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Scattering amplitudes in high energy QCD

Tibor Kúcs
C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook, Stony Brook, New York 11794–3840, USA

~Received 11 July 2003; published 18 March 2004!

We develop a new systematic procedure for the Regge limit in perturbative QCD to arbitrary logarithmic
order. The formalism relies on the IR structure and the gauge symmetry of the theory. We identify the leading
regions in loop momentum space responsible for the singular structure of the amplitudes and perform power
counting to determine the strength of these divergences. Using a factorization procedure introduced by Sen, we
derive a sum of convolutions in transverse momentum space over soft and jet functions, which approximate the
amplitude up to power-suppressed corrections. A set of evolution equations generalizing the BFKL equation
and controlling the high energy behavior of the amplitudes to arbitrary logarithmic accuracy is derived. The
general method is illustrated in the case of leading logarithmic gluon Reggeization and the BFKL equation.
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I. INTRODUCTION

The study of semihard processes within the framework
gauge quantum field theories has a long history. For revi
see Refs.@1–3#. The defining feature of such processes
that they involve two or more hard scales, compared
LQCD’s, which are strongly ordered relative to each oth
The perturbative expansions of scattering amplitudes
these processes must be resummed since they contain
rithmic enhancements due to large ratios of the scales
volved. One of the most important examples is elastic
→2 particle scattering in the Regge limits@utu ~with s and
t the usual Mandelstam variables!. It is this process that we
investigate in this paper. We extend the techniques develo
in Refs.@4# and@5# and devise a new systematic method
evaluation of QCD scattering amplitudes in the Regge li
to arbitrary logarithmic accuracy.

The problem of the Regge limit in quantum field theo
was first tackled in the case of the fermion exchange am
tude within QED in Ref.@6#. Here it was found that the
positive signature amplitude takes a Reggeized form up
the two loop level in the leading logarithmic~LL ! approxi-
mation. In Ref.@7# the calculations were extended to high
loops, and the imaginary part of the next-to-leading log
rithms ~NLLs! was also obtained. The analysis in Refs.@6#
and@7# was performed in the Feynman gauge. It was reali
in Ref. @8# that a suitable choice of gauge can simplify t
class of diagrams contributing at LL. The common feature
all this work was the use of fixed order calculations.
verify that the pattern of low order calculations survives
higher orders, a method to demonstrate the Regge beha
of amplitudes to all orders is necessary. This analysis
provided by Sen in Ref.@4#, in massive QED. Sen develope
a systematic way to control the high energy behavior of f
mion and photon exchange amplitudes to arbitrary logar
mic accuracy. The formalism relies heavily on the IR stru
ture and gauge invariance of QED and provides a proo
the Reggeization of a fermion at NLL to all orders in pertu
bation theory.

The resummation of color singlet exchange amplitudes
non-Abelian gauge theories in LL was achieved in the p
neering work of Ref.@9#, where the Reggeization of a gluo
0556-2821/2004/69~5!/054016~27!/$22.50 69 0540
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in LL was also demonstrated. The evolution equations
summing LL in the case of three gluon exchange was deri
in Ref. @10#. In Ref. @5#, n-gluon exchange amplitudes i
QCD at LL level were studied and a set of evolution equ
tions governing the high energy behavior of these amplitu
was obtained at LL. A different approach was undertaken
Ref. @11#. Here n→m amplitudes were studied in a SU~2!
Higgs model with spontaneous symmetry breaking. Start
with the tree level amplitudes, an iterative procedure w
developed, which generates a minimal set of terms in
perturbative expansion that have to be taken into accoun
order to satisfy the unitarity requirement of the theory. S
also Ref.@12#. The extension of the Balitskiı˘-Fadin-Kuraev-
Lipatov ~BFKL! formalism to NLL spanned over a decad
For a review see Ref.@13#. The building blocks of NLL
BFKL are the emissions of two gluons or two quarks alo
the ladder, Ref.@14#, one loop corrections to the emission
a gluon along the ladder, Ref.@15#, and the two loop gluon
trajectory, Refs.@16–18#, and @19#. The particular results
were put together in Ref.@20#. In Ref. @21#, the trajectory for
the fermion at NLL was evaluated by taking the Regge lim
of the explicit two loop partonic amplitudes, Ref.@22#.

In addition to the NLO perturbative corrections to th
BFKL kernel a variety of approaches have been develo
for unitarization corrections, Refs.@23–25#, which extend
the BFKL formalism by incorporating selected higher-ord
corrections. The procedure proposed in this paper, in a w
places these approaches in an even more general conte
principle, it makes it possible to find the scattering amp
tudes to arbitrary logarithmic accuracy and to determine
evolution kernels to arbitrary fixed order in the coupling co
stant. The formalism contains all color structures and,
course, the construction of the amplitude to any given le
requires the computation of the kernels and the solution
the relevant equations.

The paper is organized as follows. In Sec. II we discu
the kinematics of the partonic process under study and
gauge used. In Sec. III we identify the leading regions
internal momentum space, which produce logarithmic
hancements in the perturbation series. After identifying th
regions, we perform power counting to verify that the sing
larity structure of individual diagrams is at worst logarit
©2004 The American Physical Society16-1
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mic. The leading regions lead to a factorized form for t
amplitude~first factorized form!. It consists of soft and je
functions, convoluted over soft loop momenta, which c
still produce logarithms ofs/utu. In Sec. IV we study the
properties of the jet functions appearing in the factorizat
formula for the amplitude. We show how the soft gluons c
be factored from the jet functions. In Sec. V we demonstr
how to express systematically the amplitude as a convolu
in transverse momenta. In this form all the large logarith
are organized in jet functions and the soft transverse
menta integrals do not introduce any logarithms ofs/utu ~sec-
ond factorized form!. We derive evolution equations that e
able us to control the high energy behavior of the scatte
amplitudes. In Sec. VI, we illustrate the general metho
valid to all logarithmic accuracy in the case of LL and NL
in the amplitude and we examine the evolution equation
LL. Some technical details are discussed in Appendi
A–E. The first appendix treats power counting for regions
integration space where internal loop momenta beco
much larger than the momentum transfer. In Appendix B
illustrate the origin of special vertices encountered in
paper. In Appendix C we show a systematic expansion
the amplitude leading to the first factorized form. In Appe
dix D we list the Feynman rules used throughout the te
Finally, in Appendix E we demonstrate the origin of ext
soft momenta configurations~Glauber region! which need to
be considered in the analysis of amplitudes in the Re
limit.

II. KINEMATICS AND GAUGE

We analyze the amplitude for the elastic scattering
massless quarks

q~pA ,r A!1q8~pB ,r B!→q~pA2q,r 1!1q8~pB1q,r 2!,
~1!

within the framework of perturbative QCD in the kinemat
region s@2t ~Regge limit!, where s5(pA1pB)2 and t
5q2 are the usual Mandelstam variables. We stress, h
ever, that the results obtained below apply to arbitrary ela
two-to-two partonic process. We pick process~1! for con-
creteness only. The arguments in Eq.~1! label the momenta
and the colors of the quarks~we do not exhibit the depen
dence on the polarizations!. We choose to work in the cente
of-mass~c.m.! where the momenta of the incoming quar
and the momentum transfer have the following componen1

pA5SAs

2
,02,0'D ,

pB5S 01,As

2
,0'D ,

q5~01,02,q'!. ~2!

1We use light-cone coordinatesv5(v1,v2,v'), v65(v06v3)/
A2.
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Strictly speakingq656utu/A2s, so theq6 components van-
ish in the Regge limit only.

In the color basis

b15d r A ,r 1
d r B ,r 2

,

b852
1

2Nc
d r A ,r 1

d r B ,r 2
1

1

2
d r A ,r 2

d r B ,r 1
, ~3!

with Nc the number of colors, we can view the amplitude f
process~1! as a two dimensional vector in color space

A5S A1

A8
D , ~4!

whereA1 andA8 are defined by the expansion

Ar Ar B , r 1r 2
5A1~b1!r Ar B , r 1r 2

1A8~b8!r Ar B , r 1r 2
. ~5!

Since the amplitude is dimensionless and all particles
massless, its components can depend, in general, on the
lowing variables:

Ai[AiS s

m2
,

t

m2
,as~m2!,e D for i 51,8, ~6!

wherem is a scale introduced by regularization. We use
mensional regularization in order to regulate both infrar
~IR! and ultraviolet~UV! divergences withD5422« the
number of dimensions. Choosing the scalem25s, the strong
couplingas(m) is small. However, in general, an individua
Feynman diagram contributing to the process~1! at r-loop
order can give a contribution as singular as (s/t)as

r 11ln2r

(2s/t). In Sec. V C we will confirm that there is a cancell
tion of all terms proportional to thei th logarithmic power for
i 5r 11, . . . ,2r at orderas

r 11 in the perturbative expansio
of the amplitude. Hence atr loops the amplitude is enhance
by a factor (s/t)as

r 11lnr(2s/t), at most. In order to get reli-
able results in perturbation theory we must, nevertheless
sum these large contributions. In thekth nonleading logarith-
mic approximation one needs to resum all the ter
proportional to (s/t)as

r 11lnr2j(2s/t), j50, . . . ,k at r-loop
level.

We perform our analysis in the Coulomb gauge, where
propagator of a gluon with momentumk has the form

2 idab

Nab~k,k̄!

k21 i e

[2 idab

1

k21 i e
S gab2

kak̄b1 k̄akb2kakb

k• k̄
D , ~7!

in terms of the vector

k̄5k2~k•h!h, ~8!

with
6-2
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h5S 1

A2
,

1

A2
,0'D , ~9!

an auxiliary four vector defined in the partonic c.m. fram
The numerator of the gluon propagator satisfies the follo
ing identities:

kaNab~k,k̄!5k2
kb2 k̄b

k• k̄
,

k̄aNab~k,k̄!50. ~10!

The first equality in Eq.~10! is the statement that the non
physical degrees of freedom do not propagate in this ga
For use below, we list the components of the gluon propa
tor:

N12~k!5N21~k!5
k1k22k'

2

k• k̄
,

N11~k!5N22~k!5
k1k2

k• k̄
,

N6 i~k!5Ni 6~k!56
~k22k1!ki

2k• k̄
,

Ni j ~k!5Nji ~k!5gi j 2
kikj

k• k̄
. ~11!

We note that these are symmetric functions under the tr
formation k6→2k6, except for the componentsN6 i

5Ni 6, which are antisymmetric under this transformation
was demonstrated in Ref.@26# that QCD is renormalizable in
Coulomb gauge, by considering a class of gauges which
terpolates between the covariant~Landau! and the physical
~Coulomb! gauge.

III. LEADING REGIONS, POWER COUNTING

In order to resum the Regge logarithms, we need to id
tify the regions of integration in the loop momentum spa
that give rise to singularities in the limitt/s→0. We follow
the method developed in Refs.@27,28#, which begins with
the identification of the relevant regions in momentum spa

A. Singular contributions and reduced diagrams

The singular contributions of a Feynman integral co
from the points in loop momentum space where the in
grand becomes singular due to the vanishing of propag
denominators. However, in order to give a true singula
the integration variables must be trapped at such a sing
point. Otherwise we can deform the integration contour aw
from the dangerous region. These singular points are ca
pinch singular points. They can be identified with the follo
ing regions of integration in momentum space.
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~1! Soft momenta, with scaling behaviorkm;sAs for all
components (s!1).

~2! Momenta collinear to the momenta of the external p
ticles, with scaling behaviork1;As, k2;lAs, uk'u
;l1/2As for the particles moving in the1 direction and
k1;lAs, k2;As, uk'u;l1/2As for the particles mov-
ing in the2 direction.

~3! So-called Glauber or Coulomb momenta, Ref.@29#, with
scaling behaviork6;s6As, uk'u;sAs, wherel&s6

&s, and where the scaling factorsl,s satisfy the strong
orderingl!s!1 ~the origin of this region is illustrated
in Appendix E!.

~4! Hard momenta, having the scaling behaviorkm;As for
all components.

The extra gauge denominators 1/(k• k̄) originating from the
numerators of the gluon propagator~7! do not alter the clas-
sification of the pinch singular points mentioned above. A
tually, only the subsets 1 and 3 in the above classification
be produced due to the extra gauge denominators.

With every pinch singular point, we may associate a
duced diagram, which is obtained from the original diagra
by contracting all hard lines~subset 4! at the particular sin-
gular point. As shown in Refs.@27,28,30# the reduced dia-
gram corresponding to a given pinch singular point m
describe a real physical process, with each vertex of the
duced diagram representing a real space-time point. T
physical interpretation suggests two types of reduced
grams contributing to the process~1!, shown in Fig. 1.

The jet A(B) contains lines whose momenta represe
motion in the1(2) direction. The lines included in the blo
S8 and the lines coming out of it are all soft~configurations
1 and 3 in the classification of loop momenta describ
above!. These two oppositely moving~virtual! jets may in-
teract through the exchange of soft lines, Fig. 1~a!, and/or
they can meet at one or more space-time points, Fig. 1~c!.

Having found the most general reduced diagrams giv
the leading behavior of the amplitude for process~1! in the
Regge limit, we can estimate the strength of the IR div
gence of the integral near a given pinch singular point. F
we restrict ourselves to cases involving subsets 1 and 2 f
the classification of loop momenta above. To do so, we co
powers in the scaling variablesl ands.

The scaling behavior of these loop momenta implies t
every soft loop momentum contributes a factors4, every jet
loop momentum gives rise to the powerl2, every internal
soft boson~fermion! line provides a contributions22 (s21)
and every internal jet line~fermionic or bosonic! scales as

FIG. 1. The reduced diagrams~a! and ~c! contributing to the
amplitude. Diagram~b! represents a decomposition of diagram~a!
for the purpose of power counting.
6-3
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TIBOR KÚCS PHYSICAL REVIEW D 69, 054016 ~2004!
l21. In addition, there can be suppression factors aris
from the numerators of the propagators associated with
ternal lines and from internal vertices. As pointed out in R
@27#, in physical gauges each three-point vertex connec
three jet lines is associated with a numerator factor that v
ishes at least linearly in the components of the transvers
momenta, and therefore provides a suppressionl1/2.

We are now ready to estimate the power of diverge
corresponding to the reduced diagrams describing our
cess. First we restrict ourselves to the case shown in
1~a!. As indicated schematically in Fig. 1~b!, we can perform
the power counting for the jets and for the soft part se
rately. All soft propagators and all soft loop momenta a
included in the soft subdiagramS. The superficial degree o
IR divergence of the reduced diagramR from Figs. 1~a! and
1~b! can then be written as

v~R!5v~A!1v~B!1v~S!, ~12!

where the external lines and loops ofS8 are included inS.
For v(R).0 the overall integral is finite, whilev(R)<0
corresponds to an IR divergent integral. Whenv(R)50, the
integral diverges logarithmically. Here we setl;s for
power counting purposes. We come back to the effec
relaxing this condition in connection with a discussion
item 3, Glauber regions, in our list of singular momentu
configurations.

B. Power counting

In this subsection, we consider the case when all vert
in a diagram are elementary only, that is, without contrac
subdiagrams carrying large loop momenta. In Appendix
we show that our conclusions are unchanged by contra
vertices.

