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The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD
are presented. For two values of lattice spacpg,5.7 (a~.18 fm) and 5.9 §~.12 fm), we probe the light
quark mass region using clover improved Wilson fermions with the modified quenched approximation pole-
shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parametedsy
are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators,
estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler paragneters
andLg. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched
chiral loop(QCL) effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from
the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovectag.meson
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[. INTRODUCTION studieq 7]. An important ingredient in our analysis is the use
of the modified quenched approximatiofMQA) pole-

Improved methods for studying the regime of small quarkshifting procedurd9] to resolve the exceptional configura-
mass in lattice QCD provide the realistic prospect of quantition problem. Our experience with this technique has led us
tatively determining the parameters of the low energy chirato conclude that it provides a practical and quantitatively
Lagrangian of QCD from first principles. Although a defini- acceptable resolution of the problem, which eliminates the
tive comparison with experiment requires the analysis of fullspurious statistical fluctuations of exceptional configurations
and/or partially quenched simulations, detailed studies ofvithout systematically biasing the final results. This conclu-
chiral behavior in the quenched approximation are of interession is based on the consistency between the light-quark re-
for several reasons. First, the characteristic quenched chirallts and those of heavier quarks where the pole shifting has
loop effects which arise from the anomalous double-polea negligible effect on the propagators. It is also supported by
structure of the quenched, flavor-singlet pseudoscalar prop#he overall agreement we observe between our regolend
gator will also occur in partially quenched calculatiqgasa  out of the pole regiohand theoretical expectations based on
level determined by the mismatch between valence and seguenched chiral perturbation theoisee Sec. Vl
guark masseg1]. The observation of these anomalous ef-  Since the introduction of the MQA procedure, other meth-
fects in the quenched theory should provide a useful baselineds for avoiding the exceptional configuration problem have
for future chiral analysis of full QCD. Second, although it is been explored. These include twisted-mass QJ@D| and
not a unitary theory, the quenched approximation can be andhe use of exactly chiraloverlap[11] or domain-wall[12])
lyzed in an effective Lagrangian framewdik,3], yielding a  fermions. All these approaches have in common the fact that
well-defined set of low-energy constants in quenched chiraWilson-Dirac eigenvalues at positive real quark mass are
perturbation theonf.In practice, this requires the assumption eliminated, thus resolving the problem. It should be noted
that the U,(1) breaking from the anomaly can also be that exactly real eigenmodes of the Wilson-Dirac operator,
treated perturbativelyyA comparison of these constants with which are the cause of the exceptional configuration prob-
those of full QCD can provide valuable insight into the role lem, make a negligible contribution to physical quantities in
of closed quark loops in hadron phenomenology. In additionthe infinite volume limit(vanishing like 14V). Thus any
the study of chiral behavior in the quenched approximatiorprescription which effectively removes these poles from the
provides useful information about the interplay between tophysical region should provide a satisfactory resolution of
pological charge and chiral symmetry breaking in QCD. Forthe problem for sufficiently large volume. The MQA pole
example, the Witten-Veneziano formula relates the gluonicshifting is a minimal prescription for accomplishing this. A
component of thep’ mass in full QCD to the topological more stringent test of the procedure is the study of chiral
susceptibility of the quenched theory. behavior for very light quarks in &nite volume which is

In two previous paperst,5] we reported results of a study large compared to the QCD scale but comparable to the chi-
of the chiral behavior of scalar and pseudoscalar mesoral scale. In this regime, finite volume effects are large but
propagators in quenched QCD A&5.7 using clover im-  calculable in quenched chiral perturbation theoryy@Q),
proved Wilson fermions. In this paper we present resultsimply by replacing loop integrals by finite-volume momen-
from a new data set g8=5.9 [6], compare them with the tum sums. As discussed [iB], the scalar, isovectdwalence
B=5.7 results, and summarize the main conclusions of thisneson propagator exhibits a prominent quenched chiral loop
study. We also compare our results to those of other recemtffect arising from the;’ -7 intermediate state. For the light-
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est quark masses we study, the finite volume effects expected To summarize, the low energy chiral Lagrangian used in
from QyPT are quite large. Thus, the detailed agreent@st our analysis is

a function of both time and pion masbetween the mea-

sured scalar propagator and fivdte-volumeone-loop calcu- L= Lo+ Lo+ Lnp+ Lsc. (6)
lation provides a convincing demonstration that the MQA
procedure is an effective method for exploring the light

. . - . In the quenched approximation, we have the supplementar
quark regime with Wilson fermions. N PP bp y

rule that multiple’ mass insertions on a given pseudoscalar
line are excluded. More generally, apPT diagram corre-

Il. QUENCHED CHIRAL PERTURBATION THEORY sponding to a quark-line diagram with internal closed loops
To analyze the quenched theory in a chiral LagrangiariS discarded3]. At the one-chiral-loop level, these rules are
framework, one introduces wrong-statistics ghost quarkin@mbiguous, and equivalent to the more systematic proce-

fields to cancel closed loops, yielding a low-energy chiraidure of introducing ghost fields].

Lagrangian with a gradet (3|3)xU(3|3) symmetry[2].

