconvergent. However, from the higher dimensio
effective-field theory we can see that the heaviest modes
not important. Summing over all the modes is just the si
plest way of maintaining gauge invariance which would
broken by a hard cutoff on the spectrum.

To show this consider a non-Abelian gauge theory inD
dimensions with a cutoffL. The leading effect of integrating
out the KK modes aboveL should be given by gauge invar
ant higher dimensional operators. An example of such op
tors is given by

gD
3

L62D FMN
3 . ~3.2!

All other gauge invariant operators of the same dimens
should give similar results for the scattering amplitudes. T
coefficient of this operator can be fixed by first going into t
normalization where the coefficient of the kinetic term
21/(4gD

2 ). In this normalizationFMN has dimension 2, thus
the prefactor 1/L62D. Going back to canonical normaliza
tion we get the higher-order term of Eq.~3.2!. Alternatively,
we can see that this operator contains three gauge fields,
it comes from a loop of massive gauge fields it should c
tain three gauge couplings. The contribution to longitudin
scattering from the ordinaryFMN

2 term is proportional to

gD
2 ~ER!4 ~3.3!

@where we have assumed the incoming gauge boson ma
O(1/R), the inverse of the compactification radius#. This can
be seen easiest by looking at the four-point coupling of
gauge field. That has an explicit factor ofgD

2 , and there are
four polarization vectors which are of orderE/M;ER. Na-
ively, the contribution from the higher dimensional opera
is growing faster with energy, with a powerE6. However,
gauge invariance will actually soften this amplitude. One c
see this explicitly by noting that from Eq.~3.2! one needs
two factors of]mAn2]nAm , and two other factors of the
gauge field. This will imply that two of the polarization vec
tors appear in the combinationpmen2pnem , which after ex-
plicitly substituting for the polarization vectors is just pro
portional to the mass of the external particle, rather th
growing with energy. Therefore the contribution from th
FMN

3 terms scales as

gD
4

L62D ~ER!2
1

R2 , ~3.4!

so the ratio of the correction term to the leading term is

g4
2

~LR!62D~ER!2 , ~3.5!e
6-5
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where we have usedgD
2 5g4

2RD24. Thus for E@1/R, LR
.1, andD,6 the contributions from the highest KK mode
are suppressed. Note that here we have not used the
trivial cancellation of theE4 term in the amplitude. Once tha
is taken into account, the effects of the KK modes are s
suppressed as long asD,6 andLR.1. For a 5D theoryLR
can be large as 24p3 @17#.

We would like to understand under what circumstan
A(4) and A(2) vanish. The vanishing of these coefficien
would ensure that there are no terms in the amplitude
explicitly grow with energy. This is a necessary condition f
the tree-level unitarity of a theory. However, this is certain
not a sufficient condition. The finite piece in the amplitu
A(0) should also not be too large in order for the theory to
tree unitary, for every possible scattering. In theories w
extra dimensions, since there is an infinite number of K
modes available, there will always be some amplitudes
have finite pieces, which, however, grow as the numbe
exchanged KK modes is allowed to increase. This sim
reflects the higher dimensional nature of the theory, and
fact that higher dimensional gauge theories are nonrenor
izable. Therefore tree unitarity is expected to break down
energies comparable to the 5D cutoff scale, even whenA(4)

5A(2)50. When discussing unitarity of these models w
will simply mean the cancellation of theA(4) and A(2) am-
plitudes. We stress again that this does not imply that
conventional unitarity bounds on the finite amplitudes ha
to be satisfied for all processes.

The largest term, growing withE4, depends only on the
effective couplings and not on the mass spectrum:

A~4!5 i S gnnnn
2 2(

k
gnnk

2 D @ f abef cde~316 cosu2cos2 u!

12~32cos2 u! f acef bde# ~3.6!

The expression for the amplitude that grows withE2 is

A~2!5
i

Mn
2 f acef bdeS 4gnnnn

2 Mn
223(

k
gnnk

2 Mk
2D

2
i

2Mn
2 f abef cdeF4gnnnn

2 Mn
223(

k
gnnk

2 Mk
2

1S 12gnnnn
2 Mn

21(
k

gnnk
2 ~3Mk

2216Mn
2! D cosuG .

~3.7!

Both in Eqs.~3.6! and~3.7! everywhere below the KK indi-
cesn andk actually have to be interpreted as double indic
that stand both for the color index and the KK number of
given color index, e.g.,k;(k,e). Also, as stated above, w
are assuming that all the ingoing and outgoing gauge bos
satisfy the same boundary condition and thus then index is
colorblind. In getting the expressions~3.7! or ~3.9! for A(2),
we used the Jacobi identity which requires a sum over
gauge index of the exchanged gauge boson. Thus we
implicitly assumed that the sums like(kgnnk

abegnnk
cde or
05500
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(kgnnk
abegnnk

cdeMk
e2 are independent of the gauge indexe, which

indeed is a true statement as we will show later on.
If one assumes the cancellation of theE4 terms~which we

will show is indeed always the case! one has the relation

gnnnn
2 5(

k
gnnk

2 . ~3.8!

Using this relation the expression for theE2 terms can be
simplified to the following:

A~2!5
i

Mn
2 S 4gnnnn

2 Mn
223(

k
gnnk

2 Mk
2D

3S f acef bde2sin2
u

2
f abef cdeD . ~3.9!

Even though we will not consider constraints comi
from the finite (E0) terms in the elastic-scattering amplitud
for completeness we present the relevant expression
~making use of the conditions for canceling theA(4) andA(2)

terms!:

A~0!5 i(
k

gnnk
2 @ f abef cdeF~Mk /Mn ,u!

1 f acef bdeG~Mk /Mn ,u!#, ~3.10!

with

F~x,u!52
1

16 cos2 u/2
@4210x217x428~423x2!cosu

2~422x22x4!cos 2u#,

G~x,u!5
1

2 sin2 u
@426x213x41~12210x21x4!cos2 u#.

~3.11!

We can summarize the above results by restating the c
ditions under which the terms that grow with energy canc

gnnnn
2 5(

k
gnnk

2 , ~3.12!

4gnnnn
2 Mn

253(
k

gnnk
2 Mk

2. ~3.13!

B. Cancellation of the terms that grow with energy
for the simplest BC’s

The goal of the remainder of this section is to exam
under what circumstances the terms that grow with ene
cancel. Consider first theE4 term. According to Eq.~3.12!
the requirement for cancellation is

E
0

pR

dy fn
4~y!5(

k
E

0

pR

dyE
0

pR

dz fn
2~y! f n

2~z! f k~y! f k~z!.

~3.14!
6-6
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One can easily see that this equation is in fact satisfied
matter what BC one is imposing, as long as that BC s
maintains Hermiticity of the differential operator]y

2 on 0,
pR. The BC maintains Hermiticity of the differential opera
tor if it is of the form f u0,pR8 5V0,pRf u0,pR . In this case one
can explicitly check that*0

pRh* g95*0
pRh* 9g. The reason

why Eq.~3.14! is obeyed is that for such Hermitian operato
one is guaranteed to get an orthonormal complete set o
lutions f k(y), thus from the completeness it follows that

(
k

f k~y! f k~z!5d~y2z!, ~3.15!

which immediately implies Eq.~3.14!.3 The completeness
relation basically implies that any function can be expand
in terms of the eigenfunctions of]y

2 on the interval 0,pR,
g(y)5(kf k(y)*0

pRdzg(z) f k(z). There is a subtlety in this if
the BC for thef’s is f (0,pR)50, since in that case only
functions that are themselves zero at the boundary can
expanded in this series. However, even in this case the
pansion will converge everywhere except at the two e
points to the given function, and since we will integrate ov
the interval anyway, changing the function at finite numb
of points does not matter. Thus we conclude that Eq.~3.14!
always holds, theE4 terms always cancel irrespectively o
the BC’s imposed. Therefore we can now assume that theE4

terms cancelled, and using the equation that leads to the
cellation of these terms we get that the condition for
cancellation of theE2 terms is as in Eq.~3.13!,

3(
k

Mk
2E

0

pR

dyE
0

pR

dz fn
2~y! f n

2~z! f k~y! f k~z!