We perform the power counting for the soft partS first.
Let f ,b be the number of fermion, boson lines external toS8
and letE5 f 1b. The superficial degree of divergence forS,
found by summing powers ofs, can be written

v~S!54~E22!22b2 f 121v~S8!, ~13!

where the first term is due to loop integrations linkingS8 to
the jets, while the second and the third terms originate fr
propagators associated with the bosonic and fermionic lin
respectively, connecting the jetsA, B, and the soft partS8.
The term12 is introduced because we are resumming o
leading power corrections proportional tos/t and therefore
we exclude the overall factors/t from the power counting.
Since the lines enteringS8 are soft, we obtain the superficia
degree of divergence forS8 simply from dimensional analy
sis. It is given by

v~S8!542b23 f /2. ~14!

Combining Eqs.~13! and ~14!, the superficial degree of in
frared divergence for the soft partS is then

v~S!5b13 f /222. ~15!
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Before carrying out the jet power counting, we introdu
some notation. LetEA be the number of soft lines attached
jet A; I is the total number of jet internal lines;va is the
number ofa-point vertices connecting jet lines only; andwa
has a meaning similar tova , with the difference that every
vertex counted bywa has at least one soft line attached to
These are the vertices that connect the jetA to the soft partS.
Finally, L denotes the number of loops internal to jetA. As
noted above, we will perform the power counting for th
case when the scaling factor for the soft momentas is of the
same order as the scaling factor for jetA momenta. When the
scaling factors are different we encounter subdivergenc
which can be analyzed the same way as described below
also assume that there are no internal and external ghost
included in the jet function. Later we will discuss the effe
of adding ghost lines.

The superficial degree of divergence for jetA can now be
expressed as

v~A!52L2I 1v3/2. ~16!

The last term represents the suppression factor assoc
with the three point vertices. We denote the total number
vertices internal to jetA by

v5(
a

~va1wa!. ~17!

Next we use the Euler identity relating the number of loo
internal lines and vertices of jetA

L5I 2v11, ~18!

and the relation between the number of lines and the num
of vertices

2I 1EA125(
a

a~va1wa!. ~19!

Using Eqs.~16!–~19! we arrive at the following form for the
superficial degree of divergence for jetA:

v~A!512~EA1w3!/21 (
a>5

~a24!~va1wa!/2.

~20!

Since every vertex counted bywa connects at least one ex
ternal soft line, we have the condition

EA>w31 (
a>4

wa . ~21!

The equality holds when there is no vertex with two or mo
soft lines attached to it. Combining Eqs.~20!, ~21! we arrive
at the following lower bound on the superficial degree
divergence for jetA:

v~A!>12EA1 (
a>4

wa/21 (
a>5

~a24!~va1wa!/2.

~22!
6-4
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The third and the last term in Eq.~22! are always positive or
zero and hence

v~A!>12EA . ~23!

A similar result holds for jetB, and therefore the superficia
degree of collinear divergence for jetsA andB is

v~A!1v~B!>22E, ~24!

with E5EA1EB as in Eq.~13!. Combining the results for
soft and jet power counting, Eqs.~15! and~24!, respectively,
in Eq. ~12!, we finally obtain the superficial degree of I
divergence for the reduced diagram in Fig. 1~a!,

v~R!> f /2. ~25!

This condition says that we can have at worst logarithm
divergences, provided no soft fermion lines are exchan
between the jetsA andB. We can therefore conclude that
reduced diagram from Fig. 1~a! containing elementary verti
ces can give at worst logarithmic enhancements in pertu
tion theory. In order for the divergence to occur, the follo
ing set of conditions must be satisfied.

~1! There is an exchange of soft gluons between the jeA
andB only, with no soft fermion lines attached to the jets

~2! The jetsA andB contain 3 and 4 point vertices only
see Eq.~22!.

~3! Soft gluons are connected to jets only through 3 po
vertices, Eq.~22!, and at most one soft line is attached
each vertex inside the jets, Eq.~21!.

~4! In the reasoning above we have assumed that the
no suppression factor associated with the vertices where
and jet lines meet. In order for this to be true, the soft gluo
must be connected to the jetA(B) lines via the1(2) com-
ponents of the vertices.

Next we consider adding ghost lines to the jet functio
As we review in Appendix D, the propagator for a ghost li
with momentumk is proportional to 1/(k• k̄). Hence every
internal ghost line belonging to the jet gives a contributi
which is power suppressed as 1/s. Since the numerator fac
tors do not compensate for this suppression, we can im
diately conclude that the jet functions cannot contain inter
or external ghost lines at leading power.

So far we have not taken into account the possibility wh
the soft loop momenta are pinched by the singularities of
jet lines. This situation allows different components of s
momenta to scale differently. For example, a minus com
nent of soft momentum can scale as the minus compone
jet A momentuml, while the rest of the soft momentum
components may scale ass, wherel!s!1. The origin of
these extra pinches is illustrated in Appendix E.

Let us see what happens when we attach the ends
gluon line with this extra pinch to jetA at one end and the
soft subdiagramS at the other end. The integration volum
for this soft loop momentum scales asls3. The soft gluon
denominator gives a factors22. If this soft gluon is con-
nected to the soft part at a 4-point vertex, there is no n
denominator in the soft part. On the other hand, if the s
gluon is attached to the soft part via a 3-point vertex then
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extra denominator including the numerator suppression
tors scales ass21. The new jet line scales asl21 as long as
the conditionl1/2*s is obeyed; otherwise, we have the sca
ing s22 for the extra jet line. Forl1/2*s the Glauber region
produces logarithmic infrared divergence. Whenl1/2&s, the
overall scaling factorl/s2 indicates power suppressed co
tribution.

Let us now investigate another possibility, when the s
gluon connects jetA and jetB directly and its momentum is
pinched by the singularities of the jetA and the jetB lines.
Denoting the scaling factors of jetA and jetB aslA andlB ,
respectively, the integration volume provides the fac
lAlBs2 and the soft gluon denominator contributes t
powers22. The extra jetA and jetB denominators scale a
lA

21 andlB
21 , providedlA

1/2*s andlB
1/2*s. For lA,B

1/2 &s
both extra jet denominators provide the scaling factors22.
WhenlA,B

1/2 *s, the power counting suggests logarithmica
divergent integrals.

We have therefore verified that when the softest com
nent of a soft line satisfies the orderings2&l&s, the
Glauber~Coulomb! momenta produce logarithmically IR di
vergent integrals and need to be taken into an account w
identifying enhancements in perturbation series. The anal
demonstrated above for the case of one Glauber gluon ca
extended to the situation with arbitrary number of Glaub
gluons. This follows from dimensional analysis, in a simil
fashion as the treatment of purely soft loop momenta abo

We conclude that the reduced diagram in Fig. 1~a! is at
most logarithmically IR divergent, modulo the factors/utu.
The reduced diagram in Fig. 1~b! loses one small denomina
tor compared to the reduced diagram in Fig. 1~a! and since
we are working in physical gauge, this loss cannot be co
pensated by a large kinematical factor coming from the
merator. Hence the reduced diagram in Fig. 1~b! is power
suppressed compared to the reduced diagram in Fig. 1~a!,
and we do not need to consider it at leading power.

Finally, let us discuss the scale of the soft momenta. In
case of soft exchange lines, each gluon propagator suppl
factor 1/(s2s), which we want to keep at or below the ord
t in the leading power approximation. Thus the size of t
scale is fixed to bes;Autu/As. In the case of soft lines
which are attached to jetA or to jetB only, the scaling factor
lies in the interval (Autu/As,1). In the case of Glauber mo
menta, we again needs;Autu/As. Then the conditionl1/2

*s, which is necessary for the logarithmic enhanceme
implies that the scaling factors for1 and2 components of
the Glauber~Coulomb! momenta can go down toutu/s, the
scale of the small components of jet momenta. Additiona
we should note that soft and jet subdiagrams that do
carry the momentum transfer may approach the mass s
(l, s→0). Such lines produce true infrared divergenc
which we assume are made finite by dimensional regular
tion to preserve the gauge properties that we will use bel
The same power counting as above shows that these d
gences are also at worst logarithmic.

C. First factorized form

The analysis of the previous subsection suggests the
lowing decomposition of the leading reduced diagram fro
6-5
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Fig. 1~a!. Let us denote the (n12)-point and (m12)-point
Green functions, 1PI in external soft gluon lines, correspo
ing to jet A, J(A)m1•••mn

(n)a1•••an (pA ,q,h;k1 , . . . ,kn), Fig. 2~a!, and

to jet B, J(B)n1•••nm

(m)b1•••bm(pB ,q,h;p1 , . . . ,pm), Fig. 2~b!, respec-

tively. The jet functionJ(A)
(n) (J(B)

(m)) also depends on the colo
of the incoming and outgoing partonsr A , r 1 (r B , r 2), as
well as on their polarizationslA , l1 (lB , l2), respectively.
In order to avoid making the notation even more cumb
some we do not exhibit this dependence explicitly. In ad
tion the dependence ofJ(A)

(n) andJ(B)
(m) on the renormalization

scalem and the running couplingas(m) is understood. The
jet functions also depend on the following parameters:
gauge fixing vectorh, Eq. ~9!, of the Coulomb gauge, th
four momenta of the external soft gluons attached to jeA
(B), k1 , . . . ,kn (p1 , . . . ,pm), and the Lorentz and colo
indices of the soft gluons attached to the jetA (B),
m1 , . . . ,mn ; a1 , . . . ,an (n1 , . . . ,nm ; b1 , . . . ,bm). The
momenta of the soft gluons attached to the jetsA and B
satisfy the constraints( i 51

n ki5q and( j 51
m pj5q.

According to the results of the power counting, the s
gluons couple to jetA via the minus components of the
polarizations, and to jetB via the plus components of the
polarizations. Therefore, only the following components s
vive in the leading power approximation:

JA
(n)a1•••an~pA ,q,h,vB ;k1 , . . . ,kn!

[S )
i 51

n

vB
m i D J(A)m1•••mn

(n)a1•••an ~pA ,q,h;k1 , . . . ,kn!,

JB
(m)b1•••bm~pB ,q,h,vA ;p1 , . . . ,pm!

[S )
i 51

m

vA
n i D J(B)n1•••nm

(m)b1•••bm~pB ,q,h;p1 , . . . ,pm!,

~26!

where we have defined lightlike momenta in the plus dir
tion vA5(1,0,0') and in the minus directionvB5(0,1,0').
We can now write the contribution to the reduced diagram
Fig. 1~a!, and hence to the amplitude for process~1!, in the
form

A5(
n,m

E S )
i 51

n21

dDki D E S )
j 51

m-1

dDpj D
3JA

(n)a1•••an~pA ,q,h,vB ;k1 , . . . ,kn!

3Sa1•••an ,b1•••bm

(n,m) ~q,h,vA ,vB ;k1 , . . . ,kn ;p1 , . . . ,pm!

FIG. 2. JetA moving in the1 direction~a! and jetB moving in
the 2 direction ~b!.
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JB
(m)b1•••bm~pB ,q,h,vA ;p1 , . . . ,pm!, ~27!

where the sum over repeated color indices is understo
Corrections to Eq.~27! are suppressed by positive powers
t/s. The jet functionsJA,B are defined in Eq.~26! in the
leading power accuracy. The internal loop momenta of
jets A, B and of the soft functionS are integrated over. The
soft function will, in general, include delta functions settin
some of the momentak1 , . . . ,kn and color indices
a1 , . . . ,an of jet function JA to the momentap1 , . . . ,pm
and to the color indicesb1 , . . . ,bm of jet functionJB . The
construction of the soft functionS is described in Appendix
C. For a given Feynman diagram there exist many redu
diagrams of the type shown in Fig. 1~a!, and one has to be
careful in systematically expanding this diagram into t
terms that have the form of Eq.~27!. This systematic method
can be achieved using the ‘‘tulip-garden’’ formalism first i
troduced in Ref.@32# and used in a similar context in Re
@4#. For convenience of the reader we summarize this pro
dure in Appendix C.

Let us now identify the potential sources of the enhan
ments in ln(s/utu) of the amplitude given by Eq.~27!. If we
integrate over the internal momenta of the jet functions th
we can get ln@(pA•h)2/utu# from JA and ln@(pB•h)2/utu# from
JB . In addition, according to the results of the power cou
ing ~23!, we know that the jet function withn external soft
gluons diverges as 1/ln21. After performing the integrals
over the minus components of the external soft gluon lin
attached to jetA and over the plus components of the exte
nal soft gluons connected to jetB, these divergent factors ar
potentially converted into logarithms of ln@(pA•h)2/utu# and
ln@(pB•h)2/utu#, respectively. Our goal will be to separate th
full amplitude into a convolution over parameters that do n
introduce any further logarithms of the form ln(s/utu). This
task will be achieved in Sec. V A. In the following sectio
we analyze the characteristics of the jet functions.

IV. THE JET FUNCTIONS

In this section we study the properties of the jet functio
A, B given by Eq.~26! since, as Eq.~27! suggests, they will
play an essential role in later analysis. Since the methods
both jet functions are similar we restrict our analysis to jeA
only; jet B can be worked out in the same way. In Sec. IV
we examine the properties of jetA when the minus compo
nent of one of its external soft gluon momenta is of ord
Autu. In Sec. IV B we find the variation of jetA with respect
to the gauge fixing vectorh, and finally in Sec. IV C we
examine the dependence of jetA on the plus component of a
soft gluon momentum attached to this jet.

A. Decoupling of a soft gluon from a jet

According to the results of power counting above, s
gluons attach to lines in jetA via the minus components o
their polarization. Following the technique of Grammer a
Yennie@33# we decompose the vertex at which thej th gluon
is connected to jet A. We start with a trivial rewriting ofJA in
Eq. ~26!
6-6
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JA
(n)a1•••an5S )

iÞ j

n

vB
m i D vB

m jgm j

n j J(A)m1•••n j •••mn

(n)a1•••an . ~28!

We now decompose the metric tensor into the formgmn

5Kmn(kj )1Gmn(kj ) where for a gluon with momentumkj
attached to jetA, Kmn, andGmn are defined by

Kmn~kj ![
vA

mkj
n

vA•kj2 i e
,

Gmn~kj ![gmn2Kmn~kj !. ~29!

TheK gluon carries scalar polarization. Since the jetA func-
tion has no internal tulip-garden subtractions~they are con-
tained in the soft functionS), we can use the Ward identitie
of the theory@34#, which are readily derived from its unde
lying BRS symmetry@35#, to decouple this gluon from the
rest of the jetA after we sum over all possible insertions
the gluon. The result is

JA
(n)a1•••aj •••an~pA ,q,vB ,h;k1 , . . . ,ki , . . . ,kj , . . . ,kn!

52
1

vA•kj2 i e (
iÞ j

n

~2 igsf
ciaiaj !

3JA
(n21)a1•••ci•••aj •••an~pA ,q,vB ,h;k1 , . . . ,ki

1kj , . . . ,kj , . . . ,kn!. ~30!

