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We develop a new systematic procedure for the Regge limit in perturbative QCD to arbitrary logarithmic
order. The formalism relies on the IR structure and the gauge symmetry of the theory. We identify the leading
regions in loop momentum space responsible for the singular structure of the amplitudes and perform power
counting to determine the strength of these divergences. Using a factorization procedure introduced by Sen, we
derive a sum of convolutions in transverse momentum space over soft and jet functions, which approximate the
amplitude up to power-suppressed corrections. A set of evolution equations generalizing the BFKL equation
and controlling the high energy behavior of the amplitudes to arbitrary logarithmic accuracy is derived. The
general method is illustrated in the case of leading logarithmic gluon Reggeization and the BFKL equation.

DOI: 10.1103/PhysRevD.69.054016 PACS nunifer12.38.Bx, 12.38.Cy

[. INTRODUCTION in LL was also demonstrated. The evolution equations re-
summing LL in the case of three gluon exchange was derived
The study of semihard processes within the framework ofn Ref. [10]. In Ref. [5], n-gluon exchange amplitudes in
gauge quantum field theories has a long history. For review®CD at LL level were studied and a set of evolution equa-
see Refs[1-3|. The defining feature of such processes istions governing the high energy behavior of these amplitudes
that they involve two or more hard scales, compared tovas obtained at LL. A different approach was undertaken in
Aqcps, which are strongly ordered relative to each other.Ref. [11]. Here n—m amplitudes were studied in a &)
The perturbative expansions of scattering amplitudes foHiggs model with spontaneous symmetry breaking. Starting
these processes must be resummed since they contain logeith the tree level amplitudes, an iterative procedure was
rithmic enhancements due to large ratios of the scales irdeveloped, which generates a minimal set of terms in the
volved. One of the most important examples is elastic 2perturbative expansion that have to be taken into account in
— 2 particle scattering in the Regge linsit-|t| (with sand  order to satisfy the unitarity requirement of the theory. See
t the usual Mandelstam variab)edt is this process that we also Ref.[12]. The extension of the BalitskFadin-Kuraev-
investigate in this paper. We extend the techniques developddpatov (BFKL) formalism to NLL spanned over a decade.
in Refs.[4] and[5] and devise a new systematic method forFor a review see Refl13]. The building blocks of NLL
evaluation of QCD scattering amplitudes in the Regge limitBFKL are the emissions of two gluons or two quarks along
to arbitrary logarithmic accuracy. the ladder, Ref{14], one loop corrections to the emission of
The problem of the Regge limit in quantum field theory a gluon along the ladder, Rdf15], and the two loop gluon
was first tackled in the case of the fermion exchange amplitrajectory, Refs.[16—-18, and [19]. The particular results
tude within QED in Ref.[6]. Here it was found that the were put together in Ref20]. In Ref.[21], the trajectory for
positive signature amplitude takes a Reggeized form up tthe fermion at NLL was evaluated by taking the Regge limit
the two loop level in the leading logarithmit.L) approxi-  of the explicit two loop partonic amplitudes, R¢R2].
mation. In Ref[7] the calculations were extended to higher In addition to the NLO perturbative corrections to the
loops, and the imaginary part of the next-to-leading loga-BFKL kernel a variety of approaches have been developed
rithms (NLLs) was also obtained. The analysis in Rgf$]  for unitarization corrections, Ref$23—-25, which extend
and[7] was performed in the Feynman gauge. It was realizedhe BFKL formalism by incorporating selected higher-order
in Ref. [8] that a suitable choice of gauge can simplify thecorrections. The procedure proposed in this paper, in a way,
class of diagrams contributing at LL. The common feature ofplaces these approaches in an even more general context. In
all this work was the use of fixed order calculations. Toprinciple, it makes it possible to find the scattering ampli-
verify that the pattern of low order calculations survives attudes to arbitrary logarithmic accuracy and to determine the
higher orders, a method to demonstrate the Regge behaviewolution kernels to arbitrary fixed order in the coupling con-
of amplitudes to all orders is necessary. This analysis wastant. The formalism contains all color structures and, of
provided by Sen in Ref4], in massive QED. Sen developed course, the construction of the amplitude to any given level
a systematic way to control the high energy behavior of ferrequires the computation of the kernels and the solution of
mion and photon exchange amplitudes to arbitrary logariththe relevant equations.
mic accuracy. The formalism relies heavily on the IR struc- The paper is organized as follows. In Sec. Il we discuss
ture and gauge invariance of QED and provides a proof ofhe kinematics of the partonic process under study and the
the Reggeization of a fermion at NLL to all orders in pertur-gauge used. In Sec. Ill we identify the leading regions in
bation theory. internal momentum space, which produce logarithmic en-
The resummation of color singlet exchange amplitudes irhancements in the perturbation series. After identifying these
non-Abelian gauge theories in LL was achieved in the pio+egions, we perform power counting to verify that the singu-
neering work of Ref[9], where the Reggeization of a gluon larity structure of individual diagrams is at worst logarith-
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mic. The leading regions lead to a factorized form for theStrictly speakingy” = +|t|/\/2s, so theq™ components van-
amplitude(first factorized form. It consists of soft and jet ish in the Regge limit only.

functions, convoluted over soft loop momenta, which can In the color basis

still produce logarithms of/|t|. In Sec. IV we study the

properties of the jet functions appearing in the factorization b= 5fA:r15fslfz‘

formula for the amplitude. We show how the soft gluons can

be factored from the jet functions. In Sec. V we demonstrate 1

how to express systematically the amplitude as a convolution bg=— 2N, O, 1,0y nts O, 1, 0rg 1y ©)

in transverse momenta. In this form all the large logarithms
are organized in jet functions and the soft transverse m
menta integrals do not introduce any logarithms/of| (sec-
ond factorized form We derive evolution equations that en-
able us to control the high energy behavior of the scattering (Al
A=

Rith N, the number of colors, we can view the amplitude for
procesg1) as a two dimensional vector in color space

amplitudes. In Sec. VI, we illustrate the general methods
valid to all logarithmic accuracy in the case of LL and NLL

in the amplitude and we examine the evolution equations at
LL. Some technical details are discussed in Appendixe%N
A—E. The first appendix treats power counting for regions of
integration space where internal loop momenta become

much larger than the momentum transfer. In Appendix B wes. th litude is di ionl q all ticl
illustrate the origin of special vertices encountered in the Ince the amplitude 1S dimensioniess and all particlies are
assless, its components can depend, in general, on the fol-

paper. In Appendix C we show a systematic expansion fo[ . )
the amplitude leading to the first factorized form. In Appen- owing vaniables:
dix D we list the Feynman rules used throughout the text.
Finally, in Appendix E we demonstrate the origin of extra A=A ——, ag1?)e
soft momenta configuratior&lauber regiopwhich need to b u? 'MZ' S ’
be considered in the analysis of amplitudes in the Regge
limit. where i is a scale introduced by regularization. We use di-
mensional regularization in order to regulate both infrared
Il. KINEMATICS AND GAUGE (IR) and ultraviolet(UV) divergences withD=4—2¢ the
) ] ) number of dimensions. Choosing the scafe=s, the strong
We analyze the amplitude for the elastic scattering ofcouplingag(u) is small. However, in general, an individual
massless quarks Feynman diagram contributing to the procéss at r-loop
, , order can give a contribution as singular agt)aL*'In®
A(Pa.Ta)+0"(Ps.Te) = A(PA=0.T1) + Q" (Pe 0.1 2), (—¢/t). In Sec. V C we will confirm that there is a cancella-

tion of all terms proportional to thigh logarithmic power for

-~ . . . i 1 - :
within the framework of perturbative QCD in the kinematic i =r+1,....,2 at orderag ~ in the perturbative expansion

region s>—t (Regge limil, where s=(pa+pg)? andt  ©f the amplitude. Hence atloops the amplitude is enhanced
—g? are the usual Mandelstam variables. We stress, howby a factor §/t) " In"(—s/t), at most. In order to get reli-
ever, that the results obtained below apply to arbitrary elasti@ble results in perturbation theory we must, nevertheless, re-
two-to-two partonic process. We pick proceds for con-  sum these large contributions. In tkh nonleading logarith-
creteness only. The arguments in Et). label the momenta Mic approximation one needs to resum all the terms
and the colors of the quarksve do not exhibit the depen- proportional to 6/t)al*In"I(—s/t), j=0, ... k at r-loop
dence on the polarizationdVe choose to work in the center- level.

of-mass(c.m) where the momenta of the incoming quarks We perform our analysis in the Coulomb gauge, where the
and the momentum transfer have the following componknts:propagator of a gluon with momentuknhas the form

s N,p(k,k)
. » B
pA_( \/;10 yOJ_); |5ab—k2+_

: 4

Ag
hereA,; andAg are defined by the expansion

ArArB, rlrzzAl(bl)rArB, r1r2+A8(b8)rArB, rirye (5)

for i=1,8, (6)

s 1 KoKt K k=K, k
= 0+,\/:,0), =—i6y—I| g, L8 "B 7
pB ( 2 L abk2+i6 g B kk ()
q=(0%,07,q,). (2)  interms of the vector
k=k=(k- )7, ®)

We use light-cone coordinates=(v*,v",v,), v =(v°*=0v3)/
V2. with
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i g - B

an auxiliary four vector defined in the partonic c.m. frame.
a) b)

The numerator of the gluon propagator satisfies the follow-
ing identities:

77:

<)

FIG. 1. The reduced diagramig) and (c) contributing to the
- s—Kg amplitude. Diagranib) represents a decomposition of diagréan
k*N,p(k,k) = kzﬁ, for the purpose of power counting.

o - (1) Soft momenta, with scaling behavitt‘~ o /s for all

K*N,(k,k)=0. (10 components ¢<<1).

) Momenta collinear to the momenta of the external par-
ticles, with scaling behaviok®~ /s, k"~ Vs, |k, |
~\12/s for the particles moving in the- direction and
k™ ~X\\s, k™~ /s, |k, |~\2{s for the particles mov-

2
The first equality in Eq(10) is the statement that the non- (
physical degrees of freedom do not propagate in this gauge.
For use below, we list the components of the gluon propaga-

tor: o e
ing in the — direction.

Kk — K2 (3) So-called Glauber or Coulomb momenta, R&B], with

N~ (k)=N"*(k)= ———, scaling behaviok™ ~o* /s, |k, |~0o/s, wherex<o™
k-k <o, and where the scaling factoxso satisfy the strong
orderingh <o <1 (the origin of this region is illustrated

. o k*k™ in Appendix B.
N (k) =N""(k)= KK (4) Hard momenta, having the scaling behawiér /s for

all components.