54Mn
2E

0

pR

dy fn
4~y!. ~3.16!

Let us first assume that one can integrate by parts fre
without picking up any boundary terms~we will later see
under what circumstances this assumption is indeed ju
fied!. In this case we can easily derive a sum rule of the fo

(
k

Mk
2pS E

0

pR

dy fn
2~y! f k~y! D 2

5
22p

3
Mn

2pE
0

pR

dy fn
4~y!.

~3.17!

Indeed, let us define

3Again we stress that, restoring gauge indices, the complete
relation holds(kf k

e(y) f k
e(z)5d(y2z), with no sum overe. This

just says that there is completeness for every gauge index s
rately. This justifies the manipulations used to get Eqs.~3.7!–~3.9!,
where the Jacobi identity was used without paying attention to
remaining implicit gauge indices in the sum.
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ap
~k!5Mk

2pE
0

pR

dy fn
2~y! f k~y!,

bp
~k!5Mk

2pE
0

pR

dy fn8
2~y! f k~y!. ~3.18!

Using the 5D Lorentz invariant relation between the wa
function and the mass spectrum,Mk

2f k(y)52 f k9(y), a
simple integration by part gives, neglecting the bound
terms that we will include in the next section, the recurren
relations

ap11
~k! 52Mn

2ap
~k!22bp

~k! , bp11
~k! 52Mn

2bp
~k!22Mn

4ap
~k! ,
~3.19!

from which we obtain that

ap
~k!522p21Mn

2p22~Mn
2a0

~k!2b0
~k!!. ~3.20!

The completeness relation~3.15! finally allows us to evaluate
the sums:

(
k

~a0
~k!!25E

0

pR

dy fn
4~y!,

(
k

a0
~k!b0

~k!5
1

3
Mn

2E
0

pR

dy fn
4~y!, ~3.21!

which, combined with the recurrence relation, lead to
sum rule~3.17!. Forp51 this relation exactly coincides with
Eq. ~3.16!, and implies the cancellation of theE2 terms.

C. Sum rule with boundary terms

In the previous section, we have derived, neglecting so
possible boundary terms, a sum rule which ensures the
cellation of the terms that grow with the energy in the sc
tering amplitude. We now would like to keep track of tho
boundary terms and see under which circumstances the t
in the scattering amplitude that grow with energy still vanis
As discussed above, the cancellation of theE4 terms is al-
ways ensured by the completeness of the eigenfunction
]y

2. However, the sum rule in Eq.~3.16! will be modified if
there are nonvanishing boundary terms picked up when i
grating by parts. The resulting corrections to the sum r
relevant for theE2 term is given by„ we denote again by@F#
the boundary quantityF(pR)2F(0)…

(
k

Mk
2S E dy fn

2~y! f k~y! D 2

5
4

3
Mn

2E dy fn
4~y!2

2

3
@ f n

3f n8#2(
k

@ f n
2f k8#E dy fn

2~y!

3 f k~y!12(
k

@ f nf n8 f k#E dy fn
2~y! f k~y!. ~3.22!
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Thus one can see that~as expected! for arbitrary BC’s theE2

terms no longer cancel. However, if one has pure Dirichle
Neumann BC’s for all modes@some could have Dirichlet an
some could have Neumann, but none should have a m
boundary condition as in Eq.~2.18!# then all the extra bound
ary terms will vanish, and thus the cancellation of theE2

terms would remain. Clearly, the terms in Eq.~3.22! involv-
ing @ f nf n8# vanish, since for the external mode either t
function or its derivative should vanish on the boundary. T
one term that needs to be analyzed more carefully
(k@ f n

2f k8#*dy fn
2(y) f k(y). If f n satisfies Neumann BC’s

while f k Dirichlet, then the boundary piece itself is not va
ishing. However, in this case the expansion in terms off k
converges even on the boundary, and th
(kf k8(x)* f n

2(y) f k(y)dy converges to 2f n(x) f n8(x), and thus
we will again have a product@ f nf n8# on the boundaries
which will vanish.

Thus we can conclude that in theories with only Dirich
or Neumann BC’s imposed theE2 terms in the scattering
amplitudes will always cancel. This implies, for examp
that all models that are obtained via an orbifolding proced
~that is taking an extra dimensional theory on a circle, a
projecting onto modes that have a given property undey
→2y andpR2y→pR1y projections! will be tree unitary
at least up to around the cutoff scale of the theory. In fact,
can see that for all consistent BC’s from Eq.~2.11! the E2

terms vanish. This shows that, as expected, those BC’s w
follow from a gauge invariant Lagrangian will have a prop
high-energy behavior. However, in the presence of mix
BC, the boundary terms in the piece of the scattering am
tude that grows withE2 are nonvanishing and prevent th
theory to be tree unitarity up to the naive cutoff scale of
theory, e.g., the perturbative cutoff. The reason is that
corresponds to adding an explicit mass term for the ga
bosons on the boundary which violates gauge invariance
however, this comes from a gauge invariant scalar kin
term via the Higgs mechanism, then extra scalar degree
freedom need to be added. As we will see explicitly in t
example of Sec. V B, some extra degrees of freedom lo
ized at the boundary are indeed needed to restore tree un
ity in this case. In some limits, however, these extra localiz
states can decouple without spoiling tree unitarity.

We close this section by presenting the corrections to
sum rule that is relevant for the evaluation of theE0 terms of
the scattering amplitude:

(
k

S E dy fn
2f kD 2

Mk
4

5
16

3
Mn

4E dy fn
41

28

3
Mn

2@ f n
3f n8#24@ f nf n8

3#

1(
k

@ f n
2f k822 f nf n8 f k#

22(
k

S 4Mn
2@ f n

2f k8#E dy fn
2f k

22@ f n8
2f k8#E dy fn

2f k22@ f n
2f k8#E dy fn8

2f kD . ~3.23!

This is the relation that needs to be used if one were to tr
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find the actual unitarity bounds on the finite pieces of t
elastic-scattering amplitudes, which is beyond the scope
this paper.

IV. A 4D EFFECTIVE THEORY WITHOUT A
HIGGS BOSON

We have seen above that the necessary conditions for
celing the growing terms in the elastic-scattering amplitud
are

gnnnn
2 5(

k
gnnk

2 , ~4.1!

4gnnnn
2 Mn

253(
k

gnnk
2 Mk

2. ~4.2!