The notationaj andkj indicates that the jet functionJA
(n21)

does not depend on the color indexaj and the momentum
kj , because they have been factored out. In Eq.~30!, gs is
the QCD coupling constant andf ciaiaj are the structure con
stants of theSU(3) algebra. The pictorial representation
this equation is shown in Fig. 3~a!. The arrow represents
scalar polarization and the double line stands for the eiko
line. The Feynman rules for the special vertices and the
konal lines in Fig. 3~a! are listed in Appendix D. Strictly
speaking the right-hand side of Eq.~30! and Fig. 3~a! contain
contributions involving external ghost lines. However, fro
the power counting arguments of Sec. III B we know th
when all lines inside of the jet are jetlike, the jet function c
contain neither external nor internal ghost lines. Theref
Eq. ~30! is valid up to power suppressed corrections for t
momentum configuration.

The idea behind theK-G decomposition is that the con
tribution of the softG gluon attached to the jet line in th
leading power is proportional tovB

mGmnvA
n 50. In order to

avoid this suppression, theG gluon must be attached to a so
line. The general reduced diagram corresponding to thG

FIG. 3. ~a! Decoupling of aK gluon from jetA. ~b! Leading
contributions resulting from the attachment of aG gluon to jetA.
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gluon attached to jetA, is depicted in Fig. 3~b!. The lines
coming out ofS as well as the lines included in it are sof
The letterG next to thej th gluon in Fig. 3~b! reminds us that
this gluon is aG-gluon attaching to jetJ(A)m via theG1m(kj )
vertex.

The reasoning described above applies to the case w
all components of soft momenta are of the same order. In
situation of Coulomb~Glauber! momenta, this picture is no
valid anymore, since the large ratiok' /k2 coming from the
G1' component can compensate for the suppression du
the attachment of theG part to a jetA line via the transverse
components of the vertex.

B. Variation of a jet function with respect to a gauge fixing
vector h

In this subsection we find the variation of the jet functio
JA

(n) with respect to a gauge fixing vectorh. The motivation
to do this can be easily understood. We consider the jet fu
tion with one soft gluon attached to it only
JA

(1)(pA ,q,vB ,h). Let us define

jA[pA•h andzB[h•vB . ~31!

In these terms, jet functionJA
(1) can depend on the following

kinematical combinations: JA
(1)(pA ,q,vB ,h)5JA

(1)(jA ,
pA•vB ,zB ,t). Using the identitypA•vB52jAzB and the
fact, that the dependence ofJA on the vectorvB is introduced
trivially via Eq. ~26!, we conclude that

JA
(1)~pA ,q,vB ,h!5zBJ̄A

(1)~jA ,t !. ~32!

Our aim is to resum the large logarithms of ln(pA
1) that ap-

pear in the perturbative expansion of the jetA function. In
order to do so, we shall derive an evolution equation
pA

1]JA
(1)/]pA

1 . SincepA appears in combination withh only,
we can trace out thepA

1 dependence ofJA
(1) by tracing out its

dependence onh. This can be achieved by varying the gau
fixing vector h. The idea goes back to Collins and Sop
@32# and Sen@31#. We will generalize the result toJA

(n) in
Sec. V B.

We consider a variation that corresponds to an infinite
mal Lorentz boost in a positive1 direction with velocity
db. Thus, for the gauge fixing vectorh5(1,0,0,0),2 Eq. ~9!,
the variation isdh[h̃db[(0,0,0,1)db. It leaves invariant
the normh251 to orderO(db). The precise relation be
tween the variation of the jetA function with respect topA

1

anddha is

pA
1

]JA
(1)

]pA
1

52h̃a
]JA

(1)

]ha
1zB

]JA
(1)

]zB
52h̃a

]JA
(1)

]ha
1JA

(1) .

~33!

We have used the chain rule in the first equality and
simple relationzB]JA

(1)/]zB5JA
(1) , following from Eq.~32!,

in the second one.

2For the moment we use Cartesian coordinates.
6-7
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In order for Eq.~33! to be useful, we need to know wha
the variation of jetA with respect to the gauge fixing vecto
h is. The result of this variation forJA

(n) is shown in Fig. 4. It
can be derived using either the formalism of the effect
action, Ref.@36#, or a diagrammatic approach first sugges
in Ref. @32# and performed in axial gauge. We give an arg
ment how Fig. 4 arises in Appendix B. Here we only no
that the form of the diagrams in Fig. 4 is a direct cons
quence of a 1PI nature of the jet functions. The explicit fo
of the boxed vertex

2 iSa~k![2 i ~h•kh̃a1h̃•kha!, ~34!

as well as of the circled vertex is given in Fig. 13 of Appe
dix D, while their origin is demonstrated in Appendix B. Th
dashed lines in Fig. 4 represent ghosts, and these are
given in Fig. 13 of Appendix D. The four vectorsh, given in
Eq. ~9!, and

h̃5S 1

A2
,2

1

A2
,0'D , ~35!

appearing in Eq.~34! are defined in the partonic c.m. fram
~2!. We list the components ofSmNma(k)

Sm~k!Nm6~k!5k7S k1
2 2k2

2

2k• k̄
61D ,

Sm~k!Nm i~k!5
k2

2 2k1
2

2k• k̄
ki , ~36!

for later reference.
In Fig. 4, we sum over all external gluons. This is ind

cated by the sum overi. In addition, we sum over all possibl
insertions of external soft gluons $ i 1 , . . . ,i np

%
P$1, . . . ,n%\$ i %. This summation is denoted by the symb
p. We note that at lowest order, with only a gluoni attached
to the vertical blob in Fig. 4~b!, this vertical blob denotes th
transverse tensor structure depending on the momentumki of
this gluon

i ~ki
2gab2ki

aki
b!. ~37!

FIG. 4. The result of a variation of jet functionJA
(n) with respect

to a gauge fixing vector.
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It is labeled by a gluon line which is crossed by two vertic
lines, Fig. 13. The ghost line connecting the boxed and
circled vertices in Fig. 4~b! can interact with jetA via the
exchange of an arbitrary number of soft gluons. We do
show this possibility in Fig. 4~b! for brevity.

Let us now examine what the important integration
gions for a loop with momentumk in Fig. 4~b! are. The
presence of the ghost line and of the nonlocal boxed ve
requires that in the leading power the loop momentumk
must be soft. It can be neither collinear nor hard. This w
enable us to factor the gluon with momentumk from the rest
of the jet according to the procedure described in Sec. IV

C. Dependence of a jet function on the plus component
of a soft gluon’s momentum attached to it

In this subsection we want to find the leading regions
the objectkj

1]JA
(n)/]kj

1 . This information will be essentia
for the analysis pursued in the next sections. For a gi
diagram contributing toJA

(n) we can always label the interna
loop momenta in such a way that the momentumkj flows
along a continuous path connecting the vertices where
momentumkj enters and leaves the jet functionJA

(n) . When
we apply the operationkj

1]/]kj
1 on a particular graph cor

responding toJA
(n) , it only acts on the lines and vertice

which form this path. The idea is illustrated in Fig. 5~a!. The
gluon with momentumk attaches to jetA via the three-point
vertex v1. Then the momentumk flows through the path
containing the verticesv1 ,v2 ,v3 and the linesl 1 ,l 2. The
action of the operatork1]/]k1 on a line or vertex which
carries jetlike momentum gives a negligible contributio
since the1 component of this lines momentum will be in
sensitive tok1. In order to get a non-negligible contribution
the corresponding line must be soft. In Fig. 5~a!, lines l 1 and
l 2 must be soft in order to get a nonsuppressed contribu
from the diagram after we apply thek1]/]k1 operation on
it. This, with the fact that the external soft gluons carry s
momenta, also implies that the linesl 3 , . . . ,l 6 must be soft.
This reasoning suggests that in general a typical contribu
to kj

1]JA
(n)/]kj

1 comes from the configurations shown in Fi
5~b!. It can be represented as

FIG. 5. ~a! Momentum flow of the external soft gluon inside o
jet A. ~b! Typical contribution tokj

1]JA
(n)/]kj

1 .
6-8
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JA
(n)a1•••an5E S )

i 51

n821

dDki8D
3 j (n,n8)a1•••an ,a18•••a

n8
8 ~vA ,q,h;

k1 , . . . ,kn ;k18 , . . . ,kn8
8 !

3J
A

(n8)a18•••a
n8
8

~pA ,q,h,vB ;k18 , . . . ,kn8
8 !.

~38!

The function j (n,n8) contains the contributions from the so
part S and from the gluons connecting the jetJA

(n8) andS in

Fig. 5~b!. The jet functionJA
(n8) has fewer loops than th

original jet function JA
(n) . Now applying the operation

kj
1]/]kj

1 to Eq. ~38!, the operatorkj
1]/]kj

1 acts only to the
function j (n,n8). Hence we can write

kj
1

]

kj
1

JA
(n)a1•••an5E S )

i 51

n821

dDki8D kj
1

]

]kj
1

3 j (n,n8)a1•••an ,a18•••a
n8
8 ~vA ,q,h;k1 , . . . ,

kn ;k18 , . . . ,kn8
8 !

3J
A

(n8)a18•••a
n8
8

~pA ,q,h,vB ;k18 , . . . ,kn8
8 !.

~39!

We conclude that the contribution tokj
1]JA

(n)/]kj
1 can be

expressed in terms of jet functionsJA
(n8) which have fewer

loops than the original jet function.

V. FACTORIZATION AND EVOLUTION EQUATIONS

We are now ready to obtain evolution equations wh
will enable us to resum the large logarithms. First, in S
V A, we will put Eq. ~27! into what we call the second fac
torized form. Then, in Sec. V B, we derive the desired e
lution equations. In Sec. V C, we will show the cancellati
of the double logarithms and finally in Sec. V D, we demo
strate that the evolution equations derived in Sec. V B
sufficient to determine the high-energy behavior of the sc
tering amplitude.

A. Second factorized form

The goal of this subsection is to rewrite Eq.~27! into the
following form @4#:

A5(
n,m

E S )
i 51

n21

dD22ki'D S )
j 51

m21

dD22pj'D
3GA

(n)a1•••an~pA ,q,h,vB ;k1' , . . . ,kn' ;M !

3Sa1•••an ,b1•••bm
8(n,m) ~q,h,vA ,vB ;k1' , . . . ,

kn' ;p1' , . . . ,pm' ;M !

3GB
(m)b1•••bm~pB ,q,h,vA ;p1' , . . . ,pm' ;M !, ~40!
05401
.
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-
e
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whereGA
(n) and GB

(m) are defined as the integrals of the je
functions JA

(n) and JB
(m) , over the minus and plus compo

nents, respectively, of their external soft momenta, with
remaining light-cone components of soft momenta set
zero:

GA
(n)a1•••an~pA ,q,h,vB ;k1' , . . . ,kn' ;M !

[ )
i 51

n21 S E
2M

M

dki
2D

3JA
(n)a1•••an~pA ,q,h,vB ;k1' , . . . ,kn' ,

k1
150, . . . ,kn

150,k1
2 , . . . ,kn

2),

GB
(m)b1•••bm~pB ,q,h,vA ;p1' , . . . ,pm' ;M !

[ )
i 51

m21 S E
2M

M

dpi
1D

3JB
(m)b1•••bm~pB ,q,h,vA ;p1' , . . . ,pm' ,

p1
250, . . . ,pm

250,p1
1 , . . . ,pm

1). ~41!

In Eq. ~40!, S8 is a calculable function of its arguments an
M is an arbitrary scale of the orderAutu. The functionsGA,B
andS8 depend individually on this scale, but the final resu
of course, does not. Based on the discussion at the en
Sec. III C, one can immediately recognize that all the la
logarithms are now contained in the functionsGA and GB .
The convolution ofGA , GB , and S8 is over the transverse
momenta of the exchanged soft gluons. Since these mom
are restricted to be of the orderAutu, the integration over
transverse momenta cannot introduce ln(s/utu). This indicates
that at leading logarithm approximation the factorized d
gram with the exchange of one gluon only contributes.
general, when we consider a contribution to the amplitude
L5LA1LB1LS8 loop level, whereLA , LB , andLS8 is the
number of loops inGA , GB , andS8, respectively, we can ge
L2LS8 logarithms ofs/utu at most. Hence, the investigatio
of the s/t dependence of the full amplitude reduces to t
study of thepA

1 andpB
2 dependence ofGA andGB , respec-

tively. We formalize this statement at the end of Sec. V
after we have proved thatGA (GB) contains one logarithm o
pA

1 (pB
2) per loop.

Let us now show how we can systematically go from E
~27! to Eq.~40!. We follow the method developed in Ref.@4#.
We start from Eq.~27! and consider theki

2 integrals over the
jet functionJA for fixed ki

1 ,ki' :

A5(
n
E )

i 51

n21

dki
2RA

a1•••an~k1
2 , . . . ,kn

2 , . . . !

3JA
(n)a1•••an~pA ,q,h,vB ;k1 , . . . ,kn!, ~42!

whereRA is given by the soft functionS and the jet func-
tion JB ,
6-9
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RA
a1•••an~k1

2 , . . . ,kn
2 , . . . !

5(
m

E S )
j 51

m-1

dDpj D Sa1•••an ,b1•••bm

(n,m) ~q,h,vA ,vB ;

k1 , . . . ,kn ;p1 , . . . ,pm!

3JB
(m)b1•••bm~pB ,q,h,vA ;p1 , . . . ,pm!. ~43!

We next use the following identity forRA :3

RA~k1
2 , . . . ,kn21

2 !

5RA~k1
250, . . . ,kn21

2 50!)
i 51

n21

u~M2uki
2u!

1 (
i 51

n21

@RA~k1
2 , . . . ,ki

2 ,ki 11
2 50, . . . ,kn21

2 50!

2RA~k1
2 , . . . ,ki 21

2 ,ki
250, . . . ,kn21

2 50!

3u~M2uki
2u!# )

j 5 i 11

n21

u~M2ukj
2u!. ~44!

We have suppressed the dependence on the color indice
other possible arguments inRA for brevity. The scaleM can
be arbitrary, but, as above, we take it to be of the orde
Autu. The first term on the right hand side of Eq.~44! has all
ki

250. The rest of the terms can be analyzed using theK-G
decomposition discussed in Sec. IV A. Consider the (i 51)
term, say, in the square bracket of Eq.~44! inserted in Eq.
~42!. Let us denote itA1. In the regionuk1

2u!M the inte-
grand vanishes. On the other hand, foruk1

2u;M we can use
the K-G decomposition for the gluon with momentumk1.
The contribution from theK part factorizes and the integra
over the componentk1

2 has the form

A15E dk1
2

vA•k1
@RA

a1•••an~k1
2 ,k2

250, . . . ,kn21
2 50!

2u~M2uk1
2u!RA

a1•••an~k1
250, . . . ,kn21

2 50!#

3 (
i 52

n21 S igsf
a1ciaiE

2M

M

)
j 52

n21

dkj
2

3JA
(n21)a2•••ci•••an~pA ,q,h,vB ;k2 , . . . ,

k11ki , . . . ,kn!D . ~45!

Equation~45! is valid when all the lines inside the jet ar
jetlike. In that case the contributions from the ghosts
power suppressed. The contribution corresponding toG
gluon comes from the region of integration shown in F
3~b!. It can be expressed in the form of Eq.~42! involving

3Recall thatkn5q2(k11•••1kn21), so kn is not an indepen-
dent momentum.
05401
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someJA
(n8) with fewer loops than in the originalJA

(n) , and an
RA8 with more loops than in the originalRA . Then we can
repeat the steps described above with this new integral.