At the one-loop level, this is equivalent to the simpler and Il. LATTICE PARAMETERS

more direct approach to quenchgdPT [3] which begins ) ) o .

with an ordinaryU(3)x U(3) chiral Lagrangian describing The calculations discussed in this paper were carried out

a nonet of Goldstone bosons. To leading order, this is on the Fermilab ACPMAPS and on the UVA Linux cluster
GARCIA. The two Monte Carlo gauge ensembles analyzed
f2 + N + consisted of 300 configurations At=5.7 on a 13x 24 lat-
Lo=—[r(d,U7*U) +tr(x U+ U x)] (D tice, and 350 configurations @=5.9 on a 18x 32 lattice

(the Fermilabb and c ensembles Quark propagators were
whereU is aU(3)xU(3) chiral field andy is the pseudo- calculated with clover improved Wilson action. The clover
scalar mass matrix. Our analysis also incorporates the fokoefficients used wereC,,=1.57 for 8=5.7 and C,,

lowing fourth-order terms in the chiral Lagrangiftv]: =1.50 for 3=5.9. ForB=5.7, the quark propagators were

+ t + calculated fork=.1410,.1415,.1420,.1423,.1425,.1427, and
L4=Lstr[d,UTd*U(x'U+U x)] .1428, withx.=.14329, while for3=5.9, propagators were

+Lgtr(xTUXTU+UT UTy). ?) calculated with «=.1382,.1385,.1388,.1391,.1394, and

.1397, with k.=.14013. In physical units, this corresponds

The effect of the axialU(1) anomaly is introduced as an t0 arange of pion masses of 275 to 565 MeV fo# 5.7 and
explicit symmetry breaking term consisting of a flavor- 330 to 665 MeV for3=5.9. Here and elsewhere, we will

singlet pseudoscalap’ mass term and a field renormaliza- quote results in physical units using the rho mass to set the
tion, scale.

An analysis of smeared and local rho propagators on our
1 o . 2 412 ensembles yields,a=.690(8) and .469(3) fop=5.7 and
Lnp=5(agd"n'd,n"'—man'?) (8)  B=5.9, respectively. An analysis of the axial-vector meson
channel also yields a mass for thg meson of 1.1&/) and
where 0.773) for =5.7 andB3=5.9 respectively. Using the rho
mass to fix the scale gives '=1.12 GeV for3=5.7 and
1.64 GeV forB=5.9. The resulting physical mass for thg
(1290 MeV forB=5.7 and 1260 MeV fo3=5.9) is close to
the mass of the observed (1260) resonance.
Finally, we will also analyze the scalar, isovector meson To get some idea of the systematic error associated with
propagator, which turns out to be well described by a comchoice of scale, we will sometimes quote equivalent results
bination of a heavya, meson and am’-m loop diagram. using the charmonium &1P splitting scales of 1.18 GeV
Thus, we incorporate a scalar-isovector meson field, usingnd 1.80 GeV for the two ensembles. The MQA pole-shifting

n’=;(i trin(UT) —i trin(V)). (4)

the formalism of nonlinear chiral Lagrangiaj#], procedure[9] was applied to all quark propagators. F@r
1 1 =5.7, all poles belowk=.1431 were located and shifted,
ﬁsc:Ztr{DUDU}— ngtr{(ra'} while for 3=5.9, all poles below=.1400 were shifted.
+igtr{x"WUo U+ xyJUTeyuhy (5) IV. THE HAIRPIN INSERTION, #’ MASS,

AND TOPOLOGICAL SUSCEPTIBILITY
whereD is a chirally covariant derivative. One of our moti- ) o .
vations for studying the scalar correlator is the expectation of We begin by determining the parameteng and aq, in
a prominent quenched chiral loop effect from the-m in- the termZy,,, Eq. (3)._These parameters are extracted from
termediate state, as discussed in R8J. The agreement be- the two-quark-loof(*disconnected’) piece of the quenched
tween the lattice correlator and the one-loop calculation idlavor singlet pseudoscalar correlator,
very good, particularly for th@=>5.9 results, as discussed in
Sec. VI. An(x)={tr y°G(x,x)tr y°G(0,0)). (7)
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The lowest order @PT approximation to Eq.7) is the tree 0.5
graph with a single hairpin insertion between two pion
propagators. In momentum space, this is 04l
8
X Lo o o 1 5
Anp)=fps—(Mi+app)5—fr  (® 3  oaf
ps+m?, pe+m’ 5
Q
wheref; is the pseudoscalar decay constant, E 02
.
to=(0[yy°y|m). ) b
Fourier transforming ovep, and setting3=0, we have
| 1 1
£2 O'Oo 5 10 15
Ap(pP=04)= —=[C, +C_m,tle M+ (t—=T—1) T
4mz FIG. 1. The quenched hairpin correlator #6=5.9, k=.1394.
(10 The solid line is a pure dipole fit witg,=0.
where If we ignore any possible lattice spacing dependence and
Ctzmﬁiaq,mf,. (11) average the two data sets in quadrature, we get the final

result

In our previous analysis of th8=5.7 ensemble, the hair-
pin correlatorA,, was studied for both local and smeared

sources and compared with the pion pole residues of thehis can be regarded as a success of the Ibgeiew of the
corresponding valence propagators. This analysis demoRmomaly where this renormalization is an ordeX Jéffect.
strated a remarkable absence of excited state contaminatigq the subsequent analysis we will takg,=0.

