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Gauge theories on an interval:  Unitarity without a Higgs boson
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We consider extra dimensional gauge theories on an interval. We first review the derivation of the consistent
boundary condition§BC'’s) from the action principle. These BC'’s include choices that give rise to the breaking
of the gauge symmetries. The boundary conditions could be chosen to coincide with those commonly applied
in orbifold theories, but there are many more possibilities. To investigate the nature of gauge symmetry
breaking via BC’s we calculate the elastic scattering amplitudes for longitudinal gauge bosons. We find that
using a consistent set of BC'’s the terms in these amplitudes that explicitly grow with energy always cancel
without having to introduce any additional scalar degree of freedom, but rather by the exchange of Kaluza-
Klein (KK) gauge bosons. This suggests that perhaps the standard model Higgs boson could be completely
eliminated in favor of some KK towers of gauge fields. We show that from the low-energy effective theory
perspective this seems to be indeed possible. We display an extra dimensional toy model, where BC'’s introduce
a symmetry breaking pattern and mass spectrum that resembles that in the standard model.
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I. INTRODUCTION massless when only Neumann BC’s are imposed. This then
raises the question of whether the cancellation in the scatter-
A crucial ingredient of the standard model of particle ing amplitudes of the terms that grow with energy is main-
physics is the Higgs scalar. One of the main arguments fotained or not in the presence of such breaking of gauge sym-
the existence of the Higgs scalar[ls-5] that without it the  metries. This issue is related to the question of whether the
scattering amplitude for the longitudinal components of thepreaking of gauge invariance via boundary conditions is soft
massiveW and Z bosons would grow with energy asE?,  or hard. We would like to give a general analysis of this
and thus violate unitarity at energies of orderM\,/g  question(which also has been recently addressed in some
~1.5TeV. It has been shown in Refs], [7] that higher  particular examples in Reff9], [10], see also Ref11] for a
dimensional gauge theories maintain unitarity in the sensegelated discussion in the case of KK gravity
that the terms in the amplitude that would grow with energies In this paper we investigate the nature of gauge symmetry
asE* or E? cancel(though the theory itself becomes strongly breaking via BC's. First we review the derivation of the set
interacting at a cutoff scale which depends on the size of thef equations that the boundary conditions have to obey in
extra dimension and the effective gauge coupling, and usterder to minimize the action, including a discussion of the
ally tree-level unitarity also breaks down at a scale related tgssue of gauge fixing. The possible set of BC'’s include the
the cutoff scale due to the growing number of Kaluza-Kleincommonly considered orbifoldBC’s [12—15 but as it was
(KK) modes that can contribute to the constant pieces oflready noted in Refl14] there are more possibilities. For
certain amplitudes For a related discussion see RE].  example, it is easy to reduce the rank of the gauge group
This on its own is not so surprising, since one would naivelywith more general BC'§14]. The question that such theories
expect that higher dimensional gauge theories behave well ifaise is whether such a breaking of the gauge symmetries via
the energy range where they can be valid effective theorie®C’s yields a consistent theory or not. Since we are insisting
However, such higher dimensional theories can also be usaflat the BC's be consistent with the variation of a gauge
to break the gauge symmetries if one compactifies the theonywvariant Lagrangian that has no explicit gauge symmetry
on an interval instead of a circle. Then by assigning nonpreaking, one would guess that such breaking should be soft.
trivial boundary conditiongBC'’s) to the gauge fields at the |n order to verify this, we investigate in detail the issue of
end points of the interval one can reduce the number of unanitarity of scattering amplitudes in such 5D gauge theories
broken gauge symmetries, and thus effectively generateompactified on an interval, with nontrivial BC's. We derive
gauge boson masses even for the modes that would remaie general expression for the amplitude for elastic scattering
of longitudinal gauge bosons, and write down the necessary
conditions for the cancellation of the terms that grow with
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energy. We find that all the consistent BC’s are unitary in thegauge fields have to satisfy. We denote the bulk gauge fields
sense that all terms proportionalE4 andE? vanish. In fact, by A% (x,y), wherea is the gauge indexy is the Lorentz
any theory with only Dirichlet or Neumann BC'’s is unitary. index 0, 1, 2, 3, 5x is the coordinate of the ordinary four
Surprisingly, this would also include theories where thedimensions ang is the coordinate along the extra dimension
boundary conditions can be thought of as coming from gwe will use from time to time a prime to denote a derivative
very large expectation value of a brane localized Higgs fieldwith respect to they coordinat¢. We will assume a flat

in the limit when the expectation value diverges. For suchspace-time background. We will consider several cases in
theories with “mixed” BC's, even when thE* terms cancel, this section. First we will look at the simplest example of a
the E2 term in the amplitude does not cancel in general. Thisscalar field in the bulk, which does not have any of the com-
is not surprising, since such mixed BC’s would genericallyplications of gauge invariance and gauge fixing. Then we
come from an explicit mass term for the gauge field localizedwill look at pure 5D Yang-Mills theory on an interval. The
on the boundary. Thus cancellation of tE& term would cases of gauge theory with a bulk or brane scalar field are
happen only if the explicit mass term is completed into adiscussed in Appendix A.

gauge invariant scalar mass term, in which case the exchange
of these boundary scalar fields themselves have to be in-
cluded in order to recover a good high-energy behavior for
the theory. Indeed, we find that in some cases it may be To start out, let us consider a bulk scalarfield on an
possible to introduce such boundary degrees of freedorfiiterval with an action

which would exactly enforce the given BC’s, and their con-

A. Bulk scalar

tribution cancels the remaining amplitudes that grow with S:f d4XfﬂRdy(l&N¢8N¢—V(¢))
energy. 0 2
These arguments suggest that it should be possible to
build an effective theory which has no Higgs field present at + d4x1¢2M2+f d4x£q§2M2. 2.1)
all, but where the unitarity of gauge boson scattering ampli- y=0 2 oy T2 2

tudes is ensured by the presence of additional massive gauge

fields. We show a simple example of an effective theory ofin order to find the consistent set of BC's we impose that the

this sort where a single KK mode for th#'s and theZ is  variation of Eq.(2.1) vanishes. Varying the action and inte-
needed to ensure unitarity, and which are sufficiently heavyrating by parts we get

and sulfficiently weakly coupled to have evaded direct detec-

tion and would not have contributed much to electroweak R oV
precision observables. 5S=—f d“xf dy5¢(D5¢+— —f d*x

In order to actually make an effective theory of this sort 0 I
appealing one would have to give a UV completion, for ex- « 2 — S deb+ M2 -0
ample at least in terms of an extra dimensional theory. There- [04(05¢—M3)|zr— 36 (d5p+M1b)lo] =0.
fore we will consider several toy models of symmetry break- (2.2

ing with extra dimensions. The first two models are

prototype examples of orbifold vs brane Higgs breaking ofNote that we kept the boundary terms obtained from integrat-
symmetries, which we combine in the final semirealisticing by parts along the finite extra dimension, while we have
model based on the breaking of a left-right symmetric modehssumed as usual that the fields and their derivatives die off
by an orbifold using an outer automorphism. This model isasx,— . The variation of the bulk terms will give the usual
similar to the standard model, in that it has unbroken elechulk equation of motion,

tromagnetism, the lightest massive gauge bosons resemble

the W and theZ, and their mass ratio could be close to a oV

realistic one. However, the masses of the KK modes are too Ogop+ ﬁ=0. (2.3

light, and their couplings too strong. Nevertheless, we view

this model as a step toward a realistic theory of electroweak o
symmetry breaking without a Higgs boson. In order to ensure that the action is minimized, one also has

Interesting related observations about higher dimensiondP €nsure that the variation of the action from the boundary
gauge theories have been made in R&6], where the ap- Pieces also vanisfthe sign is+ for the boundary ay=0
pearance of an infinite tower of vector meson states in QC&nd it is — for the boundary ay=wR):
has been modeled out using a higher dimensional gauge
theory. 8P(3sp+=MZ)| o -r=0. (2.9

A consistent BC is one that automatically enforces the above
equation. There are two ways to solve this equation: either
the variation of the field on the boundaries is zero, or the

We consider a theory with a single extra dimension com-expression multiplying the variation. Therefore the consis-
pactified on an interval with endpoints 0 anfR. We wantto  tent set of BC's that respects 4D Lorentz invariancey at
study in this section what are the possible BC's that the bulk=0, =R are

Il. GAUGE THEORIES ON AN INTERVAL:
CONSISTENT BC’'S
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() (IspEMPP)]y=0-r=0; (2.5)  The bulk terms will give rise to the usual bulk equations of
' motion:

(i) —0.-R= CONSt. (2.6)
d)ly 0mR aMFaMV_g5fabCFbMVA§/|+ %aya(rAg_avasAgzol

Equation(2.5) corresponds to a mixed BC and it reduces to

Neumann for vanishing boundary mads; the value of¢ at I7F3— gsfabCngAC"+ 950,A%7— £9EAE=0.

y=0, wR is not specified. The second type of BC corre- (2.9

sponds to fixing the values @f on the boundary, and reduces

to a Dirichlet BC when constO. It is a matter of choice However, one has to ensure that the variation of the bound-

which one of these conditions one is imposing on the boundary pieces vanish as well. This will lead to the requirements

aries. One could pick one of these conditiongat0 and the a anaw

other aty= 7R. When several scalar fields are present, there Fs0A™ 0-r=0, (2.10

is also the more interesting possibility to cancel the sum of

all the boundary terms without having to require that indi-

vidually each term is vanishing by itself. We will see an

example for this in Sec. VI of this paper.