Every subsequent term in the square bracket of Eq.~44!
can be treated the same way as the first term. This allow
to express the integral in Eq.~42! in terms ofki

2 integrals

over someJA
(n8)’s, which have the same or fewer number

loops than the originalJA
(n) ,

G
A

(n8)a18•••a
n8
8

~pA ,q,h,vB ;k18
1 , . . . ,kn8

81 ;k1'8 , . . . ,kn8'
8 ;M !

[E
2M

M

)
i 51

n821

dki8
2J

A

(n8)a18•••a
n8
8

~pA ,q,h,vB ;k18 , . . . ,kn8
8 !.

~46!

We now want to setki8
150 in order to put Eq.~42! into the

form of Eq.~40!. To that end, we employ an identity forJA
(n8)

~we again suppress the dependence on the color indice
brevity!

JA
(n8)~pA ,q,h,vB ;k18 , . . . ,kn8

8 !

5JA
(n8)~pA ,q,h,vB ;k18

150, . . . ,kn8
150,

k18
2 , . . . ,kn8

82 ,k1'8 , . . . ,kn8'
8 !

1 (
i 51

n821 E
0

k
i

81

dli
1

]

] l i
1

JA
(n8)~pA ,q,h,vB ;k1'8 , . . . ,

kn8'
8 ,k18

2 , . . . ,kn8
82 ,k18

1 , . . . ,ki 2181 ,l i
1 ,

ki 1181 50, . . . ,kn8
8150!. ~47!

Substituting the first term of Eq.~47! into Eq. ~46!, we rec-
ognize the definition forGA , Eq. ~41!. We have shown in
Sec. IV C that the contributions from the terms proportion

to ]JA
(n8)/] l i

1 in Eq. ~47! can be expressed as soft-loop int

grals of someJA
(n9) , again with fewer loops than inJA

(n8) .
When we substitute this into Eq.~46! we may express the
resulting contribution in terms of integrals which have t
form of Eq.~42!. We can now repeat all the steps mention
so far, with this new integral. By this iterative procedure w
can transfer theki

2 integrals in Eq.~42! to JA
(n) and also set

ki
150 insideJA

(n) . In a similar manner, we can analyze th
pj

1 integrals in Eq.~27!, and express them in terms ofGB

defined in Eq.~41!. This algorithm, indeed, leads from th
first factorized form of the considered amplitude~27! to the
second factorized form,~40!

B. Evolution equation

We have now collected all the ingredients necessary
derive the evolution equations for quantities defined in E
~41!. Consider GA

(n) . We aim to find an expression fo
pA

1]GA
(n)/]pA

1 . As discussed in Sec. IV B this will enable u
to resum the large logarithms of ln(pA

1) and eventually the
logarithms of ln(s/utu). According to Eq.~41!, in order to find
pA

1]GA
(n)/]pA

1 , we need to studypA
1]JA

(n)/]pA
1 . Using the
6-10
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identitiespA•vB52jAzB , pA•ki52jAj i , wherej i[ki
2h1

andjA ,zB are defined in Eq.~31!, we conclude that

JA
(n)5zB

nJ̄A
(n)~jA ,$j i% i 51

n21 ,t,$q'•ki'% i 51
n21 ,$ki'•kj'% i , j 51

n21 !.
~48!

From this structure, using the chain rule, we derive the
lowing relation satisfied byJA

(n) , which generalizes Eq.~33!
to JA

(n) with arbitrary number of external gluons

pA
1

]JA
(n)

]pA
1

52h̃a
]JA

(n)

]ha
1 (

i 51

n21

ki
2

]JA
(n)

]ki
2

1zB

]JA
(n)

]zB
. ~49!

Now, we integrate both sides of Eq.~49! over
) j 51

n21(*2M
M dkj

2) and set allkj
150. Then, using the defini

tion for GA
(n) , Eq. ~41!, the left hand side is nothing else b

pA
1]GA

(n)/]pA
1 . The first term on the right hand side of E

~49! is simply 2h̃a]GA
(n)/]ha. Noting that zB]JA

(n)/]zB

5nJA
(n) , the last term gives simplynGA

(n) . For the middle
term, we use integration by parts

)
j 51

n21 S E
2M

M

dkj
2D (

i 51

n21

ki
2

]JA
(n)

]ki
2

5 )
j 51

n21 S E
2M

M

dkj
2D (

i 51

n21 F ]

]ki
2

~ki
2JA

(n)!2JA
(n)G

5 (
i 51

n21 E
2M

M S )
j Þ i

n21

dkj
2D M @JA

(n)~ki
251M , . . . !

1JA
(n)~ki

252M , . . . !#2~n21!GA
(n) . ~50!

Combining the partial results~49! and ~50!, we obtain the
following evolution equation:
05401
l-

pA
1

]GA
(n)

]pA
1

5 (
i 51

n21 E
2M

M S )
j Þ i

n21

dkj
2D M @JA

(n)~ki
251M , . . . !

1JA
(n)~ki

252M , . . . !#1GA
(n)2h̃a

]GA
(n)

]ha
.

~51!

The jet functionJA
(n) in the first term of Eq.~51! is evaluated

at $ki
150% i 51

n and the kj
2’s are integrated over forj

51, . . . ,n21 and j Þ i . The first term in Eq.~51! can be
analyzed using theK-G decomposition for gluoni since the
ki

2 is evaluated at the scaleM;Autu. The outcome of the las
term in Eq.~51! has been determined in Sec. IV B, Fig. 44

As a result we have all the tools necessary to determine
asymptotic behavior of the high energy amplitude for proc
~1!. To demonstrate this, we will rewrite Eq.~51! into the
form where on the right-hand side there will be a sum

terms involvingGA
(n8)’s convoluted with functions which do

not depend onpA
1 . Let us proceed term by term.

Again, theK-G decomposition applies to the first term
Eq. ~51! because the external momenta are fixed withki

25
6M . Using the factorization of aK gluon given in Eq.~30!
it is clear that the contributions from theK gluons cancel for
JA

(n)s evaluated atki
251M and ki

252M . Hence only the
G gluon contribution survives in this term. Its most gene
form is shown in Fig. 3~b!. Before writing it down let us
introduce the following notation. For a set of indice
$1,2, . . . ,n%\$ i % consider all the possible subsets of this s
with 1,2, . . . ,(n21) number of elements. Let us denote
given subset byp, its complementary subsetp̄, the number
of elements in this subset asnp and in its complementary a
np̄[(n21)2np . With this notation, we can write thei th
contribution to the first term in Eq.~51! in the form
JA
(n)a1•••an~ki

251M , . . . !1JA
(n)a1•••an~ki

252M , . . . !

5(
p

E )
j 51

N21
dDl j

~2p!D
,Saiai 1

•••ai np
b1•••bN

m1•••mN ~ki
251M ,ki 1

2 , . . . ,ki np

2 ;ki
150,ki 1

150, . . . ,

ki np

1 50;ki' ,ki 1 ' , . . . ,ki np
' ; l 1 , . . . ,l N ;q,h!3J

Am1•••mN

(np̄1N)aī 1
•••aī np̄

b1•••bN
~kī 1

2 , . . . ,kī np̄

2 ;kī 1

1
50, . . . ,kī np̄

1
50;

kī 1'
, . . . ,kī np̄

' ; l 1 , . . . ,l N ;pA ,q,h!1~ki
2→2M !. ~52!

In Eq. ~52!, the summation over repeated indices is understood. We sum over all possible subsetsp. In other words, we sum
over all possible attachments of external gluons to jet functionJA and to the soft functionS. The elements of a given setp are
denoted i 1 ,i 2 , . . . ,i np

. The elements of a complementary setp̄ are labeled ī 1 , ī 2 , . . . ,ī np̄
. The num-

ber of gluons connectingS andJA
(np̄1N) is N.

Following the procedure described in Sec. V A withRA in Eq. ~42! replaced byS in Eq. ~52!, we can express the
contribution from aG gluon in the first term of Eq.~51! in the form

4Strictly speaking we have analyzedh̃a]JA
(n)/]ha, but because of the relationship betweenJA

(n) andGA
(n) given by Eq.~41!, once we know

h̃a]JA
(n)/]ha we also knowh̃a]GA

(n)/]ha.
6-11
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TIBOR KÚCS PHYSICAL REVIEW D 69, 054016 ~2004!
(
i 51

n21 E
2M

M S )
j Þ i

n21

dkj
2D M @JA

(n)a1•••an~ki
251M , . . . !1JA

(n)a1•••an~ki
252M , . . . !#

5(
m

E )
j 51

m

dD22l j'K a1•••an ;b1•••bm

(n,m) ~k1' , . . . ,kn' ,l 1' , . . . ,l m' ;q,h;M !

3GA
(m)b1•••bm~pA ,q,h; l 1' , . . . ,l m' ;M !. ~53!

The functionK (n,m) does not contain any dependence onpA . It can contain delta functions setting some of the color indi
bi , as well as transverse momental i' of GA

(m) equal to color indicesai and transverse momentaki' of GA
(n) .

Next we turn our attention to the last term appearing in Eq.~51!. The contribution to this term has been depicted graphic
in Fig. 4. Consider the term in Fig. 4~a!. It can be written in a form

E
2M

M S )
j 51

n21

dkj
2D @Fig.4~a!#5E

2M

M S )
j 51

n21

dkj
2D(

p
Saiai 1

•••ai np
b8 ~ki

2 ,ki 1
2 , . . . ,ki np

2 ;ki
150,ki 1

150, . . . ,

ki np

1 50;ki' ,ki 1'
, . . . ,ki np

' ; l 5ki1ki 1
1•••1ki np

;q,h!

3J
A

(np̄11)aī 1
•••aī np̄

b
~kī 1

2 , . . . ,kī np̄

2 ;kī 1

1
50, . . . ,kī np̄

1
50;

kī 1'
, . . . ,kī np̄

' ; l 5ki1ki 1
1•••1ki np

;pA ,q,h!. ~54!

In Eq. ~54!, we have used the same notation as in Eq.~52!. Momentuml connectsS8 with JA
(np̄11) . Following the same

procedure as in Sec. V A withRA appearing in Eq.~42! replaced byS8 introduced in Eq.~54!, we can express this contributio
in a form given by Eq.~53! with a different kernelK (n,m).

The contribution from Fig. 4~b! can be written

E
2M

M S )
j 51

n21

dkj
2D @Fig.4~b!#5E

2M

M S )
j 51

n21

dkj
2D(

p
E dDk

~2p!D
Saiai 1

•••ai np
bc9 ~ki

2 ,ki 1
2 , . . . ,ki np

2 ;ki
150,ki 1

150, . . . ,

ki np

1 50;ki' ,ki 1'
, . . . ,ki np

' ;k,l ;q,h!J
A

(np̄12)aī 1
•••aī np̄

bc
~kī 1

2 , . . . ,kī np̄

2 ;

kī 1

1
50, . . . ,kī np̄

1
50;kī 1'

, . . . ,kī np̄
' ;k,l ;pA ,q,h!. ~55!

The flow of momentak and l is exhibited in Fig. 4~b!. The momentumk flows through the boxed vertex and the ghost li
shown in Fig. 4~b! which forces this momentum to be soft, so that linesk andl are part of the functionS9. Since the line with
momentumk is soft, then all gluons attaching toJA

(np̄12) in Eq. ~55! are soft and we can again apply the procedure descr
in Sec. V A to bring the contribution in Fig. 4~b! into the form given by Eq.~53! with a different kernel, of course.

In summary, we have demonstrated that all the terms on the right hand side of Eq.~51! can be put into the form given by
Eq. ~53!. This indicates that Eq.~51!, indeed, describes the evolution ofGA

(n) in ln pA
1 since it can be written as

S pA
1

]

]pA
1

21D GA
(n)a1•••an~pA ,q,h;k1' , . . . ,kn'!

5(
m

E )
j 51

m

dD22l j'K a1•••an ; b1•••bm

(n,m) ~k1' , . . . ,kn' ,l 1' , . . . ,l m' ;q,h!

3GA
(m)b1•••bm~pA ,q,h; l 1' , . . . ,l m'!. ~56!

The kernelsK (n,m) do not depend onpA
1 . As indicated above, they can contain delta functions setting some of the

indicesbi , as well as transverse momental i' of GA
(m) equal to color indicesai and transverse momentaki' of GA

(n) . The
systematic use of this evolution equation enables us to resum large logarithms ln(pA

1) at arbitrary level of logarithmic accuracy
Analogous equation is satisfied byGB . It resums logarithms of ln(pB

2).
054016-12
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C. Counting the number of logarithms

Having derived the evolution equations forGA
(n) , Eqs.

~51! and~56!, it does not take too much effort to show that
r-loop order the amplitude contains at mostr powers of
ln(s/utu). We follow the method of Ref.@4#. We have argued in
Sec. V A that the power of ln(s/utu) in the overall amplitude
corresponds to the power of ln(pA

1) in GA
(n) . So we have to

demonstrate that atr-loop orderGA
(n,r ) , whereGA

(n,r ) repre-
sents a contribution toGA

(n) at r-loop level, does not contain
more thanr logarithms of ln(pA

1). We prove this statement b
induction. First of all, the tree level contribution toGA

(n,0) is
proportional to the expression

E
2M

M S )
i 51

n21

dki
2D

3 (
$ i 1 , . . . ,i n%

)
j 51

n21 1

S pA2(
l 51

j

ki l D 2

1 i e

S )
j 5n

1

tai j D
r 1 ,r A

,

~57!

where tai js are the generators of theSU(3) algebra in the
fundamental representation. The sum over$ i 1 , . . . ,i n% indi-
cates that we sum over all possible insertions of the exte
soft gluons. Eq.~57! is evaluated at$ki

150% i 51
n . Expanding

the denominators in Eq.~57! we obtain the expressio
22pA

1(ki 1
21•••1ki j

2)2(ki 1
1•••1ki j

)'
2 1 i e. We see that

the poles inki
2 planes are not pinched and therefore theki

2

integrals cannot produce ln(pA
1) enhancements.

Next we assume that the statement is true atr-loop order,
and show that it then also holds at (r 11)-loop level. To this
end we consider the evolution equation~51! and examine
(pA

1]/]pA
121)GA

(n,r 11) . Its contribution is given by the firs
and the third term on the right hand side of Eq.~51!. As
already mentioned, the first term in Eq.~51! can be analyzed
using K-G decomposition. The contributions from theK
terms cancel each other while the contribution from theG
gluons are given by the kind of diagram shown in Fig. 3~b!.
The latter, however, can be written as a sum of soft lo

integrals overJA
(n8,r 8) with r 8<r , since we lose at least on

loop in the originalJA
(n,r 11) due to the soft momentum inte

gration. This is demonstrated in Eq.~52!. Following the pro-
cedure described in Sec. V A, we may express these co

butions as transverse momentum integrals of someGA
(n8,r 8) ,

see Eq.~53!. These contain at mostr 8<r logarithms of
ln(pA

1). The contribution from the third term in the evolutio
equation~51! is given by the diagrams depicted in Fig.