— L
N* (k) =N"*(k)= iw, The extra gauge denominators Ki/k) originating from the
2k-k numerators of the gluon propagat@ do not alter the clas-
sification of the pinch singular points mentioned above. Ac-
- - KK tually, only the subsets 1 and 3 in the above classification can
NY(k)=N"(k)=g" - P (1)) be produced due to the extra gauge denominators.

With every pinch singular point, we may associate a re-
duced diagram, which is obtained from the original diagram
%’y contracting all hard linegsubset 4 at the particular sin-
gular point. As shown in Ref427,28,3Q the reduced dia-
gram corresponding to a given pinch singular point must
describe a real physical process, with each vertex of the re-
Muced diagram representing a real space-time point. This
physical interpretation suggests two types of reduced dia-
grams contributing to the proceéb), shown in Fig. 1.

The jet A(B) contains lines whose momenta represent
lll. LEADING REGIONS, POWER COUNTING motion in the+ (—) direction. The lines included in the blob

In order to resum the Regge logarithms, we need to idenS @nd the lines coming out of it are all saftonfigurations
tify the regions of integration in the loop momentum space! @nd 3 in the classification of loop momenta described
that give rise to singularities in the limits—0. We follow  2Pove. These two oppositely movingirtual) jets may in-
the method developed in Ref€27,28, which begins with teract through the exchange of soft lines, Figa),land/or

the identification of the relevant regions in momentum spacel €Y ¢an meet at one or more space-time points, K. 1 -
Having found the most general reduced diagrams giving

the leading behavior of the amplitude for procé$sin the
Regge limit, we can estimate the strength of the IR diver-
The singular contributions of a Feynman integral comegence of the integral near a given pinch singular point. First
from the points in loop momentum space where the intewe restrict ourselves to cases involving subsets 1 and 2 from
grand becomes singular due to the vanishing of propagatdhe classification of loop momenta above. To do so, we count
denominators. However, in order to give a true singularitypowers in the scaling variablesando.
the integration variables must be trapped at such a singular The scaling behavior of these loop momenta implies that
point. Otherwise we can deform the integration contour awagevery soft loop momentum contributes a facidr, every jet
from the dangerous region. These singular points are calleop momentum gives rise to the powef, every internal
pinch singular points. They can be identified with the follow- soft boson(fermion) line provides a contribution™2 (o~ 1)
ing regions of integration in momentum space. and every internal jet linéfermionic or bosonig scales as

We note that these are symmetric functions under the tran
formation k™— —k=, except for the component®™'
=N'=, which are antisymmetric under this transformation. It
was demonstrated in R¢26] that QCD is renormalizable in
Coulomb gauge, by considering a class of gauges which i
terpolates between the covarigihanday and the physical
(Coulomb gauge.

A. Singular contributions and reduced diagrams
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A1 In addition, there can be suppression factors arisingdefore carrying out the jet power counting, we introduce
from the numerators of the propagators associated with insome notation. LeE, be the number of soft lines attached to
ternal lines and from internal vertices. As pointed out in Ref.jet A; | is the total number of jet internal lines;, is the
[27], in physical gauges each three-point vertex connectingqumber ofa-point vertices connecting jet lines only; ang,
three jet lines is associated with a numerator factor that varhas a meaning similar to,, with the difference that every
ishes at least linearly in the components of the transverse jefertex counted byv,, has at least one soft line attached to it.
momenta, and therefore provides a suppresksigh These are the vertices that connect thedj&d the soft parS.

We are now ready to estimate the power of divergenced=inally, L denotes the number of loops internal to fetAs
corresponding to the reduced diagrams describing our praioted above, we will perform the power counting for the
cess. First we restrict ourselves to the case shown in Figase when the scaling factor for the soft momenta of the
1(a). As indicated schematically in Fig(l), we can perform  same order as the scaling factor forfemomenta. When the
the power counting for the jets and for the soft part sepascaling factors are different we encounter subdivergencies,
rately. All soft propagators and all soft loop momenta arewhich can be analyzed the same way as described below. We
included in the soft subdiagra® The superficial degree of also assume that there are no internal and external ghost lines
IR divergence of the reduced diagrd®from Figs. 1a) and included in the jet function. Later we will discuss the effect

1(b) can then be written as of adding ghost lines.
The superficial degree of divergence for fetan now be
o(R)=w(A)+w(B)+w(S), (120  expressed as
where the external lines and loops $f are included inS. w(A)=2L—1+v3/2. (16)

For w(R)>0 the overall integral is finite, whilevs(R)<0
corresponds to an IR divergent integral. Whe{R) =0, the
integral diverges logarithmically. Here we set-o for
power counting purposes. We come back to the effect o
relaxing this condition in connection with a discussion of
item 3, Glauber regions, in our list of singular momentum v=2 (VT W,). a7
configurations. “

The last term represents the suppression factor associated
with the three point vertices. We denote the total number of
Yertices internal to jef by

Next we use the Euler identity relating the number of loops,
B. Power counting internal lines and vertices of j&&

In this subsection, we consider the case when all vertices _
. . . ) L=l—-v+1, (18
in a diagram are elementary only, that is, without contracted

subdiagrams carrying large loop momenta. In Appendix Agn{ the relation between the number of lines and the number
we show that our conclusions are unchanged by contractegk \ertices

vertices.
We perform the power counting for the soft p&first.
Let f,b be the number of fermion, boson lines externasto 214+ Ept2=2 a(v,+W,). (19
and letE=f+b. The superficial degree of divergence ®r “
found by summing powers af, can be written Using Eqs(16)—(19) we arrive at the following form for the
&(S)=A(E—2)—2b—F+2+ w(S'), 13 superficial degree of divergence for jst
where the first term is due to loop integrations linkigto o(A)=1—(Eat+ws)/2+ Z (a=4)(v,tW,)/2.
the jets, while the second and the third terms originate from a=s (20)
propagators associated with the bosonic and fermionic lines,
respectively, connecting the jefs B, and the soft par’.  since every vertex counted by, connects at least one ex-

The term+2 is introduced because we are resumming onlternal soft line, we have the condition
leading power corrections proportional $6t and therefore
we exclude the overall facta/t from the power counting.

Since the lines enterin§’ are soft, we obtain the superficial EA>W3+£;4 We . (21)
degree of divergence f@&' simply from dimensional analy-
sis. It is given by The equality holds when there is no vertex with two or more
soft lines attached to it. Combining Eq0), (21) we arrive
w(S')=4—b—-3f/2. (14 at the following lower bound on the superficial degree of

divergence for jefA:

Combining Eqs(13) and (14), the superficial degree of in-

frared divergence for the soft péestis then WA)=1—Ent S w2+ S (a—4)(v,+w,)/2.
a=4 a=5

w(S)=b+3f/2-2. (15 (22
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The third and the last term in ER2) are always positive or extra denominator including the numerator suppression fac-
zero and hence tors scales as . The new jet line scales as ! as long as
the condition\ %= ¢ is obeyed: otherwise, we have the scal-
w(A)=1-Ej. (23)  ing o2 for the extra jet line. Fok¥?= ¢ the Glauber region
o ) ~ produces logarithmic infrared divergence. Whéff< o, the
A similar result holds for jeB, and therefore the superficial gyerall scaling facton/o? indicates power suppressed con-

degree of collinear divergence for jeAsandB is tribution.
Let us now investigate another possibility, when the soft
w(A)+w(B)=2-E, (24 gluon connects jeA and jetB directly and its momentum is

_ ) . pinched by the singularities of the jétand the jetB lines.
with E=E,+Eg as in Eq.(13). Combining the results for  pengting the scaling factors of jétand jetB as\ , and\g,
soft and jet power counting, EqeL5) and(24), respectively, respectively, the integration volume provides the factor
in Eq. (12), we finally obtaln_the superﬁqal degree of IR MAgo? and the soft gluon denominator contributes the
divergence for the reduced diagram in Figa)l powero 2. The extra jetA and jetB denominators scale as
M tandhg?t, provided\py?= o and\g*=o. For\jg=<o
both extra jet denominators provide the scaling factor.

This condition says that we can have at worst logarithmidVhen\i5= o, the power counting suggests logarithmically
divergences, provided no soft fermion lines are exchange#ivergent integrals.

between the jeté& and B. We can therefore conclude that a ~ We have therefore verified that when the softest compo-
reduced diagram from Fig.(4) containing elementary verti- nent of a soft line satisfies the orderingf<\=<o, the
ces can give at worst logarithmic enhancements in perturbd>lauber(Coulomh momenta produce logarithmically IR di-

tion theory. In order for the divergence to occur, the follow- vergent integrals and need to be taken into an account when
ing set of conditions must be satisfied. identifying enhancements in perturbation series. The analysis

(1) There is an exchange of soft gluons between thefets demonstrated above for the case of one Glauber gluon can be
andB only, with no soft fermion lines attached to the jets. extended to the situation with arbitrary number of Glauber
(2) The jetsA andB contain 3 and 4 point vertices only, gluons. This follows from dimensional analysis, in a similar
see Eq(22). fashion as the treatment of purely soft loop momenta above.
(3) Soft gluons are connected to jets only through 3 point We conclude that the reduced diagram in Fi¢g) Is at
vertices, Eq.(22), and at most one soft line is attached to most logarithmically IR divergent, modulo the factsit|.
each vertex inside the jets, E@1). The reduced diagram in Fig(l) loses one small denomina-
(4) In the reasoning above we have assumed that there 1§ compared to the reduced diagram in Figa)land since
no suppression factor associated with the vertices where softé are working in physical gauge, this loss cannot be com-
and jet lines meet. In order for this to be true, the soft gluongensated by a large kinematical factor coming from the nu-
must be connected to the ja{B) lines via the+(—) com- ~ Merator. Hence the reduced diagram in Fi¢o)lis power
ponents of the vertices. suppressed compared to the reduced diagram in Fay, 1
Next we consider adding ghost lines to the jet functions@nd we do not need to consider it at leading power.
As we review in Appendix D, the propagator for a ghost line ~ Finally, let us discuss the scale of the soft momenta. In the

with momentumk is proportional to 1K-k). Hence every case of soft exchange lines, each gluon propagator supplies a

2 .
internal ghost line belonging to the jet gives a contribution actor 1/(r"s), which we want to keep at or below the order

which is power suppressed as.16ince the numerator fac- tin thg Ie'ading power approximation. Thus the size.of the
tors do not compensate for this suppression, we can immecale is fixed to ber~ Jm/‘/g In the case of soft lines
diately conclude that the jet functions cannot contain internalVhich are attached to jét or to jetB only, the scaling factor
or external ghost lines at leading power. lies in the interval (/[t|/\/s,1). In the case of Glauber mo-
So far we have not taken into account the possibility whermenta, we again need~ \[t[//s. Then the conditior\ 2
the soft loop momenta are pinched by the singularities of the= o, Which is necessary for the logarithmic enhancement,
jet lines. This situation allows different components of softimplies that the scaling factors for and — components of
momenta to scale differently. For example, a minus compothe GlauberCoulomb momenta can go down fa|/s, the
nent of soft momentum can scale as the minus component §cale of the small components of jet momenta. Additionally,
jet A momentum\, while the rest of the soft momentum Wwe should note that soft and jet subdiagrams that do not
components may scale as wherex<o<1. The origin of ~ carry the momentum transfer may approach the mass shell
these extra pinches is illustrated in Appendix E. (N, 0—0). Such lines produce true infrared divergences,
Let us see what happens when we attach the ends of \&hiCh we assume are made finite by dimensional regulariza-
gluon line with this extra pinch to jeA at one end and the tion to preserve the gauge properties that we will use below.
soft subdiagrans at the other end. The integration volume The same power counting as above shows that these diver-
for this soft loop momentum scales &s°. The soft gluon gences are also at worst logarithmic.
denominator gives a factar 2. If this soft gluon is con-
nected to the soft part at a 4-point vertex, there is no new
denominator in the soft part. On the other hand, if the soft The analysis of the previous subsection suggests the fol-
gluon is attached to the soft part via a 3-point vertex then théowing decomposition of the leading reduced diagram from

w(R)=f/2. (25)

C. First factorized form
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FIG. 2. JetA moving in the+ direction(a) and jetB moving in
the — direction (b).