in the hairpin correlator, even when the sources were sepa- Fitiing the hairpin correlators to the pure dipaig,=0

rated by only one or two time slices. Moreover, the timegm (jast column of Tables | and)lwe obtain the chirally
dependence ol (t) was well described at all imés=2 by exirapolated valueéin lattice units

the formula(10) with a4=0, i.e. by a pure momentum-

independent mass insertion. For the present analysis, we my=.3484), pB=5.7 (15
have fitted both the 5.7 and 5.9 ensembles to the full two-
parameter formuld10) in order to obtain an accurate esti- and
mate of aq,. For the 5.7 ensemble, acceptahlés were _ _
obtained by fitting a range of times frot=3 to 12. Using mo=.2324), p=5.9. (16
the fully correlated error matrix, the covariagt for these Using the rho mass scale and including a flavor factof®f

fits ranged from 0.8 to 1.5 per degree of freedom. For thgy,q gives the gluonic component of thg mass
hairpin correlators a8=>5.9, we obtained very good fits to

ae=0.03+0.03. (14)

the formula(10) over the entire time range frotr=1 to 16. mo've— 6758) MeV, pB=5.7 17
Here the correlateg?’s ranged from 0.3 to 0.5 per degree of K
freedom. An example of a hairpin fit fo8=5.9 and « =65912) MeV, pB=5.9. (18)

=.1394 is shown in Fig. 1. The solid line is the pure dipole
fit with a,=0. In Tables I and Il we give th8=5.7 and 5.9  If we instead use the charmonium scale we get
results formy and a4, . Also shown in the last column are the

|
values ofm, obtained from the 1-parameter pure dipole fit m?'*=7129) Mev, pB=57 (19
with aq,=0. Considering first the results farg, , the values
for the 5.7 ensemble are negative by about one to two stan- =72313) MeV, pB=5.9. (20)

dard deviations, while the values f@=5.9 are slightly e conclude that the)’ mass scales reasonably well be-
positive, also by about two standard deviations. The valuegl\/veen —57and5 967we|| within the svstematic gncertaint
for different x’s within each ensemble are highly correlated, B=5. o y y

so the deviation ofxg, from zero in either data set has little associated with different ways of determining the lattice

o o . .~ spacing. The values we obtain for theé mass insertion are
statistical significance. Ignoring dependence and averaging .
the values within each ensemble, we get somewhat low compared to the estimate~o850 MeV ob-

tained from the physicaly’ mass and chiral perturbation

ap=—0.15-0.10, B=5.7 (12) thgory. Althoqgh we see approximate scaling, it vyou_lc_i re-
quire calculations at larger values gfto rule out a signifi-
and cant lattice spacing effect. It is also worth remembering that
the whole framework in which the quenched hairpin diagram
a$=0.05-0.03, B=5.9. (13 is interpreted as a mass insertion is demonstrably valid only
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TABLE I. Fit parametersm, and aq for the B=5.7 hairpin
correlators. All masses are in lattice units.

K m, Mo e Mo(ag=0)
.1410 .50%2) .26926) —.17(10) .28010)
1415 .4503) .291(24) —.18(10) .294(10)
.1420 .3863) .31021) —.19110 .30910)
1423 .3424) .321(19) —.19110 .31610)
1425  3074) 32619  —.16(11) 321(10)
1427 2675) 32619  —.10(12) 32211)
1428 24%) 32319  —.03(13) 32211

in the limit of largeN., so some discrepancy between the
lattice calculation oimy and the phenomenological estimate

might be expected. A recent calculation of thé mass in
two-flavorfull QCD by the CPPACS Collaborati¢t3] gave
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FIG. 2. The quenched chiral log paramedgf; vs squared pion
mass,mf,. Results from both3=5.7 (X's) and 5.9 (boxes are

the resultmnr=960(87+ggs MeV, in good agreement with plotted. The linear fits include all mass values 5.7 and the
experiment. Detailed comparisons between quenched arfelur lightest masses fg8=5.9.

full QCD studies of then’ should provide a better under-
standing of the accuracy of lardgé: arguments in the frame-

work of chiral Lagrangians.
The overall size of quenched chiral lo0RCL) effects is

determined by the parametér which can be computed from

fact that many of the determinations &from lattice studies
of quenched chiral logk7] have favored a value of sub-
stantially smaller than the phenomenological estimate of
~0.17. From Fig. 2 we see that, for pion mass€300 MeV

the hairpin insertion masm, and the axial vector decay where most studies have been carried out, the valug @fs

constantf 5 (evaluated in the next sectipn
2
Mo
=——. (21
24722
Using the chirally extrapolated values ofy and f5, we
obtain
6=.0993),

B=5.7 (22)

and

6=.1084), pB=5.9. (23
It is interesting to consider not only the value éfin the
chiral limit, but also the effective value d@f at a given quark
mass by computing the quantit21) from the values ofm,

and f, at that mass. The values @f; vs m> for both B

smaller than the value in the chiral limit by as much as a
factor of two. The decrease af.¢; with increasing quark
mass represents the combined effect of a decreasing value of
my and an increasing value df, as the quark mass in-
creases. Although the negative slopedpf; has the effect of
suppressing quenched chiral logs, it is nevertheless more
consistent to tread as a constant in fitting to chiral Lagrang-
ian parameters, since the effective mass dependence should
arise from higher order terms in the chiral expansion. This is
the procedure we adopt in the subsequent analysis of the
scalar and pseudoscalar correlators, where the beBTQit
favors a value of5 about half as large as that obtained from
the chirally extrapolated hairpin result. We might expect to
find a larger value ob if studies were carried out well below
m_,=300 MeV.[lt is interesting that a recent stufi¥5] us-

ing overlap fermions, which went as low as,;
=180 MeV, found a large value of. However, the value
6=0.26(3) obtained in Ref.15] is much larger than even

=5.7 and 5.9 are plotted in Fig. 2. This plot shows a rathewour chirally extrapolated result of 0.1@8, indicating that
strong quark mass dependence of the effective QCL paranmhere are other systematic differences in the calculations.
eter, which may provide at least a partial explanation of the=urther chiral studies comparing different fermion actions on

TABLE Il. Fit parametersmy and a4, for the 8=5.9 hairpin
correlators. All masses are in lattice units.