These are again soft loop integrals of someJA
(n8,r 8) with r 8

<r , and they can be expressed as transverse momentu

tegrals ofGA
(n8,r 8) , see Eqs.~54! and~55!, which have, there-

fore, at mostr logarithms of ln(pA
1). Since both terms on the

right hand side of Eq.~51! have at mostr logarithms of
ln(pA

1), then alsopA
1]GA

(n,r 11)/]pA
1 has at mostr logarithms

of ln(pA
1) at (r 11)-loop level. This immediately shows tha
05401
t

al

p
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GA
(n,r 11) itself cannot have more than (r 11) logarithms of

ln(pA
1) at (r 11)-loop level.

This result enables us to formally classify the types
diagrams which contribute to the amplitude at thekth non-
leading logarithm level. As has been shown in Sec. V A,
can write an arbitrary contribution to the amplitude for pr
cess~1! in the Regge limit in the second factorized for
given by Eq.~40!. Consider anr-loop contribution to the
amplitude and letLA , LB , andLS be the number of loops
contained inGA , GB , andS. SinceGA (GB) can containLA

(LB) number of logarithms ofpA
1 (pB

2) at most, the maxi-
mum number of logarithmsNmax log, we can get is

Nmax log5r 2LS . ~58!

This indicates that when evaluating the amplitude at thekth
nonleading approximation, we need to consider diagra
where 1,2, . . . ,(k11) soft gluons are exchanged betwe
the jet functionsJA andJB .

D. Solution of the evolution equations

Having obtained the evolution equations~51! and ~56!,
we discuss how to construct their solution. Our starting po
is Eq. ~56!. In shorthand notation it reads

pA
1

]

]pA
1

GA
(n,r )5 (

r 850

r 21

(
n8

K (n,n8;r 2r 8)
^ GA

(n8,r 8) , ~59!

at r-loop level. Indicesn andn8, besides denoting the num
ber of external gluons of the jet function, also label the tra
verse momenta and the color indices of these gluons.
symbol ^ in Eq. ~59! denotes convolution over the tran
verse momenta and the color indices. Note that Eq.~59!
holds for GA with the overall factorpA

1 divided out (GA

[GA /pA
1). We have proved, in Sec. V C, thatGA

(n,r ) can
contain at mostr logarithms of ln(pA

1) at r-loop level. There-
fore the most general expansion forGA is

GA
(n,r )[(

j 50

r

cj
(n,r )lnj~pA

1!. ~60!

If we want to knowGA
(n,r ) at NkLL accuracy (k50 is LL,

k51 is NLL, etc.!, we need to find allcj
(n,r ) such thatr 2 j

<k. The coefficientscj
(n,r ) in Eq. ~60! depend on the trans

verse momenta and the color indices of the external gluo

Using the expansion forGA
(n,r ) andGA

(n8,r 8) , Eq. ~60!, in Eq.
~59! and comparing the coefficients with the same power
ln(pA

1), we obtain the recursive relation satisfied by the co
ficientscj

(n,r )

jc j
(n,r )5 (

r 85 j 21

r 21

(
n851

n1r 2r 8

K (n,n8;r 2r 8)
^ cj 21

(n8,r 8) . ~61!

In Eq. ~61!, we have used that, in general, 1<n8<n1r
2r 8.

We now show that Eq.~61! enables us to determine all th
relevant coefficientscj

(r ,n) of GA
(n) order by order in perturba
6-13
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tion theory at arbitrary logarithmic accuracy. We start at L
k50, and considern51. At r-loop level we need to find the
coefficientcr

(1,r ) . It can be expressed in terms of lower loo
coefficients using Eq.~61! and settingj 5r andn51

rcr
(1,r )5 (

n851

2

K (1,n8;1)
^ cr 21

(n8,r 21) . ~62!

In Sec. VI A we will prove that the one loop kernel satisfi
K (1,2;1)50, Eq.~72!. This implies that in Eq.~62! the coef-
ficient cr

(1,r ) is expressed in terms of lower loop coefficie
cr 21

(1,r 21) and hence, we can construct the coefficients at a
trary loop level once we computec0

(1,0) , the coefficient cor-
responding to the tree level jet functionGA

(1,0) .
Next we construct allGA

(n) for n.1 at LL accuracy. Let us

assume that we know allcr
(n8,r ) for all r and forn8,n. We

apply Eq.~61! for j 5r

rcr
(n,r )5 (

n851

n11

K (n,n8;1)
^ cr 21

(n8,r 21) . ~63!

In Sec. VI B we will show that the evolution kernel in Eq
~63! obeysK (n,n8;1)5u(n2n8)K̃(n,n8;1), Eq. ~105!, where
u(n2n8) is the step function. This implies that the sum ov
n8 in Eq. ~63! terminates atn85n. Isolating this term in Eq.
~63!, we can write

rcr
(n,r )5K (n,n;1)

^ cr 21
(n,r 21)1 (

n851

n21

K (n,n8;1)
^ cr 21

(n8,r 21) .

~64!

So after we calculate the tree level coefficientc0
(n,0) , we can

construct all the coefficientscr
(n,r ) using Eq.~64! order by

order in perturbation theory, since according to the assu

tion we knowcr
(n8,r ) for all r and forn8,n. This proves that

we can construct the jet functions at LL,k50, for all n to all
loops.

We now assume that we have constructed all the jet fu
tions at theNkLL accuracy for a givenk>0 and we will
show that we can determine all the jet functions at
Nk11LL level. We start withn51. Using Eq.~61! with n
51, j 5r 2(k11), isolating the term withr 85r 21 in the
sum overr 8 and usingK (1,n8;1)5d1n8K (1,1;1), we arrive at

~r 2k21!cr 2k21
(1,r )

5K (1,1;1)
^ cr 2k22

(1,r 21)1 (
r 85r 2k22

r 22

(
n851

11r 2r 8

K (1,n8;r 2r 8)

^ cr 2k22
(n8,r 8) . ~65!

After we evaluate the coefficientc0
(1,k11) ~impact factor!, Eq.

~65! implies that we can calculate the coefficientscr 2k21
(1,r )

order by order in perturbation theory, because, accordin
the induction assumption, we know all the coefficien

cr 2k22
(n8,r 8) since they are at mostNkLL. Once the coefficients of

GA
(1) are determined atNk11LL level, we assume that we
05401
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know all the coefficients ofGA
(n8)s for n8,n. We want to

show that we can now construct all the coefficients forGA
(n)

at Nk11LL accuracy. First we need to calculatec0
(n,k11) .

Then we use Eq.~61! to express the coefficientcr 2k21
(n,r ) ,

isolating the terms withr 85r 21 andn85n, as

~r 2k21!cr 2k21
(n,r )

5K (n,n;1)
^ cr 2k22

(n,r 21)1 (
n851

n21

K (n,n8;1)
^ cr 2k22

(n8,r 21)

1 (
r 85r 2k22

r 22

(
n851

n1r 2r 8

K (n,n8;r 2r 8)
^ cr 2k22

(n8,r 8) . ~66!

The terms appearing in the sum overr 8 in Eq. ~66! are
known according to the assumptions since for themr 82(r
2k22)<k. We also know, according to the induction a
sumptions, the contributions to the second term of Eq.~66!,
since they haven8,n. Therefore, we can constructcr 2k21

(n,r )

order by order in perturbation theory. This finishes our pro
that we can determine the high energy behavior ofGA

(n) at
arbitrary logarithmic accuracy. Note that to any fixed acc
racy only a finite number of fixed-order calculations of ke
nels and coefficientsc0

(n,r ) must be carried out. In a simila
way we can construct a solution forGB

(m) .
Once we know the high energy behavior forGA

(n) and
GB

(m) , then the second factorized form~40! implies that we
also know the high energy behavior for the overall amp
tude. Because a jet functionG (n) is always associated with a
leastn21 soft loop momentum integrals in the amplitud
we infer from Eq.~58! that if we want to know this ampli-
tude atNKLL accuracy, it is sufficient to knowGA

(n) (GB
(m)) at

NK112nLL ( NK112mLL) level for n<K11 (m<K11).
We note, however, that to construct these functions accord
to the algorithm above, it may be necessary to go to sligh
larger, although always finite, values ofn and m. Let us
describe how this comes about, starting with the basic re
sion relations for coefficients~61!.

We assume that for fixedn on the left-hand side of Eq
~61!, the logarithmic accuracyk is bounded by the value
necessary to determine the overall amplitude toKth nonlead-
ing logarithmk5r 2 j <K112n, which we may rewrite as
n1r 2(K11)< j <r . On the right-hand side of Eq.~61! we
encounter the coefficients of the jet functions withn8 exter-
nal lines, satisfying the inequalityn8<n1r 2r 8<n1r 2( j
21). Combining these two inequalities, we immediately o
tain thatn8<K12. Then, for any given number of extern
gluons n8 on the right-hand side, we encounter a level
logarithmic accuracyk85r 82( j 21)<n1r 2n82( j 21)
<K122n8. This reasoning indicates that, in general, w

will need all GA
(n8) (GB

(m8)) at NK122n8LL ( NK122m8LL)
level for n8<K12 (m8<K12), when evaluating the am
plitude atNKLL accuracy. We note that for fermion exchang
in QED it was shown in Ref.@4# that only contributions with
n8<K11 are nonzero, but for QCD, two-loop calculation
appear to indicate, Ref.@39#, that QCD requires the full
range ofn8 identified above, starting at NLL.
6-14
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VI. HIGH ENERGY BEHAVIOR OF THE AMPLITUDE

In the previous sections we have developed the gen
formalism for obtaining the high-energy behavior of the sc
tering amplitude for process~1! at arbitrary logarithmic ac-
curacy. In the following subsections we apply these te
niques to study this amplitude at LL and NLL level.

A. Amplitude at LL

According to Eq.~58!, the amplitude at LL comes solel
from the factorized diagram shown in Fig. 6~a!, but without
any gluon self-energy corrections. The jetA, containing lines
moving in the plus direction, and jetB, consisting of lines
moving in the minus direction, interact via the exchange o
single soft gluon. This gluon couples to jetA via the 2
component of its polarization and to jetB via the1 compo-
nent of its polarization. SincevA

aNab(q,h)vB
b51, we can

write at LL

A8b852
1

t
JA

(1)a~pA ,q,h!JB
(1)a~pB ,q,h!, ~67!

whereb8 is the color basis vector corresponding to the oc
exchange, defined in Eq.~3!. Usings52pA

1pB
2 , the logarith-

mic derivative of the amplitude can be expressed as

]A8

] ln s
b852

1

t

]JA
(1)a

] ln pA
1

JB
(1)a52

1

t
JA

(1)a
]JB

(1)a

] ln pB
2

. ~68!

In Sec. IV B, Eq.~33!, we have derived an evolution equ
tion resumming ln(pA

1) in JA
(1) . We note thatJA

(1)5GA
(1) , and

that Eq.~33! is a special case of the evolution equation~51!.
The diagrammatic representation of the first term on the
right hand side of Eq.~33!, which follows from Fig. 4 in the
case when we have one external soft gluon attached to
function, is given by the diagrams in Fig. 7. Diagram in F
7~a! corresponds to Fig. 4~b! and the diagrams in Figs. 7~b!
and 7~c! correspond to Fig. 4~a! for n51.

The diagrams in Figs. 7~b! and 7~c! are in the factorized
form, while the one in Fig. 7~a! is not. As discussed in Sec
IV B, power counting shows that the loop momentumk in
Fig. 7~a! must be soft. This implies that we can make t
following approximations. First, since at LL all internal line
of the jetA are collinear to the1 direction, we can neglec
the k1 dependence ofJA

(2) , i.e., we may setk150 inside
JA

(2) . Also, we can pick the plus components of the vertic
where the soft gluons attach to the jetJA

(2) . A short calcula-

FIG. 6. Diagrams contributing to the amplitude at NLL appro
mation: factorized one gluon exchange diagram~a! and nonfactor-
ized two gluon exchange diagram~b!.
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tion, which uses the Feynman rules for special lines a
vertices listed in Appendix D, gives the contribution to Fi
7~a! in the form

Fig.7~a!52ḡst f acbE dDk

~2p!D

1

k2~k2q!2k• k̄
vA

r Nrm~k!

3Sm~k!vB
aNan~q2k!vA

n vB
bvB

g

3J(A)bg
(2)bc ~pA ,q,h;k150,k2,k'!, ~69!

where we have definedḡs[gsm
e. Using Eqs.~11! and ~36!

for the components of the gluon propagator and the bo
vertex, respectively, it is easy to see that in the Coulo
~Glauber! region, k2!k1;k' , the integrand in Eq.~69!
becomes an antisymmetric function ofk1 and that therefore
the integration overk1 vanishes in this region.

In the soft region, where all the components of soft m
menta are of the same sizeA2t, we can use theK-G de-
composition for the soft gluon with momentumk attached to
JA

(2) . At LL, however, there cannot be any soft internal lin
in JA

(2) in Eq. ~69!, since, as discussed in Sec. V C, on
integrals over collinear momenta can produce powers
ln pA

1 . Therefore, at LL, only theK gluon contributes, be-
cause theG gluon must be attached to a soft line. TheK
gluon can be decoupled from the rest of the jetJA

(2) using the
Ward identities~30!. Their application in Eq.~69! gives

Fig.7~a!52 i ḡs
2CAtE dDk

~2p!D

1

k2~k2q!2k• k̄vA•k

3vA
r Nrm~k!Sm~k!vB

aNan~q2k!vA
n

3JA
(1)a~pA ,q,h!. ~70!

We have used the identityf acbf dcb5Ncdad[CAdad in Eq.
~70!. Equation~70! now gives a factorized form for Fig. 7~a!.
Since the contributions in Figs. 7~b! and 7~c! are already in
the factorized form, we can immediately infer that the glu
Reggeizes at LL. Combining the terms from Fig. 7 in E
~33!, we obtain the evolution equation at leading logarith

pA
1

]

]pA
1

JA
(1)a~pA ,q,h!5a~ t !JA

(1)a~pA ,q,h!. ~71!

Using the notation for evolution kernels introduced in Se
V D, Eq. ~71! implies that

K (1,2;1)50. ~72!

FIG. 7. Diagrammatic representation of the evolution equat
for jet JA

(1) at LL.
6-15
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In Eq. ~71!

a~ t ![11aa
(1)~ t !1ab

(1)~ t !1ac
(1)~ t !, ~73!

is the gluon trajectory up to the orderas , and aa
(1)(t),

ab
(1)(t), andac

(1)(t) are its contributions given in Figs. 8~a!–
8~c!, respectively,

aa
(1)~ t ![2 i ḡs

2CAtE dDk

~2p!D

1

k2~k2q!2k• k̄vA•k

3vA
r Nrm~k!Sm~k!vB

bNbn~q2k!vA
n ,

ab
(1)~ t ![ i ḡs

2CAE dDk

~2p!D

1

k2~k2q!2k• k̄
Sa~k!

3Nam~k!vA
r Nr

n~q2k!Vmbn~k,2q,q2k!vB
b ,

ac
(1)~ t ![2 i ḡs

2CAE dDk

~2p!D

1

k2k• k̄~q2k!•~ q̄2 k̄!

3vA
r Nrm~k!Sm~k!~vB• k̄!. ~74!