One can ask the question, in what kind of low-energy eff
tive theories could these conditions be possibly satisfi
Assuming, that there areN gauge bosons, one can clear
always satisfy the relations~4.1! and ~4.2! for the first N
21 particles, as long asgnnnn

2 >gnnn
2 . Given the couplings

g111 andg1111 and the mass of the lightest gauge bosonM1
2,

the necessary couplings and masses for the second g
boson can be calculated from Eqs.~4.1! and ~4.2! to be

g112
2 5g1111

2 2g111
2 , M2

25
M1

2

g112
2 S 4

3
g1111

2 2g111
2 D , ~4.3!

assuming that a single extra gauge boson is needed to ca
the growing amplitudes. Clearly, there are many other po
bilities as well to satisfy these equations for theN21 light-
est particles. However, the equation cannot be satisfied
the heaviest mode itself. The reason is that for the heav
particle one would get the equations

gNNNN
2 5(

k
gNNk

2 , gNNNN
2 5(

k
gNNk

2
3Mk

2

4MN
2 . ~4.4!

Since the ratio 3Mk
2/(4MN

2 ),1 for the heaviest mode, thes
equations cannot be solved no matter what the solution
the firstN21 particles was, as long as one has a finite nu
ber of modes. Thus we can see that there cannot be a h
est mode, for every gauge boson there needs to be one th
more heavy if one wants to ensure unitarity for all amp
tudes. Thus a Kaluza-Klein-type tower must be present
these considerations if the theory is to be fully unitary wit
out any scalars, and Eqs.~4.1! and~4.2! can be satisfied only
in the presence of infinitely many gauge bosons.

From an effective theory point of view one should, how
ever, consider the theory with a cutoff scale. Then th
would be a finite number of modes below this cutoff sca
for all of which one could ensure the unitarity relations, e
cept for the mode closest to the cutoff, for which one has
assume that the UV completion plays a role in unitarizing
6-8
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amplitude. However, from this point of view we can see th
the cutoff scale could be much higher than the one naiv
estimated from the growingE2 amplitudes within the stan
dard model. For example, in the minimal case a singleW8
andZ8 gauge bosons are necessary to unitarize theWL

1WL
2

and ZLZL scattering amplitudes. In fact, the relations~4.1!
and ~4.2! can be satisfied with aW8 and Z8 that are heavy
enough and sufficiently weakly coupled, so that their effe
would not have been observed at the Tevatron nor wo
they have significantly contributed to electroweak precis
observables.

For example, in the standard model~SM! the scattering
WL

1WL
2→WL

1WL
2 is mediated bys, t, andu channelZ andg

exchange, and by the direct quartic coupling. The cance
tion of theE4 term in the SM is ensured by the relations

gWWWW
2 5g2, gWWZ

2 5g2 cos2 uW ,

gWWg
2 5e25g2 sin2 uW . ~4.5!

Let us now assume that the relation betweengWWWW
2 and

gWWZ
2 is slightly modified due to the existence of a heavyZ8,

which has a small cubic coupling with theW’s gWWZ8
2 . The

values of the three gauge boson couplingsgWWZ and gWWg
are not strongly constrained by experiments, they are kno
to coincide with the SM values to a precision of about 3–5
while there is basically no existing experimental constra
on gWWWW

2 . Let us therefore assume that the three ga
boson couplinggWWZ

2 is smaller by a percent than the S
prediction. Then in order to maintain the cancellation of t
E4 terms one needsgWWZ8

2 ;0.01gWWZ
2 . The cancellation of

the E2 terms would then fix the mass of theZ8 to be about
560 GeV.

Note that one would not expect a quarticZ coupling or a
ZZg coupling, since there is none in the SM, thus there
no contributions toZLZL→ZLZL ~contrary to the SM where
the Higgs exchange provides a finite term!. However, to uni-
tarize theWLZL→WLZL amplitude there also needs to be
heavy W8, with couplings toW and Z gWZW8

2 similar to
gWWZ8

2 . Thus ~without actually having calculated the coeffi
cients of the amplitudes for the inelastic scatterings! we ex-
pect thatW8 would also have a mass of order 500 GeV. Th
way all the amplitudes involving only SMW’s and Z’s in
initial and final states would be unitarized. However, due
the sum rule explained above the scattering amplitudes
volving theW8 andZ8 in initial and final states cannot all b
cancelled by only these particles. We expect that these
plitudes would become large at scales that are set by
masses of theW8 andZ8 rather than the ordinaryW andZ, so
this would roughly correspond to a scale of ord
4pMW8 /g;10 TeV, where the theory with only these pa
ticles would break down.

Since the 4D effective theory belowL510 TeV does not
have an SU(2)L gauge invariance~not even a hidden gaug
invariance! there is an issue with the mass renormalizat
for the gauge bosons: there will be quadratic divergence
the W andZ mass.~If the theory is completed into an extr
dimensional gauge theory with gauge symmetry breaking
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boundary conditions, then the masses will not really be q
dratically divergent, the divergences will be cut off rough
by the radius of the extra dimension.! However, the theory is
still technically natural since there is a limit where~hidden!
gauge invariance is restored and the divergence must be
portional to the gauge invariance breaking spurion. In
present example we can estimate the divergent contribu
to theZ mass to be at most

dMZ
2'0.01

gWWZ
2

16p2 L2'0.7 GeV2. ~4.6!

The three gauge boson couplings required between
heavy and the light gauge bosons is quite small. There
loop contributions to the oblique parametersS, T, Uwill be
strongly suppressed. However, one has to still ensure tha
large tree-level effects appear due to mixings between
heavy and light gauge bosons, which could spoil electrow
precision observables. In practice, this will probably requ
that the interactions of the heavyW8 and Z8 obey a global
SU(2)C custodial symmetry which ensuresr51 in the SM.

The masses of order 500 GeV would fall to the borderl
region of direct observation, assuming that their couplings
fermions is equal to the SM couplings. However, if the co
pling to fermions is just slightly suppressed, or it deca
dominantly to quarks or through cascades, then the di
search bounds could be easily evaded.

One should ask what kind of theories would actually yie
low-energy effective theories of the sort discussed in t
section. We will see below that some extra dimensional m
els could come quite close, though the masses of the ga
bosons are lower than 500 GeV, while ther parameter has to
be tuned to its experimental value. Before moving on
these models, let us discuss whether any 4D theories
product group structure could result in cancellations of
growing amplitudes. These models would correspond to
constructed extra dimensional theories. It has been show
Ref. @19# that for finite numberN of product gauge groups
there will be leftover pieces in theE2 amplitude ~without
including Higgs exchange! that scale withN like 1/N3 ~see
Appendix B for details!. Therefore in any linear or nonlinea
realizations of product groups broken by mass terms on
link fields the amplitudes will not be unitary. However, a
ready forN53 one would get a suppression factor of 27
the E2 piece of the scattering amplitude, which would me
that the scale at which unitarity violations would becom
visible would be of order 8 TeV, rather than the usual 1
TeV scale. Below we will focus on the models based on ex
dimensions, where the cancellation of theE2 terms is auto-
matic without a scalar exchange.

V. EXAMPLES OF UNITARITY IN HIGHER
DIMENSIONAL THEORIES

In this section we will present two examples of how t
unitarity relations~3.12! and~3.13! are satisfied in particula
extra dimensional theories. The first example will be bas
on pure Dirichlet or Neumann boundary conditions, whe
the cancellation as expected is automatic, while the sec
6-9
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example will involve mixed BC’s for some of the gaug
bosons, which will imply the noncancellation of theE2

terms. However, as we will show, unitarity can be resto
by introducing a boundary Higgs field.

A. SU„2…\U„1… by BC

Let us consider a 5D SU~2! Yang-Mills theory compacti-
fied on an orbifold that leaves only a U~1! subgroup unbro-
ken. We will further impose a Scherk-Schwarz periodic co
dition in order to project out all the 4D scalar fields comi
from the component of the gauge fields along the extra
mension. The 5D gauge fields thus satisfy

Am~x,2y!5PAm~x,y!P21

and A5~x,2y!52PA5~x,y!P21, ~5.1!