K m, mg ag Mo(agp=0)
.1382 4113) .18814) .04(2) .194(5)
.1385 3783) .19213) .04(2) .1985)
1388 .3484) 19711 042 2035)
1391  .3044) 20411  .052) 2095)
1394  .2615) 211(9) .06(3) 2175)
.1397 .2045) .22009) .11(4) .2266)

the same gauge configurations would be of considerable in-
terest]

The “allsource” quark propagators used to calculate the
hairpin correlator§16] can also be used to calculate the to-
pological susceptibility. Using the integrated anomaly
method [17,4], we calculate a winding number for each
gauge configuration from the pseudoscalar charge integrated
over the whole lattice. From these winding numbers, we
compute the topological susceptibility=( »%)/V. Using the
rho scale, this gives

xi=(1784) MeV)*, B=5.7 (24)
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=(171(3) MeV)4, B=5.9. (25)
Results quoted previouslj] used the charmonium scale, QRa
which gives [ o
Yi=(1884) MeV)*, B=57 (26) e o
g i -
=(1883) MeV)*, B=5.9. (27 o.10f 5
FE
V. PSEUDOSCALAR MASSES AND DECAY CONSTANTS 0.05 -
The one-loop chiral Lagrangian analysis of the pseudo-

scalar and axial-vector propagators for e 5.7 ensemble 0.00 ' ' ' ' '
has been described previougW|. Here we briefly review 000 001 002 uarokofnassom 0.05 006
that analysis and compare the previously reported results 4
with the new results g8=5.9. We also compare with results  FIG. 3. Pion mass squared? for equal quark masses for the
of the Alpha Collaboratior{7,8] and discuss some issues g=5.9 ensemble.
associated with extracting the Leutwyler parameteysand
Lg, or correspondinglyes and ag. [Note: Here and else- nitions, the value of the squared pseudoscalar meson mass up
where, we use a conventional notation for the rescaled pao first order inLs, Lg, and§ is
rametersa; =8(4m)2L; .]
For both ensembles, we calculated propagators using 1
smeared pseudoscalar, local pseudoscalar, and local axiaIMiz} = xij(1+ 4l ij){ 1+ —8(2Lg—Ls)x;[1+ 5(~Iij +1ij)]
vector sources and sinks. The calculations were done for all f2
meson propagators with both degenerate and nondegenerate 1
guark masses. The chiral Lagrangian parameters were ex +—8L5Xij5~]ij] 32

tracted from a global fit to all pseudoscalar masses and decay 2

constants based on one-loop quenck®d for the Lagrang-

ian Lo+ L4+ Ly, as discussed in Sec. lll. For the lightest wherer, is a slope parametey; =2rom:, xii = (xi+ xi)/2
pion masses we studied, finite volume effects on chiral loop o= SO AT A
integrals are potentially significant, so all one-loop calcula-2"d ~ M=IN[1+1/(2x)) = 1/(2kc)].  Here 1y =(liixi
tions were carried out with the appropriate finite-volume mo-T i Xi)/Xij »

mentum sums rather than loop integrals. In addition, qua-

dratic and logarithmically divergent integrals are regularized Ji=(i+ 1= (ME+M)1)/2, (33
by subtraction at a cutoff scald~1/a. To summarize, a
generic loop integral of the form Jij=3ij/xi; - The fits for the pseudoscalar masses are shown
in Figs. 3 and 4.
1,1 1 For the pseudoscalar decay constants:
hi=2) 9P p2e w2 @8
T p°+M{ p*+M;j
2.0r
is replaced by a cutoff momentum sum
lj=167°2 (D(p MD(p; M) ~D(P.A)) (29
Eﬂ'
while a quadratically divergent integral E?’
| ! f d'p (30) "
iT 5| o, .2 E
I A p2+ Mi2
is replaced by
1.6 Lo v 00y 0y | | | R
0 10 20 30
=162, (D(p,M;)=D(p,A)~(A>=M?)D(p,A)?). (#,4;) scan
P
(31 FIG. 4. Chiral slope parameter scan f®#=5.9. Individual chi-

ral slopes are denoted by<(). The scan number is>6(i—1)+]
In these expressionf)(p,M) is the free boson propagator for the pair ofx values (; ,«;). The sixx values are ordered from
and the momentum sums are defined according to the physightest to heaviest quark mass. Also shown are the ratios to the
cal size of the corresponding lattice volume. With these defichiral log fit (boxeg which yields a global average of 1.7B).
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0.22 0.16
0.21 [ e
0.20 | X
E3 0.12 |- = x*
12} % x
& o019 X 9 x
o hal x
E ¥ X 010 -
0.18
-2 0.08 -
0.16 . . : 0.08 . ' .
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
2 2
m, mg,
FIG. 5. Pseudoscalar decay constafy;,, versus pion mass FIG. 7. Axial vector decay constant,, versus pion mass

squaredmi, for the 3=5.9 ensemble. Only values for equal quark squaredm,z,, for the 3=5.9 ensemble. Only values for equal quark
masses are showhys denotes the bare value 6f in lattice units. ~ masses are showh,, denotes the bare value &f in lattice units.

fpi= \/Efr0[1+o_255(| i+l +21)] values and the ratio values where the fitted chiral log factors
in Egs.(32), (34) and(35) have been divided out. The results
4 ~ are scanned over all combinations of the quark mass values.
X{ 1+ §(4L8_LS)XU[1+5(|ij+|ij)] The chiral Lagrangian parameters listed in Table Il are
the result of a global correlated fit of they®T expressions