In Eq. ~74!, Vmbn(k,2q,q2k) stands for the momentum
part of the three-point gluon vertex. After contracting t
tensor structures in Eq.~74!, using the explicit form for
Vmbn , vA , vB , Sm @Eq. ~34!# and for the components of th
gluon propagator~11! we obtain foraa,b,c

(1) (t)

aa
(1)~ t !52 i ḡs

2CA

t

2E dDk

~2p!D

3
@k'

2 k01k2k3#@~k2q!22~k2q!'
2 #

~k01k3!k2~k2q!2~k• k̄!2~k2q!•~ k̄2q̄!
,

ab
(1)~ t !5 i ḡs

2CA

1

2E dDk

~2p!D

3
1

k2~k2q!2~k• k̄!2~k2q!•~ k̄2q̄!

3@k'
2 k̄2~k2q!212k2k3

2~k2q!'•q'

12k0
2k3

2k'•~k2q!'12k0
2k'

2 ~k2q!'
2 #,

FIG. 8. Diagrams determining the contributions to the glu
trajectory at the orderas .
05401
ac
(1)~ t !5 i ḡs

2CA

1

2E dDk

~2p!D

k3
2

~k• k̄!2~k2q!•~ k̄2q̄!
.

~75!

Next, we perform thek0 and k3 integrals in Eq.~75!. For
aa

(1)(t), these integrals are UV/IR finite. However, in th
case ofab,c

(1)(t), the k0 integral is linearly UV divergent. In
order to regularize this energy integral, we invoke split
mensional regularization introduced in Ref.@37#. The idea is
to regularize separately the energy and the spatial momen
integrals, i.e., to writed4kE→dD1k4dD2kW for Euclidean loop
momentakE . The dimensionsD1 and D2 are given byD1
5122«1 andD25322«2, with « j→01 for j 51,2. Since
the energy integral forac

(1)(t) is scaleless, it vanishes in thi
split dimensional regularization. The energy integrals
aa,b

(1)(t) are straightforward.
All the k3 integrals can be expressed as derivatives w

respect tok'
2 and/or (k2q)'

2 of a single integral

I ~a,b![E
0

`

dk3
1

Ak3
21a2~k3

21b2!

5
1

bAb22a2
lnS b1Ab22a2

a
D . ~76!

The result of these integrations overk3 is

aa
(1)~ t !5asm

2eCAtE dD22k'

~2p!D22 S I ~ uk'u,uk'2q'u!

3
k'

2

@~k2q!'
2 2k'

2 #2
1

2~k2q!'
2 23k'

2

k'
2 @~k2q!'

2 2k'
2 #2D ,

ab
(1)~ t !52asm

2eCAtE dD22k'

~2p!D22 S I ~ uk'u,uk'2q'u!

3
k'

2

@~k2q!'
2 2k'

2 #2
2

1

@~k2q!'
2 2k'

2 #2D ,

ac
(1)~ t !50. ~77!

Combining the results of Eqs.~77! and ~73!, we obtain the
standard expression for the gluon trajectory at LL

a~ t !511CAasm
2eE dD22k'

~2p!D22

t

k'
2 ~k2q!'

2
. ~78!

We can now simply solve the evolution equation~68!, to
derive the factorized~Reggeized! form for the amplitude in
the color octet

A8~s,t,as!5sa(t)Ã8~ t,as!. ~79!

The amplitude factorizes into the universal factorsa(t),
which is common for all processes involving two partons
the initial and final state and dominated by the gluon e
6-16
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change, and the partÃ8 , the so-called impact factor, which i
specific to the process under consideration.

B. Amplitude at NLL

At the NLL level the contribution to the amplitude come
from both the one gluon exchange diagram, Fig. 6~a!, and
from the two gluon exchange diagram, Fig. 6~b!. At this
level, both singlet and octet color exchange are possibl
the latter. Including the self-energy corrections to the pro
gator of the exchanged gluon~taking into account the corre
sponding counterterms!, we can write the contribution from
the diagram in Fig. 6~a! as follows:

A(1)[2
1

t
J(A)a

(1)a ~pA ,q,h!

3S Nab~q,h!1
1

t
vB

avA
mPmn~q,h!vB

n vA
bD

3J(B)b
(1)a ~pB ,q,h!, ~80!

wherePmn(q,h) stands for the one loop gluon self-energ
We now put this contribution into the first factorized for
~27!, isolating the plus polarization for jet A, and the min
polarization for jet B. At NLL in the amplitude, we need th
soft function S(1,1), Eq. ~27! with n5m51, to accuracy
O(as). Using the tulip-garden formalism described in A
pendix C, the contribution to the first term on the right ha
side of Eq.~80! is given by the subtractions shown in Fig.
In accordance with the notation adopted in Appendix C,
dashed lines indicate that we have made soft approximat
on gluons that are cut by them. A dashed line cutting a glu
attached to jetA(B) means that the gluon is attached to t
corresponding jet through minus~plus! component of its po-
larization. Sinceq650 in the Regge limit~2!, we have
Nm6(q)5gm6. This implies that the contributions betwee
the diagrams in Figs. 9~c! and 9~d! as well as between th
diagrams in Figs. 9~e! and 9~f! cancel each other. Therefor
only the zeroth-order soft function diagram in Fig. 9~b! sur-
vives in the factorized form~27!.
re

05401
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For the two gluon exchange, Fig. 6~b!, we only need the
lowest order soft function at NLL in the amplitude~and LL
in singlet exchange!. The expression for the two gluon ex
change diagram in Fig. 6~b! takes the form~27!,

A(2)5E dDk

~2p!D
JA

(2)ab~k150,k2,k'!

3S~k1,k2,k'!JB
(2)ab~k250,k1,k'!, ~81!

whereS(k) is given by

S~k![
i

2!

N21~k!

k21 i e

N21~q2k!

~q2k!21 i e
. ~82!

We have suppressed the dependence of the functions ap
ing in Eq. ~81! on other arguments for brevity. At NLL ac
curacy we are entitled to pick the plus Lorentz indices for
function JA and the minus indices for jet functionJB only.
We can also setk150 in JA andk250 in JB since all the
loop momenta inside the jets are collinear. Equation~81!
represents the first factorized form~27! for the amplitude
A(2).

Next, we follow the procedure described in Sec. V A
bring the amplitude into the second factorized form~40!. We
employ an identity based on Eq.~44!, for the functionS(k)
defined in Eq.~82!:

FIG. 9. Expansion of the one gluon exchange amplitude at N
using the tulip garden formalism.
S~k1,k2!5S~k150,k250!u~M2uk1u!u~M2uk2u!1@S~k1,k250!2S~k150,k250!u~M2uk1u!#u~M2uk2u!

1@S~k150,k2!2S~k150,k250!u~M2uk2u!#u~M2uk1u!1@$S~k1,k2!2S~k1,k250!u~M2uk2u!%

2$S~k150,k2!2S~k150,k250!u~M2uk2u!%u~M2uk1u!#. ~83!
lt,
u-
The contribution from the first term in Eq.~83! gives imme-
diately the second factorized form withGA

(2) andGB
(2) defined

in Eq. ~41! for n5m52.
We now discuss the rest of the terms in Eq.~83!, which

can be analyzed using theK-G decomposition, since, by
construction, there is no contribution from the Glauber
gion. At the current accuracy only theK-gluon contributes.
-

After substituting the second term of Eq.~83! into Eq. ~81!,
we can factor the gluon with momentumk from jet JB

(2) .
However, it is easy to verify, using the definitions forK and
G gluons, Eq.~29!, the Ward identities, Eq.~30!, and the
explicit components of the gluon propagator, Eq.~11!, that
thek1 integral is over an antisymmetric function. As a resu
this contribution vanishes. In a similar fashion, the contrib
6-17
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tion from the third term in Eq.~83!, after used in Eq.~81!,
vanishes, since now we can factor the soft gluon with m
mentumk from jet JA

(2) and thek2 integral is over an anti-
symmetric function.

In the case of the last term in Eq.~83!, after used in Eq.
~81!, we can factor the soft gluon with momentumk from
both jetsJA

(2) and JB
(2) . The integrals of the soft function

S(k) over k1 andk2 are then

S̃~k' ,q;M ![CA

gs
2

~2p!2E2M

M dk1

k1

dk2

k2
S~k1,k2,k' ,q!.

~84!

As usual, we leave the transverse momentum integral
done. 1/k1 and 1/k2 in the integral above are given by th
principal value prescription because there is no contribu
from the Glauber region. Since the amplitude is independ
on the choice of scaleM, we can evaluate it at arbitrary scal
We choose to work in the limitM→0. In this limit the
contribution to the integral comes from the imaginary pa
of the gluon propagators in Eq.~82!, 2 ipd(k2) and
2 ipd@(k2q)2#. The integration is then trivial and Eq.~84!
becomes

S̃~k' ,q![ lim
M→0

S̃~k' ,q;M ![2CA

igs
2

8

1

k'
2 ~k2q!'

2
.

~85!

Combining the partial results of the analysis described ab
in Eq. ~81!, we arrive at the second factorized form for th
double gluon exchange amplitude, Fig. 6~b!,

A(2)5E dD22k'

~2p!D22
GA

(2)ab~k'!
1

~2p!2

3S~k150,k250,k'!GB
(2)ab~k'!

1E dD22k'

~2p!D22
GA

(1)a~pA ,q!S̃~k' ,q!GB
(1)a~pA ,q!.

~86!

Using Eq.~80! for A(1) and Eq.~86! for A(2), we obtain the
amplitude for the process~1! at NLL accuracy

A(NLL) 52
1

t
GA

(1)a~pA ,q,h!S 11
1

t
P12~q,h!

1
ip

2
a (1)~ t ! DGB

(1)a~pB ,q,h!1E dD22k'

~2p!D22

3GA
(2)ab~k'!

i

8p2

1

k'
2 ~k2q!'

2
GB

(2)ab~k'!. ~87!

In Eq. ~87!, we have used the explicit form forS(k1

50,k250,k'), which can be easily identified from Eq.~82!.
We have also used the integral representation of the g
trajectory given in Eq.~78!.
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In order to determine the high energy behavior of t
amplitude in Eq.~87!, we need to examine the high energ
behavior ofGA

(1) or GB
(1) at NLL and the evolution ofGA

(2) or
GB

(2) at LL. In this paper, we restrict the discussion of evo
tion equations to LL level, and hence we analyze the beh
ior of GA

(2) only. We will address the study of NLL jet evo
lution, and gluon Reggeization at this level, elsewhere@39#.

We use the evolution equation given by Eq.~51! in order
to determine the LL dependence ofGA

(2) on ln(pA
1). In our

special case of the two gluon exchange amplitude, it rea

S pA
1

]

]pA
1

21D GA
(2)ab5M @JA

(2)ab~k251M ,k150,k'!

1JA
(2)ab~k252M ,k150,k'!#

2h̃a
]

]ha
GA

(2)ab . ~88!

The first term in Eq.~88! can be analyzed using theK-G
decomposition. The contributions from theK gluon cancel
between theJA

(2)(k251M ) and JA
(2)(k252M ). The con-

tributions from theG gluon, which we now discuss, ar
shown in Figs. 10~a! and 10~b!.

Since the gluon with momentumq2k in Fig. 10~a! can-
not be in the Glauber region, we can useK-G decomposition
on it. TheK part factors fromJA

(3) , while theG part does not
contribute at LL. After factoring out the gluon with momen
tum q2k and performing the approximations on the jet fun
tion JA

(2) , the contribution to Fig. 10~a! for k251M is

Fig.10~a!52 igs
2f aecf deb

1

ME dDl

~2p!D
S1~k150,

k251M ,k' ,l )JA
(2)cd~ l 150,l 2,l'!,

~89!

where we have defined

S1~k,l ![
N2m~ l !

l 2

N2n~k2 l !

~k2 l !2
Vmrn~ l ,2k,k2 l !S gr12

kr

M D .

~90!

Next we follow the established procedure. First, we write

FIG. 10. Diagrams determining the evolution ofGA
(2) .
6-18
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S1~k,l !5S1~k,l 250!u~M2u l 2u!

1@S1~k,l !2S1~k,l 250!u~M2u l 2u!#. ~91!

When we use the second term of Eq.~91! in Eq. ~89!, we can
factor the gluon with momentuml from JA

(2) . Since the re-
sulting integrand is an antisymmetric function under the
multaneous transformationM→2M , l 6→2 l 6, the contri-
butions on the right hand side of Eq.~88! evaluated fork2

51M and k252M cancel each other. Therefore we c
write, using Eq.~91! in Eq. ~89!,

Fig.10~a!52 igs
2f aecf deb

1

ME dD22l'

~2p!D E dl1S1~k150,

k251M ,k' ,l 250,l 1,l')GA
(2)cd~ l'!1•••,

~92!

where by ellipses we mean the term which is canceled a
we take into account the contributions to bothJA

(2)(k25

1M ) andJA
(2)(k252M ) on the right hand side of Eq.~88!.

Next, we perform thel 1 integral in Eq.~92!. As we have
already mentioned above, since the final result does not
pend on the scaleM, we can choose arbitrary value ofM. We
have chosen to perform the calculation in the limitM→0.
Then the only nonvanishing contribution comes from t
imaginary part of the propagator 1/@( l 2k)21 i e#,
2 ipd(2Ml 11( l 2k)'

2 ). For this term thel 1 integration is
trivial and we obtain

M @Fig.10~a!#

52asf aecf debE dD22l'

~2p!D22

2k'• l'

l'
2 ~k2 l !'

2
GA

(2)cd~ l'!1•••,

~93!
m

s
th
l

r
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which gives anM-independent contribution to the right han
side of Eq.~89!.

We follow the same steps when dealing with the diagr
in Fig. 10~b!, whose soft subdiagram is given by

S2~k,l ![
N2m~ l !

l 2

N2n~q2 l !

~q2 l !2
Vmrg~ l ,2k,k2 l !

3S gr12
kr

M DNgd~ l 2k!

~ l 2k!2

3Vnd2~q2 l ,l 2k,k2q!. ~94!

First we use the identity~91! for S2. The contribution due to
the second term in Eq.~91! vanishes, after the gluon with
momentuml has been factored fromJA

(2) , due to the anti-
symmetry of the integrand. Hence again, as in the case
cussed above, only the term given byS2( l 250,l 1,l' ,k)
contributes. In the limitM→0, the contribution comes from
the imaginary part of the same denominator as in the cas
Fig. 10~a!. The result is

M @Fig.10~b!#52asf aecf debE dD22l'

~2p!D22

2

l'
2 ~ l 2q!'

2 ~k2 l !'
2

3~k'
2 l'

2 2k'• l'l'
2 2k'•q'l'

2 2k'
2 l'•q'

12k'• l'l'•q'!GA
(2)cd~ l'!1•••. ~95!

Combining the results of Eqs.~93! and ~95!, we obtain the
expression for the surface term in Eq.~88!
M @JA
(2)ab~k251M ,k150,k'!1JA

(2)ab~k252M ,k150,k'!#

52asf aecf bedE dD22l'

~2p!D22 S k'
2

l'
2 ~k2 l !'

2
1

~k2q!'
2

~ l 2q!'
2 ~k2 l !'