Fig. 1(a). Let us denote then(+2)-point and M+ 2)-point

Green functions, 1PI in external soft gluon lines, correspond

(may--

ing to jetA, J u % (pa,a, 7Kg, ... Ky, Fig. 2a), and

. (m)bl---lg%n Hn ) .
to jetB, J(B)Vlw_ym(pg,q,n,pl, .. .,Pm), Fig. 2b), respec-
tively. The jet function{R) (J{8)) also depends on the color
of the incoming and outgoing partoms, r, (rg, ry), as
well as on their polarizations,, A1 (Ag, \»), respectively.

In order to avoid making the notation even more cumber
some we do not exhibit this dependence explicitly. In addi
tion the dependence df) andJ{E) on the renormalization
scaleu and the running couplings(x) is understood. The
jet functions also depend on the following parameters: th
gauge fixing vectorp, Eg. (9), of the Coulomb gauge, the
four momenta of the external soft gluons attached toAjet
(B), ki, ...k, (P1,-.-,Pm), and the Lorentz and color
indices of the soft gluons attached to the jat (B),
Moy oo osMn; 81, .. (1, . oovms by, oo b)), The
momenta of the soft gluons attached to the jatand B
satisfy the constraints{_,kj=q and={ ;p;=q.

According to the results of the power counting, the soft
gluons couple to jefA via the minus components of their
polarizations, and to jeB via the plus components of their
polarizations. Therefore, only the following components sur
vive in the leading power approximation:

‘]an)alman(pAquﬂ’UB?kli - Kn)
n
= i| 1(Mag---a, .
Z(I:[[l Ul; )J(A)Mllu.ﬂn(pA’q’nvkla e 1kn)a
by b .
‘](Bm) Y ™(Pe. 9, 7 vAPL - - - P
m
=(H1 v,ﬁ‘)JEQ))fllffff;"(pB,q,n;pl, P,

(26)

where we have defined lightlike momenta in the plus direc
tion v,=(1,0,0,) and in the minus directiong=(0,1,0,).
We can now write the contribution to the reduced diagram i
Fig. 1(a), and hence to the amplitude for procésy in the

form
o3 J [T o) )

Kn)

XS(arl',rT]?an’bl_,,bm(q,’)],UA,UB;kl, e

XJ,(An)al'“an(pAiqinlvB ;kla Tt

KniP1, ... .Pm)
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(m)by- -
Jg 1

P"(pg, 0, 7,0APL - P, (27)
where the sum over repeated color indices is understood.
Corrections to Eq(27) are suppressed by positive powers of
t/s. The jet functionsJ, g are defined in Eq(26) in the
leading power accuracy. The internal loop momenta of the
jets A, B and of the soft functiors are integrated over. The
soft function will, in general, include delta functions setting
some of the momentak,, ...k, and color indices

a, ..., of jet functionJ, to the momentg, ... ,pny

and to the color indicebq, . .. b, of jet functionJg. The
construction of the soft functio® is described in Appendix

C. For a given Feynman diagram there exist many reduced
diagrams of the type shown in Fig(al, and one has to be
careful in systematically expanding this diagram into the
terms that have the form of E(R7). This systematic method
can be achieved using the “tulip-garden” formalism first in-
troduced in Ref[32] and used in a similar context in Ref.

[4]. For convenience of the reader we summarize this proce-
dure in Appendix C.
Let us now identify the potential sources of the enhance-

dnents in Ing/|t)) of the amplitude given by Eq27). If we

integrate over the internal momenta of the jet functions then
we can get If(pa- 7)Z/|t]] from J, and Iff(pg- 7)?t|] from

Jg . In addition, according to the results of the power count-
ing (23), we know that the jet function with external soft
gluons diverges as A7 1. After performing the integrals
over the minus components of the external soft gluon lines
attached to jeA and over the plus components of the exter-
nal soft gluons connected to jBt these divergent factors are
potentially converted into logarithms of [{{pa- 7)%t|] and
In[(pg- m)?/|t|], respectively. Our goal will be to separate the
full amplitude into a convolution over parameters that do not

introduce any further logarithms of the form #f). This

task will be achieved in Sec. V A. In the following section,
we analyze the characteristics of the jet functions.

IV. THE JET FUNCTIONS

In this section we study the properties of the jet functions

A, B given by Eq.(26) since, as Eq(27) suggests, they will

play an essential role in later analysis. Since the methods for
both jet functions are similar we restrict our analysis tojet

only; jet B can be worked out in the same way. In Sec. IV A
we examine the properties of jgtwhen the minus compo-

nent of one of its external soft gluon momenta is of order
VJtl. In Sec. IV B we find the variation of jeA with respect

to the gauge fixing vector;, and finally in Sec. IV C we
. examine the dependence of febn the plus component of a
TSoft gluon momentum attached to this jet.

A. Decoupling of a soft gluon from a jet

According to the results of power counting above, soft

gluons attach to lines in jeA via the minus components of
their polarization. Following the technique of Grammer and
Yennie[33] we decompose the vertex at which fttke gluon

is connected to jet A. We start with a trivial rewriting &f in

Eq. (26)
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a) b)

FIG. 3. (@) Decoupling of aK gluon from jetA. (b) Leading
contributions resulting from the attachment o6agluon to jetA.

n
(May---an_ mi | mjavi q(mag--an
Ja —(E[J UB)UBJg/LJjJ(A)/Ll"‘Vj"'//«n. (28)
We now decompose the metric tensor into the fogft
=K*#*(k;) + G**(k;) where for a gluon with momenturk
attached to jeA, K#”, andG*” are defined by

vk
VA P
K (k]) UA'kj_iG,

GH(k) =g~ K *(K;). (29

TheK gluon carries scalar polarization. Since theAdunc-
tion has no internal tulip-garden subtractidiisey are con-

tained in the soft functio®), we can use the Ward identities
of the theory{34], which are readily derived from its under-
lying BRS symmetry{35], to decouple this gluon from the

rest of the jetA after we sum over all possible insertions of

the gluon. The result is

JI(An)allHaj“‘an(pA,q,UB,’f];kl, P ,ki, P ,kj, P ,kn)
1 n
- i Ciaja;
UA.kj—iGiE;&j( 195F5)
ngnfl)al'"Ci"'EJ"'a"(pA,q,vB,n;kl, N ¢
Kk ). (30)

The notationa; andk; indicates that the jet functiody’ ™

does not depend on the color indax and the momentum
kj, because they have been factored out. In B0), g; is

the QCD coupling constant arfdi?® are the structure con-

stants of theSU(3) algebra. The pictorial representation of
this equation is shown in Fig.(8. The arrow represents a
scalar polarization and the double line stands for the eikon

PHYSICAL REVIEW D59, 054016 (2004

gluon attached to jeA, is depicted in Fig. @). The lines
coming out ofS as well as the lines included in it are soft.
The letterG next to thejth gluon in Fig. 3b) reminds us that
this gluon is aG-gluon attaching to jed ), via theG“‘(k,-)
vertex.

The reasoning described above applies to the case when
all components of soft momenta are of the same order. In the
situation of CoulomlGlaubej momenta, this picture is not
valid anymore, since the large ratio /k~ coming from the
G** component can compensate for the suppression due to
the attachment of th& part to a jetA line via the transverse
components of the vertex.

B. Variation of a jet function with respect to a gauge fixing
vector i

In this subsection we find the variation of the jet function
J(™ with respect to a gauge fixing vectgr The motivation
to do this can be easily understood. We consider the jet func-

tion with one soft gluon attached to it only,
IB(pa,q,vs,7). Let us define
Ea=Ppa-m and{g=7-vg. (39

In these terms, jet functiod{’) can depend on the following
kinematical  combinations: J{(pa,q,vg,7) =3P (A,
Pa-vg.lg,t). Using the identityps-vg=2&a{g and the
fact, that the dependence &f on the vectow g is introduced
trivially via Eg. (26), we conclude that
IP(Pa,ave. ) = eI (EnD). (32

Our aim is to resum the large logarithms of g} that ap-
pear in the perturbative expansion of the Aefunction. In
order to do so, we shall derive an evolution equation for
pxadBop) . Sincep, appears in combination with only,
we can trace out thp,. dependence oft! by tracing out its
dependence of. This can be achieved by varying the gauge
fixing vector ». The idea goes back to Collins and Soper
[32] and Sen[31]. We will generalize the result ta{" in
Sec. VB.

We consider a variation that corresponds to an infinitesi-
mal Lorentz boost in a positive- direction with velocity
5. Thus, for the gauge fixing vector=(1,0,0,0)? Eq. (9),

dpe variation isdn=76B=(0,0,0,1)8. It leaves invariant

2_ . .
line. The Feynman rules for the special vertices and the ei® norm»“=1 to orderO(ép). The precise relation Pe-
konal lines in Fig. &) are listed in Appendix D. Strictly —tween the variation of the jeA function with respect t@,

speaking the right-hand side of H80) and Fig. 3a) contain

contributions involving external ghost lines. However, from
the power counting arguments of Sec. Il B we know that
when all lines inside of the jet are jetlike, the jet function can
contain neither external nor internal ghost lines. Therefore

and 67 is
1 1 1 1
+i53__~ang)+ L A e
L 4 S AL N
Ipa an {B an

(33

Eq. (30) is valid up to power suppressed corrections for this

momentum configuration.