(9,A%— £95A2) A5 .r=0. (2.11)

The BC’s have to be such that the above equations be satis-
fied. For example, one can fix all the variations of the fields
to vanish at the end points, in that case the above boundary
B. Pure gauge theory in the bulk terms are clearly vanishing. However, one can also instead of
Setting A5, =0 require that its coefficientd, A%
gauge bosom? and a 4D scalaA? in the adjoint represen- —ga§Ag vanis,hes. The different choices Iea'd to different
tation. Since there is a quadratic term mixiAg andAg we consistent BC'’s for the gauge theory on an interval. There

need to add a gauge fixing term that eliminates this cros&'® different generic choices of BC's that ensure the cancel-
term. Thus we write the action after gauge fixingipgauge lation of variation at the boundary and preserve 4D Lorentz

In this case the 5D gauge boson will decompose into a 4

as invariance:
5= [ [ Tay| - gFaEe (i AL=0Ag=const 212
0
) . (i) A%=005A%=0; (213
_ _pa gpabv_ am __ a2
2F5VF 2§(§“A §0sAs)" ), (27) (i)  dsA7,=0,A5 =const. (2.14

However, besides these general choices where the individual

a a__ a abcpab acC abo
\é\vrhee;EeF!3ucilTrQNcoigg¥1gg§; theAM au ,eanrqojhefrhes audgms in the sum of Eq(2.11) vanish, there could be more
i . gauge group. 9 £%lnteresting situations where only the sum of the terms in Eq.
fixing term is chosen such thdas usual the cross terms

) a (2.11) vanish. We will see an example for this in Sec. VI of
between the 4D gauge f'elﬁi and the 4D scalargs cancel this paper. While condition&.12 and(2.13 are exact, con-

(see also Refl18]). Taking £—c will result in the_ unitary dition (2.14) only satisfies Eq(2.11) to linear order. The
gauge, .Where all the KK modes O,f th'e scalars fieldsare exact solution require$5;=0 which imposes additional
unphysical(they become the angltudlnal modes of the 4D constraints especially in the case of an unbroken gauge sym-
gauge bosonsexcept if there is a zero mode for tig’s. metry (i.e., zero mode gauge fields
We will assume that EVE‘W? mode is massive, and thus that Generi(,:ally, it is a choice which of these BC’s one wants
all the Ag's are eliminated in unitary gauge. ~ to impose. One can impose a different type of condition for
The variation of the actioii2.7) leads, as usual after in- gyery different field, meaning for the different colasand
tegration by parts, to the bulk equations of motion as wgll asor A, Vs As, as long as certain consistency conditions re-
to boundary termgwe denote byfF] the boundary quantity |5teq to the gauge invariance of massless gauge fields is
F(7R)—F(0)): obeyed. Different choices correspond to different physical
situations. An analogy for this is the theory of a vibrating
rod. The equation of motion is obtained from a variational
principle minimizing the total mechanical energy, including
the terms appearing from the boundaries. Which of the BC’s
one chooses depends on the physical circumstances at its
ends: if it is fixed at both ends the BC is clearly that the
displacement at the end points is zero. However, if it is fixed

1
5s=f d“xdy(aMFaM”—g5fab°FbMVA§,,+E&”&"Ai

_av(?5Ag) 5A3_f d4xdy((9aF§5_gsfachk;5Acg

+ 050, — E0ZAZ) OAY only on one end, then one will get a nontrivial equation that
the displacement on the boundaries has to satisfy, the analog
+f d*x{[F2,6A%]+[(9,A% — £95AZ) SAZ]}. of which is the conditiorF2,=in Eq. (2.11).
Similarly in the case of gauge theories, it is our choice

(2.8 what kind of physics we are prescribing at the boundaries, as
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long as the variations of the boundary terms varspriori, ‘

one can impose different BC's for different gauge directions. A%(x,y) =2 €,fa(y)ePr, (219
However, some consistency conditions on the gauge struc- "

ture may exist. For instance, if one wants to keep a massleggnhere pﬁ= Mﬁ ande, is a polarization vector. These wave

vector, then in order to preserve 4D Lorentz invariance thefunctions(due to the assumption of 5D Lorentz invariance,

action should possess a gauge invariance. This means thal o 5 fat backgroundthen satisfy the equation
the massless gauge bosons should form a subgroup of the 5D

gauge group. fa(y)+M22f3(y)=0, f2'(0,mR)=V32.f2(0,7R).

One should note that there is a wider web of consistent (2.20
BC’s than the one encountered in orbifold theories. For in-
stance, within each gauge direction, the BZ12 would  The couplings between the different KK modes can then be
have never been consistent with the reflection symmetry obtained by substituting this expression into the Lagrangian
*)—y Symmetry of an orbifold. The full gauge structure of (27) and integrating over the extra dimension. The resulting
the BC’s is also much less constrained: in orbifold theoriescouplings are then the usual 4D Yang-Mills couplings, with
the gauge structure was dictated by the use of an automotbe gauge couplingy, in the cubic and gauge coupling
phism of the Lie algebra, which was a serious obstacle ifsquare in the quartic vertices replaced by the effective cou-
achieving a rank reducing symmetry breaking. As we willPlings involving the integrals of the wave functions of the
see explicitly in Secs. V B and VI, these difficulties are easilyKK modes over the extra dimension:
alleviated when considering the most general BQ12 -

(214) N abc _ fd f )fb )fc( ),
In order to actually quantize the theory one also needs to Geusic= Gmaic=0s | AY fn(y)EalY) Ty
add the Faddeev-Popov ghosts to the theory. One can add 5D (229
FP ghost fieldsc® and'c® using the gauge fixing function
from Eq. (2.7 Ouartic— Ik = 05 f dy f () R (Y.
Lep=CL~(3,D")+£(3sDs)]c”. (219 (2.2

] ) - Herea, b, c, d refer to the gauge index of the gauge bosons
The ghost fields have their own boundary conditions as wellgq m, n, k, | to the KK number.

In order for the gauge theory to be consistent, one needs to
rgstrlct_the gauge transformatias? pe_lr'ameter such that |'t IIl. UNITARITY OF THE ELASTIC-SCATTERING
will sa_ltlsfy the same boundary condition as the gauge field 5\p| I TUDES FOR LONGITUDINAL GAUGE BOSONS
following from Eq. (2.11):
We have seen above that gauge theories with BC'’s lead to

d,D*w?— £dsDsw®=0, (2.16  various patterns of gauge symmetry breaking. The obvious
question is whether these should be considered spontaneous
and similarly for the FP ghost (soft) or explicit (hard breaking of the gauge invariance.
Since we have obtained the BC’s from varying a gauge in-
d,D*c?— £dsDsc?=0. (2.17  variant Lagrangian, one would expect that the breaking

should be soft. We will now investigate this question by ex-
These conditions and Eq&2.10 and (2.11) are boundary amining the high-energy behavior of the elastic-scattering
conditions, which are conceptually different from gauge fix-amplitude of longitudinal gauge bosons in the theory de-
ing conditions that are imposed in the path integral by addingcribed in the previous section. Using the couplings obtained
the bulk term— (1/2¢)(9,A% — £95A%)2 to the action. above we are now ready to analyze these amplitudes. First
The cases for gauge theories with bulk scalars or localize#e Will extract the terms that grow with energy in these
scalars are discussed in Appendix A. For the case of a scala@mplitudes, then discuss what BC’s will enable us to cancel
localized at the end point the generic form of the BC for thethe terms which grow with energies. We will restrict our

gauge fieldgin unitary gauggwill be of the form analysis to elastic scatterifg.
(75AZ|OWR:V8?TRA2\OWR- (2.18 A. Elastic-scattering amplitude

_ _ o We want to calculate the energy dependence of the ampli-
These are mixed BC's that still ensure the hermiticgglf-  tude of the elastic scattering of the longitudinal modes of the

adjointnesp of the Hamiltonian. In the limitvVa®—0 the KK gauge bosons:i+n—n-+n with gauge index structure
mixed BC reduces to a Neumann BC, while the linaft’

— oo produces a Dirichlet BC. —
Finding the KK decomposition of the gauge field reduces 2wporking in the unitary gauge, there is a pole in the inelastic

to solving a Stu.rm-LiouviIIe problem with Neuman_n or Dl scattering amplitude when a massless gauge boson is exchanged in
richlet BC’s, or in the case of boundary scalars with mixedthe u and t channels. Technically, this requires us to work in a

BC'’s. Those general BC’s lead to a Kaluza-Klein expansiorgeneralé gauge and more computations are needed to derive sum
of the gauge fields of the form rules equivalent to the ones we present for the elastic scattering.
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n n E* E?
a (n) (n) c A:A(4)_+A<2)W+A(O)+(’)

M3
— . 3.1
VI E? @

n

It may seem inconsistent to formally expand the ampli-
tude in energies, when for any fixed energy there are KK
modes that are much heavier and the series is potentially
(n) (n) d nonconvergent. However, from the higher dimensional

effective-field theory we can see that the heaviest modes are

FIG. 1. Elastic scattering of longitudinal modes of KK npot important. Summing over all the modes is just the sim-
gauge bosonsn+n—n+n, with the gauge index structure plest way of maintaining gauge invariance which would be
a+b—c+d. broken by a hard cutoff on the spectrum.