2
2

q'
2

l'
2 ~q2 l !'

2 D GA
(2)cd~ l'!. ~96!
er
Next, we analyze the contributions to the ter

h̃a]/]haGA
(2) in the evolution equation~88!. The contribut-

ing diagrams are shown in Figs. 10~c!–10~f!. Note that for
every diagram in Figs. 10~c!–10~f!, we have also diagram
when a loop containing the boxed vertex is attached to
external gluon with momentumk, instead of to the externa
gluon with momentumq2k.

In Fig. 10~c!, we have to consider all the possible inse
tions of external gluons with momentak andq2k. We have
six possibilities. The contribution shown in Fig. 10~c! is pro-
portional to~omitting the color factor!
e

-

E
2M

M

dk2@Fig.10~c!#

}E
2M

M

dk2E dDl

~2p!D

N2m~ l !

l 2

Sm~ l !

l • l̄

~ l̄ 2 k̄!1

~ l̄ 2 k̄!2

3
~ q̄2 l̄ !1

~ q̄2 l̄ !2
~k150!. ~97!

Since the integrand is an antisymmetric function und
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k2→2k2 and l 6→2 l 6, the integral in Eq.~97! vanishes. The same antisymmetry property holds for the remaining
diagrams and therefore, there is no contribution from them.

Let us next focus on the diagram in Fig. 10~f!. When the gluon with momentuml attaches to a soft line inside of the je
JA

(3) , the contribution takes the form shown in Fig. 11~a!. If it attaches to a jet line, its contribution can be written as

Fig.10~ f!52gsf bcdE dDl

~2p!D
S3~k150,k2,k' ,l !

3JA
(3)acd~k150,k2,k' ,l 150,l 2,l'!, ~98!

with the soft function

S3~k,l ![~q2k!2
N2m~ l !

l 2

Sm~ l !

l • l̄

N21~q2k2 l !

~q2k2 l !2
. ~99!

We use the identity for this soft functionS3, obtained from Eq.~83! by the replacementk1→ l 2,

S3~ l 2,k2!5S3~ l 250,k250!u~M2u l 2u!u~M2uk2u!1@S3~ l 2,k250!2S3~ l 250,k250!u~M2u l 2u!#u~M2uk2u!

1@S3~ l 250,k2!2S3~ l 250,k250!u~M2uk2u!#u~M2u l 2u!1@$S3~ l 2,k2!2S3~ l 2,k250!u~M2uk2u!%

2$S3~ l 250,k2!2S3~ l 250,k250!u~M2uk2u!%u~M2u l 2u!#, ~100!
m
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to treat the soft gluons with momentak and l attached to jet
JA

(3) . The contribution from the first term in Eq.~100!, when
used in Eq.~98!, vanishes since the integrandS3(k15k2

50,k' ,l 250,l 1,l') is an antisymmetric function ofl 1, as
can be easily checked using Eqs.~11!, ~36!, and~99!. We can
apply theK-G decomposition on the gluon with momentu
l when treating the second term in Eq.~100! used in Eq.~98!.
At LL only the K gluon contributes. It can be factored fro
the jet functionJA

(3) with the result shown in Figs. 11~b! and
11~c!. In a similar way we can treat the gluon with mome
tum k in the third term of Eq.~100!. After we factor this
gluon from the jetJA

(3) , we obtain the contributions shown i
Figs. 11~d! and 11~e!. In the case of the last term in Eq
~100!, we can factor out both soft gluons with momentak
and l from jet JA

(3) . The result of this factorization is show
in Fig. 11~f!.

Next, we note that the combination of the diagrams
Figs. 10~d!, 10~e!, and 11~b! is the same as the result encou

FIG. 11. Contributions to the diagram in Fig. 10~f! when the
gluon coming out of the boxed vertex is attached to the soft line~a!
and when either or both gluons with momentak and l areK gluons
and they are factored from the jet~b!–~f!.
05401
tered in the analysis of the LL amplitude, Fig. 8. We write

E
2M

M

dk2@Fig.10~d!1Fig.10~e!1Fig.10~b!#

5a (1)~q'2k'!GA
(2)ab~pA ,q,k'!, ~101!

wherea (1)(q2k) in Eq. ~101! is given by the diagrams in
Fig. 8 with an external momentumq2k5(01,02,q'

2k'). In the case when the gluon coming out of the box
vertex attaches to an external gluon with momentumk, we
evaluate the one loop trajectorya (1)(k') in Eq. ~101!.

To complete the analysis, we have to discuss the diagr
in Figs. 11~a! and 11~c!–11~f!. In the regionl 6; l' , we can
factor the gluon with momentuml from the jet function
JA

(2)( l 150,l 2,l') in the case of the diagram in Fig. 11~a!.
The resultingk2 and l 6 integral is over an antisymmetri
function ofk2 andl 6, and therefore it vanishes. So the on
contribution comes from the Glauber region, where we c
set l 250 outsideJA

(2)( l 150,l 2,l'). As above, we perform
the l 1 and k2 integrals in the limitM→0. The integrand
does not develop a singularity ink2 and/orl 1 strong enough
to compensate for the shrinkage of the integration reg
*2M

M dk2 whenM→0. Hence the diagram in Fig. 11~a! does
not contribute in the limitM→0. In a similar way as for the
diagram in Fig. 11~a!, none of the diagrams in Figs. 11~c!–
11~f! contribute. The diagrams in Figs. 11~c!–11~e! vanish in
theM→0 limit, while in the case of the diagram in Fig. 11~f!
the k2 and l 6 integral is over an antisymmetric function o
k2 and l 6.

At this point we have discussed all the contributions a
pearing on the right hand side of the evolution equation~88!.
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Combining the partial results given by Eqs.~101! and~96! in
Eq. ~88!, we arrive at the evolution equation governing t
high energy behavior ofGA

(2)

S pA
1

]

]pA
1

21D GA
(2)ab~pA

1 ,q,k'!

52asf aecf bedE dD22l'

~2p!D22
GA

(2)cd~pA
1 ,q,l'!

3S k'
2

l'
2 ~k2 l !'

2
1

~k2q!'
2

~ l 2q!'
2 ~k2 l !'

2
2

q'
2

l'
2 ~q2 l !'

2 D
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-
n

e

o

q
f

m
t
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05401
1~a (1)~k'!1a (1)~q'2k'!!GA
(2)ab~pA

1 ,q,k'!. ~102!

Projecting out onto the color singlet in Eq.~102!, we imme-
diately recover the celebrated BFKL equation@9#.

C. Evolution of G „n… at LL

We can now generalize Eq.~102! to the case ofGA
(n) . The

evolution kernel in this case contains, in addition to a pie
diagonal in the number of external gluons, also contributio
which relate jet functions with different number of extern
gluons
S pA
1

]

]pA
1

21D GA
(n)1•••an~pA

1 ,q,k1' , . . . ,kn'!

52as(
i , j

n

f aiebi
f ajebj

E dD22l i'

~2p!D22

dD22l j'

~2p!D22
d (2)~ l i'1 l j'2ki'2kj'!S ki'

2

l i'
2 ~ki2 l i !'

2
1

kj'
2

l j'
2 ~kj2 l j !'

2
2

~ki1kj !'
2

l i'
2 l j'

2 D
3GA

(n)a1•••bi•••bj •••an~pA
1 ,q,k1' , . . . ,l i' , . . . ,l j' , . . . ,kn'!

1(
i 51

n

@a (1)~ki'!#GA
(n)a1•••an~pA

1 ,q,k1' , . . . ,kn'!1 (
n851

n21

K a1•••an ;b1•••bn8

(n,n8)
^'GA

(n8)b1•••bn8 , ~103!
that
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at
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to
where ^' denotes a convolution in transverse moment
space. The last term in Eq.~103! corresponds to the configu
rations when one or more external gluons attach to a gluo
a ghost lines forming the one loop kernel derived forGA

(2) .
Using the notation of Sec. V D, we can write Eq.~103! at
r-loop order in the form

S pA
1

]

]pA
1

21D GA
(n,r )5 (

n851

n

K (n,n8;1)
^ GA

(n8,r 21) .

~104!

It corresponds to Eq.~64! of Sec. V D when written in terms
of the coefficientscr

(n,r ) introduced in Eq.~60!. From Eq.
~104! we immediately see that the following property of th
one loop kernel:

K (n,n8;1)5u~n2n8!K̃(n,n8;1), ~105!

is satisfied. We recall that this step was essential in dem
strating that the set of evolution equations~51! forms a con-
sistent system; refer to the paragraph above Eq.~64!.

The term diagonal in the number of external gluons in E
~103! coincides with the evolution equation derived in Re
@5#. Our formalism, in addition to enabling us to go syste
atically beyond LL accuracy, Ref.@39#, indicates that even a
LL, in addition to the kernels found in Ref.@5#, the kernel
has contributions which relate jet functions with differe
number of external gluons.
or

n-

.
.
-

VII. CONCLUSIONS

We have established a systematic method that shows
it is possible to resum the large logarithms appearing in
perturbation series of scattering amplitudes for 2→2 par-
tonic processes to arbitrary logarithmic accuracy in
Regge limit. Up to corrections suppressed by powers
utu/s, the amplitude can be expressed as a sum of conv
tions in transverse momentum space over soft and jet fu
tions ~40!. All the large logarithms are organized in the j
functions ~41!. They are resummed using Eqs.~51! and/or
~56!. The evolution kernelK in Eq. ~56! is a calculable func-
tion of its arguments order by order in perturbation theo
This is the central result of our analysis.

As an illustration of the general algorithm we have de
onstrated it in an action at NLL for the amplitude and LL f
the evolution equations. We reserve the study of the N
evolution, which addresses the Reggeization of a gluon
NLL, for future work @39#.

The derivation of the evolution equations and the pro
dure for finding the kernels was given above in Coulom
gauge. Clearly, it will be useful and interesting to reform
late our arguments in covariant gauges. In addition, the c
nection of our formalism to the effective action approach
small-x and the Regge limit, Refs.@23,24# should provide
further insight.
6-21
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APPENDIX A: POWER COUNTING WITH CONTRACTED
VERTICES

In this appendix we will include the possibility of con
tracted vertices in the reduced diagram in Fig. 1~a!. These are
associated with internal lines~collapsed to a point! which are
off-shell byAs. Our analysis closely follows Refs.@27# and
@31#.

If we go back to the argument that led us to Eq.~15! for
the superficial degree of IR divergence for the soft part,
see that the same reasoning as in the case of eleme
vertices applies to the case of contracted vertices since
result ~15! has been obtained by means of dimensio
counting.

The analysis of contracted vertices connecting jet lin
only is, however, more subtle. We have to demonstrate
the suppression factors corresponding to the contracted
tices are at least as great as the ones for the eleme
vertices. The expression~22! tells us that we can restric
ourselves to the two and three point vertices. For these ca
we analyze the full two and three-point subdiagrams,
studying the tensor structures that are found after integra
over their internal loop momenta.

Before we discuss all the possible structures, we s
some results which will be essential for the upcoming ana
sis. The first one is the simple Dirac matrix identity

a” b” a”52~a•b! a”2a2 b” . ~A1!

The other two follow from Eqs.~7! and ~11! for the gluon
propagator in Coulomb gauge, and hold for any jet mome
scaling asl A; l A8;As(11,l2,l1/2) collinear to the momen-
tum pA defined in Eq.~2!

l A8
aNab~ l A ,h!5O~l1/2As!,

l̄ A8
aNab~ l A ,h!5O~l1/2As!, ~A2!

for all components ofb. We now proceed to discuss th
particular cases.

Ghost self-energy. The most general covariant structure
usingp• p̄5 p̄2,5

P~p,p̄!5p• p̄ f @p2/m2,p̄2/m2,as~m!#, ~A3!

wherem is a scale introduced by a UV/IR regularization
Feynman diagrams andp is the momentum of an internal je

5In the rest of this subsection we are concerned the momen
factors only, and we omit dependence on the color structure.
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line. Strictly speaking, the covariants should be formed fr
the vectorsp andh, but sincep has nonzero light-cone com
ponents, we can use Eq.~8!, to expressh in terms ofp̄. The
maximum degree of divergence for the ghost self-energy
curs when the internal lines become either parallel to
external momentump or soft. The most general pinch singu
lar surface consists of a subdiagram of collinear lines mov
in a direction of the external ghost. This subdiagram c
interact with itself through the exchange of soft quan
Power counting arguments similar to the ones given in S
III B show, however, that there is no IR divergence for the
pinch singular points. This shows that the dimensionl
function f in Eq. ~A3! is IR finite. Hence the combination
@tree level ghost propagator# - @ghost self-energy# - @tree
level ghost propagator#, @1/(p• p̄)#P(p,p̄)@1/(p• p̄)#, is sup-
pressed at least as much as a single tree level ghost pr
gator 1/(p• p̄). Therefore the contracted two point ghost ve
tex within a jet subdiagram contributes at least the sa
suppression as a single tree level ghost propagator.

Gluon self-energy. With external momentump, its most
general tensor decomposition has the form

Pmn~p,p̄!5gmnp2f 11pmpn f 21 p̄mp̄n f 31~pmp̄n1 p̄mpn! f 4 .

~A4!

As verified by explicit one-loop calculations in Refs.@37#
and @38# the gluon self-energy in Coulomb gauge is n
transverse. In Eq.~A4!, the f i5 f i@p2/m2,p̄2/m2,as(m)# are
dimensionless functions. ContractingPmn with tree level
gluon propagators, and using Eq.~10!, the last two terms in
Eq. ~A4! drop out and the first and the second terms give
least one factor ofp2 in the numerator, which cancels one
the (1/p2) denominator factors. Since the maximum degr
of IR divergence for the gluon self-energy occurs when
the internal lines become either collinear to the external m
mentump or soft, we can use the results of the power cou
ing of Sec. III B to demonstrate that the dimensionless fu
tions f i are at worst logarithmically divergent. Therefore th
combination: gluon-jet-line–2-point-gluon-contracted-ve
tex–gluon-jet-line, behaves the same way as a gluon jet
for the purpose of the jet power counting.

Fermion self-energy. In the massless fermion limit, th
most general matrix structure of the fermion self-energy

S~p,p̄!5p”g11p”̄g2 , ~A5!

with dimensionless functionsgi5gi@p2/m2,p̄2/m2,as(m)#,
i 51,2. When we sandwich the fermion self-energy betwe
the tree level fermion denominators, the first term in E
~A5! behaves the same way as the tree level fermion pro
gator, modulo logarithmic enhancements due to the func
g1. The second term, however, is absent from the ferm
self-energy as was shown in Ref.@31# using the method of
induction and Ward identities. The idea was to study a va
tion of the fermion self-energy by making an infinitesim
Lorentz boost on the external momentum. This implies
relationship between the (r 11) and ther-loop self-energy.
Assuming that the term proportional top”̄ is absent from the
m
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SCATTERING AMPLITUDES IN HIGH ENERGY QCD PHYSICAL REVIEW D69, 054016 ~2004!
r-loop expansion Sen shows that it is also absent from
(r 11)-loop expansion. So the first term in Eq.~A5! is the
only possible structure of the fermion self-energy when
external momentum is jetlike and approaches mass s
Now let us investigate the 3 point functions.