The idea behind th&-G decomposition is that the con-

We have used the chain rule in the first equality and the
simple relation/5dd8V/ 945 =3, following from Eq.(32),

tribution of the softG gluon attached to the jet line in the in the second one.

leading power is proportional to§G,,vx=0. In order to

3%

avoid this suppression, tl&gluon must be attached to a soft
line. The general reduced diagram corresponding toGhe

2For the moment we use Cartesian coordinates.
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FIG. 4. The result of a variation of jet functiali”™ with respect
to a gauge fixing vector.

FIG. 5. (a) Momentum flow of the external soft gluon inside of
In order for Eq.(33) to be useful, we need to know what jet A, (b) Typical contribution tok;” a9/ k.

the variation of jetA with respect to the gauge fixing vector
7 is. The result of this variation fal" is shown in Fig. 4. It
can be derived using either the formalism of the effective
action, Ref[36], or a diagrammatic approach first suggeste

In Ref. [32] and performed in axial gauge. We give an a1 i cled vertices in Fig. @) can interact with jetA via the

ment how Fig. 4 arises in Appendix B. Here we only note .
that the form of the diagrams in Fig. 4 is a direct Conse_exchange of an arbitrary number of soft gluons. We do not

quence of a 1P| nature of the jet functions. The explicit formShoW this possibility in Fig. @) for brevity. .
of the boxed vertex Let us now examine what the important integration re-

gions for a loop with momentunk in Fig. 4(b) are. The
presence of the ghost line and of the nonlocal boxed vertex
—iS*(k)=—i(n-kKp*+75-knY), (34)  requires that in the leading power the loop momentkm
must be soft. It can be neither collinear nor hard. This will
as well as of the circled vertex is given in Fig. 13 of Appen-€nable us to factor the gluon with momentérfrom the rest
dix D, while their origin is demonstrated in Appendix B. The of the jet according to the procedure described in Sec. IV A.
dashed lines in Fig. 4 represent ghosts, and these are also
given in Fig. 13 of Appendix D. The four vectors given in

It is labeled by a gluon line which is crossed by two vertical
ines, Fig. 13. The ghost line connecting the boxed and the

Eg. (9), and
a- ), C. Dependence of a jet function on the plus component
1 1 of a soft gluon’s momentum attached to it
7=|—=,——=0], (39 In this subsection we want to find the leading regions of
7 ( V2" 2 L) o

the objectk; 2JY"/dk;" . This information will be essential
for the analysis pursued in the next sections. For a given
diagram contributing tdﬁ{‘) we can always label the internal
loop momenta in such a way that the momentljrflows
along a continuous path connecting the vertices where the
ki—kz momentumk; enters and leaves the jet functidfj‘). When
1), we apply the operatiokr&/ﬂkf on a particular graph cor-
responding toJ(A“), it only acts on the lines and vertices
which form this path. The idea is illustrated in Figap The

appearing in Eq(34) are defined in the partonic ¢c.m. frame
(2). We list the components &, N““(k)

2k-k

Sﬂ(k)N/”(k):k*(

2 2 gluon with momentunk attaches to jeA via the three-point
S, (KN# (k)= — K, (36)  vertexv;. Then the momentunk flows through the path
2k-k containing the vertice®,,v,,v3 and the linesly,l,. The
action of the operatok*d/gk* on a line or vertex which
for later reference. carries jetlike momentum gives a negligible contribution,

In Fig. 4, we sum over all external gluons. This is indi- since the+ component of this lines momentum will be in-
cated by the sum ovér In addition, we sum over all possible gensitive tok*. In order to get a non-negligible contribution,
insertions of ~ external  soft gluons{iy,....in}  the corresponding line must be soft. In Figak linesl, and
e{1,... nh\{i}. This summation is denoted by the symbol |, must be soft in order to get a nonsuppressed contribution
«. We note that at lowest order, with only a glubattached  from the diagram after we apply tHe" 9/dk* operation on
to the vertical blob in Fig. @), this vertical blob denotes the it This with the fact that the external soft gluons carry soft

tre_msverse tensor structure depending on the momekitoiin momenta, also implies that the linbs . . . | must be soft.

this gluon This reasoning suggests that in general a typical contribution
o s to k" 2J{"/k;" comes from the configurations shown in Fig.
i(kig* —k{"kP). (37 5(p). It can be represented as
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J's_\n)al"'an: f (

Xj(n‘n')ar--anyai"'a;’(vA,q,ﬂ;

Koo Kokl oo k)

n—1
o
i=1

' (Pa.G 7 0g KL, K.
(38)

(n")aj: -
xJy

The functionj™"") contains the contributions from the soft
part S and from the gluons connecting the jJiE') andSin

Fig. 5(b). The jet functionJ{" has fewer loops than the
original jet function J{”. Now applying the operation
k" a/ok]" to Eq.(38), the operatok;” /9k;" acts only to the

function j(™""). Hence we can write

[ ey

Xj(n,n')al'"a”'ai"'an'(UAaQa77;kl’ e

P n'—1
+ _J(n)al' an_ H dei/
=1

.
ok;

KniKp, oo k)
(nag---a), ! '
X3 (paL ek LKD),

(39

We conclude that the contribution tg" 9J§"/dk" can be

expressed in terms of jet functiod" ) which have fewer
loops than the original jet function.

V. FACTORIZATION AND EVOLUTION EQUATIONS

We are now ready to obtain evolution equations which
will enable us to resum the large logarithms. First, in Sec

V A, we will put Eg. (27) into what we call the second fac-

torized form. Then, in Sec. V B, we derive the desired evo
lution equations. In Sec. V C, we will show the cancellation
of the double logarithms and finally in Sec. V D, we demon-
strate that the evolution equations derived in Sec. VB are
sufficient to determine the high-energy behavior of the scat-

tering amplitude.

A. Second factorized form

The goal of this subsection is to rewrite Eg7) into the
following form [4]:

n-1 m-1
w3 [
nmm i=1 j=1
XT™ (a0, 7,083 KeL s - - Ko M)
XS, b (A vE KL
Koy iP1ss - -« PmiM)
XF(Bm)br”bm(pBaQ.ﬂ,UA;pu’ <o Pm M), (40

PHYSICAL REVIEW D59, 054016 (2004

whereTl'{"” andT'{" are defined as the integrals of the jet-
functions J{” and JU", over the minus and plus compo-
nents, respectively, of their external soft momenta, with the
remaining light-cone components of soft momenta set to
zero:
n)aq--
F,(A) 1

.an(pAiq!nva;klii tee vkr‘lL ,M)

L[

XJin)al”'a“(pA,q,n,vs:ku, oo Kng
ki=0,... ki =0k, ...k;),
LR Pm(pe 0, 7,00:P10 s - - P M)
m—1 M
T ([
i=1 —-M
XJ(Bm)bll“bm(pBvqrn!vA;plL y e !pm ’

P1=0,...pn=0p;1,....Pm)- (41)
In Eqg. (40), S’ is a calculable function of its arguments and
M is an arbitrary scale of the ordefft|. The functionsl's g
andS’ depend individually on this scale, but the final result,
of course, does not. Based on the discussion at the end of
Sec. Il C, one can immediately recognize that all the large
logarithms are now contained in the functiofg and ' .
The convolution ofl",, I'g, andS’ is over the transverse
momenta of the exchanged soft gluons. Since these momenta
are restricted to be of the ordgft], the integration over
transverse momenta cannot introduces/|t}f. This indicates
that at leading logarithm approximation the factorized dia-
gram with the exchange of one gluon only contributes. In
general, when we consider a contribution to the amplitude at
L=La+LgtLg loop level, whereL,, Lg, andLg is the
number of loops il",, I'g, andS’, respectively, we can get
L —Lg logarithms ofs/|t| at most. Hence, the investigation
of the s/t dependence of the full amplitude reduces to the
study of thep, andpg dependence of , andT'g, respec-
tively. We formalize this statement at the end of Sec. VC
after we have proved that, (I'g) contains one logarithm of
pa (Pg) per loop.

Let us now show how we can systematically go from Eg.
(27) to Eq.(40). We follow the method developed in RE4].
We start from Eq(27) and consider th&;” integrals over the

jet functionJ, for fixed k" ,k;, :

n—-1

i];[l dk R (kg k)

A=

n

Kn), (42

XJ,(Qn)al'”an(pAqun7vB ;kla Tt

whereR, is given by the soft functiors and the jet func-
tion Jg,
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R (kg o Ky ) someJ{") with fewer loops than in the origind™ , and an
1 R, with more loops than in the origind®,. Then we can

_2 H 4©p. | gnm ) repeat the steps described.above with this new integral.

T = Pj a1~-an,b1~--bm(q!naUA’UB’ Every subsequent term in the square bracket of (E4).

can be treated the same way as the first term. This allows us
Ki, .o KniP1s - - sPm) to express the integral in E¢42) in terms ofk; integrals

(n")s i
(Mby---b ) over somel,' ’’'s, which have the same or fewer number of
XJg "(Pe A 7:0APL - Pm)- (43 50ns than the original{?

We next use the following identity faR, :3

(n)ag---a), '+ . '
Lot 0 (pasdmoesKy ok Ky kg sM
Ra(ky s -+ kp—q) A (Pa.9, 708Ky nt o RLL M)
n'—-1
n—-1 _ dk’_‘](n’)ai”'a;’ ! k,
=Ra(k; =0, ... ko_1=0) [T 6(M—|K|) w09 A (PG 708 KL - k)
i=1
n—-1 (46)
+ 21 [Ra(Ky o .. ki kiz1=0,...k,_1=0)  We now want to sek/ " =0 in order to put Eq(42) into the
1= ’
form of Eq.(40). To that end, we employ an identity fdﬁj‘ )
—Ra(ky, ... ki1, ki =0,... k,_1=0) (we again suppress the dependence on the color indices for
I brevity)
o=l D1 T o=l b 49 o qmoiki, ... k)
We have suppressed the dependence on the color indices and =3 (pa. G, v ki =0, ... k" =0,
other possible arguments Ry for brevity. The scaléM can K- KK K
b R A R W R n’J_)

be arbitrary, but, as above, we take it to be of the order of
\J[t]. The first term on the right hand side of Eg4) has all -1, P

ki =0. The rest of the terms can be analyzed usingkt@ + 2 J'ki d'f—Jgn’)(pA,CI,??,UB;kL, L
decomposition discussed in Sec. IV A. Consider the X) =1 Jo a’

term, say, in the square bracket of E44) inserted in Eq.
(42). Let us denote ifA;. In the region|k; |[<M the inte-
grand vanishes. On the other hand, fiof|~M we can use K'* =0 K'+=0) (47)
the K-G decomposition for the gluon with momentukg. LT '

The contribution from the& part factorizes and the integral Substituting the first term of Eq47) into Eq. (46), we rec-

! ’— [ ’+ ’+ +
k' kT Kk K

ynly

over the componerk; has the form ognize the definition fol's, Eq. (41). We have shown in
- Sec. IV C that the contributions from the terms proportional
Ak e — to 2J{)/41" in Eq. (47) can be expressed as soft-loop inte-
A= | o TRk K =0, Ky 1=0) oy ean oo
VA K1 grals of somel,’ ’, again with fewer loops than idy ’.