. . . To show this consider a non-Abelian gauge theornpbin
atb—c+d (see Fig. 1. where this process involves both gimensions with a cutoff\. The leading effect of integrating
exchange of th&’'th KK mode from the cubic vertex and the ;t the KK modes abova should be given by gauge invari-

direct contribution from the quqrtic vertex. We will also as- ant higher dimensional operators. An example of such opera-
sume that the BC’s corresponding to the external modes witky, s is given by

gauge indices, b, ¢, d are of the same type, that is, they

have the same KK towerhowever, we willnot assume this g%

for the modes that are being exchangéithere are four dia- b FfAN. (3.2
grams as shown in Fig. 2: the, t-, andu-channel exchange A

of the KK modes, and the contribution of the quartic verteX. a1 other gauge invariant operators of the same dimension

The kinematics assumed for this glashq scattering Is in th(ghould give similar results for the scattering amplitudes. The
center-of-mass frame, where the incoming momentum V€Coefficient of this operator can be fixed by first going into the
tors arep,,=(E,0,0;+ VE?~M}), while the outgoing mo- normalization where the coefficient of the kinetic term is
menta are E,*\E?— Mﬁsin 6,0,= \E?— Mﬁcos@). E is - 1/(4g%). In this normalizatior\,\ has dimension 2, thus
the incoming energy and the scattering angle with forward the prefactor 14°~P. Going back to canonical normaliza-
scattering ford=0. The longitudinal polarization vectors are tion we get the higher-order term of E@.2). Alternatively,

as usualk,=(|p|/M,E/Mp/|p|) and accordingly the contri- We can see that this operator contains three gauge fields, so if
bution of each diagram can be as bad Eﬂch;‘_ It is it comes from a loop of massive gauge fields it should con-
straightforward to evaluate the full scattering amplitude, andain three gauge couplings. The contribution to longitudinal
extract the leading behavior for large values energies of thiscattering from the ordinarf g, term is proportional to
amplitude. The general structure of the expansion in energy 5 4

contains three terms: 9o(ER) (3.3

[where we have assumed the incoming gauge boson mass is
O(1/R), the inverse of the compactification radju$his can

be seen easiest by looking at the four-point coupling of the
gauge field. That has an explicit factor g% and there are
four polarization vectors which are of ordefM ~ER. Na-
ively, the contribution from the higher dimensional operator
is growing faster with energy, with a pow&®. However,
gauge invariance will actually soften this amplitude. One can
see this explicitly by noting that from E¢3.2) one needs
two factors ofd,A,—d,A,, and two other factors of the
gauge field. This will imply that two of the polarization vec-
tors appear in the combinatiqn),e,—p, €, , which after ex-
plicitly substituting for the polarization vectors is just pro-
portional to the mass of the external particle, rather than
growing with energy. Therefore the contribution from the
F3,\ terms scales as

contact interaction

gp

AG—D

1
(ER)ZE, (3.9

so the ratio of the correction term to the leading term is

t channel exchange u channel exchange
2
FIG. 2. The four gauge diagrams contributing at tree level to the L' (3.5
gauge boson elastic-scattering amplitude. (AR)®* P(ER)?
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where we have used3=giR°*. Thus forE>1/R, AR 3,g2°%3%9eM¢2 are independent of the gauge indzswhich
>1, andD <6 the contributions from the highest KK modes ingeed is a true statement as we will show later on.
are suppressed. Note that here we have not used the non- | one assumes the cancellation of Etterms(which we

trivial cancellation of thé* term in the amplitude. Once that |l show is indeed always the casene has the relation
is taken into account, the effects of the KK modes are still

suppressed as long Bs<6 andAR>1. For a 5D theorAR
can be large as 2# [17]. gﬁanEk Jrnk 3.8
We would like to understand under what circumstances
A® and A® vanish. The vanishing of these coefficients Using this relation the expression for tiE terms can be
would ensure that there are no terms in the amplitude thaimplified to the following:
explicitly grow with energy. This is a necessary condition for .
the tree-level unitarity of a theory. However, this is certainly 2_ ! 2 2 2 a2
not a sufficient condition. The finite piece in the amplitude A :_2(49nnnnMn_32 gnnkMk)
M k
A© should also not be too large in order for the theory to be "
tree unitary, for every possible scattering. In theories with
extra dimensions, since there is an infinite number of KK X
modes available, there will always be some amplitudes that
have finite pieces, which, however, grow as the number of Even though we will not consider constraints coming

exchanged KK modes is allowed to increase. This simply,m the finite €°) terms in the elastic-scattering amplitude,
reflects the higher dimensional nature of the theory, and thg,, completeness we present the relevant expression here

fact that higher dimensional gauge theories are nonrenorm making use of the conditions for canceling th&) andA?
izable. Therefore tree unitarity is expected to break down erms:

energies comparable to the 5D cutoff scale, even whiéh
=A@ =0, When discussing unitarity of these models we

0
facefbde_ Sinzzfabefcde) ) (3.9

0)_j 2 befcd
will simply mean the cancellation of tha® and A am- Al )—'Ek: Innd FFCF (M /M, 0)
plitudes. We stress again that this does not imply that the
conventional unitarity bounds on the finite amplitudes have + facefbdeg (M, /M,,, 6)], (3.10

to be satisfied for all processes. )
The largest term, growing witk?, depends only on the With
effective couplings and not on the mass spectrum:

1
F(x,0)=— 16—§/2[4— 10x2+ 7x*—8(4—3x?)cosf
AD=il g2 —> gﬁnk> [fabefcde 3+ 6 cosd—cos 6) cos 6
K —(4—2x?—x*) cos 24],
+2(3—cog @) facefhae] (3.6) )
The expression for the amplitude that grows withis G(x,0)= > sir? 0[4_6X2+3X4+(1Z_ 10x*+ x*)cos 4].
i (3.11
2)_ bd 2 2 2 N2
Al )—Wfacef e( 49nnnnMn_3§ gnnkMk) We can summarize the above results by restating the con-
n ditions under which the terms that grow with energy cancel:
[
__fabefcd 4 2 M2_3 2 MZ
ZMﬁ B{ InnnnVin Ek OnnkVlk gﬁnnnzzk gﬁnk' (312)
+( 1292, M2+> g2 (3M2—16M2))c050 .
nanmEn k nnk K i 4gﬁnnnM%=3Ek gﬁnkME' (3-13
(3.7
Both in Egs.(3.6) and(3.7) everywhere below the KK indi- B. Cancellation of the terms that grow with energy

cesn andk actually have to be interpreted as double indices for the simplest BC’s

that stand both for the color index and the KK number of the The goal of the remainder of this section is to examine
given color index, e.gk~ (k,e). Also, as stated above, we under what circumstances the terms that grow with energy
are assuming that all the ingoing and outgoing gauge bosoreancel. Consider first thE* term. According to Eq(3.12
satisfy the same boundary condition and thusrihadex is  the requirement for cancellation is

colorblind. In getting the expressiofi3.7) or (3.9) for A(®), . .
we used the Jacobi identity which requires a sum over the Y i i 2

gauge index of the exchan{;ed gaugeq boson. Thus we havefo dyfn(y)—; fo dyjo dzfﬁ(y)fn(z)fk(y)fk(z).
implicity assumed that the sums lik&,g2Psgcee or (3.14

7R
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One can easily see that this equation is in fact satisfied no * oo (™R, .

matter what BC one is imposing, as long as that BC still a, :Mka' dyfa(y) fi(y),

maintains Hermiticity of the differential operat@é on O, 0

7R. The BC maintains Hermiticity of the differential opera- e

tor if it is of the form f; x=Vq .rfj0-r- In this case one (k)zszJ” 200 f (V). 1

can explicitly check tHaﬂth*g”:‘ngh*”g. The reason i “Jo i TLY) (318

why Eq.(3.149) is obeyed is that for such Hermitian operators

one is guaranteed to get an orthonormal complete set of sdsing the 5D Lorentz invariant relation between the wave

lutions f,(y), thus from the completeness it follows that ~ function and the mass spectrunMﬁfk(y)z—f,’;(y), a
simple integration by part gives, neglecting the boundary
terms that we will include in the next section, the recurrence

> fyf2)=ay-2), (315  relatons
al),;=2MZal’—2b, bl =2Mzbl¥—2Mpal,

which immediately implies Eq(3.14.2 The completeness (3.19
relation basically implies that any function can be expande
in terms of the eigenfunctions o;lf, on the interval 0,7R,
a(y)==fu(y)f5Rdzg(2)f(2). There is a subtlety in this if
the BC for thef's is f(0,mR)=0, since in that case only
functions that are themselves zero at the boundary can be ) )
expanded in this series. However, even in this case the ex.he completeness relati@8.15 finally allows us to evaluate
pansion will converge everywhere except at the two endhe sums:
points to the given function, and since we will integrate over
the interval anyway, changing the function at finite number E (K)y2_ ”Rd f4
of points does not matter. Thus we conclude that BdL4) (a5") 0 YTa(y),
always holds, the* terms always cancel irrespectively of
the BC’s imposed. Therefore we can now assume thaEthe 1 R
terms cancelled, and using the equation that leads to the can- > agk)bgk)=—MﬁJ dyfi(y), (3.21)
cellation of these terms we get that the condition for the k 3 0
cancellation of theE? terms is as in Eq(3.13),

qrom which we obtain that

alo=2% M A(Mia-bf). (320

which, combined with the recurrence relation, lead to the
sum rule(3.17). Forp=1 this relation exactly coincides with