Am~x,y12pR!5TAm~x,y!T21

and A5~x,y12pR!5TA5~x,y!T21, ~5.2!

whereAM5AM
a ta/2 (ta, a51...3 are the Pauli matrices! is

the gauge field andP5diag(1,21), the orbifold projection
andT5P, the Scherk-Schwarz shift. Note that the orbifo
projection and the Scherk-Schwarz shift satisfy the con
tency relation@20# PTP5T21. This setup could alterna
tively also be described by twoZ2 projectionsy→2y and
pR2y→pR1y. The action of the firstZ is just as in Eq.
~5.1!, while the second one is similar withP replaced by
PT5P251.

Equivalently, we can describe this orbifold by a finite i
terval (yP@0,pR#) supplemented by the BC’s:

Am
1,2~x,0!50,]5Am

3 ~x,0!50,]5Am
a ~x,pR!50, ~5.3!

]5A5
1,2~x,0!50,A5

3~x,0!50,A5
a~x,pR!50. ~5.4!

Note that there is no zero mode coming from the fifth co
ponents of the gauge fields. Therefore we go to the uni
gauge which is the same as the axial gauge (A550). Then
the KK decomposition is

Am
1 ~x,y!5 (

k50

`
1

ApR
sinS ~2k11!y

2R D @Wm
1~k!~x!1Wm

2~k!~x!#,

~5.5!

Am
2 ~x,y!5 (

k50

`
i

ApR
sinS ~2k11!y

2R D @Wm
1~k!~x!2Wm

2~k!~x!#,

~5.6!

Am
3 ~x,y!5 (

k50

` A 2

2dk,0pR
cosS ky

R Dgm
~k!~x!. ~5.7!

The spectrum contains a massless photong (0) and its KK
excitationsg (k) of massMg(k)5k/R as well as a tower of
massive charged gauge bosonsW6(k) of massMW(k)5(2k
11)/(2R). With the above wave functions, it is easy to e
plicitly compute the cubic and quartic effective couplin
05500
d
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ry

and check the general sum rules of Sec. II. For instance
the elastic scattering ofW’s, the relevant couplings are

gW~n!W~n!g~k!5
g5

2ApR
S dk,02

1

&
dk,2n11D , ~5.8!

gW~n!W~n!W~n!W~n!
2

5
3g5

2

8pR
. ~5.9!

The BC’s conserve KK momenta up to a sign and theref
only g (0) andg (2n11) can contribute to the elastic scatterin
of W(n)’s. The sum rules~3.12! and ~3.13! are trivially ful-
filled.

The point of this section was to show that it is inde
possible to give a mass to gauge boson without relying o
Higgs mechanism to restore unitarity. The orbifo
symmetry-breaking mechanism illustrated with this exam
is, however, restrictive since it uses aZ2 symmetry of the
action and in the simplest cases~Abelian orbifolds using an
inner automorphism! it is even impossible to reduce the ran
the gauge group, which is a serious obstacle to the const
tion of realistic phenomenological models. There are, ho
ever, more general BC’s we can impose that are not equ
lent to a simple orbifold compactification but still lead to
well behaved effective theory.

B. Completely broken SU„2… by mixed BC’s
and the need for a boundary Higgs field

In the previous section, we considered a breaking
SU~2! down to U~1! by an orbifold compactification. We
have shown that, in agreement with our general proof of S
II, the scattering amplitude of the gauge bosons that acq
a mass through compactification has a good high-energy
havior. The cancellation of the terms growing with energy
ensured by the exchange of higher massive gauge boson
does not require the presence of any scalar field. We wo
like now to consider some more general boundary conditi
than the ones coming from orbifold compactification. In th
case, we will see that the boundary terms of the sum r
~3.22! are nonvanishing and thus lead to a violation of t
unitarity at tree level, however, unitarity can be restored b
scalar field living at the boundary. We illustrate these resu
with an example of an SU~2! completely broken by mixed
~neither Dirichlet nor Neumann! BC’s.4

Let us thus now consider the BC’s:

]5Am
a ~x,0!50, ]5Am

a ~x,pR!5VAm
a ~x,pR!, ~5.10!

A5
a~x,0!50, A5

a~x,pR!50. ~5.11!

A general solution can be decomposed on the KK basis

4Reference@21# presented a model of Grand Unified Theo
~GUT! breaking using mixed BC’s.
6-10



gh

g:
n

fo

4D

b
g

-

ou
a

ly

ie
he

e

ow

ave
BC

pa-
ass
be
ur

er

l
ulk

y
ary

uge

At
tes

dia-
at

to
li-

GAUGE THEORIES ON AN INTERVAL: UNITARITY . . . PHYSICAL REVIEW D69, 055006 ~2004!
Am
a ~x,y!5 (

k51

`

f k~y!Am
~k!~x!,

with f k~y!5
ak

sin~MkpR!
cos~Mky!. ~5.12!

The BC at the origin,y50, is trivially satisfied while the
condition aty5pR determines the mass spectrum throu
the transcendental equation

Mk tan~MkpR!52V. ~5.13!

The parameterV controls the gauge symmetry breakin
whenV50, the BC’s are those of a orbifold compactificatio
with no symmetry breaking and whenV is turned on there is
no zero mode any more and the full SU~2! gauge group is
broken completely. Note that there is no zero mode either
the fifth component of the gauge field and thusA5 can be
gauged away, leaving no scalar field in the low-energy
effective theory.

The normalization factorak is determined by requiring
that the KK modes are canonically normalized,*0

pRf k
2(y)

51, leading to

ak5
&

ApR~11Mk
2/V2!21/V

. ~5.14!

Note that this KK decomposition can equivalently be o
tained through a much more lengthy procedure consistin
two steps~see Ref.@18# for details!: ~i! assumeV50, get a
KK decomposition as in Eq.~5.7! and obtain the correspond
ing effective action;~ii ! reintroduce the parameterV in the
effective action as a mass term that mixes all the previ
modes and the true eigenmodes are obtained by diagon
ing the corresponding infinite mass matrix.

Unlike in the case of the previous section involving on
Dirichlet or Neumann BC’s, the mixed BC’s~5.10! give rise
to boundary terms in the sum rule~3.22! needed for the
computation of the scattering amplitude. We obtain

(
k

Mk
2S E dy fn

2f kD 2

5
4

3
Mn

2E dy fn
41

1

3
V fn

4~pR!.

~5.15!

Consequently, the scattering amplitude has a residual p
growing with the energy square which is proportional to t
order parameterV:

A~2!5
ig5

2

Mn
2 V fn

4~pR!~2dabdcd1dacdbd sin2 u/2

1daddbc cos2 u/2!. ~5.16!

Besides the caseV50, there is another limit where thes
boundary terms actually vanish. Indeed, whenV@1/R, the
low-lying eigenmasses can be approximated by
05500
r

-
in

s
liz-

ce

Mk;
2k11

2R S 11
1

pRV
1¯ D , k50,1,2... ~5.17!

and the normalization factor isak;1/ApR, thus

V fn
4~pR!;

~2n11!4

4p2R6V3 . ~5.18!