When we substitute this into Eq46) we may express the

_ kT IVR3L @ — -
oM —ky DR, (k1 =0, kn1=0)] resulting contribution in terms of integrals which have the

n—1 m N1 form of Eq.(42). We can now repeat all the steps mentioned
% 2 ig fascia H dk;” so far, with this new integral. By this iterative procedure we
i=2 -Mj=2 can transfer thé;~ integrals in Eq.(42) to J{" and also set

“1ay-- i =0 insideJ{m imi
><J§\n 1)ay- - (a0 70g Kas oo kI+ 0 insideJ,” . In a similar manner, we can analyze the

p; integrals in Eq.(27), and express them in terms b
defined in Eq.(41). This algorithm, indeed, leads from the

ki+ki, ... ,kn)). (45  first factorized form of the considered amplitu(®) to the
second factorized form(40)

Equation(45) is valid when all the lines inside the jet are
jetlike. In that case the contributions from the ghosts are ) )
power suppressed. The contribution corresponding 8 a  We have now collected all the ingredients necessary to
gluon comes from the region of integration shown in Fig_derlve the evolution equations for quantities defined in Eq.
3(b). It can be expressed in the form of E@2) involving  (41). ConsiderI'{”. We aim to find an expression for
pAdl'/ap, . As discussed in Sec. IV B this will enable us
to resum the large logarithms of [5{) and eventually the
3Recall thatk,=q—(ky+ - - - +ko_1), SOk, is not an indepen- logarithms of In§/|t|). According to Eq(41), in order to find
dent momentum. pralM/op) , we need to studyj dJ{/op, . Using the

B. Evolution equation
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identitiespa-ve=2&als, Pa-ki=2€AE, Where&=k ™ (91““‘) n-1 .y
andé&,, (g are defined in Eq(31), we conclude that Pa ; J’ ( 11 dk;” )M[Jg")(ki= +M,...)
pA =1 J- j#i
n_(n)(gA {§}| 1 vt {qL |L} {ku k]i}” 1 (n)
(49 L

+HIP(k =—M, .. )]+ =7 ——.
From this structure, using the chain rule, we derive the fol-
lowing relation satisfied by{" , which generalizes Ed33) (51)

to J§" with arbitrary number of external gluons _ oy _ _
The jet functiond,” in the first term of Eq(51) is evaluated

+,9‘](An) RN LR\ () A at {k" =0}, and thek;'s are integrated over for
PA———=—7 a+2 ki —+ g e (49 =1,...nh—1 andj#i. The first term in Eq(51) can be
IPA an® =1 oki analyzed using th&-G decomposition for gluom since the

: . ki~ is evaluated at the scal~ \/[t]. The outcome of the last

Nowl ’\\/Aved kmtegr:;te b0"t|?+ s(;de_?h of Eq(4£2 gv;ar term in Eq.(51) has been determined in Sec. IV B, Fig? 4.
-1/ oy ) ) and set a en, using the defini- aq 5 result we have all the tools necessary to determine the

tion f%FA : Eq. (42), the left hand side is nothing else but 5y mptotic behavior of the high energy amplitude for process

Padl R’ dpa - The first term on the right hand side of Eq. (1), To demonstrate this, we will rewrite E¢51) into the

(49) is simply —7*I'{"/an%. Noting that {gdd\V/3{g  form where on the right-hand side there will be a sum of

=nJ{", the last term gives simplpl"'y” . For the middle  terms involvingl'"’s convoluted with functions which do

term, we use integration by parts not depend om;, . Let us proceed term by term.

ne1 n—1 Again, theK-G decomposition applies to the first term in
M J(n) .

H f z A Eqg. (51 because the external momenta are fixed Wt

=1\ J-m ok;” + M. Using the factorization of & gluon given in Eq(30)
. it is clear that the contributions from thégluons cancel for

o N Js evaluated ak; =+M andk =—M. Hence only the
:j=1 B Z _(k IA7)—Ja G gluon contribution survives in this term. Its most general

form is shown in Fig. &). Before writing it down let us

- n—1 introduce the following notation. For a set of indices
E f [T dk M3k =+M, ...) {1,2,... nh\{i} consider all the possible subsets of this set,
- I with 1,2 ...,(n—1) number of elements. Let us denote a

+IW(k =-M, ..)]-(n—1)r{. (50)  given subset byr, its complementary subset, the number
of elements in this subset as. and in its complementary as
Combining the partial result&49) and (50), we obtain the n,=(n—1)—n_. With this notation, we can write thith
following evolution equation: contribution to the first term in Eq51) in the form

Jg)al...an(ki,:_l_M7 - .)+J(An)a1...an(ki—:_M, )

dol,
- g -_ - - et Okt —
—; jl:[l (2m)P .Sai;il...ginﬂbl...bN(ki =+Mki , ... ’kinw:ki =0k =0,...,
— .. bbby _
ki =0tk ki kg il g x 3T SRR N e ke kE =0,k =0
Ny N N 1 e 1 Ny
ki_li,---,ki_n{;h,---,|N;pA,q,77)+(kf—>—M)- (52

In Eq. (52), the summation over repeated indices is understood. We sum over all possible subsetsher words, we sum
over all possible attachments of external gluons to jet funcijpand to the soft functios. The elements of a given setare

denoted i4,i,, ...,inﬂ. The elements of a complementary set are labeled |1,|2, cen ,in;. The num-
ber of gluons connecting andJX‘“N) is N.

Following the procedure described in Sec. VA wiy in Eq. (42) replaced byS in Eq. (52), we can express the
contribution from aG gluon in the first term of Eq(51) in the form

4strictly speaking we have analyzeddJd{"/9,*, but because of the relationship betwelH andI'{" given by Eq.(41), once we know
7993197 we also known®al'{M/ o 5.
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n-1
;J (H dkj )M[Jﬁ\”)al“‘an(k;=+|v|, LI A= M, )]

J#Ii

m
:; f j];[l dD_ZIjL’Cg:"m?an;bl-“bm(kll' e !knL !IJ_L! P ,Im ,q,'r],M)
3 DN 1 PRI i V) (53

The functionk (™™ does not contain any dependencemn It can contain delta functions setting some of the color indices
b;, as well as transverse momerhta of 1"5{“) equal to color indices; and transverse momenka, of 1“5{‘).

Next we turn our attention to the last term appearing in(&dj). The contribution to this term has been depicted graphically
in Fig. 4. Consider the term in Fig(d. It can be written in a form

M n-1 M n-1
JM(j]jldkj)[Fig.4(a)]:JM(j]]ldkj); Sa, o, (ki ki, kg kT=0kE =0,

ki: :0;k”_ vkilJ_ P ’kinﬂl ;Izki+kil+‘ . ""kinﬂ;q,ﬂ)

T

— T ...a b _ _
)M D s e k=0, K =0
A 1 ' 1 n—

Kins o ki l=kitk £ ki paLg,n). (54

In Eq. (54), we have used the same notation as in &8). Momentuml connectsS’ with JX‘”H). Following the same
procedure as in Sec. V AwitR, appearing in Eq42) replaced bys’ introduced in Eq(54), we can express this contribution
in a form given by Eq(53) with a different kernelC (™™,

The contribution from Fig. &) can be written

M n—1
fM(Jﬂldkj )[F|g.4(b)]=f (H dk; )2 f 2n )D St a, bk iy ki k=0 =0,

(n; +2)aI1 »-aTnJ)c —

li,: :O;kiivkilii s kl i’kl a )J
0, K =0k e kP s

The flow of moment& andl is exhibited in Fig. 4b). The momentunk flows through the boxed vertex and the ghost line
shown in Fig. 4b) which forces this momentum to be soft, so that likesdl are part of the functio®”. Since the line with
momentunk is soft, then all gluons attaching ﬂin” 2 in Eq. (55 are soft and we can again apply the procedure described
in Sec. V A to bring the contribution in Fig.(d) into the form given by Eq(53) with a different kernel, of course.

In summary, we have demonstrated that all the terms on the right hand side @1Egan be put into the form given by
Eqg. (53). This indicates that Eq51), indeed, describes the evolution Eﬁ”) in Inp, since it can be written as

P
(pxap_+—1)1~;n)al (Pa 0, 7K - Kl

A
:§ ,—H dP- 2|JL,C(nm) SRR € ST YN EVIFIRR FATIC )
X TP P gty ) (56)

The kernelsk (™™ do not depend om, . As indicated above, they can contain delta functions setting some of the color
indicesb;, as well as transverse momenta of FX“) equal to color indices; and transverse momenkg, of FS{‘). The
systematic use of this evolution equation enables us to resum large logaritiisdharbitrary level of logarithmic accuracy.
Analogous equation is satisfied by . It resums logarithms of Ipg).
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C. Counting the number of logarithms ("1 jtself cannot have more tham ¢ 1) logarithms of

Having derived the evolution equations fbY", Egs. In(pX)_ at (r+1)-loop level. _
(51) and(56), it does not take too much effort to show that at _ This result enables us to formally classify the types of
r-loop order the amplitude contains at mastpowers of dlagrams Wh!Ch contribute to the amplitude at #th non-
In(s/[t]). We follow the method of Ref4]. We have argued in Ieadmg Ioganthm level. As has_been shown in Sec. VA, we
Sec. V A that the power of Is{t]) in the overall amplitude €&n write an arbitrary contribution to the amplitude for pro-
corresponds to the power of sy) in an)_ So we have to cgss(l) in the Regge Iimit in the second _fact_orized form
demonstrate that atloop orderl“g”'”, Wherel“g”'” repre- given by Eq.(40). Consider anr-loop contribution to the
sents a contribution 6" at r-loop level, does not contain ?E,nnrigtiﬂgg ;?d Ie;‘A’aLn%'Sag?nlésél? € (tlrle)n:;]bceorn(t);lr(i)_ops
more tharr logarithms of Inp,). We prove this statement by L b A’f I B ith TR Ef{ ¢ th A
induction. First of all, the tree level contribution " is (Lg) number of logarithms op, (pg) at most, the maxi-
proportional to the expression mum number of logarithmsl,,, o5, We can get is