7R 7R . . .
3; Mﬁfo dyfo dzf(y)fa(2) fu(y) f(2) Eg. (3.16, and implies the cancellation of tHe? terms.
(™R, C. Sum rule with boundary terms
=M “fo dyfa(y). (3.19 In the previous section, we have derived, neglecting some

possible boundary terms, a sum rule which ensures the can-
cellation of the terms that grow with the energy in the scat-
Let us first assume that one can integrate by parts freelring amplitude. We now would like to keep track of those
without picking up any boundary termsve will later see  poundary terms and see under which circumstances the terms
under what circumstances this assumption is indeed justin the scattering amplitude that grow with energy still vanish.
fied). In this case we can easily derive a sum rule of the formas discussed above, the cancellation of Bfeterms is al-
ways ensured by the completeness of the eigenfunctions of
R 2 92p R 33. However, the sum rule in E¢3.16 will be modified if
> Mﬁp( J dyfﬁ(y)fk(y)) =?MﬁpJ dyfi(y). there are nonvanishing boundary terms picked up when inte-
k 0 0 grating by parts. The resulting corrections to the sum rule
(817 relevant for theE? term is given by( we denote again bjF]
the boundary quantitf (7R) — F(0))

Indeed, let us define

2
> M f dyfﬁ(y)fk(y)>
3Again we stress that, restoring gauge indices, the completeness 4 2
relation holds=, fg(y)fg(z)= &(y—2), with no sum overe. This :_Mﬁf dyfﬁ(y)_ _[fﬁfé]_z [fﬁf{(]f dyfﬁ(y)
just says that there is completeness for every gauge index sepa- 3 3 k

rately. This justifies the manipulations used to get E§s/)—(3.9),

where the Jacobi identity was used without paying attention to the < fk(y)+22 [ f’fk]j dny(y)fk(y)_ (3.22
remaining implicit gauge indices in the sum. K nn .
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Thus one can see théats expectexfor arbitrary BC’s theE?>  find the actual unitarity bounds on the finite pieces of the
terms no longer cancel. However, if one has pure Dirichlet oelastic-scattering amplitudes, which is beyond the scope of
Neumann BC'’s for all modgsome could have Dirichlet and this paper.
some could have Neumann, but none should have a mixed
boundary condition as in E¢2.18] then all the extra bound-
ary terms will vanish, and thus the cancellation of &
terms would remain. Clearly, the terms in £g§.22) involv-
ing [f,f;] vanish, since for the external mode either the We have seen above that the necessary conditions for can-
function or its derivative should vanish on the boundary. Theceling the growing terms in the elastic-scattering amplitudes
one term that needs to be analyzed more carefully isre
S 2600 0dyf2(y) fi(y). If f, satisfies Neumann BC's,
while f, Dirichlet, then the boundary piece itself is not van- 5 5
ishing. However, in this case the expansion in termd of gnnnnZE Ynnke (4.7)
converges even on the boundary, and thus .
= Fr(x) [ f2(y) f(y)dy converges to 2,(x)f/(x), and thus
we will again have a produckf,f)] on the boundaries,
which will vanish.

Thus we can conclude that in theories with only Dirichlet
or Neumann BC’s imposed thE? terms in the scattering

IV. A 4D EFFECTIVE THEORY WITHOUT A
HIGGS BOSON

4gﬁnnnMﬁ:32k grzmkME' (4-2)

litud il al | This implies. f I One can ask the question, in what kind of low-energy effec-
amplitudes will always cancel. This implies, for example, e theories could these conditions be possibly satisfied?
that all models that are obtained via an orbifolding procedur ssuming, that there ar¥l gauge bosons, one can clearly

(thqt '?. takmgi an e:j(tra tdr:rr;err:smnal theory on a ::lrcle, an lways satisfy the relationgt.1) and (4.2) for the first N
projecting onto modes that have a given property under _ particles, as long ag2,,=9>,, Given the couplings

——y and7R—y— wR+y projections will be tree unitary '
at least up to around the cutoff scale of the theory. In fact, we 111 andgy;yyand the mass of the lightest gauge bostfy
he necessary couplings and masses for the second gauge

can see that for all consistent BC'’s from H@.11) the E?
terms vanish. This shows that, as expected, those BC'’s Whiclp}oson can be calculated from Edd.1) and(4.2) to be

follow from a gauge invariant Lagrangian will have a proper X
high-energy behavior. However, in the presence of mixed 2 2 2 , Mi[4 , 2
. . . : =071~ 051 M3=—— (5071110711, 4.3
BC, the boundary terms in the piece of the scattering ampli- 91127 911117 G1na 2 3911117 911
s - 9112
tude that grows withE“ are nonvanishing and prevent the

theory to be tree unitarity up to the naive cutoff scale of the . . .
theory, e.g., the perturbative cutoff. The reason is that thi@SSuming that a single extra gauge boson is needed to cancel

corresponds to adding an explicit mass term for the gaug .(.a.growing amplitudes. Clearly, ther.e are many other possi-
bosons on the boundary which violates gauge invariance. IP1iti€S as well to satisfy these equations for e-1 light-
however, this comes from a gauge invariant scalar kineti€St parthles. Howeyer, the equation cannot be sat|sf|ed_f0r
term via the Higgs mechanism, then extra scalar degrees 6Iiae _heawest mode itself. The reason is that for the heaviest
freedom need to be added. As we will see explicitly in theParticle one would get the equations
example of Sec. VB, some extra degrees of freedom local-
ized at the boundary are indeed needed to restore tree unitar- ) ) ) ) 3M2
ity in this case. In some limits, however, these extra localized gNNNszk INNke gNNNszk QNNkW- (4.9
states can decouple without spoiling tree unitarity. N

We close this section by presenting the corrections to the

. . H : 2 2 .
sum rule that is relevant for the evaluation of fieterms of ~ Since the ratio 81;/(4M{) <1 for the heaviest mode, these
the scattering amplitude: equations cannot be solved no matter what the solution for

the firstN—1 particles was, as long as one has a finite num-
) 2 4 ber of modes. Thus we can see that there cannot be a heavi-
Ek: f dyfifi] My est mode, for every gauge boson there needs to be one that is
more heavy if one wants to ensure unitarity for all ampli-
16, . 28 . o 3 tudes. Thus a Kaluza-Klein-type tower must be present by
=3 M nf dyfn+ 5 Milfafal =4l fafn’] these considerations if the theory is to be fully unitary with-
out any scalars, and Eqggl.1) and(4.2) can be satisfied only
, , , in the presence of infinitely many gauge bosons.
+§k: [fife—2 fnfnfk]z_Ek: (4M§[f§fk]J dy fafi From an effective theory point of view one should, how-
ever, consider the theory with a cutoff scale. Then there
' 2es , , would be a finite number of modes below this cutoff scale,
_Z[fnsz]J dyfﬁfk—z[fﬁfk]f dyfnsz>' (3.23 for all of which one could ensure the unitarity relations, ex-
cept for the mode closest to the cutoff, for which one has to
This is the relation that needs to be used if one were to try t@ssume that the UV completion plays a role in unitarizing the
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amplitude. However, from this point of view we can see thatboundary conditions, then the masses will not really be qua-
the cutoff scale could be much higher than the one naivelylratically divergent, the divergences will be cut off roughly
estimated from the growin§? amplitudes within the stan- by the radius of the extra dimensipidowever, the theory is
dard model. For example, in the minimal case a singte  still technically natural since there is a limit whefieidden
andZ’ gauge bosons are necessary to unitarizeVien, gauge invariance is restored and the divergence must be pro-
and Z, Z, scattering amplitudes. In fact, the relatiofs1)  portional to the gauge invariance breaking spurion. In the
and (4.2) can be satisfied with 8’ andZ’ that are heavy present example we can estimate the divergent contribution
enough and sufficiently weakly coupled, so that their effectd0 theZ mass to be at most
would not have been observed at the Tevatron nor would
they have significantly contributed to electroweak precision
observables.

For example, in the standard mod&M) the scattering
W W —W/ W, is mediated by, t andu channelz andy The three gauge boson couplings required between the
exchange, and by the direct quartic coupling. The cancellaheavy and the light gauge bosons is quite small. Therefore
tion of the E* term in the SM is ensured by the relations loop contributions to the oblique paramet&sT, Uwill be

strongly suppressed. However, one has to still ensure that no

2

) Gwwz
6M35~0.01 >
167

A%~0.7 Ge\’. (4.6)

2 =02 g% w,=9g%cos 6 -
Gwwww-9%  Gwwz—9 W large tree-level effects appear due to mixings between the
5 o o heavy and light gauge bosons, which could spoil electroweak
Jww, =€ =g’ SiI 6. (4.5  precision observables. In practice, this will probably require