4 Ti o to masses and decay constants with both equal and unequal
— —Lsdxij 7’+Iij —Git |- (3B quark masses. The results obtained from this global fit are
f generally consistent with evaluations extracted from more

The fits for the pseudoscalar decay constants are shown Iinmited fits to equal quark mass data. In particular, the value
Figs. 5 and 6 P y |_5 may be estimated directly from the axial vector decay

. constantf,. For equal quark massds has no quenched

For the axial vector decay constants, we have . . ;
chiral logs, so the mass dependence should be linear in the

chiral limit,

fA;ijz \/Ef[1+0255(l,,+I“—2I,J)]

4 fa=A+Bm2. (36)

X [ 1+ 2 Ls[1+ 621~ ‘J')]] - (39 [Note that in our notationt , includes a factor of/(2) rela-

tive to f ., i.e. its physical value is 132 Me)MA determina-

The fits for the axial vector decay constants are shown irion of Ly is obtained from the product of slope and inter-

Figs. 7 and 8. In Figs. 4, 6, and 8 we show both the measureckpt:

0.22 0.14
o gxx 0.13|
X X X XX 1111 XE
X X X XK L X
X X X XX 0.12 X X
0.1g R FEXT XX g o xxx xxx xxxx
1] ]
X
) S oa1p X & r x
4 hal X X b4 X
X X X
0.10 _XI X
0.12 L : . 0.08 : ' :
0 10 20 30 0 10 20 30
(fes.kc5) scan (fes.k5) scan
FIG. 6. Pseudoscalar decay constant scan der5.9. Also FIG. 8. Axial vector decay constant scdp,, for 3=5.9. Also

shown are the ratios to the chiral log fit which yields a global shown are the ratios to the chiral log fit which yields a global
averagef,=0.1501(77). The £;,«;) values are ordered as in averagef,=0.0915(13). The £;,«;) values are ordered as in
Fig. 4. Fig. 4.
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TABLE lII. Best fit for the chiral Lagrangian parameters for the Ls(10°)=1.5410), as=1.9513), B=57 (43
B=5.7 andB=5.9 lattices.

Ls(10°)=1.529), as=1.9111), A=5.9. (44

Parameter B=5.9 B=5.7
=t 0.0912) 0.1002) These _vaIL_Jes foL_5 (as) are consistent with our previous
Lo 16 1.5827) 1.7835 determinations using thg product method.
f L1 O'O 5 61 7 The Alpha Collaboratioi8] has recently made a careful
(Le—Ls/2) 025 147) analysis of quenched chiral Lagrangian parameters using an
Mo 1.748) 1.9912) infrared insensitive ratio method. By using a series of lattices
9 0.05313) 0.05915) with B values ranging from 6.0 to 6.45, they quote a con-
tinuum extrapolation for the value afs,
A-B _
Le=r™ (37 a5=0.996). (45)

This value is considerably smaller than the result we ob-
Note thatA has units of mass ar8lhas units of (mass) so  tained on somewhat coarser lattices wghvalues 5.7 and
thatLs is dimensionless and can be evaluated without refer6.9. We have carefully compared our results with those of the

ence to a mass scale. Alpha Collaboration and are not able to fully resolve the
We obtain the result§n GeV using the rho scale discrepancies. However, there are a number of issues in the
respective analyses which serve to reduce the differences be-
fa=[.165317)+.1175)m2]X Z, GeV, pB=57 tween our respective results.
(38 We first observe that the Alpha analysis fes makes use

of a linear fit to the ratidRg(x) where
and

Re(X)=fa(M)/fa(Mgrer)s  X=Mg/Mgpes- 46
fo=[.151520)+.1067)m3]x Z, GeV, B=5.9. F(X)=Fa(mg)/f A(Mgrer) o/ Mgres (46)
(39 A large reference mass of ordem;=mg is chosen to
. _ _ . avoid anomalous infrared sensitivity in the quenched theory.
VL\JIZI?i?éA_OB[LS and 0.865 fof=>5.7 and 5.9, respectively, However, their analysis of the slope &:(x) neglects a
factor of

Ls(10°)=1.7211), as=2.1814), B=5.7 (40 .

S — 4
and 1+yref% as 9
L5(10*)=1.509), «s=1.8911), B=59. (41) [cf. Egs.(3.7)—(3.9 of [8]] reflecting the difference between
, , i , xPT as an expansion about the massless limit and their use
These values are consistent with the global fit results in Tablgs large reference mass. Including this factor would in-
. ) ) . . ) crease their estimate of; by about 20%,
While this method is insensitive to the physical scale pa-
rameter the values dfs (as) are quite sensitive to the value as(corrected=1.187). (48)
of the axial vector renormalization constant, being propor-
tional to Zi. In the context of the tadpole renormalization If only statistical errors are considered, this estimate is still
schemg[18] our results in Egs(40), (41) include perturba- significantly below our values foss.
tive values for the renormalization constants as derived from The Alpha ratio method is insensitive to mass independent
the formulas given in Ref.19]. renormalization factors such &g but requires knowledge of
As an alternative method, we could determibg (as) the physical scale and inputs the physical value fof
from the ratio of the slope and intercept and the physicak93.3 MeV. In the case thdf, is well described by a linear
value off .=93 MeV. L5 is now given by function (as is seen in the Alpha analygishe Alpha ratio
method and our second meth@gsing the ratio of the slope
and interceptshould give compatible results. However, we
do use somewhat different values for the physical scale pa-
rameters, etc.
This result is independent of the renormalization factogs To make a more precise connection with the Alpha analy-
but will be sensitive to the choice of the physical scale pasis we can present our results using scale and renormaliza-
rameter. This method is equivalent to choosing the renormakion factors determined from interpolating formulas fitted by
ization factors so that the intercept correctly reproduces théhe Alpha Collaboration. Although determined from data on
physical value of .. Fixing the scale with the rho mass, the finer lattice spacing than our lattices, the nonperturbative in-
effective renormalization constants a&fg=0.80 for 3=5.7  terpolating formulas for the scale factoral/and the renor-
andZ,=0.87 for 3=5.9. Using these effective renormaliza- malization constantZ,, are relatively smooth and yield the
tion constants modifies our predictions to extrapolated values