M
Rk

-M

] This indicates that when evaluating the amplitude atkitne

(nl ) Nmaxlog:r_l-s- (58
nonleading approximation, we need to consider diagrams

n—1 1 1 where 1,2...,(k+1) soft gluons are exchanged between
x > 11 J_ > (H taaj) ' the jet functionsl, andJg.
figs ey int j=1 . j=n 1A
Pa— Z:l ki| +ie D. Solution of the evolution equations

Having obtained the evolution equatiofsl) and (56),
we discuss how to construct their solution. Our starting point
is Eq. (56). In shorthand notation it reads

(57)

wheret®;s are the generators of tf®&U(3) algebra in the

fundamental representation. The sum ofigr, . . . ,i,} indi- P r-1 L .
cates that we sum over all possible insertions of the external ~ pi —T'{""= > > £O=Meri™™ (59
soft gluons. Eq(57) is evaluated afk;" =0}, . Expanding IPa r'=0 n’'

the denominators in Eq(57) we obtain the expression . . .
a(57 P atr-loop level. Indicesn andn’, besides denoting the num-

2D (K 4+ k)= (K ek )24
2pA(k'1.+ - +k'j) (ki + _+ k'j)iﬂe' We see tklat ber of external gluons of the jet function, also label the trans-
the poles irk; planes are not pinched and therefore kfie  verse momenta and the color indices of these gluons. The
integrals cannot produce fp{) enhancements. symbol ® in Eq. (59) denotes convolution over the trans-
Next we assume that the statement is true-labp order, verse momenta and the color indices. Note that &§)
and show that it then also holds ati1)-loop level. To this  holds for 'y with the overall factorp, divided out (a
end we consider the evolution equatiéhl) and examine =r,/p’). We have proved, in Sec. V C, th&{™" can
(Padlpa—1)L{"" Y Its contribution is given by the first  contain at most logarithms of Inp,) atr-loop level. There-

already mentioned, the first term in E§1) can be analyzed

using K-G decomposition. The contributions from the d _

terms cancel each other while the contribution from e r{n=> C,(n’r)mj(p/i)- (60)

gluons are given by the kind of diagram shown in Fi¢)3 1=0

The latter, however, can be written as a sum of soft Iooqf we want to knowI'™" at NLL accuracy k=0 is LL

integrals overd" ") with r’'<r, since we lose at least one k=1 is NLL, etc), weAneed to find alt™" such thatr—j,

loop in the originaldy"" ) due to the soft momentum inte- <y The coefficient<{™" in Eq. (60) depend on the trans-

gr?jtmn.(;rms ',i déamogstra'{?im E&2). Following tt:]‘e pro-  verse momenta and the color indices of the external gluons.

;etiu:]e es::rrlnev |rn :' . n,twni ir:tay reTpre]csngsrg) €OMsing the expansion far (™) a_m_dfﬁ\”'*rf), Eq. (60), in Eq.
utions as transverse momentu €grals of SbIe" °,  (59) and comparing the coefficients with the same power of

see+Eq.(53). These contain at most'<r logarithms of In(p,), we obtain the recursive relation satisfied by the coef-
In(p,). The contribution from the third term in the evolution

: ntrit _ : evol ficients c{™"
equation(51) is given by the diagrams depicted in Fig. 4.
These are again soft loop integrals of sodﬂé’*r') with r’ r—1 ntr-r’ L L
<r, and they can be expressed as transverse momentum in- jc,(”'r)= > > e )®c](rli’ ). (6D

tegrals off " "") | see Eqs(54) and(55), which have, there- r=i-1 n'=1

fore, at most logarithms of Ian). Since both terms on the In Eq. (61), we have used that, in generalsh’<n+r
right hand side of Eq(51) have at most logarithms of —r’,

In(p,), then alsop dI'™ *Y/gp; has at most logarithms We now show that Eq(61) enables us to determine all the
of In(px) at (r +1)-loop level. This immediately shows that relevant coefficients{"" of I'{" order by order in perturba-
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tion theory at arbitrary logarithmic accuracy. We start at LL
k=0, and considen=1. At r-loop level we need to find the
coefficientcﬁl"). It can be expressed in terms of lower loop
coefficients using Eq(61) and setting=r andn=1

'know all the coefficients ofﬁ\“')s for n’<n. We want to
show that we can now construct all the coefficients g
at N"*LL accuracy. First we need to calculatg™ "%
Then we use Eq(61) to express the coefficiert{™}) .,

2 isolating the terms withi'=r—1 andn’=n, as
ret= 3 @ HgeM,=1, (62)
-1 (r—k=21)c")_,
In Sec. VI A we will prove that the one loop kernel satisfies n-1
K12D=0, Eq.(72). This implies that in Eq(62) the coef- = MmnDgcM ~Dy > O Dge,rmb
ficient ) is expressed in terms of lower loop coefficient n'=1
¢t~V and hence, we can construct the coefficients at arbi- r=2  ntr—r’
trary loop level once we comput'?, the coefficient cor- + > > konirge ) (66)
responding to the tree level jet functidh®. f=r—k-2 n'=1

(n) >
Next we construct all'” for n>1 at LL accuracy. Let us The terms appearing in the sum over in Eq. (66) are

(n".r) ' ! ! .
assume that we know ati™ ** for all r and forn’<n. We  1nown according to the assumptions since for them (r

apply Eq.(62) for j=r —k—2)<k. We also know, according to the induction as-
n+1 sumptions, the contributions to the second term of (66),
=S ' iDg e -, (63  since they have’<n. Therefore, we can construcf™});

n=1 order by order in perturbation theory. This finishes our proof

) _ _ that we can determine the high energy behavionl“ﬁ? at

In Sec. VIB we will show that the evolution kemel in EQ. 4pitrary logarithmic accuracy. Note that to any fixed accu-
(63) obeys k(™™ H=g(n—n")K™", Eq. (105, where  racy only a finite number of fixed-order calculations of ker-
6(n—n") is the step function. This implies that the sum overnpg|s and coefficients{™" must be carried out. In a similar
n' in Eq. (63) terminates ah’=n. Isolating this term in Eq. \ay we can construct a solution foi™ .

(63), we can write Once we know the high energy behavior f6f" and

n-1 '™ then the second factorized forfd0) implies that we
reM=mnbgcmi~D4y > /C(n’ﬂ’Jl)@cﬁ”_’ir—l)_ also know the high energy behavior for the overall ampli-
n'=1 tude. Because a jet functidi™ is always associated with at

(64) leastn—1 soft loop momentum integrals in the amplitude,
we infer from Eq.(58) that if we want to know this ampli-

So after we calculate the tree level coeffici 0), we can . .
eft tude atN¥LL accuracy, it is sufficient to know (" (I'{™) at

. . (n’r) .
construct all the coefficients;™"’ using Eq.(64) order by NKF 1N (NKF2-ML1Y Jevel for n<K-+1 (m=K4+1).

9“‘5” n pertur(bng':l)on theory, since ?ccord|ng o the assUMRye note, however, that to construct these functions according
tion we knowc;" "’ for all r and forn’<n. This proves that g the algorithm above, it may be necessary to go to slightly

we can construct the jet functions at Liks=0, for all n to all larger, although always finite, values afand m. Let us

loops. _ describe how this comes about, starting with the basic recur-
We now assume that we have constructed all the jet funcsjon relations for coefficientés1).

tions at theN“LL accuracy for a giverk=0 and we will We assume that for fixed on the left-hand side of Eq.

Sf}(‘i\/lv that we can determine all the jet functions at thgg1), the logarithmic accurack is bounded by the value
N*"°LL level. We start withn=1. Using Eq.(61) with n necessary to determine the overall amplitud& th nonlead-
=1, j=r—(k+1), isolating the term witht"=r—1in the  ing logarithmk=r —j<K+1-n, which we may rewrite as
sum overr’ and usingk " D=5, LI we arrive at  n+r—(K+1)<j<r. On the right-hand side of E¢61) we
an encounter the coefficients of the jet functions withexter-
(r—k=1)c;=g—4 nal lines, satisfying the inequality’ <n+r—r’<n+r— (]
reo lar—r! —1). Combining these two inequalities, we immediately ob-
(L) o a(1r—1) (an’;r—r") tain thatn’<K+2. Then, for any given number of external
K BCr k2t E E K gluonsn’ on the right-hand side, we encounter a level of
. logarithmic accuracyk’=r'—(j—1)sn+r—n'—(j—1)
®c§“_l;r_)2. (65) <K+2-n'. This reasoning indicates that, in general, we
. , will need all T{) (CEM™)y at NX+2-0"LL (NK*F2-m'|)
After we evaluate the coefficient™ ) (impact facto, I)Eq. level for n' <K 42 (ml’asK+2) when evaluating the am-
. . . . Yr X ’ A
(65 implies that we can calculate the coefﬁuemﬁék,l_ plitude atNKLL accuracy. We note that for fermion exchange
order by order in pertur_bauon theory, because, acco_rd_lng e QED it was shown in Ref4] that only contributions with
the induction assumption, we know all the coefficients,' <k +1 are nonzero. but for QCD, two-loop calculations
c{™,""), since they are at most“LL. Once the coefficients of appear to indicate, Ref39], that QCD requires the full
r§3> are determined aN“"!LL level, we assume that we range ofn’ identified above, starting at NLL.

r'=r—k—2 n’'=1
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FIG. 7. Diagrammatic representation of the evolution equation
for jet IV at LL.

FIG. 6. Diagrams contributing to the amplitude at NLL approxi-
mation: factorized one gluon exchange diagr@nand nonfactor-

X : tion, which uses the Feynman rules for special lines and
ized two gluon exchange diagrafh).

vertices listed in Appendix D, gives the contribution to Fig.
VI. HIGH ENERGY BEHAVIOR OF THE AMPLITUDE 7@ in the form

In the previous sections we have developed the general — dPk 1
formalism for obtaining the high-energy behavior of the scat- Fig.7(a)= —gstfach (2m)° K2(k— )Zk-fv
tering amplitude for procesd) at arbitrary logarithmic ac- q
curacy. In the following subsections we apply these tech- XS/‘(k)vgNw(q—k)vZ\vgvg
nigues to study this amplitude at LL and NLL level.

zN/m(k)

X IR (Pa.a k" =0k k), 69)
A. Amplitude at LL

According to Eq.(58), the amplitude at LL comes solely
from the factorized diagram shown in Fig@g but without
any gluon self-energy corrections. The fetcontaining lines
moving in the plus direction, and j&, consisting of lines
moving in the minus direction, interact via the exchange of
single soft gluon. This gluon couples to jétvia the —
component of its polarization and to jBtvia the + compo-
nent of its polarization. Since,‘iNaﬁ(q,n)u§=1, we can
write at LL

where we have definegs=g.u¢. Using Egs.(11) and (36)

for the components of the gluon propagator and the boxed

vertex, respectively, it is easy to see that in the Coulomb

(Glaubey region, k- <k*~k, , the integrand in Eq(69)
ecomes an antisymmetric functionlof and that therefore

the integration ovek™ vanishes in this region.