_ that the interactions of the heaWy’ andZ’ obey a global
Lgt us now assume that the refation betweggfww and SU(2)c custodial symmetry which ensurps=1 in the SM.
Jwwz s slightly modified due to the existence of a he@ly The masses of order 500 GeV would fall to the borderline
which has a small cubic coupling with th&'s g3, The region of direct observation, assuming that their couplings to
values of the three gauge boson coupligggy, andgww,  fermions is equal to the SM couplings. However, if the cou-
are not strongly constrained by experiments, they are knowpling to fermions is just slightly suppressed, or it decays
to coincide with the SM values to a precision of about 3—5%dominantly to quarks or through cascades, then the direct
while there is basically no existing experimental constraintsearch bounds could be easily evaded.
on gawww Let us therefore assume that the three gauge One should ask what kind of theories would actually yield
boson Coup|inw\2NWZ is smaller by a percent than the SM low-energy effective theories of the sort discussed in this
prediction. Then in order to maintain the cancellation of thesection. We will see below that some extra dimensional mod-
E* terms one needg,,,» ~0.01g2,wz The cancellation of els could come quite close, though the masses of the gauge

the E2 terms would then fix the mass of thE to be about 20SONSs are lower than 500 GeV, while thearameter has to
560 GeV. be tuned to its experimental value. Before moving on to

these models, let us discuss whether any 4D theories with
eproduct group structure could result in cancellations of the

growing amplitudes. These models would correspond to de-
constructed extra dimensional theories. It has been shown in
Ref. [19] that for finite numbemN of product gauge groups

Note that one would not expect a quarficoupling or a
ZZvy coupling, since there is none in the SM, thus there ar
no contributions t&Z, Z, —Z, Z, (contrary to the SM where
the Higgs exchange provides a finite tgrtdowever, to uni-

tarize theW, Z, —W,_Z, amplitude there also needs to be a . : . . .
LeL— WL amp there will be leftover pieces in thE? amplitude (without

, . . 2 .
hgavyW ' W'th. couplings toW a.nd Z Oz Similar to _ including Higgs exchangethat scale withN like 1/N° (see
Jwwz- Thus(without actually having calculated the coeffi- Appendix B for details Therefore in any linear or nonlinear
cients of the amplitudes for the inelastic scatteringe ex-  realizations of product groups broken by mass terms on the
pect thatW’ would also have a mass of order 500 GeV. This|ink fields the amplitudes will not be unitary. However, al-
way all the amplitudes involving only SMVs andZ's in  ready forN=3 one would get a suppression factor of 27 in
initial and final states would be unitarized. However, due tothe E2 piece of the Scattering amp"tude’ which would mean
the sum rule explained above the scattering amplitudes inhat the scale at which unitarity violations would become
volving theW’ andZ’ in initial and final states cannot all be visible would be of order 8 TeV, rather than the usual 1.5-
cancelled by only these particles. We expect that these anfeV scale. Below we will focus on the models based on extra
plitudes would become large at scales that are set by thg@mensions, where the cancellation of tB& terms is auto-
masses of theV’ andZ’ rather than the ordinaiWandZ, so  matic without a scalar exchange.
this would roughly correspond to a scale of order
47-IrMW,/g|~(;lbO Telzl(,j where the theory with only these par- V. EXAMPLES OF UNITARITY IN HIGHER
ticles would break down.

Since the 4D effective theory below= 10 TeV does not DIMENSIONAL THEORIES
have an SU(2) gauge invariancénot even a hidden gauge In this section we will present two examples of how the
invariance there is an issue with the mass renormalizationunitarity relationg(3.12 and(3.13 are satisfied in particular
for the gauge bosons: there will be quadratic divergences iextra dimensional theories. The first example will be based
the W andZ mass.(If the theory is completed into an extra on pure Dirichlet or Neumann boundary conditions, where
dimensional gauge theory with gauge symmetry breaking byhe cancellation as expected is automatic, while the second
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example will involve mixed BC’s for some of the gauge and check the general sum rules of Sec. Il. For instance, for
bosons, which will imply the noncancellation of tH&?  the elastic scattering aiVs, the relevant couplings are
terms. However, as we will show, unitarity can be restored

by introducing a boundary Higgs field.
wimwin 0= i( S0~ - O 2n+1) , (59
A. SU(2)—U(1) by BC To2yar T vz
Let us consider a 5D S@) Yang-Mills theory compacti-
fied on an orbifold that leaves only a(1) subgroup unbro- ) 392
ken. We will further impose a Scherk-Schwarz periodic con-  Gwmwmwmwn = g5 (5.9
dition in order to project out all the 4D scalar fields coming
from the component of the gauge fields along the extra di- )
mension. The 5D gauge fields thus satisfy The BC's conserve KK momenta up to a sign and therefore
only ¥® and y"*1) can contribute to the elastic scattering
AL(X,—Y)=PA,(xy)P! of W("'s. The sum ruleg3.12 and (3.13 are trivially ful-
filled.
and As(x,—y)=—PAs(x,y)P~ 1, (5.9 The point of this section was to show that it is indeed
possible to give a mass to gauge boson without relying on a
AL (Xy+2TR)=TA,(X,y)T* Higgs mechanism to restore unitarity. The orbifold
symmetry-breaking mechanism illustrated with this example
and Ag(x,y+2mR)=TAg(x,y)T 1, (5.2 s, however, restrictive since it usesza symmetry of the

 aa a , . action and in the simplest cas@sbelian orbifolds using an
whereAy =Ay /2 (7, a=1..3 are the Pauli matrice®  j,ner automorphisinit is even impossible to reduce the rank
the gauge field ané=diag(1-1), the orbifold projection e gauge group, which is a serious obstacle to the construc-
andT=P, the Scherk-Schwarz shift. Note that the orbifold {5y of realistic phenomenological models. There are, how-
projection and the Scherk-Schwarz shift satisfy the CoNSsiSgyer, more general BC's we can impose that are not equiva-

tency relation[20] PTP=T"". This setup could alterna- |ent to a simple orbifold compactification but still lead to a
tively also be described by twa, projectionsy— —y and  \ye|l behaved effective theory.

mR—y—7R+y. The action of the firsZ is just as in Eq.
(5.1, while the second one is similar witR replaced by

PT=P2%2=1. B. Completely broken SU2) by mixed BC's
Equivalently, we can describe this orbifold by a finite in- and the need for a boundary Higgs field
terval (ye[0,mR]) supplemented by the BC's: In the previous section, we considered a breaking of

SU(2) down to U1l) by an orbifold compactification. We
have shown that, in agreement with our general proof of Sec.
12 3 a I, the scattering amplitude of the gauge bosons that acquire
95A5(%,0)=0A5(x,00=0As5(x,mR) =0. (54 a mass through compactification has a good high-energy be-
havior. The cancellation of the terms growing with energy is
ensured by the exchange of higher massive gauge bosons and
Yoes not require the presence of any scalar field. We would
like now to consider some more general boundary conditions
than the ones coming from orbifold compactification. In this
1 (2k+1)y case, we will see_thfat the boundary terms of thg sum rule
Al(x,y)=>, sin( )[W+<k)(x)+W‘(k>(x)], (3.22 are nonvanishing and thus lead to a violation of the
w =0 7R 2R a a unitarity at tree level, however, unitarity can be restored by a
(5.5 scalar field living at the boundary. We illustrate these results
with an example of an S@) completely broken by mixed

ALA(%,0)=0,05A%(x,00=0,d5A%(x, mR) =0, (5.3

Note that there is no zero mode coming from the fifth com-
ponents of the gauge fields. Therefore we go to the unitar
gauge which is the same as the axial gaue=0). Then
the KK decomposition is

o

0 [(2k+1)y B (neither Dirichlet nor NeumanrBC's.*
Ai(x,y)=k20 \/ﬁsm( R )[W;(k)(x)_wu(k)(x)]v Let us thus now consider the BC's:
(5.6 IsAL(X,00=0, J5A%(X,7R)=VA(x,7R), (5.10
- 2 ky
3 _ Y Lw
A,L(x,y)—kgO 25k,o7TRC°S< R)u (X). (5.7 A%(x,00=0, A¥x,7R)=0. (5.11)

The spectrum contains a massless photdH and its KK A general solution can be decomposed on the KK basis
excitationsy™® of massM w=k/R as well as a tower of

massive charged gauge bosdns® of massM yw=(2k

+1)/(2R). With the above wave functions, it is easy to ex- “Reference[21] presented a model of Grand Unified Theory
plicitly compute the cubic and quartic effective couplings (GUT) breaking using mixed BC'’s.
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AZ(X'V):k; fk(y)AELk)(X)a Mk~2;—;1 1+ 77%/4_ , k=0,1.2.. (5.17
. a and the normalization factor &~ 1/\/7R, thus
with f (y)= Sin(M—kﬂ_R)COSMky). (5.12 , (2n+ 1)4
VEi(mR)~ AR (5.18

The BC at the originy=0, is trivially satisfied while the
condition aty= 7R determines the mass spectrum throughTherefore the terms in the scattering amplitude that grow

the transcendental equation with the energy do cancel whéhgoes to infinity. The physi-
cal reason of such a cancellation is clear: in the lafdienit,
M tanM7R)=—V. (5.13  the brane localized mass term becomes large and the wave

functions are expelled from the brane thus the mixed BC
The parameteN controls the gauge symmetry breaking: ds5f (7R)=Vf (7R) in the limit V— simply becomes
whenV=0, the BC’s are those of a orbifold compactification equivalent to the Dirichlet BG,(7R)=0 which, as we al-
with no symmetry breaking and whahis turned on there is ready know, does not lead to any unitarity violation.
no zero mode any more and the full &)Y gauge group is As we already said, a finite and nonvanishing order pa-
broken completely. Note that there is no zero mode either forameteV can be interpreted as an explicit gauge boson mass
the fifth component of the gauge field and thius can be term localized at the boundary. This explicit breaking can be
gauged away, leaving no scalar field in the low-energy 4DUV completed using the usual Higgs mechanism. In our
effective theory. SU(2) model, we can introduce a 4D $2) doublet localized