Therefore the terms in the scattering amplitude that gr
with the energy do cancel whenV goes to infinity. The physi-
cal reason of such a cancellation is clear: in the largeV limit,
the brane localized mass term becomes large and the w
functions are expelled from the brane thus the mixed
]5f k(pR)5V fk(pR) in the limit V→` simply becomes
equivalent to the Dirichlet BCf k(pR)50 which, as we al-
ready know, does not lead to any unitarity violation.

As we already said, a finite and nonvanishing order
rameterV can be interpreted as an explicit gauge boson m
term localized at the boundary. This explicit breaking can
UV completed using the usual Higgs mechanism. In o
SU~2! model, we can introduce a 4D SU~2! doublet localized
at y5pR. Giving a vacuum expectation value to the low
component of the localized Higgs doublet,

^H&5
1

&
S 0
y D , ~5.19!

gives rise to the mass term*d4x 1/8g5
2y2Am

2 (x,pR) in the
5D action. To obtain the BC~see Appendix A 2 for technica
details! we need to vary the action that contains both a b
and a boundary piece. The relevant part of the action is

S E
0

pR

dy
1

2
]5Am]5AmD 1

1

8
g5

2y2AmupR
2 . ~5.20!

Varying the bulk terms will introduce, after integration b
parts, the usual equation of motion as well as bound
terms:

2S E
0

pR

dy]5
2AmdAmD 1S ]5AmdAm1

1

4
g5

2y2AmdAmD
upR

.

~5.21!

The boundary terms thus impose the mixed BC:

]5Am
a ~x,pR!5VAm

a ~x,pR!, with V52
1

4
g5

2y2.

~5.22!

The three Goldstone bosons are eaten by the KK ga
bosons that would be massless whenV50 and we are left
with only one physical real scalar field, the Higgs boson.
tree level, the exchange of this Higgs boson also contribu
to the gauge boson scattering amplitude through the
grams depicted in Fig. 3. The Higgs boson being localized
y5pR, its coupling to the gauge bosons is proportional
f k

2(pR). Thus we get a contribution to the scattering amp
tude that grows with the energy square:
6-11
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FIG. 3. Higgs exchange contributing at tre
level to the gauge boson elastic scattering amp
tude. The Higgs boson is localized aty5pR and
the vertex Higgs-gauge-gauge is proportional
f n

2(pR).
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A~2!5
ig5

4y2

4Mn
2 f n

4~pR!~2dabdcd1dacdbd sin2 u/2

1daddbc cos2 u/2!. ~5.23!

Using the relation~5.22!, we get that~as expected! the Higgs
exchange exactly cancels the terms in scattering ampli
from the gauge exchange that grows likeE2. Remarkably
enough, the Higgs boson can be decoupled (y→` limit !
without spoiling the high-energy behavior of the mass
gauge boson scattering. Note that this limit would simp
correspond to theAm

a 50 BC from Eq.~2.11!.

VI. TOY MODEL FOR ELECTROWEAK SYMMETRY
BREAKING VIA BC’S

We want to study in this section the possibility to bre
the electroweak symmetry SU(2)L3U(1)Y down to U(1)Q
along the lines of the previous section, i.e., by BC’s witho
relying on a Higgs mechanism either in the bulk or on t
brane~a realistic model of electroweak symmetry breaki
without any fundamental scalar field has been constructe
Ref. @22#, see also Refs.@23# and @24#. Here we want to go
further and totally remove any 4D scalar fields. See Ref.@25#
for a supersymmetric model where one Higgs field has b
removed by an orbifold projection!. The first idea would be
to extend the analysis of Sec. V B to include a mixing b
tween SU~2! and U~1!. However, considering the limitV
→`, we would get a mass degeneracy for theW6 and theZ
gauge bosons. Our point is to show that we can actually
this degeneracy and obtain a spectrum that depends on
gauge couplings. We do not claim to have a fully realis
model but we want to construct a toy model that has
characteristics of the standard model without the Higgs
son and that remains theoretically consistent.

Let us consider SO(4)3U(1);SU(2)L3SU(2)R
3U(1) compactified on an interval@0,pR# ~for other mod-
els using a left-right symmetric extra dimensional bulk s
Ref. @26#, though the breaking pattern of symmetries is ve
different in those models!. At one end, we break SO~4! down
to SU(2)D by Neumann and Dirichlet BC’s. At the other en
of the interval, we break SU(2)R3U(1) down to U(1)Y by
mixed BC’s and we will consider the limitV→` in order to
ensure unitarity without having to introduce extra scalar
grees of freedom~alternatively, one can directly impose th
equivalent Dirichlet BC’s, however, the gauge structure
more transparent using the limit of mixed BC’s!. Thus only
05500
de

t
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n

-

ft
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e
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e
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U(1)Q remains unbroken. We denote byAM
Ra , AM

La , andBM

the gauge bosons of SU(2)R , SU(2)L , and U~1!, respec-
tively; g is the gauge coupling of the two SU~2!’s andg8, the
gauge coupling of the U~1!. We consider the two linea
combinations5 of the SU~2! gauge bosonsAM

6a5(1/&)
3(AM

La6AM
Ra). We impose the following BC’s:

at y50: H ]5Am
1a50, Am

2a50, ]5Bm50,

A5
1a50, ]5A5

2a50, B550.
~6.1!

at y5pR: 5
]5Am

La50, ]5Am
R1,252

1

4
g2y2Am

R1,2,

]5Bm52
1

4
g8y2~g8Bm2gAm

R3!,

]5Am
R35

1

4
gy2~g8Bm2gAm

R3!,

A5
La50, A5

Ra50, B550.
~6.2!

One has to check now, that Eqs.~2.11! are indeed satisfied
requiring these BC’s. We will only explain how the first E
~2.11! is satisfied aty50, one can similarly check all the
other conditions. FromAm

2a50 we get thatdAm
La5dAm

Ra .
Thus we need to show thatFn5

La1Fn5
Ra50, which is true due

to the requirements]5Am
1a50, Am

2a50, andA5
1a50. Note

that these BC’s are a nontrivial example of Eq.~2.11! being
satisfied without a term-by-term cancellation of the act
boundary variations, but rather by a cancellation among
various terms.

One may wonder where these complicated looking B
originate from. In fact, they correspond to a physical situ
tion where one has an orbifold projection based on an o
automorphism SU(2)L↔SU(2)R around one of the fixed
points. Indeed the BC’s can be seen as deriving from
orbifold projections (ŷ5y1pR):

5It can be seen that every other linear combination, except
identity, would have not maintained any gauge invariance. The
ticular combination chosen here preserves, at the boundary
SU(2)D gauge invariance.
6-12
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Am
La~x,2y!5Am

Ra~x,y!, Am
Ra~x,2y!5Am

La~x,y!,

Bm~x,2y!5Bm~x,y!, ~6.3!

Am
La~x,2 ŷ!5Am

La~x,ŷ!, Am
Ra~x,2 ŷ!5Am

Ra~x,ŷ!,

Bm~x,2 ŷ!5Bm~x,ŷ!. ~6.4!

The projections on the fifth components of the gauge fie
are the same except an additional factor21. At the y5pR
end point, a localized SU(2)R scalar doublet of U~1! charge
1
2 acquires a vacuum expectation value~VEV! (0,y)/& and
breaks SU(2)R3U(1) down to U(1)Y . The mass terms is
responsible for the mixed BC’s~6.2!.

For a finite VEV, the 4D Higgs scalar localized aty
5pR is needed to keep the theory unitary; we will, howev
consider the limity→` where this scalar field can be deco
pled without spoiling the high-energy behavior of the gau
boson scattering.