B
__£2
Ls=f2 5. (42)
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1/a=1.184 GeV, Z,=0.7594, B=5.7 (49 0002
x
and
5 0001
1/a=1.811 GeV, Z,=0.7827, B=5.9. (50 3 =
=]
] £
Using these values of the scale and renormalization con- % 0.000 * o o
stants our fits forf, [in Egs. (38), (39)] become(in GeV f } { 73 713
units) < } {
Q
fo=12[0.093810)+0.0593)m2], B=5.7 (51) oot % %
and
-0.002 L . .
0 5 10 15
fa= \/5[0.0926512)+0.0534)mf,], B=5.9. (52 T

With these normalization factors we see that the physical F'G'T;‘?- Ils_oxector S‘iam_r_co”e'amf for ﬂ?=h5-9 _1@><32_Iat
value of f . is well reproduced which implies that our two tlcisz);gz N 'gofrislgt’é‘ﬂ;;%_sﬁgvgv7)(0) and heaviest Kq= g
methods for determinings (as) are in agreement yielding - )6<) n.

@ theory which cannot be isolated phenomenologically from
L5(107)=1.396), as=1.7%8), B=57 (53  the higher order contributions.

and VI. THE QUENCHED SCALAR PROPAGATOR

Ls(10°)=1.248), =1.5711), =59. (54 . .
5(10°) 48),  as A1, B 9 One of the most dramatic effects of quenched chiral loops

The values ofas are somewhat below our previous Va|uesis_observed in the scalar valence propagator. Thg behavior of
but are still above the continuum values given by the Alphghis propagator for thgg=5.7 ensemble was studied [ig].
Collaboration. The remaining systematic difference betweer] N€re it was found that the propagator was well described as
our calculation and the Alpha analysis concerns the clovef combination of a short-range positive exponential associ-
coefficients Cq,,, used to make th®(a) improvement. The ated with a heavy %1 GeV) scalarqq meson state and a
nonperturbative Alpha analysis of the clover coefficientlong-rangenegativetail arising from the»’-7 intermediate
yields an interpolating formula which becomes rather un-state. In the quenched approximation, #ies loop diagram
stable when extrapolated to our coarse lattices. The Fermilagxhibits not just a quenched chiral logarithm, but a quenched
analysis uses values of the clover coefficient(af,=1.57  chiral power, with infrared behavior~d*p/p®. This long-
and 1.50 for3=5.7 and 5.9, respectively. These values argange component is well described in both shape and mag-
considerably less than those suggested by the Alpha analysigude by the finite-volume;’ -7 loop calculation[Note: In
and could imply a sizabl®(a) dependence in the param- the 8=5.7 results, the=2 standard deviation discrepancy
eters of our effective action and affect our comparisons withbetween the data and theT calculation fort>7 (cf. Fig.
the Alpha Collaboration continuum result. We are not able tal0 of Ref.[5]) we now believe to be a statistical fluctuation.
address this question further in the present analysis. Not8ee below As discussed ifi5] the one-loop term that domi-
that the focus of our analysis has been to determine appravates the scalar propagator at small quark mass is determined
priate effective actions that describe the infrared physics oWith no adjustable parameters by the chiral Lagrangian pa-
lattice field theories on fixed lattices and we do not addressametersn,.,f, andr, already fixed from the analysis of the
the question of the continuum limit of such theories. pseudoscalar sector. In particular, the long-range scalar
Finally we note that caution is required in any direct com-propagator exhibits a very strong mass dependence in the
parison between the quenched and unguenched values of light quark regime, which is very well explained by the de-
We have emphasized that there are no quenched chiral logendence of the finite volume one loop contribution on pion
which affect the extrapolation of,(m2) for equal quark mass squared.
masses. However there is a strong chiral log effect in the The analysis of the scalar correlator 8=5.9 confirms

unquenched theory. The Gasser and Leutwyler analgdls the main conclusions of Ref5] (see Figs. 9 and 10For the
of the one-loop chiral logs determinds, (as) from the 5.9 ensemble, we find excellent agreement between the long-

physical value off /f ., range behavior of the correlator and thg Y loop calcula-
tion (which contains no adjustable paramelgevéth the the-
a5=2.8+0.6—-3 In(u/m,). (55 oretical formula matching the data all the way out to the

largest time separation ¢f=16. The details of the analysis
Hence, as=0.5 for a large normalization scalge  of the 8=5.7 data were discussed [B]. The 3=5.9 en-
=4xf,., a5=0.99 for u=1 GeV and as=1.76 for x  semble was analyzed similarly, though with some simplifica-
=m,. The continuum limit of the quenched theory corre- tions. First, in[5] both smeared and local sources were used,
sponds to the leading order of theNl/expansion of the full and a factorization procedure allowed an estimate of the
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FIG. 10. The scalar correlator fg=5.9 andx=.1397. The

FIG. 11. Mass of thea, meson for 3=5.7 (boxes and B

solid line is a fit consisting of the sum of a scalar meson pole and arr5-9 (X's).