The normalization factom, is determined by requiring aty=wR. Giving a vacuum expectation value to the lower

that the KK modes are canonically normalize§"f2(y) ~ component of the localized Higgs doublet,
=1, leading to

1/0
=%, 519
V2 V2 \V
ag= s . (514)
VaR(1+MEV?) — 1N gives rise to the mass terfid*x 1/8g5v°A%(x,7R) in the

5D action. To obtain the BGsee Appendix A 2 for technical

Note that this KK decomposition can equivalently be ob-detaily we need to vary the action that contains both a bulk
tained through a much more lengthy procedure consisting iand a boundary piece. The relevant part of the action is
two steps(see Ref[18] for detaily: (i) assumeV=0, get a
KK decomposition as in Eq5.7) and obtain the correspond- o1 u
ing effective actionjii) reintroduce the paramet&f in the f 0 dy§a5A#’95A
effective action as a mass term that mixes all the previous
modes and the true eigenmodes are obtained by diagonali¥arying the bulk terms will introduce, after integration by
ing the corresponding infinite mass matrix. parts, the usual equation of motion as well as boundary

Unlike in the case of the previous section involving only terms:
Dirichlet or Neumann BC's, the mixed BC($.10 give rise

1
+595AL R (520

to boundary terms in the sum rui@.22 needed for the ™o, 1, )
computation of the scattering amplitude. We obtain 1o dydsA, OAK | +| dsA, OA* + 2 95 AuOA* -
2 4 1 (5.21)
Ek Mi“dyfﬁfk =§Mﬁf dyfﬂ'+§Vfﬁ(TrR).

The boundary terms thus impose the mixed BC:

(5.19

1
Consequently, the scattering amplitude has a residual piece  dsA%(X,mR)=VAZ(x,7R), with V=— Zgévz-
growing with the energy square which is proportional to the (5.22
order parametey: :

The three Goldstone bosons are eaten by the KK gauge

(2)_ig§ 4 b ccd ospd bosons that would be massless whér0 and we are left
A= VEn(TR) (= 665+ &7 sir 6/2 with only one physical real scalar field, the Higgs boson. At
" tree level, the exchange of this Higgs boson also contributes
+ 8295°¢ cog 6/2). (5.16  to the gauge boson scattering amplitude through the dia-

grams depicted in Fig. 3. The Higgs boson being localized at
Besides the cas¥=0, there is another limit where these y=R, its coupling to the gauge bosons is proportional to
boundary terms actually vanish. Indeed, whén 1/R, the  f2(wR). Thus we get a contribution to the scattering ampli-
low-lying eigenmasses can be approximated by tude that grows with the energy square:
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FIG. 3. Higgs exchange contributing at tree
level to the gauge boson elastic scattering ampli-
tude. The Higgs boson is localizedyat 7R and
the vertex Higgs-gauge-gauge is proportional to
f2(7wR).

s channel t channel u channel
. 402 . a La
igsv . U(1)q remains unbroken. We denote B2, A2, andBy,
AP = PIVE: fa(mR)(— 82P5°+ 52¢5°4 sir? 9/2 the gauge bosons of SU(R) SU(2),, and U1), respec-
" tively; g is the gauge coupling of the two $2)'s andg’, the
+ 56246 cog 6/2). (5.23 gauge coupling of the (1). We consider the two linear

) ) ) combinationd of the SU2) gauge bosonsAy?=(1n2)
Using the relation(5.22), we get thatas gxpecte)d_he nggs. X(AkAai Aﬁa)- We impose the following BC’s:
exchange exactly cancels the terms in scattering amplitude
from the gauge exchange that grows liE8. Remarkably

enough, the Higgs boson can be decoupled-( limit) - (95A;a=O, A,%=0,  3sB,=0,
without spoiling the high-energy behavior of the massiveat y=0: ia —a (6.1
gauge boson scattering. Note that this limit would simply As"=0,  JsA;°=0, Bs=0.
correspond to the\izo BC from Eq.(2.1).
r
VI. TOY MODEL FOR ELECTROWEAK SYMMETRY (95ALa=0 (95AR1'2= _ EgzvaRl,z
BREAKING VIA BC'S o " 4 woo
We want to study in this section the possibility to break __ E r2:0rm _ y AR3
O”SB,U, gv (g B,u. gA )1
the electroweak symmetry SU(2¥U(1)y down to U(1y, at y==wR: { 4 #
along the lines of the previous section, i.e., by BC’s without 1
relying on a Higgs mechanism either in the bulk or on the &5A53=ng2(g’BM—gA53),
brane(a realistic model of electroweak symmetry breaking
without any fundamental scalar field has been constructed in L AE?=0, AR?=0, Bs=0.
Ref.[22], see also Ref§23] and[24]. Here we want to go (6.2

further and totally remove any 4D scalar fields. See (5]
for a supersymmetric model where one Higgs field has been
removed by an orbifold projectionThe first idea would be One has to check now, that E¢.11) are indeed satisfied
to extend the analysis of Sec. VB to include a mixing be-requiring these BC’s. We will only explain how the first Eq.
tween SUW2) and U1). However, considering the limiv (2.1)) is satisfied aty=0, one can similarly check all the
—oo, we would get a mass degeneracy for Weé and thez ~ other conditions. Fronﬁ;a=0 we get thatﬁA';La= 5AEa.
gauge bosons. Our point is to show that we can actually liffhus we need to show th&2+ F*2=0, which is true due
this degeneracy and obtain a spectrum that depends on the the requirementgsA;az 0, A, ?=0, andA; ?=0. Note
gauge couplings. We do not claim to have a fully realisticthat these BC’s are a nontrivial example of E2.11) being
model but we want to construct a toy model that has thesatisfied without a term-by-term cancellation of the actual
characteristics of the standard model without the Higgs boboundary variations, but rather by a cancellation among the
son and that remains theoretically consistent. various terms.

Let us consider SO(4&U(1)~SU(2) XSU(2)g One may wonder where these complicated looking BC'’s
X U(1) compactified on an interv@D,7R] (for other mod-  originate from. In fact, they correspond to a physical situa-
els using a left-right symmetric extra dimensional bulk seetion where one has an orbifold projection based on an outer
Ref.[26], though the breaking pattern of symmetries is veryautomorphism SU(2)-SU(2)s around one of the fixed
different in those modeJsAt one end, we break S@) down  points. Indeed the BC's can be seen as deriving from the
to SU(2), by Neumann and Dirichlet BC’s. At the other end orbifold projections {=y+ 7R):
of the interval, we break SU(2X U(1) down to U(1), by
mixed BC’s and we will consider the limi¥— oo in order to
ensure unitarity without having to introduce extra scalar de- it can be seen that every other linear combination, except the
grees of freedontalternatively, one can directly impose the identity, would have not maintained any gauge invariance. The par-
equivalent Dirichlet BC’s, however, the gauge structure isticular combination chosen here preserves, at the boundary, an
more transparent using the limit of mixed BC'Thus only  SU(2), gauge invariance.
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AR, —y)=ARA(X,Y), ARAX,—y)=ALA(XY), 1 1 ) ) 1
a :_—’ k~_—1
0 /7TR /g2+2g12 /’7TR 192+2972
B.(X,—Yy)=B,(X,y), (6.3
1
AL (x,—9)= AL(x,9),  ARYx,—9) = ARYX,), %~ TR (619
B,(X,~§)=B,(x.9). (6.4) The spectrum is made up of a massless photon, the gauge

boson associated with the unbroken Uglgymmetry, and
some towers of massive charged and neutral gauge bosons,

The projections on the fifth components of the gauge fieldgy® gngz®. respectively. The masses of tié"'s are so-
are the same except an additional factat. At they=7R  |ytion of

end point, a localized SU()scalar doublet of (I) charge
1 acquires a vacuum expectation valMEV) (0,v)/v2 and W W 1.,
breaks SU(23xU(1) down to U(1),. The mass terms is M\ tan(2M, 7R)= 297 (6.1
responsible for the mixed BCK.2).