Due to the mixing of the various gauge groups, the K
decomposition is more involved than in the simple exam
of Sec. V B but it is obtained by simply enforcing the BC
@we denote byAm

L,R6 the linear combinations (1/&)(AL,R1

7 iAL,R2)]:

Bm~x,y!5ga0gm~x!1g8(
k51

`

bk cos~Mk
Zy!Zm

~k!~x!,

~6.5!

Am
L3~x,y!5g8a0gm~x!

2g(
k51

`

bk

cos@Mk
Z~y2pR!#

2 cos~Mk
ZpR!

Zm
~k!~x!,

~6.6!

Am
R3~x,y!5g8a0gm~x!

2g(
k51

`

bk

cos@Mk
Z~y1pR!#

2 cos~Mk
ZpR!

Zm
~k!~x!,

~6.7!

Am
L6~x,y!5 (

k51

`

ck cos@Mk
W~y2pR!#Wm

~k!6~x!,

~6.8!

Am
R6~x,y!5 (

k51

`

ck cos@Mk
W~y1pR!#Wm

~k!6~x!.

~6.9!

The normalization factors, in the large VEV limit, are give
by
05500
s

,

e

e

a05
1

ApR

1

Ag212g82
, bk;

&

ApR

1

Ag212g82
,

ck;
1

ApR
. ~6.10!

The spectrum is made up of a massless photon, the ga
boson associated with the unbroken U(1)Q symmetry, and
some towers of massive charged and neutral gauge bos
W(k) andZ(k), respectively. The masses of theW6’s are so-
lution of

Mk
W tan~2Mk

WpR!5
1

4
g2y2, ~6.11!

and in the largey limit, we get the approximate spectrum

Mk
W5

2k21

4R
S 12

2

pg2y2R
1¯ D , k51,2... .

~6.12!

The masses of theZ’s are solution of

Mk
Z tan~Mk

ZpR!5
1

8
~g212g82!y22

1

8
g2y2 tan2~Mk

ZpR!,

~6.13!

and in the largey limit, we get two towers of neutral gaug
bosons:

Mk
Z5S M01

k21

R
D S 12

2

~g21g82!y2pR
1¯ D , k51,2...,

~6.14!

Mk
Z85S 2M01

k

R
D S 12

2

~g21g82!y2pR
1¯ D , k51,2...,

~6.15!

where M05(1/pR)arctanA112g82/g2. Note that 1/(4R)
,M0,1/(2R) and thus theZ’s are heavier than theZ’s

(Mk
Z8.Mk

Z). We also get that the lightestZ is heavier than
the lightestW (M1

Z.M1
W), in agreement with the SM spec

trum.
The BC’s break KK momentum conservation and as

consequence all the KK will interact to each other. For
stance, the cubic effective couplings between theW’s and the
Z’s ~and theZ8’s! are, in the large VEV limit,

gW~n!W~n!Z~k!52
2g2

Ap3R3~g21g82!

Mn
W 2

~4Mn
W 22Mk

Z 2!Mk
Z ,

~6.16!

while the couplings between theW’s and the photon are

gW~n!W~n!g5
gg8

Ag212g82

1

ApR
. ~6.17!
6-13
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Let us now discuss how to introduce matter fields. Loca
at the y50 boundary, a SU(2)D3U(1) subgroup remains
unbroken. We can introduce some matter fields localized
this boundary. Consider a SU~2! scalar doublet with a U~1!
charge&q. Its interactions with the gauge boson KK mod
are generated through the localized covariant derivative

DmF5]mF

2
i

2 S 2&g8qBm1gAm
13 g~Am

112 iAm
12!

g~Am
111 iAm

12! 2&g8qBm2gAm
13D

u0

F.

~6.18!

Using the KK decomposition~6.5!–~6.9!, we evaluate the
value of the gauge fields at the boundary and the scalar
variant derivative becomes

DmF5]mF2 i&gg8a0S q1
1

2
0

0 q2
1

2

D gmF

2 (
k51

` ibkg
2

A8 S 4qg82

g2 21 0

0
4qg82

g2 11
D Zm

~k!F

2 (
k51

`

igck cos~Mk
WpR!S 0 Wm

~k!1

Wm
~k!2 0

D F.

~6.19!

The interactions between the scalar doubletF and the first
massive KK gauge bosonsZ(1) andW(1) will exactly repro-
duce the SM interactions between a SU(2)L doublet of hy-
perchargeq and theZ and theW’s provided that the normal
ization factorsa, b1 , c1 satisfy

b15&a0 , b15
2c1 cos~M1

WpR!

Ag212g82
. ~6.20!

In the infinite VEV limit, from the expressions~6.10! it can
be checked that these relations are exactly satisfied and
4D SM couplings are expressed in terms of the 5D ga
couplings by

g4D5
g

ApR
, g4D8 5

&g8

ApR
. ~6.21!

In the same way the SM SU(2)L singlets will correspond to
SU(2)D singlets charged under U~1! and localized at they
50 boundary. When the corrections to the normalization f
tors for a finite VEV are included, the interactions betwe
the matter and the gauge bosons do not reproduce exactl
structure of the SM. It has also to be noted that in the infin
VEV limit the normalization factors are independent of t
05500
y

n

o-

the
e

-
n
the
e

KK level, which means that the couplings of matter to high
KK states will be unsuppressed.

One can also try to identify the couplings of matter loc
ized at they5pR end point. In particular, it can be seen th
the lowest component of a SU(2)R doublet of U~1! charge
1
2 does couple, in thev→` limit, to none of the gauge
bosons. This explains why the localized Higgs boson d
not contribute to restore unitarity in the massive gauge bo
scattering.

This toy model resembles the SM in that the lowest-lyi
KK modes of the gauge bosons have masses similar to thg,
W, andZ, and the couplings of the brane localized fields c
be made equal to the couplings of the SM fermions. Ho
ever, there are clearly several reasons why this partic
model is not realistic.

The first reason is theMW /MZ mass ratio. Even though
we do get masses that depend on the gauge couplings, w
is a quite nontrivial step forward, nevertheless, the ratio d
not exactly agree with the SM prediction. In thev→` limit
the ratio becomes

MW
2

MZ
2 5

p2

16
arctan22A11

g4D8
2

g4D
2 ;0.85, ~6.22!

and hence ther parameter is

r5
MW

2

MZ
2 cos2 uW

;1.10. ~6.23!

Thus the mass ratio is close to the SM value, however,
10% deviation is still huge compared to the experimen
precision. It is possible to get a more realistic value of thr
parameter by keeping a finite VEVv. The price to pay is that
the coupling of matter to the gauge boson will not exac
reproduce the structure of the SM couplings: for instance
we match the coupling to the photon and to theW’s, we will
get a deviation of orderMW

2 /y2 in the coupling to theZ.
We can simply estimate the value ofy needed in order to
get r51:

MW
2

MZ
2 ;

p2

16
arctan22A11

g4D8
2

g4D
2

3S 1232~dM02dMW1dMZ!
MW

2

y2 D , ~6.24!

wheredM0 , dMW , dMZ are complicated functions of th
4D gauge couplings. The mass ratio can be tuned to exa
coincide with the experimental value, as long asy is lowered
to aboutv;640 GeV. However, we can see that a realis
mass ratio would require quite a low value ofv, which
would imply that the scalar localized aty5pR has a signifi-
cant contribution to the scattering amplitude. Also, for fin
values ofy one can no longer match up all the couplings
the brane localized fields to their SM values.