In the soft region, where all the components of soft mo-
menta are of the same sizé-t, we can use th&-G de-
composition for the soft gluon with momentukrattached to
J2) | At LL, however, there cannot be any soft internal lines

1 (1)a (1)a in Jff) in Eqg. (69), since, as discussed in Sec. V C, only
Agbg=—7In"(Pa.4,7)I5 " (P50, 7). (67 integrals over collinear momenta can produce powers of
Inp, . Therefore, at LL, only the gluon contributes, be-
wherebyg is the color basis vector corresponding to the octettause theG gluon must be attached to a soft line. TKe
exchange, defined in E). Usings=2p, pg , the logarith-  gluon can be decoupled from the rest of therSéf using the

mic derivative of the amplitude can be expressed as Ward identities(30). Their application in Eq(69) gives
oA 1 932 1 aJha D
(ﬂ—8 8=~ 1 A T (Bl)aZ—ffol)a ° . (69 Fig.7(a)=—i§§CAtf d’k ! _
ns dInpa dlnpg (27)P K2(k—q)%k- kv -k
In Sec. IV B, Eq.(33), we have derived an evolution equa- XvaN, . (K)S*(K)vgN,,(d—K)va
tion resumming Ing,.) in J& . We note that (=T, and (e
that Eq.(33) is a special case of the evolution equatiéi). XJIZ(Pa.d, 7). (70)

The diagrammatic representation of the first term on the far . . B - .
right hand side of Eq(33), which follows from Fig. 4 in the /e have used the identitf,cpfgen=Ncdag=Cadaq in EQ.

case when we have one external soft gluon attached to a ng). Equation(?_O) now g!ves.afactorized form for Fig(i):
function, is given by the diagrams in Fig. 7. Diagram in Fig. >nce the contributions in Figs(8) and 7c) are already in

7(a) corresponds to Fig.(8) and the diagrams in Figs(H) the fac.torized form, we can immediately infer thf';\t thelgluon

and 7c) correspond to Fig. @) for n=1. Reggeizes a’g LL. Comblmng the tgrms from.Flg. 7 in Eq.
The diagrams in Figs.(B) and 7c) are in the factorized (33), we obtain the evolution equation at leading logarithm

form, while the one in Fig. (&) is not. As discussed in Sec.

IV B, power counting shows that the loop momentknn + 9

Fig. 7(a) must be soft. This implies that we can make the Pa ap

following approximations. First, since at LL all internal lines

of the jetA are collinear to ther- direction, we can neglect - ysing the notation for evolution kemels introduced in Sec.

the k* dependence odf, i.e., we may sek”=0 inside v p, Eq. (71) implies that

Jﬁf). Also, we can pick the plus components of the vertices

where the soft gluons attach to the #f’. A short calcula- K @2h=q, (72)

TIVA(pa g )= (DIT(pa,a ). (7D
A
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dPk k2
(2m)°® (k-k)*(k=q)-(k—q)

(75
Next, we perform the&k® and k? integrals in Eq.(75). For
agl)(t), these integrals are UV/IR finite. However, in the

case ofaﬁfg(t), the k® integral is linearly UV divergent. In
order to regularize this energy integral, we invoke split di-

1
a(0=ig2C3 |

FIG. 8. Diagrams determining the contributions to the gluonansional regularization introduced in RES7]. The idea is

trajectory at the ordes.

In Eq. (72
a(t)=1+aPt) + a{P(t) + (1), (73

is the gluon trajectory up to the orders, and a{M(t),
a{M(t), andaM(t) are its contributions given in Figs(®—
8(c), respectively,

dPk 1
(27)° K3(k—q)%k-kv o~k
X VAN, (K)S“(K)vENg,(d—K)vR,

aP(t)=—ig2Cpt J

o =| o
b Ista (2m)° K2(k—q)%k-k

XN*(K)wAN2(q—=K)V . 5,(k, —0,d—k)v§,

dPk 1
(2m)° k?k-k(g—k)-(q—k)

(=~ igica

X AN, (K)S*(K) (vg-K). (74

In Eq. (74), V,z.(k,—q,g—k) stands for the momentum
part of the three-point gluon vertex. After contracting the
tensor structures in Eq.74), using the explicit form for
V,gv: Ua, g, S [Ed. (34)] and for the components of the

gluon propagatof11) we obtain fora{!) .(t)

_ t dPk
a(t) = —'&CAEJ 2mP

[K2ko+k?ksg][ (k—q)2— (k—)?]
(ko+kg)k2(k—q)?(k-K)2(k—0q)-(k—q)

dPk
(2m)°

— 1
SOE @ﬁcAEJ

1
X — —
kK?(k=a)?(k-k)*(k—a)-(k—q)

X [KZk2(k—q)2+2k?k3(k—q), -q,
+2k3K3k, - (k—q), +2k3k? (k—q)?],

to regularize separately the energy and the spatial momentum
integrals, i.e., to writel*ke— d°1k,dP2k for Euclidean loop
momentakg . The dimension®, andD, are given byD,
=1-2¢; andD,=3—2¢,, with £;— 0+ for j=1,2. Since
the energy integral foagl)(t) is scaleless, it vanishes in this
split dimensional regularization. The energy integrals in
a{)(t) are straightforward.

All the k3 integrals can be expressed as derivatives with
respect tok? and/or k—q)? of a single integral

= 1
I(a,b)zf dk®
0 Jk3+a?(ki+b?

1 (b+ﬁ).

= In (76)
bvb?—a? a
The result of these integrations ovet is
dP~ %k
D)4y — 2e L _
aa (t)_aSIu’ CAtf (ZW)D_2(|(|kL|’|kL qL|)
ki 2(k—q)? - 3k?
X N2 L2712 2 N2 2 ’
[(k=a)T—k{]® Ki[(k=aq)T—k{]
d® 2k
M)ty = — 2e e _
ap (1) =—agu CAtJ (ZW)D2(|(|ki|’|ki a.l)
y k2 1 )
[(k—)?-Kki]> [(k—a)?-KIJ?)
aP(t)=0. (77

Combining the results of Eq$77) and (73), we obtain the
standard expression for the gluon trajectory at LL

d® 2%k, t
(2m)P 2 K2 (k—q)?’

a(t)=1+ Cpagu® f (79

We can now simply solve the evolution equati8), to
derive the factorizedReggeized form for the amplitude in
the color octet

Ag(s,t,as)=s"WAgt, ay). (79

The amplitude factorizes into the universal factstY,
which is common for all processes involving two partons in
the initial and final state and dominated by the gluon ex-
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change, and the palg, the so-called impact factor, which is
specific to the process under consideration.

B. Amplitude at NLL

At the NLL level the contribution to the amplitude comes
from both the one gluon exchange diagram, Figp)6and
from the two gluon exchange diagram, Figbp At this
level, both singlet and octet color exchange are possible ir
the latter. Including the self-energy corrections to the propa-
gator of the exchanged gludtaking into account the corre-
sponding countertermswe can write the contribution from
the diagram in Fig. @) as follows:

FIG. 9. Expansion of the one gluon exchange amplitude at NLL
using the tulip garden formalism.

For the two gluon exchange, Fig(§, we only need the
lowest order soft function at NLL in the amplitudend LL
in singlet exchange The expression for the two gluon ex-
change diagram in Fig.(B) takes the form(27),

1

8 l v B
X N (qan)+TvBUKHMV(q17])UBUA

(1)a

X J(&)p(PB,a: 1),

A= ﬂ3(2>ab(k+_0kf k)
(80) ) emp™? IR

- 2)ab/,—
wherell,,,(q,7) stands for the one loop gluon self-energy. xS(k* k™ k)IP*Ok™=0k" k), (8D
We now put this contribution into the first factorized form .
(27), isolating the plus polarization for jet A, and the minus whereS(k) is given by
polarization for jet B. At NLL in the amplitude, we need the R -
soft function S*Y, Eq. (27) with n=m=1, to accuracy S _ ' N""(k) N""(a—k) 82)
O(ag). Using the tulip-garden formalism described in Ap- 2! tie (q—k)2+ie

pendix C, the contribution to the first term on the right hand

side of Eq.(80) is given by the subtractions shown in Fig. 9. We have suppressed the dependence of the functions appear-
In accordance with the notation adopted in Appendix C, theng in Eq. (81) on other arguments for brevity. At NLL ac-
dashed lines indicate that we have made soft approximationsuracy we are entitled to pick the plus Lorentz indices for jet
on gluons that are cut by them. A dashed line cutting a gluoriunction J5 and the minus indices for jet functiaig only.
attached to jeA(B) means that the gluon is attached to theWe can also sek™ =0 in J, andk™ =0 in Jg since all the

corresponding jet through mingsus) component of its po-
larization. Sinceq®=0 in the Regge limit(2), we have

loop momenta inside the jets are collinear. EquatiBt)
represents the first factorized forf27) for the amplitude

N“*(q)=g**. This implies that the contributions between A

the diagrams in Figs.(8) and 9d) as well as between the

Next, we follow the procedure described in Sec. V A to

diagrams in Figs. @) and 9f) cancel each other. Therefore bring the amplitude into the second factorized fdef). We

only the zeroth-order soft function diagram in FigbPsur-
vives in the factorized forng27).

employ an identity based on E@i4), for the functionS(k)
defined in Eq.(82):

S(k*,k")=S(kt=0k =0)8(M—|k*|)a(M—|k~|)+[S(k*,k =0)—S(k* =0k~ =0)a(M— |k*|)]O(M — |k |)
+[S(kT=0k")—S(kT =0k~ =0)8(M— |k |)]6(M — |K* ) +[{S(k*,k")—S(k* .k =0)8(M— |k |)}
—{S(k"=0k")—S(k"=0k"=0)a(M—|k™ )} 6(M—[k™])]. (83

The contribution from the first term in E¢83) gives imme-
diately the second factorized form wit?) andI"®) defined
in Eq. (41) for n=m=2.

We now discuss the rest of the terms in E83), which
can be analyzed using th€-G decomposition, since, by

After substituting the second term of E@3) into Eq. (81),
we can factor the gluon with momentuknfrom jet J&.
However, it is easy to verify, using the definitions #rand
G gluons, Eq.(29), the Ward identities, Eq(30), and the
explicit components of the gluon propagator, Effl), that

construction, there is no contribution from the Glauber re-thek™ integral is over an antisymmetric function. As a result,

gion. At the current accuracy only the-gluon contributes.

this contribution vanishes. In a similar fashion, the contribu-
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tion from the third term in Eq(83), after used in Eq(81),
vanishes, since now we can factor the soft gluon with mo-
mentumk from jet Jﬁf) and thek™ integral is over an anti- .
symmetric function.