For a finite VEV, the 4D Higgs scalar localized @t and in the largev limit, we get the approximate spectrum
=R is needed to keep the theory unitary; we will, however,

consider the limity—c where this scalar field can be decou- w 2k-1 2
pled without spoiling the high-energy behavior of the gauge M= 4R 1= 7920°R o) k=12,
boson scattering. (6.12

Due to the mixing of the various gauge groups, the KK
decomposition is more involved than in the simple exampleThe masses of th&'s are solution of
of Sec. VB but it is obtained by simply enforcing the BC'’s

LR+ : - L.R1 1 1
[we denote byA, " the linear combinations (12) (A Mftar(Mwa)= §(92+29'2)”2_ ggzvz tanz(MﬁwR),

FiALR2):
(6.13
B , . Zo A > (k) and in the largev limit, we get two towers of neutral gauge
BL(x.Y)=0307,(¥) +9’ 2, b cosMiy)Z,0(x), bosons:
69 k—1 2
s M%Z Mo‘f‘? 1—m+"' , k=1,2..,
A3 (x,y)=0"agy, (X g g )vim
p,( y) g 0'}’;,,( ) , (614)
cogMi(y—mR)]
-9 by > Z9(x), , k 2
k=1 2 cogM 7R) Mg =| Mot = || 1-—5—FF—>—+|, k=12.,
R (g°+g'9)v° 7R
(6.6 (6.195
AR (X y) =g’ agy.(X) where M= (1/mR)arctany1+2g’'?/g?. Note that 1/(R)
mA 0Yu <Mp<1/(2R) and thus theZ's are heavier than th&'s
“ co§Mi(y+mR)] " (MZ'>MZ). We also get that the lighte@ is heavier than
—ngl by 2 cosMZaR) Z,(x), the lightestW (M$>MY"), in agreement with the SM spec-
= k
trum.
(6.7 The BC’'s break KK momentum conservation and as a
consequence all the KK will interact to each other. For in-
o stance, the cubic effective couplings betweenWand the
AL (xy)= > crcog MYy — WR)]VV(:)i(X), Z's (and theZ'’s) are, in the large VEV limit,
k=1
(6.8) 292 My 2
Gwmwmzk= — )
) JmR¥(g2+9g'2) (AM} =M )My
. - 6.1
AT ()= 3, 6 cof MIy-+ mRITW (). 616

6.9 while the couplings between th&'s and the photon are

o . - . 99’ 1
The normalization factors, in the large VEV limit, are given =1 (6.17)

gwinwn Y= ————
by Vg?+2g9'? V7R
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Let us now discuss how to introduce matter fields. LocallyKK level, which means that the couplings of matter to higher
at they=0 boundary, a SU(2)*XU(1) subgroup remains KK states will be unsuppressed.
unbroken. We can introduce some matter fields localized on One can also try to identify the couplings of matter local-
this boundary. Consider a $2) scalar doublet with a (1)
chargev2q. Its interactions with the gauge boson KK modesthe lowest component of a SU(R)doublet of U1) charge
are generated through the localized covariant derivative

D,®=0,

)
a(AST=iAS?)
’ 3
2v2g qBM—gA; o
(6.18

i [2v29'qB,+gA;®
2| gAIt+iAY)

Using the KK decompositior{6.5—(6.9), we evaluate the

value of the gauge fields at the boundary and the scalar ¢

variant derivative becomes

D,®=4d,P—-iv2gg'a,

! 0
+ —
q2

RG

(k)
pADY

(k) +
W )@.

. w
_gl igc, cog My WR)(\M:)‘ 0

(6.19

The interactions between the scalar douldbeind the first
massive KK gauge bosor®&? andW® will exactly repro-

duce the

SM interactions between a SU(2publet of hy-

perchargeg and theZ and theW's provided that the normal-

ized at they= 7R end point. In particular, it can be seen that

3 does couple, in the—« limit, to none of the gauge
bosons. This explains why the localized Higgs boson does
not contribute to restore unitarity in the massive gauge boson
scattering.

This toy model resembles the SM in that the lowest-lying
KK modes of the gauge bosons have masses similar tg,the
W, andZ, and the couplings of the brane localized fields can
be made equal to the couplings of the SM fermions. How-
ever, there are clearly several reasons why this particular

(5[10del is not realistic.

The first reason is th#l,y,/M, mass ratio. Even though
we do get masses that depend on the gauge couplings, which
is a quite nontrivial step forward, nevertheless, the ratio does
not exactly agree with the SM prediction. In the-c limit
the ratio becomes

My @ 94b
— = —arctan 1+ ——~0.85, (6.22
MZ 16 g

4D

and hence the parameter is
My

=————~1.10.
M2 cog Oy,

p (6.23

Thus the mass ratio is close to the SM value, however, the
10% deviation is still huge compared to the experimental
precision. It is possible to get a more realistic value of ghe
parameter by keeping a finite VE&/. The price to pay is that
the coupling of matter to the gauge boson will not exactly
reproduce the structure of the SM couplings: for instance, if
we match the coupling to the photon and to Wis, we will

get a deviation of ordeM\z,\,/v2 in the coupling to theZ.

We can simply estimate the value ofneeded in order to

ization factorsa, b,, ¢, satisfy getp=1:
2¢c, cogM}'7R) M2, 2 9.2
bi=v2ay, by=————— (6.20 — ~—arctan 2 \/ 1+ ——
Vg°+2g’ M7 16 9o
In the infinite VEV limit, from the expression®.10 it can MS\,
be checked that these relations are exactly satisfied and the X| 1-32(6Mo— oM+ Mz) 2] (6.24

4D SM couplings are expressed in terms of the 5D gauge

couplings by

, V29’

g
=, = . 6.2
94D \/ﬁ g4D \/ﬁ ( :D

In the same way the SM SU(gsinglets will correspond to
SU(2)p singlets charged under(l) and localized at the
=0 boundary. When the corrections to the normalization facvalues ofv one can no longer match up all the couplings of
tors for a finite VEV are included, the interactions betweenthe brane localized fields to their SM values.

the matter and the gauge bosons do not reproduce exactly the The next issue is the masses of the KK excitations of the
structure of the SM. It has also to be noted that in the infiniteW andZ. From the expressioN ‘,f’~(2k— 1)/(4R) one can
VEV limit the normalization factors are independent of thesee thatMy'~3M}'~240 GeV. This is too low if the cou-

where 6M,, 6M,, M, are complicated functions of the
4D gauge couplings. The mass ratio can be tuned to exactly
coincide with the experimental value, as longuds lowered

to aboutv ~640 GeV. However, we can see that a realistic
mass ratio would require quite a low value of which
would imply that the scalar localized wt& 7R has a signifi-
cant contribution to the scattering amplitude. Also, for finite
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pling to the SM fermions is not suppress@s would be the tality when part of this work was completed. The research of

case for brane localized fermions discussed apduee third  C.C. is supported in part by the DOE OJI grant DE-FG02-

issue is that with brane localized fermions of the sort that we)1ER41206 and in part by the NSF grant PHY-0139738.

discussed above, it is not possible to give the fermions &£.G. and L.P. were supported in part by the RTN European

mass. The SM Higgs boson serves two purposes: to bredkrogram HPRN-CT-2000-00148 and the ACI Jeunes Cher-

electroweak gauge symmetry and to give masses to the Skheurs 2068. H.M. was supported in part by the United

fermions. We have eliminated the Higgs boson and brokeiStates Department of Energy, Division of High Energy Phys-

electroweak gauge symmetry by BC’s. In order to be able tacs under contract DE-AC03-76SF00098 and in part by the

write down fermion masses one would have to include thenNational Science Foundation grant PHY-0098840. J.T. was

into the theory in a different manner. supported by the US Department of Energy under contract
In order to get a more realistic theory, we need to modifyW-7405-ENG-36.

the structure of the model. For fermion masses, putting the

fermions into the bulk and only couple them to SU(2) APPENDIX A: BC'S FOR GAUGE THEORIES

should be sufficient. Other possible modifications are to put WITH SCALARS

the Higgs boson that breaks SUEXU(1)g_, in the bulk,

or to consider warped backgrounds. Work along these direc- In this appendix we continue the discussion of BC’s for
tions is in progres§27]. gauge theories on an interval. First we will consider the case

of a gauge theory with bulk scalar fields, then a gauge theory

with scalars localized at the end points.
VIl. CONCLUSIONS

We have investigated the nature of gauge symmetry 1. Gauge theory with a bulk scalar

breaking by boundary conditions. First we have derived the | et us now discuss how the BC’s and the bulk equations
consistent set of boundary conditions that could minimizepf motion are modified in the presence of a bulk scalar field
the action of a gauge theory on an interval. These BC's inthat gets an expectation value. We will use the notation of
clude the commonly applied orbifold conditions, but there isRref. [28], Chap. 21, where all complex scalars are rewritten
a much wider set of possible conditions. For example, it iSn terms of real components denoted &y, and expanded
simple to reduce the rank of gauge groups. To find out mor@round their VEV's asb; =(®;)+ x;. The covariant deriva-
about the theories where gauge symmetry breaking happegse is Du®;=du®;+gALTad;, where theT3 generators

via BC's, we have investigated the high-energy behavior oy real and antisymmetric. The quadratic part of the action
elastic-scattering amplitudes. We have found that for all ge;g then given by

neric consistent BC’s derived before the contributions to the

amplitude that would grow with the energy B8 or E? will . [ 1, 1 . 5
always vanish, thus these theories seem to have a good high- = f d Xfo dy( — g PP - S Pk

energy behavior just as gauge theories broken by the Higgs

mechanism would. However, since these are higher dimen- 1 a A p 1

sional theories, tree unitarity will still break down due to the - 2—5[%”“— E(dsAs+gFixi) ]“+ > D,® D ®;

nonrenormalizable natufgrowing number of KK modeof
these models. 1 5

We have speculated that perhaps the breaking of gauge + EDsq’iD Pi—V(P)
symmetries via BC’s could replace the usual Higgs mecha-
nism of the SM. We have shown an effective-field theoryHere we have added the modified form of the gauge fixing
approach and a higher dimensional toy model for electerm. Expanding this Lagrangian to quadratic order we get
troweak symmetry breaking via BC'’s. Clearly there is still a
long way to go to find a fully realistic implementation of this . [™R 1. by oo AR
new way of electroweak symmetry breaking without a Higgs S‘f d Xfo dy| = A= d,0"g""+ 4 I")A,
boson.