The next issue is the masses of the KK excitations of
W andZ. From the expressionMk

W;(2k21)/(4R) one can
see thatM2

W;3M1
W;240 GeV. This is too low if the cou-
6-14
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pling to the SM fermions is not suppressed~as would be the
case for brane localized fermions discussed above!. The third
issue is that with brane localized fermions of the sort that
discussed above, it is not possible to give the fermion
mass. The SM Higgs boson serves two purposes: to b
electroweak gauge symmetry and to give masses to the
fermions. We have eliminated the Higgs boson and bro
electroweak gauge symmetry by BC’s. In order to be able
write down fermion masses one would have to include th
into the theory in a different manner.

In order to get a more realistic theory, we need to mod
the structure of the model. For fermion masses, putting
fermions into the bulk and only couple them to SU(2L
should be sufficient. Other possible modifications are to
the Higgs boson that breaks SU(2)R3U(1)B2L in the bulk,
or to consider warped backgrounds. Work along these di
tions is in progress@27#.

VII. CONCLUSIONS

We have investigated the nature of gauge symme
breaking by boundary conditions. First we have derived
consistent set of boundary conditions that could minim
the action of a gauge theory on an interval. These BC’s
clude the commonly applied orbifold conditions, but there
a much wider set of possible conditions. For example, i
simple to reduce the rank of gauge groups. To find out m
about the theories where gauge symmetry breaking hap
via BC’s, we have investigated the high-energy behavior
elastic-scattering amplitudes. We have found that for all
neric consistent BC’s derived before the contributions to
amplitude that would grow with the energy asE4 or E2 will
always vanish, thus these theories seem to have a good
energy behavior just as gauge theories broken by the H
mechanism would. However, since these are higher dim
sional theories, tree unitarity will still break down due to t
nonrenormalizable nature~growing number of KK modes! of
these models.

We have speculated that perhaps the breaking of ga
symmetries via BC’s could replace the usual Higgs mec
nism of the SM. We have shown an effective-field theo
approach and a higher dimensional toy model for el
troweak symmetry breaking via BC’s. Clearly there is stil
long way to go to find a fully realistic implementation of th
new way of electroweak symmetry breaking without a Hig
boson.
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APPENDIX A: BC’S FOR GAUGE THEORIES
WITH SCALARS

In this appendix we continue the discussion of BC’s f
gauge theories on an interval. First we will consider the c
of a gauge theory with bulk scalar fields, then a gauge the
with scalars localized at the end points.

1. Gauge theory with a bulk scalar

Let us now discuss how the BC’s and the bulk equatio
of motion are modified in the presence of a bulk scalar fi
that gets an expectation value. We will use the notation
Ref. @28#, Chap. 21, where all complex scalars are rewritt
in terms of real components denoted byF i , and expanded
around their VEV’s asF i5^F i&1x i . The covariant deriva-
tive is DMF i5]MF i1gAM

a Ti j
a F j , where theTi j

a generators
are real and antisymmetric. The quadratic part of the ac
is then given by

S5E d4xE
0

pR

dyS 2
1

4
Fmn

a Famn2
1

2
Fm5

a Fam5

2
1

2j
@]mAam2j~]5A5

a1gFi
ax i !#

21
1

2
DmF iD

mF i

1
1

2
D5F iD

5F i2V~F! D . ~A1!

Here we have added the modified form of the gauge fix
term. Expanding this Lagrangian to quadratic order we g

S5E d4xE
0

pR

dyS 2
1

2
An

a~2]r]rgmn1]m]n!Am
a

1
1

2
~]5An

a2]nA5
a!22

1

2j
@]mAam2j~]5A5

a1gFi
ax i !#

2

1
1

2
]mx i]

mx i1
1

2
g2Fi

aFi
bAm

a Anb1]mx iA
magFi

a

2
1

2
~]5x i1gA5

aFi
a!22Mi j

2 x ix j D . ~A2!

Note that we have lowered all five indices. HereFi
a

5Ti j
a ^F j&, which as always is nonvanishing only in the d

rections that would correspond to the Goldstone modes
the scalar potential. Note that the physics here is quite
6-15
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ferent than in the case with no bulk scalars. Before theA5
a’s

were the would-be Goldstone modes eaten by the mas
gauge fields. Now this will change, and there is an expl
mass term for one combination of theA5’s and the Goldstone
components of thex’s ]5x i1gA5

aFi
a . These fields will be

physical modes, that do not decouple even in the unit
gaugej→`. The other combination]5A5

a1gFi
ax i will pro-

vide the longitudinal modes of the gauge boson KK tow
and will disappear in the unitary gauge. Varying this acti
we get the linearized bulk equations of motion,

]s]sAan2]5
2Aan2S 12

1

j D ]n]sAas1g2Fi
aFi

bAnb50,

]s]sA5
a2j]5

2A5
a2~j21!g~]5x i !Fi

a2jgx i]5Fi
a

1g2Fi
aFi

bA5
b50,

]s]sx i2]5
2x i1~j21!g~]5A5

a!Fi
a2gA5

a]5Fi
a

1jg2Fi
aF j

ax j1Mi j
2 x j50. ~A3!

The BC’s will be modified to

Gn5
a dAan

u0,pR50, ~A4!

~]sAas2j]5A5
a2jgx iFi

a!dA5u0,pR
a 50, ~A5!

~]5x i1gA5
aFi

a!dx i50. ~A6!

A consistent set of BC’s is obtained by taking the previo
set of BC from Eq.~2.11! and add the conditionx i50 on the
end points. Note that this does not imply that the Higgs V
on the brane has to vanish, since thex’s are the fluctuations
around the expectation value.

2. Gauge theory with a scalar localized at the end point

Finally let us consider the case when one has a boun
scalar fieldf, at y50. The Lagrangian will be modified to

S5E d4xE
0

pR

dyS 2
1

4
Fmn

a Famn2
1

2
F5n

a Fa5n

2
1

2j
~]mAam2j]5A5

a!2D1E d4xS 1

2
Dmf iD

mf i

2V~f!2
1

2j
~]mAma

u02jgFi
ax i !

2D . ~A7!

Expanding to quadratic order we get that the action is

S5E d4xE
0

pR

dyLbulk1E d4xS 1

2
]mx i]

mx i

1g2Fi
aFi

bAmu0
a Amb

u0
1g]mx iFi

aAmu0
a

2
1

2j
~]mAma

u0
2jgFi

ax i !
22

1

2
Mi j

2 x ix j D , ~A8!
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where we now had to add a gauge fixing term both in
bulk and on the brane. The bulk equations of motions will
as in Eq.~2.9!, the BC’s aty5pR will be the ones given in
Eq. ~2.11!, while the BC’s aty50 will now be given by

S Fn5
a 1g2Fi

aFi
bAn

b1
1

j
]n]mAamD dAan

u0
50, ~A9!

~]sAas2j]5A5
a!dA5u0

a 50,
~A10!

~2]m]mx i2jg2Fi
aF j

ax j2Mi j
2 !dx i50.

~A11!

In the limit j→` we get the usual unitary gauge where bo
x i ’s and A5’s ~assuming there are noA5 zero modes! are
decoupled, and one is left with the physical KK tower ofAm
and the non-Goldstone scalar modes~the physical Higgses!
which are orthogonal to the directionsFi

ax i . In this limit the
BC for the gauge fields will be of the form

]yAmu0,pR
a 5V0,pR

ab Amu0,pR
b . ~A12!