Fermion-gluon-fermion vertex function. Gm , can depend
on vectors that scale asl A , l A8 in Eq. ~A2!, provided all
momenta external to the contracted vertex are collinea
momentumpA given in Eq.~2!. It has one Lorentz index,m,
and neglecting the fermion masses, it contains an odd n
ber of gamma matrices. This implies that the most gen
tensor and gamma matrix expansion ofGm involves~1! gm ,
~2! gml”Al”̄A /( l A• l̄ A) and all permutations ofgm , l”A , l”̄A , and
~3! l”Al A

m/ l A
2 , l”̄Al A

m/( l̄ A• l A), l”Al̄ A
m/( l A• l̄ A), l”̄Al̄ A

m/ l̄ A
2 .

The differences between the listed set of structures
other possible combinations areO(l1/2As), as can be shown
using Eqs.~A1!, ~A2!. The listed gamma matrix structure
are multiplied by dimensionless functions, which can depe
on the combinationsl A

2 , l̄ A
2 , l A8

2 , l̄ A8
2 , in addition to the

renormalization scale and the running coupling. Using
arguments similar to the ones leading to Eq.~23!, we easily
verify that the above mentioned dimensionless functions
at most logarithmically divergent. Next we analyze the p
sible Dirac structures.

~1! The first case has the same structure as the eleme
vertex, and therefore causes the same suppression as t
ementary vertex.

~2! The fermion-gluon-fermion composite 3-point verte
is sandwiched between the factorsl”A8 and l”A , originating
from the numerators of the fermion propagators externa
the composite vertex. Therefore the terms from case 2 wh
l”A is on the first or third position in the string of the gamm
matrices provide a suppressionAl A

2. On the other hand in the
case, whenl”A is in the middle of this string of three gamm
matrices, we encounter the combinationl”A8gml”A after taking
into account the numerators of the external fermions. Us
Eq. ~A1!, we can immediately recognize that this combin
tion provides a suppressionl1/2.

~3! Based on the preceding arguments it is obvious t
also the structures included in item 3 supply at least the s
suppression factor as the elementary vertex.

Therefore, we conclude that the composite 3-po
fermion-gluon-fermion vertex behaves as the elementary
tex for the purposes of the jet power counting.

Three gluon vertex. Vmnr , with external momenta collin-
ear to momentumpA . This vertex can depend on momen
l A , l̄ A defined above and the metric tensorgab . Taking into
account the dimension of the 3 gluon Green function, its o
possible tensor structure involves combinations of the fo
@gmnl A

r 1perm.1O(l1/2As)# and @ l A
ml A

n l A
r / l A

21O(l1/2As)#,

with all possible replacements ofl A→ l̄ A . These tensor
structures are multiplied by dimensionless functions. T
former is the same as in the case of an elementary vertex
it therefore supplies the same suppression factor as the
ementary vertex. The latter also provides the same supp
sion as the elementary vertex, since the two momenta,
l A
m , l A

n , after being contracted with the propagators of t
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external gluons, give suppression factors, as in Eq.~A2!,
which cancel the 1/l A

2 enhancement. The leftover momentu
l A
r provides the same suppression factor as the elemen

vertex. Using the collinear power counting of Sec. III B, o
can immediately see that the IR divergence of the dimens
less functions multiplying these tensor structures is
worse than logarithmic. Hence, there is a suppression fa
l1/2 associated with every contracted 3 gluon vertex.

Ghost-gluon-antighost three point vertex. When all lines
external to the contracted vertex are of the orderl A , the most
general tensor structure for this contracted vertex is

l A
mh11 l̄ A

mh21O~l1/2As!, ~A6!

with dimensionless functions hi5hi@ l A
2/m2, l̄ A

2/m2,
as(m)#, i 51,2, which are at most logarithmically IR diver
gent. Using Eq.~A2!, we see that when the momenta in E
~A6! are contracted with the tree level gluon propagator,
get a suppression of the order of the transverse jet mom
tum, and that this contracted vertex gives the same supp
sion as the elementary three point vertex, at least.

APPENDIX B: VARYING THE GAUGE-FIXING VECTOR

In this appendix we study the effect of an infinitesim
boost, performed on the gauge fixing vectorh, on an expec-
tation of a time ordered product of fields, denoted byO,
taken between physical states. The gauge-fixing and
ghost terms in the QCD Lagrangian are

Lg.f.~x!52
1

2j
ga

2~x!,

Lghost~x!52ba~x!dBRSga~x!/dL,
~B1!

respectively. In Eq.~B1!, dL is a Grassmann parameter d
fining the BRS transformation,ba(x) is an antighost field,
and

ga~x![2 ]̄•Aa~x![2@]2~h•]!h#•Aa~x!. ~B2!

Let us consider an infinitesimal boost with velocitydb on a
gauge fixing vectorh performed in the plus-minus plane

h→h8[h1h̃db, ~B3!

where the vectorsh and h̃ are defined in Eqs.~9! and ~35!,
respectively. Since only the gauge fixing and the ghost te
in the QCD Lagrangian depend onh, we can write to accu-
racy O(db2)

d^O&[^O~h8!&2^O~h!&

5K h̃a
]O

]ha
dbL

52
i

jE d4x^O~h!ga~x!dga~x!&
6-23
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2 i E d4x^O~h!ba~x!d@dBRSga~x!/dL#&.

~B4!

Using the BRS invariance of the QCD Lagrangian and
BRS transformation rule for an antighost field

dBRSba~x!/dL5
1

j
ga~x!, ~B5!

we arrive at

d^O&52 i E d4x^~dBRSO/dL!ba~x!dga~x!&. ~B6!

Taking a variation ofga(x) in Eq. ~B6!, we obtain

d^O&52 i E d4x^~dBRSO/dL!ba~x!

3@~ h̃•]!h1~h•]!h̃#•Aa~x!&. ~B7!

Substituting forO a product ofn gluon fields, we can use Eq
~B7!, together with the rule for the BRS transformation of
gluon field

dBRSAm
a ~x!/dL5]mca~x!1gsf

abcAm
b ~x!cc~x!, ~B8!

with ca(x) representing the ghost field, to derive the gau
variation for a connected Green function. However, our
functions are one-particle irreducible in external soft lin
and we therefore cannot apply Eq.~B7! directly, and must
find an analog for this subset of diagrams. The modificat
of Eq. ~B7! due to the restriction to 1PI diagrams is, how
ever, not difficult to identify.

Let us consider the graphical analog of the derivation
Eq. ~B7! just outlined. The variation inh may be imple-
mented as a change in the gluon propagator and, in Coul
gauge, the ghost-gluon interaction, which is alsoh depen-
dent. This is the viewpoint that was taken in axial gauge
Ref. @32#. At lowest order in the variation, the modifie
gluon propagator produces scalar-polarized gluon lin
which decouple through repeated applications of tree-le
Ward identities to the sum over all diagrams. The relev
tree-level identities are given in Ref.@34#. We need not de-
scribe these identities in detail here. We need only note
they are to be applied to any diagram in which a scalar
larized gluon appears at an internal vertex. Every such ap
cation produces a sum of diagrams, each of which fall i
one of two sets:~1! diagrams in which an internal gluon lin
is transformed to a yet another ghost line ending in a sc
polarization and~2! diagrams in which one gluon line i
contracted to a point. The new vertex formed in the form
case is the ghost term, and in the latter case it is the gh
gluon vertex of the BRS variation~B8!. Equation~B7! must
result from the cancellation of all diagrams, set~2!, in which
an internal gluon line is contracted. Contracted external li
provide the ghost-gluon terms, and the ghost lines of set~1!
eventually provide the ghost terms of the BRS variatio
~B8! of external fields in Eq.~B7!.
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The simplicity of the tree level Ward identities puts stro
limitations on the sets of diagrams that can combine to fo
different diagrammatic contributions to Eq.~B7!. For dia-
grams of set~1!, the topology of the original diagram i
unchanged, and a 1PI diagram remains 1PI. For diagram
set ~2!, generally 1PI diagrams remain 1PI, except in t
special case of a diagram that is two-particle reducible, w
these two lines separated by a single propagator. In this c
the contraction of the internal line that separates the o
two will bring those two lines together at a single verte
producing a diagram precisely of the topology shown in F
4. On the one hand, by Eq.~B7! all such diagrams mus
cancel in the full perturbative sum. On the other hand,
same topology results from a diagram that is one-part
reducible with respect to a single line, which is then co
tracted as a result of the tree-level Ward identity. The la
diagram, however, is not included in the set of 1PI diagra
with which we work. The application of the Ward identity t
1PI diagrams only, therefore, results in terms that would c
cel this special set of one-particle reducible diagrams,
which the only line that spoils irreducibility is contracted
a point. These are the diagrams shown in Fig. 4, in which
ghost-gluon vertex of Eq.~B8! is inserted between one
particle irreducible subdiagrams in all possible ways. T
ghost line ending at this composite vertex is continuou
connected to the variation of a gluon propagator, accord
to Eq.~B7!. The full composite vertex of the Ward identity i
Eq. ~B7! appears only at true external lines of the 1PI j
This vertex is given by the momentum factor in Eq.~37! and
is represented by the double line crossing a gluon line in F
13 below. Diagrams that are reducible in one or more in
nal lines can be treated in a similar manner. The ‘‘leftove
terms in the Ward identities for each set of diagrams of d
nite reducibility properties~1PI, 2PI, etc.!, must cancel in the
full sum, reproducing the identity for Green function
Eq. ~B7!.

APPENDIX C: TULIP-GARDEN FORMALISM

In this appendix we illustrate how a given Feynman d
gram contributing to the process~1! in the leading power can
be systematically written in the form~27!. For concreteness
let us consider a two loop diagram where the quarks inte
via the exchange of a one rung gluon ladder as in Fig.
The important contributions of this diagram come from t
regions when all of the exchanged gluons are soft, Fig. 12~a!
or when the gluons attached to theA quark line are soft,
while the rest of the gluons carries momenta parallel to
2 direction ~they belong to jetB), Fig. 12~b!, or when the
two gluon lines attached to theB quark line are soft and the

FIG. 12. Two-loop diagram illustrating the idea of the tulip
garden formalism.T1 ,T2 ,T3 are the possible tulips.
6-24
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SCATTERING AMPLITUDES IN HIGH ENERGY QCD PHYSICAL REVIEW D69, 054016 ~2004!
other gluons are collinear to the1 direction~they belong to
jet A), Fig. 12~c!. The possible central soft exchange pa
are called tulips. In our case the possible tulips are deno
asT1 ,T2 ,T3 in Fig. 12. The garden is defined as a nested
of tulips $T1 , . . . ,Tn% such thatTi,Ti 11 for i 51, . . . ,n
21. In Fig. 12,$T1%, $T2%, $T3%, $T1 ,T3%, $T2 ,T3% are the
possible gardens.

For a given tulip we make the soft approximation, co
sisting of attaching a soft gluon to jetA via the2 component
of its polarization only and to jetB via the1 component of
its polarization. The result of this soft approximation for
given Feynman diagramF corresponding to a tulipT is de-
notedS(T)F. It has obviously the form of Eq.~27!. Follow-
ing the prescription given in Refs.@32# and@4# we write the
contribution to a given diagramF in the form

F5(
G

~21!n11S~T1!•••S~Tn!F1FR , ~C1!

where the sum over inequivalent gardens, as defined be
G in Eq. ~C1! is understood. The meaning of this express
is the following. For a given garden consisting of a set
tulips $T1 , . . . ,Tn%, we start with the largest tulipTn and
make the soft approximation for the gluon lines coming o
of it. Then forTn21 we proceed the same way as forTn . If
some of the lines coming out ofTn21 are identical to the
ones coming out ofTn we leave them untouched. For in
stance, if we consider a garden$T2 ,T3% from Fig. 12, we
first perform the soft approximation on tulipT3 and then
proceed to tulipT2. However the lines coming out ofT2 and
T3 which attach to theB quark line are identical so whe

FIG. 13. Feynman rules for the eikonal lines, ghost lines, a
special vertices.
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performingS(T2)S(T3)F we leave these gluon lines out o
the game and make soft approximations only on the glu
lines attaching to the ladder’s rung. Two gardens are equ
lent if the soft approximation is identical for both of them
FR is defined by Eq.~C1!. The contribution toFR comes
from the integration region whereukW u*As for all gluons
coming out of the central soft part. As a result, the contrib
tion to FR is suppressed by positive powers ofA2t/As.
Therefore we can ignore the contribution fromFR within the
accuracy at which we are working.

We can now rewrite Eq.~C1!, as

F5(
T

S (
G,Tn5T

~21!n11S~T1!•••S~Tn21! DS~T!F1FR .

~C2!

This expression is indeed in the form of Eq.~27! since the
term S(T)F is of that form and the subtractions(
(21)n11S(T1)•••S(Tn21) modify only the soft functionS
in Eq. ~27!, but do not alter the form of the equation. We c
therefore conclude that the contribution to a given Feynm
diagram in leading power can be expressed in the first
torized form given by Eq.~27!.

APPENDIX D: FEYNMAN RULES

In Fig. 13, we list the Feynman rules for the lines and t
vertices encountered in the text. The double lines are eiko
lines, while the dashed lines represent ghosts. The four
tors h, h̃ are defined in Eqs.~9! and ~35!, respectively. The
conventions for the gluon-ghost and gluon-eikonal vertic
~third and second from the bottom of Fig. 13! are the follow-
ing. We start with a color index of a gluon external to th
diagram defining the evolution kernel, see, for instance, F
8~a!, then proceed to the gluon internal to the diagram a
finally to the ghost/eikonal line in order to assign the co
indices of f abc . For the three point antighost-gluon-gho
vertex at the bottom of Fig. 13, we start with an antigho
~arrow flowing out of the vertex! then proceed to the ghos
and finally we reach the gluon line.

APPENDIX E: ORIGIN OF GLAUBER REGION

In this appendix we exhibit the origin of the Glaub
~Coulomb! region using the two-loop diagram shown in Fi
14. Consider a situation when the upper gluon loop is a p
of JA . Momentumk of the exchanged gluon flows throug
jet lines with momental 25 l 2k and l 35pA2 l 2q1k.

d

FIG. 14. Two loop diagram demonstrating the origin of t
Glauber~Coulomb! region.
6-25
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The components ofk can be pinched by double pole
coming from the denominators of the gluon propagatorsk2

1 i e and (q2k)21 i e. In addition to these pinches, the com
ponentk2 can be pinched by the singularities of the jet lin
l 2 and l 3, at values

k25 l 22
l 2'
2 2 i e

2l 2
1

,

k25 l 21
l 3'
2 2 i e

2l 3
1

. ~E1!
d
7

.

.

.

ng

.

B
D
t,

D

05401
The two poles given by Eq.~E1! are located in opposite hal
planes since in the region consideredl 2

1 ,l 3
1.0. This indi-

cates that we must consider the possibility that the differ
components of the soft momentumk can scale differently.

For instance, we can havek1;k';sAs and k2;lAs
where l!s!1. Indeed, the power counting performe
in Sec. III B shows that the singularities originating fro
these regions can produce a logarithmic enhancement.
also note that it is only minus components that are pinc
in this way by the lines inJA , and plus components by th
lines in JB .
J.
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