. (A1)

1

1
_ a__ a2 _
+ 2 ((95Av aVA5) 2§

[9,A%— E(dsAZ+F X)) ]?
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ferent than in the case with no bulk scalars. BeforeAls ~ where we now had to add a gauge fixing term both in the
were the would-be Goldstone modes eaten by the massivaulk and on the brane. The bulk equations of motions will be
gauge fields. Now this will change, and there is an explicitas in Eq.(2.9), the BC’s aty= 7R will be the ones given in
mass term for one combination of thg's and the Goldstone Eg. (2.11), while the BC's aty=0 will now be given by
components of the’s dsx;+gAIF?. These fields will be
physical modes, that do not decouple even in the unitary
gaugeé— . The other combinatiodsA2+ gFy; will pro-
vide the longitudinal modes of the gauge boson KK towers

1
F§5+92F?F?A5+EﬁV&MAa“ SA*| =0, (A9)

and will disappear in the unitary gauge. Varying this action (9,27 — £95AY) 6A§‘0=O,
we get the linearized bulk equations of motion, (A10)
1
340" AY — ARV — ( 1- —) 99 ,A%+ g2FAFPAYP =, (= 9,0"xi— EG°FIF{x;— M) 8x=0.
3 (A11)
9y 0 Ai— EIGAR— (£—1)9(dsxi) F— £gxidsF T In the limit £—o we get the usual unitary gauge where both

xi's and As's (assuming there are nAg zero modek are
decoupled, and one is left with the physical KK towerAgf
. 5 o a A —a and the non-Goldstone scalar mod#ése physical Higgses
3,97 Xi— sxit (6= 1)9(dsA5) F{ — gAsdsF; which are orthogonal to the directioR§; . In this limit the
+§92F?F?Xj+ Miszj:O_ (A3) BC for the gauge fields will be of the form

+g?F2FPAR=0,

a __\sab b
The BC'’s will be modified to AL 0,mr= Vo,mrA L 07R - (A12)

G2.6A% ), »=0 Ad We will refer to these mass term induced BC’s as mixed

v5 [0,7R ' ( ) . . e
BC'’s. Note that these mixed BC's still ensure the Hermiticity

(self-adjointnessof the Hamiltonian. These are the BC's that

aoc__ a__ Ea a _
(0,A™ = £05A5~ E9XiFT) Asj0.nr =0, (A5) should be used for the KK expansion of the gauge fields.
(dsxi+gASFT) 8x;=0. (AB)
APPENDIX B: SUM RULES AND UNITARITY
A consistent set of BC'’s is obtained by taking the previous IN' DECONSTRUCTION
set of BC from Eq(2.11) and add the conditiog; =0 on the It was suggestef29] two years ago that the physics of

end points. Note that this does not imply that the Higgs VEVeayira dimensions can be recovered in the infrared in terms of

on the brane has to vanish, since fie are the fluctuations 5 product of 4D gauge groups connected to each others by

around the expectation value. some link fields(for the deconstruction of supersymmetric
theories, see Ref30]). We would like to see in this appen-
2. Gauge theory with a scalar localized at the end point dix how this correspondence operates as far as the high-

Finally let us consider the case when one has a bounda§"€r9y behavior for the_ amplitude of elastic scattering of
scalar fieldg, aty=0. The Lagrangian will be modified to Massive gauge bosons is concerigele also Refl19] for
similar computations

. [™R 1 oo 1 o s, Generically speaking, we have a set of gauge fields,
SZJ d on dy| = zFuF*" = 5Fs,F Al (i=1,...N), living on the sites of a lattice. For simplicity,
we will assume that all the gauge group have the same gauge
a1 couplingg. The dynamics of the link fields leads to a break-
f d X(EDM¢iD“¢i ing of the product gauge group and, accordingégme of
the gauge bosons acquire a masse Ref.[31] for some
s a 2 phenomenological models mimicking extra dimensional or-
—V(¢)— 2_5((?P-A lo—E9F X7 (A7) bifold models. The mass eigenstates are linear combinations
of the site gauge fields,

1
T2 (9,A%—£95A9)% | +

Expanding to quadratic order we get that the action is N
R 1 AM=> al™Al, (B1)
S:J d4XJ dyﬁbu|k+f d4X §3MX|(9MX| =1

0

+92F?FibAa A”b|0+9<9“XiF?Aa where the coefficients;"” define an orthonormal basis,

M‘o M‘o

N N
1 1
(m) () — ) (M) —
—Zf(aﬂAﬂao—ggFf‘xoz—EMﬁ»xixj), (A8) 2 aMaV=o" X aMaM=5;. (B2
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The cubic and quartic coupling®.21) and (2.22 are re- the SU(2)~U(1) orbifold breaking of Sec. V A. The matter

placed by content of the model is the following:
N
Geubic— Imni= 92, 1™}l (B3) SU2); SU2), -+ SU2)n_: U(1)
b1 U ]
N —
O O
géuarticﬁgmnklz giZl ai(m)ai(n)ai(k)ai(l)- (1?2
(B4) ' _
dN-2 O O
The expansion with the energy of the elastic-scattering am- b 0 1/2
. . N—1
plitude will be of the usual form:
E4 EZ Th b . . . . .o ,
_ AW A2 (0) e breaking to a single @) is achieved by giving VEV's to
AZATGa AT AT B9 the link fieldsd;, i =1-+-N—1,
The term growing withE* is proportional to
v v (0
N NN (¢pi)=—1 for i=1---N-2, <¢N1>=—( )
ADog?| S omMa_ S S g m2 (m200 40 | V2 vail
= K=1iis ! J b (B9)
(B6)

Again this term is just canceling because of the orthonormallhe spectrum contains a massless pho$H and its KK
ity of the eigenstates. excitations, ¥ k=1---N—1, as well as a finite tower of
The expression for the amplitude that grows with af- ~ massive charged gauge bosowg; ¥ k=1---N—1. In the
ter using the orthonormality relation, is found to be propor-lattice site basis, thBl XN photon mass matrix has the form

tional to

N 1 -1
AZocg? AM7D, o™ -1 2 -1
i=1 gzvz
N N 2 i (B10)
33 MZY aM2aM2a0a | (BY) -1 2 -1
K i=1 e
-1 1
Unlike in the extra dimensional case and due to the absence
of 5D Lorentz invariance, there is no generic expression for ,. . . . P
the sum rule. In general the sum will not cancel but rathe|WhICh is diagonalized byk=0---N)
will be suppressed by power of the replication numbker
There is one simplification which allows to perform the sum N .
over the mass eigenstates: indeed, from the definition of the , _ 2 > cos(ZI —Dkm M- sink—Tr
eingenstates, we get 20N < oN k=gusing -
N N N (B11
2 ME 2 ai(m)ZaJ(m)Zai(k)aJ(k): 2 ai(m)Za}m)ZMiZJ'
: b=t M=t B8) The (N—1)x (N—1) W mass matrix is
where Mizj is the square mass matrix in the theory space.
; . : . 1 -1
Therefore, in order to evaluate the elastic-scattering ampli-
tude, we do not need to fully diagonalize the mass matrix , L, ~1 2 -1
and to find all the eigenvectors: the computation of the gv (B12)
elastic-scattering amplitude of a particular mass eigenstate 4
requires only the knowledge of the decomposition of this -1 2 -1
particular eigenstate in terms of the theory space gauge -1 2

bosons.
We will evaluate the scattering amplitude in two explicit
examples. Let us first consider the deconstruction version afvhich is diagonalized byk=1---N—1),

055006-17



CSAKI et al. PHYSICAL REVIEW D 69, 055006 (2004

. 2 NU O ienek-Dam For instance, for theVWW® - WOWD scattering, we get
— o 1
WE=\oN=1 2 5 an—2 : N-1 N-1 M2
4;1 a§1>4—3ijE:1 a§1>2a§1>2M—X\,‘2~3.70\|—3.
(B14)
MW= sin(Zk_ L) (813 We will not discuss in detail the deconstruction version of
k= gv AN—2 the left-right model of Sec. VI but we would like to present

how to deconstruct the outer automorphism like BC’s. To

this end, let us simply consider a 5D SU(X)SU(2)g

model broken to SU(2) by the exchange of the two $2)'s
This decomposition allows us to evaluate as a functioN of at one end point of the interval. The matter content of the
the sum rule appearing in the elastic-scattering amplitude. deconstructed version of the model is the following:

SU2)y SU2)y-, - SUR2)i SUR2)p SUR)F -+ SUR2)F ., SUR2)R

¢n-1 O O
PN-2 O

5 a

¢ ] m O

T O
IN-2 O

ﬁ—l O Ol

Note the presence of a link fielgh, charged under three vectors:

gauge groups. The breaking to a single(3®Us achieved o I VVIVER R

through the VEV pattern (B16)
=" states: (XN sXN—1re e o X100 Xy e XN 1y — XN) -
LR Y. (B17)
y=—1, i=1---N—-1,
(4= —

For the “+” eigenstates, we have relied on a numerical di-
agonalization. The " eigenstates, however, can be found
analytically from the zeros of the Chebyshev polynomial of
o LN " order 2N+ 1, which allows for an analytical estimation of
(¢%75)= 2 0"p0757 5 07p0% | (B19  theE? terms in the elastic scattering of the-" eigenstates.
For instance, for the scattering of the lightest massive states,
we found a sum rule that, again, scales likbl®/

Herea is an SU(2} index, § an SU(2§ index, while3 and N4 1 N1 )

vy are SU(2), indices. Reproducing the KK towers of the 4 2 w143 2 a(17)2,,(17)2 Mzij ~1.8N"3.
two particular linear combinationsAt = AR)/v2 in the 5D =1 iz S b
model, there are actually two kinds of gauge boson eigen- (B18)
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