We will refer to these mass term induced BC’s as mix
BC’s. Note that these mixed BC’s still ensure the Hermitic
~self-adjointness! of the Hamiltonian. These are the BC’s th
should be used for the KK expansion of the gauge fields

APPENDIX B: SUM RULES AND UNITARITY
IN DECONSTRUCTION

It was suggested@29# two years ago that the physics o
extra dimensions can be recovered in the infrared in term
a product of 4D gauge groups connected to each other
some link fields~for the deconstruction of supersymmetr
theories, see Ref.@30#!. We would like to see in this appen
dix how this correspondence operates as far as the h
energy behavior for the amplitude of elastic scattering
massive gauge bosons is concerned~see also Ref.@19# for
similar computations!.

Generically speaking, we have a set of gauge fie
Am

i ( i 51,...,N), living on the sites of a lattice. For simplicity
we will assume that all the gauge group have the same ga
couplingg. The dynamics of the link fields leads to a brea
ing of the product gauge group and, accordingly,~some of!
the gauge bosons acquire a mass~see Ref.@31# for some
phenomenological models mimicking extra dimensional
bifold models!. The mass eigenstates are linear combinati
of the site gauge fields,

Am
~m!5(

i 51

N

a i
~m!Am

i , ~B1!

where the coefficientsa i
(m) define an orthonormal basis,

(
i 51

N

a i
~m!a i

~n!5dmn, (
m51

N

a i
~m!a j

~m!5d i j . ~B2!
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The cubic and quartic couplings~2.21! and ~2.22! are re-
placed by

gcubic→gmnk5g(
i 51

N

a i
~m!a i

~n!a i
~k! , ~B3!

gquartic
2 →gmnkl5g(

i 51

N

a i
~m!a i

~n!a i
~k!a i

~ l ! .

~B4!

The expansion with the energy of the elastic-scattering
plitude will be of the usual form:

A5A~4!
E4

Mn
4 1A~2!

E2

Mn
2 1A~0!. ~B5!

The term growing withE4 is proportional to

A~4!}g2S (
i 51

N

a i
~m!42 (

k51

N

(
i , j 51

N

a i
~m!2a j

~m!2a i
~k!a j

~k!D .

~B6!

Again this term is just canceling because of the orthonorm
ity of the eigenstates.

The expression for the amplitude that grows withE2, af-
ter using the orthonormality relation, is found to be prop
tional to

A~2!}g2S 4Mn
2(

i 51

N

a i
~m!4

23(
k

N

Mk
2 (

i , j 51

N

a i
~m!2a j

~m!2a i
~k!a j

~k!D . ~B7!

Unlike in the extra dimensional case and due to the abse
of 5D Lorentz invariance, there is no generic expression
the sum rule. In general the sum will not cancel but rat
will be suppressed by power of the replication numberN.
There is one simplification which allows to perform the su
over the mass eigenstates: indeed, from the definition of
eingenstates, we get

(
k

N

Mk
2 (

i , j 51

N

a i
~m!2a j

~m!2a i
~k!a j

~k!5 (
i , j 51

N

a i
~m!2a j

~m!2Mi j
2 ,

~B8!

where Mi j
2 is the square mass matrix in the theory spa

Therefore, in order to evaluate the elastic-scattering am
tude, we do not need to fully diagonalize the mass ma
and to find all the eigenvectors: the computation of
elastic-scattering amplitude of a particular mass eigens
requires only the knowledge of the decomposition of t
particular eigenstate in terms of the theory space ga
bosons.

We will evaluate the scattering amplitude in two explic
examples. Let us first consider the deconstruction versio
05500
-

l-
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ce
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the SU(2)→U(1) orbifold breaking of Sec. V A. The matte
content of the model is the following:

SU~2!1 SU~2!2 ¯ SU~2!N21 U~1!

f1 h h̄

f2 h h̄

] �

fN22 h h̄

fN21 h 1/2

The breaking to a single U~1! is achieved by giving VEV’s to
the link fieldsf i , i 51¯N21,

^f i&5
y

&
1 for i 51¯N22, ^fN21&5

y

&
S 0
1D .

~B9!

The spectrum contains a massless photong (0) and its KK
excitations,g (k) k51¯N21, as well as a finite tower o
massive charged gauge bosons,W6(k) k51¯N21. In the
lattice site basis, theN3N photon mass matrix has the form

g2y2

4 S 1 21

21 2 21

�

21 2 21

21 1

D ~B10!

which is diagonalized by (k50¯N)

g~k!5A 2

2dkN
(
i 51

N

cos
~2i 21!kp

2N
g i , Mk

g5gy sin
kp

2N
.

~B11!

The (N21)3(N21) W mass matrix is

g2y2

4 S 1 21

21 2 21

�

21 2 21

21 2

D ~B12!

which is diagonalized by (k51¯N21),
6-17
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W~k!5A 4

2N21 (
i 51

N21

cos
~2i 21!~2k21!p

4N22
Wi ,

Mk
W5gy sin

~2k21!p

4N22
. ~B13!

This decomposition allows us to evaluate as a function oN
the sum rule appearing in the elastic-scattering amplitud
e

n-

v.

05500
For instance, for theW(1)W(1)→W(1)W(1) scattering, we get

4 (
i 51

N21

a i
~1!423 (

i , j 51

N21

a i
~1!2a j

~1!2
Mi j

2

M1
W 2 ;3.70N23.

~B14!

We will not discuss in detail the deconstruction version
the left-right model of Sec. VI but we would like to prese
how to deconstruct the outer automorphism like BC’s.
this end, let us simply consider a 5D SU(2)L3SU(2)R
model broken to SU(2)D by the exchange of the two SU~2!’s
at one end point of the interval. The matter content of
deconstructed version of the model is the following:
SU~2!N
L SU~2!N21

L
¯ SU~2!1

L SU~2!D SU~2!1
R

¯ SU~2!N21
R SU~2!N

R

fN21
L

h̄ h

fN22
L

h̄

] �

f1
L h

f h̄ h

f1
R

h̄

] �

fN22
R h

fN21
R

h̄ h
i-
d
of
f

tes,
Note the presence of a link fieldf, charged under three
gauge groups. The breaking to a single SU~2! is achieved
through the VEV pattern

^f i
L,R&5

y

&
1, i 51¯N21,

^fa
b

g
d&5

y

&
S da

bdg
d2

1

2
dg

bda
dD . ~B15!

Herea is an SU(2)1
L index,d an SU(2)1

R index, whileb and
g are SU(2)D indices. Reproducing the KK towers of th
two particular linear combinations (AL6AR)/& in the 5D
model, there are actually two kinds of gauge boson eige
vectors:

‘ ‘ 1 ’ ’ states: ~xN ,xN21 ,...,x1 ,y,x1 ,...,xN21 ,xN!,
~B16!

‘ ‘ 2 ’ ’ states: ~xN ,xN21 ,...,x1,0,2x1 ,...,2xN21 ,2xN!.
~B17!

For the ‘‘1’’ eigenstates, we have relied on a numerical d
agonalization. The ‘‘2’’ eigenstates, however, can be foun
analytically from the zeros of the Chebyshev polynomial
order 2N11, which allows for an analytical estimation o
theE2 terms in the elastic scattering of the ‘‘2’’ eigenstates.
For instance, for the scattering of the lightest massive sta
we found a sum rule that, again, scales like 1/N3,

4 (
i 51

2N11

a i
~12!423 (

i , j 51

2N11

a i
~12!2a j

~12!2
Mi j

2

M12
2 ;1.84N23.

~B18!
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