n' -1 loop diagram. The dashed line is the loop term in the infinite

The mass of they meson obtained from our fits is plotted

volume fimit. in Fig. 11. In the chiral limit we obtairusing the rho sca)e
mass of the excited§ meson. This produced a good fit to m, =128560) MeV at 8=5.7 (59
the scalar correlator all the way downtte 1. For the analy- 0

sis of the 5.9 data, we have not carried out an independent =132686) MeV at 3=5.9. (60)

estimate of the excited contribution, but have simply res-

caled the parameters obtained from the 5.7 analysis, holding In the chiral loop calculation of they’-m intermediate
this contribution fixed in the fits which determine the groundstate contribution, we have included the effect of finite physi-
statea, parameters. For the 5.9 data we used a time rangg@l volume, replacing momentum integrals by discrete sums.
t=3, so the fits were insensitive to the choice of excited™or the lightest pion masses the finite volume effect is quite
state parameters. The other difference in the 5.9 analysis |§'9€, due to the singular infrared behavior of the loop con-
that the lightest pion mas830 MeV) is somewhat heavier {ribution. It is interesting to note that the Monte Carlo results
than that for the 5.7 study275 Me\). In [5] the formula  for the scalar correlator agree quite nicely with the prediction
used to parametrize thg’-7 contribution was obtained by Of finite volumeQxPT, but disagree significantly with the
resumming iterated bubble graphs to all orders. In the anah,correspondmg_|nf|n|te volume calculation. This strong finite
sis of the 5.9 data, we have found that only the one-loopyolume effect is also seen by the RBC Collaboratj@0].
graph is significant, so we have discarded higher ordeﬂ_h_e dashed line in Fig. 10 is th(_a |nf|n|t(_a volume loop calcu-
bubbles in the formula used to fit the correlator. Thus, definlation. Fort>5, the correlator is dominated by thg'-m

ing the time-dependent zero-momentum scalar correlator al0p, and it is clear that the Monte Carlo result exhibits the

A= (Yaha(X,0) P21 (0)) (56)

we fitted the lattice correlator to the functipef. Eq. (14) of
Ref.[5]]
2

f
A(t)~32r2—

—mgt 2%
OZmSe m +4rgBhp(t)

(57)

where ~Bhp(t) is the p=0 Fourier transform of theyp'-7
bubble graph, calculated in a finite volume:

1 1 -m3
B == :
ne(P) VT; [(k+p)2+m2] (k*+m?2)?

(58

Note thatm_., ry, andm, are already determined from the
pseudoscalar correlator analysis, so the only two fit param-

eters are the scalar mass and decay constarand fs. In
Fig. 10 we show the data for the scalar correlatoBat5.9
and the lightest quark mass=.1397, along with a fit given
by the function(57).

predicted enhancement from the finite volume effect. From
the point of view of Dirac eigenmodes, the finite volume
dependence predicted lyPT arises from a subtle interplay
between exact zero modes and near zero modes. In the infi-
nite volume limit, the contribution of exactly zero modes
vanishes, but for finite volume these modes are essential for
reproducing the correct chiral behavior. Since the MQA pole
shifting ansatz consists of repositioning some exactly zero
modes, it is reassuring to see that the resulting correlators
exhibit excellent agreement with the finite volume effect pre-
dicted by Q(PT.

Finally, the scalar decay constarit,, of the a; meson
obtained from our fits is plotted in Fig. 12. In the chiral limit

we obtain(using the rho scaje
f=64(5) MeV at B=5.7 (61)

=68(3) MeVat f=5.9. (62

VII. CONCLUSIONS

The lattice calculations described in this paper and our
previous worl{4—6] have focused on the chiral properties of
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nomenology. The absence of evidence for excited states in
0.08 the pseudoscalar hairpin indicates that annihilation from
these excited pseudoscalar states is similarly OZI suppressed.

Only if the qg are in a Goldstone state do they have an
aovrE T P unsuppressed pair-annihilation amplitude. The possibilities

- = for extending these calculations to investigate the details of
the connection between quark pair creation and annihilation
and topological charge fluctuations are intriguing.

A global fit to the pseudoscalar masses and decay con-
stants obtained from the valen@®nsingle} correlators as a
function of the quark masses yields an estimate of the
| | | | quenched chiral log parametéy the pion decay constant

0.0 0.1 0.2 0.3 0.4 0.5 f ., the slope parametep, and the Leutwyler parametels
m,? (Gev?) andLg (Table Ill). We have found that a chiral Lagrangian
analysis at the one-loop level provides a good description of

FIG. 12. The scalar decay constant of tag meson for3  the data over the range of masses studied, for both equal and
=5.7 (boxes and 3=5.9 (X's). unequal quark masses. The fit values of the quenched chiral
log parameteis, ~.05-.06, are rather small, but consistent

£, (GeV)

0.06 -

0.05 -

iting for the first time a number of anomalous chiral ef“fectsI
due to quenching, the results have confirmed a level of over
all consistency of the low energy chiral Lagrangian descrip
tion of meson properties in QCD, and provided quantitativ

estimates of the relevant chiral Lagrangian parameters. spacing so that, in the continuum limit, it might be closer to

A central feature of this study is the accurate calculation[he phenomenological estimate. Similarly, the values of
of the pseudoscalar flavor-singlet hairpin insertion responi_5 (as) we obtain are somewhat larger than the recent re-

S|bllet.forttrt1el\g/ljluzn|c Icomhgtqnent of ;th&h mass. Itn trluslcal-l sults of Heitgeret al.[8]. In any case, since the lattice spac-
culation the .Q pole shifting ansatz has a particuiarly sa u'ings we have studied are fairly coarse, the overall consis-
tary effect. Since the pseudoscalar hairpin insertion aris

es, : _ : :
g . i ncy of our fits suggests that, even for finite lattice spacing,
from theU (1) anomaly, it is particularly sensitive to topo- y 99 P 9

logical features of the gauge field. As a result, the excepthe low energy dynamics is well described by a chiral La-

grangian, with the main lattice spacing effects consisting of

tional configuration problem in the hairpin is even more S€-orrections to the Lagrangian parameters.

rious than in the valence correlators. The MQA procedure 1o pehavior of the nonsinglet scalar propagator at light

allgw_s the first detailed study O.f Fhe time depend_enc;e of th%wark mass provides a particularly dramatic probe of chiral
hairpin correlator. The most striking feature of this time de'dynamics and the success of the chiral Lagrangian descrip-
pendence is that it is quite accurately descrilbédll time tion (Sec ’VD is impressive. The prominenj’ - loop con-
separationshy a the simple chiral Lagrangian diagram con- tribution is completely determined in terms of the chiral pa-

fum iniependant mass serton. values obtained for the el Me  Tor andm, extiacted from the pseudoscalar
P ) nalysis. The loop calculation agrees well with the lattice

renotrmalldzatlondparameftﬁ¢ ’hW.h'(?h parartnetrlzes the mo- Eata in magnitude, time dependence, and pion mass depen-
mentum dependence of Ihe hairpin INSertion, are very Smaye .o £or the box size<(2 fm) and pion masses we have

and consistent with zero. Perhaps even more remarkable : o e
o - he | iagram exhibi rong finite volume eff
the fact that the hairpin correlator exhibits an absence o ed, the loop diagram exhibits a strong finite volume effect,

. L . nd the agreement with the data is satisfactory only if the
excneq state contamination, with thg ground-state dOUbIel'oop calculation is carried out in a finite volume. It would be
pole diagram giving a complete description of the correlator

. . . : interesting to carry out the numerical scalar propagator cal-
This result is confirmed not only by the time dependence 01l g Y hropag

> ) . ulation on different size lattices to explicitly observe this
the hairpin correlator, but also by a detailed comparison OF plcity

hairpin and valence correlators with both smeared and loc hite volume effect. In view of the agreement we see on a
P . . ) ingle size box over a wide range of pion masses, we would
sources, as discussed in Rpf]. Since we know from the

= expect the chiral loop diagram to also give a good descrip-
valence correlator that the locgty®y operator creates a tion of the finite volume dependence, as long as the box is
state which includes a substantial excited state componeatij| large compared to the QCD scale. The sensitivity of the
along with the ground state pion, we conclude that thesq7/_77 loop diagram to finite volume effects makes it espe-
excited states are decoupled from the hairpin vertex itselfeia”y useful for probing the role of zero modes in finite
This may be viewed as a plausible extension of the OZI rul&,g|ume calculations. For extremely large box&sge com-
[21]. Calculation of vector ind axial-vector hairpin correla- pared to the chiral scalezero modes and global topology
tors[22] has confirmed thajq annihilation in these channels should be irrelevant, e.g. ensemble averages over any fixed
is highly suppressed compared to the anomaly-enhancadpology should converge to the same result in the infinite
pseudoscalar hairpin diagram, as expected from OZI pherolume limit. On the other hand, for volumes which are large

ated value ofs (~.10) evaluated from the hairpin correlator
s somewhat larger, but still smaller than the phenomenologi-
‘cal estimate of~0.17. There may be some indicatidcf.
eFig. 2) that the value of§ is increasing for smaller lattice
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with respect to the QCD scale but still comparable to thdogical charge sectors. This would provide useful insight into
chiral scale, the exact zero modes contribute in an essentittie role of global topology in chiral dynamics at finite vol-
way to the dynamics described by the chiral Lagrangian. Theme.

techniques developed here can easily be used to study the After properly accounting for quenched chiral effects in
role of zero modes and global topology in finite volume chi-the scalar propagator, tres, massegat «.) are extracted.
ral dynamics. This can be done, for example, by studying th@he resultsm, =1.33(5) and 1.2®) GeV for §=5.9 and

contributions to the ensemble average for various correlators, 7, respectively are considerably larger than the observed
as a function of the global topological charge. We have seeq,(980) resonance mass. The value fiofo=1.33(5) GeV

that the integrated anomaly method of Smit and VitilK],  suggests that there is a large effect when internal quark loops
after MQA improvement, provides a convenient way of esti-are included or that the observeg(980) resonance is a
mating the global topological index of a configuration. distinct state, possibly KK “molecule” (which would not

Calculation ofv using exactly chirale.g. overlap or domain in th h . ;
wall) fermions would be ideal, but the approach used herg%pnii;;nnt € quenched approximajiand not an ordinary

based on clover improved Wilson fermions is more economid
cal and appears to be quite effective for studying issues
which do not depend crucially on having exactly integer val-

uedv’s. For example, the results for the topological suscep- The work of W.B. and E.E. was performed at the Fermi
tibility (Sec. V) are in good agreement with other estimates.National Accelerator Laboratory, which is operated by Uni-
It would be interesting to carry out a more detailed investi-versity Research Association, Inc., under contract DE-AC02-
gation of the scalar and pseudoscalar correlators studieg6CHO3000. The work of H.T. was supported in part by the
here, decomposing the ensemble averages into various topDepartment of Energy under grant DE-FG02-97ER41027.
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