In the case of the last term in E3), after used in Eq.
(81), we can factor the soft gluon with momentuafrom
both jetsJ$?) and J&). The integrals of the soft function
S(k) overk® andk™ are then

02 JM dk* dk e
(2m2)-m K+ kTS( Kkea). FIG. 10. Diagrams determining the evolution .

(84

S(k, ,q;M)=C,

As usual, we leave the transverse momentum integral un- In order to determine the high energy behavior of the
done. 1k* and 1k~ in the integral above are given by the amplitude in Eq.(87), we need to examine the high energy
principal value prescription because there is no contributiobehavior ofl'{" or I'$" at NLL and the evolution of {2 or
from the Glauber region. Since the amplitude is independent(?) at LL. In this paper, we restrict the discussion of evolu-
on the choice of scal®l, we can evaluate it at arbitrary scale. tion equations to LL level, and hence we analyze the behav-
We choose to work in the limiM—0. In this limit the jor of I'{®) only. We will address the study of NLL jet evo-
contribution to the integral comes from the imaginary partqution, and g|u0n Reggeization at this |eve|, e|sewf{@@_

of the gluon2 propagators in E¢82), —imd(k?) and We use the evolution equation given by E§1) in order
—imd[(k—q)]. The integration is then trivial and E4)  to determine the LL dependence Eﬁz) on In(y). In our
becomes special case of the two gluon exchange amplitude, it reads
Sk, ,q)= lim Sk, ,q;M)=—-C 0 ! + (2)ab (2)ab N
)= 1IIm AGM)=—Cpr— 5. -1|T =M[J kT=4+M,k"=0k
L Moo ot A"g K2 (k—q)2 Pa A A [J27( 1)
(85)
+I@B(k"=-M k" =0k,)]
Combining the partial results of the analysis described above
in Eq. (81), we arrive at the second factorized form for the ~y 0 (2)ab
double gluon exchange amplitude, Figb% -7 a_n“rA ' (88)
A dP 2%k, F(Z)ab(k ) 1 The first term in Eq(88) can be analyzed using the-G
) (emPp-2 A “(2m)? decomposition. The contributions from tlie gluon cancel
o between thel?(k~=+M) and J@(k~=—M). The con-
XS(k* =0k =0k )TE?(k,) tributions from theG gluon, which we now discuss, are

shown in Figs. 1) and 1@b).
Since the gluon with momentugp—k in Fig. 10@) can-
not be in the Glauber region, we can W& decomposition

d®-2k, _
+ J Wf&”a(m,q)&k DTE(paq).
on it. TheK part factors froml{¥), while theG part does not

(2

(86) contribute at LL. After factoring out the gluon with momen-
Using Eq.(80) for A) and Eq.(86) for A®, we obtain the tym q(—z)k and perfolrmipg the approximatioqs on the_ jet func-
amplitude for the procesd) at NLL accuracy tion J/, the contribution to Fig. 1@) for k" =+M is
1 ., 1 . L d°I .
A(NLL):_?F,(A)a(pA:quW) 1+?H+_(q,7]) F|g.1(Ia)=—|gSfaecfdebm (Zw)DSl(k =0,
i d° %k k™ =+Mk, )IL% 1+ =0l"1,)
(1) (1)a —L ERAN ) A o)
toa (t))FB (pB:qu)"'"f (27)P-2 (89
i 1 where we have defined
x a0k )— ————T@3b ). (87
A 82 kR (k-qg)2 BT N"4(1) N~"(k—1) ke
Si(k,h=— 5 Ve, =K k=1) g”*—m .
In Eq. (87), we have used the explicit form fo8(k™ ! (k=1)
=0k =0k, ), which can be easily identified from E@2). (90)
We have also used the integral representation of the gluon
trajectory given in Eq(78). Next we follow the established procedure. First, we write
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Si(k,)=S,(k,| " =0)o(M—]|I7]) which gives arM-independent contribution to the right hand
B B side of Eq.(89).
+[Si(k,1) = Sy(k,I " =0) (M —[I"])]. (91) We follow the same steps when dealing with the diagram

When we use the second term of Eg1l) in Eq. (89), we can in Fig. 10(b), whose soft subdiagram is given by

factor the gluon with momenturhfrom J$&). Since the re-
sulting integrand is an antisymmetric function under the si-
multaneous transformatiod — — M, |*— —1*, the contri-
butions on the right hand side of E@®8) evaluated fork™
=+M andk™=—M cancel each other. Therefore we can

N™#(1) N""(q—1)
Setk)=—3 P V(1 =k k=1)

write, using Eq.(91) in Eq. (89), o[ gt kP)Nvﬁ(l—k)
M/ (1-k)?
1 d° 2 XV, s_(q—1,1-k,k—q). (94)
; g2 < 1 _ y
Fig.10a) = |gsfaecfdeij (ZW)Dfd|+Sl(k+_0,
k- =+M,k, ,|==0J*,1,)T@ed( )+ ..., First we use the identity91) for S,. The contribution due to

(92) the second term in Eq91) vanishes, after the gluon with
momentuml has been factored from{?, due to the anti-
where by ellipses we mean the term which is canceled aftesymmetry of the integrand. Hence again, as in the case dis-
we take into account the contributions to b(ﬂ&)(k_Z cussed above, only the term given (1 =0/%,1, k)
+M) andJ?)(k~ = —M) on the right hand side of EG88).  contributes. In the limiM — 0, the contribution comes from

Next, we perform thé ™" integral in Eq.(92). As we have  the imaginary part of the same denominator as in the case of
already mentioned above, since the final result does not de=ig. 10a). The result is

pend on the scalkl, we can choose arbitrary value . We
have chosen to perform the calculation in the lifdit—0.
Then the only nonvanishing contribution comes from the
imaginary part of the propagator [(/—k)?+ie€], M[Fig.10b)]= _asfaecfdebf
—i78(2M1T +(1—k)?). For this term thd © integration is

trivial and we obtain

M[Fig.108)]

d®-?, 2
(2mP=212(1-q)2(k—1)2

X(ka_ljz__kj_'ILIJZ__kL'qJ_IJZ__kJZ_IL'qJ_

+2k, 11T )+ (99)
dD72|L 2kl * |L
= _a'sfaecfdebj 2 D-2 12 (k| )2 F,(AZ)Cd(IJ_)+ )
(2m) i )1 Combining the results of Eq$93) and (95), we obtain the
(93)  expression for the surface term in E§9)
|
M[IP30(k~=+M kT =0k, )+IPPk =—-M,kt=0k,)]
d°-2, ( k2 (k—a)? o
=2asfaocfp df = + - redq ). (96)
T @mP 2 i2k-12 (- (k-D? i)t
|
Next, we analyze the contributions to the term Mmoo
7%9ldn°T?) in the evolution equatioi88). The contribut- J_Mdk [Fig.10(0)]

ing diagrams are shown in Figs. &DP-10f). Note that for o
every diagram in Figs. 16)-10f), we have also diagrams Mo dPl N7A(I) S, (1 -k)*
when a loop containing the boxed vertex is attached to the chfMdk J (2mP 12 L1 (I_—?)z
external gluon with momenturk, instead of to the external

gluon with momentung— k. (a_ H*
In Fig. 10c), we have to consider all the possible inser- X—=—=(k"=0). (97)
tions of external gluons with momenkaandq—k. We have (9=1
six possibilities. The contribution shown in Fig.(&Dis pro-
portional to(omitting the color factor Since the integrand is an antisymmetric function under
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k~——k ™ andl=——I*, the integral in Eq(97) vanishes. The same antisymmetry property holds for the remaining five
diagrams and therefore, there is no contribution from them.

Let us next focus on the diagram in Fig.(0 When the gluon with momentuinattaches to a soft line inside of the jet
J  the contribution takes the form shown in Fig.(41 If it attaches to a jet line, its contribution can be written as

D
|
Fig.10f) = — g,f j k*=0k" k. I
g q ) OsThed (ZW)DSS( )
X Ikt =0k k. ,1T=0)",1,), %8)

with the soft function

N=#(1) S, (1) N~ (q—k—1)
k,1)=(g—k)? e
S;(k,1)=(q—k) 2T (q-k_1?

(99

We use the identity for this soft functioB;, obtained from Eq(83) by the replacemerk™ —1~,
S(17, k") =S3(17 =0k ™ =0)(M—=[I") (M — [k~ [) +[Sa(I" k™ =0)=S5(I" =0k™=0)o(M—[I")]O(M — [k |)
+[Se(I” =0k ") =Syl =0k~ =0)a(M—[k [)]OM—|I"[) +[{Ss(1 k") = Ss(1 .k =0)a(M—|k |}
—{Ss(I" =0k )=S3(I"=0k™=0)o(M— [k~ )}o(M—[I"])], (100

to treat the soft gluons with momenkaand| attached to jet tered in the analysis of the LL amplitude, Fig. 8. We write
I . The contribution from the first term in E€LO0), when
used in Eq.(99), vanishes since the integrar®@(k* =k~

M
=0k, ,I7=0J",1,) is an antisymmetric function df", as f dk™[Fig.1Q/d) + Fig.1Q'e) + Fig.1Q b) ]
can be easily checked using E¢kL), (36), and(99). We can M
apply theK-G decomposition on the gluon with momentum = aM(q, —k TP, q.k,) (101)
- 1L L A A BRI X

| when treating the second term in E00) used in Eq(98).

At LL only the K gluon contributes. It can be factored from

the jet functiond with the result shown in Figs. 18) and ~ where Y)(q—k) in Eg. (101 is given by the diagrams in
11(c). In a similar way we can treat the gluon with momen- Fig. 8 with an external momentung—k=(0",07,q,

tum k in the third term of Eq.(100). After we factor this —k,). In the case when the gluon coming out of the boxed
gluon from the jett¥), we obtain the contributions shown in vertex attaches to an external gluon with momentynwe
Figs. 11d) and 11e). In the case of the last term in Eq. evaluate the one loop trajectosf’)(k, ) in Eq. (101).

(100), we can factor out both soft gluons with momerkta To complete the analysis, we have to discuss the diagrams

+

and| from jet . The result of this factorization is shown in Figs. 11a) and 11¢)-11(f). In the region ~~1, , we can
in Fig. 11(f). factor the gluon with momentunh from the jet function
Next, we note that the combination of the diagrams inJ(I*=0J1",1,) in the case of the diagram in Fig. (Bl
Figs. 1@d), 10(e), and 11b) is the same as the result encoun- The resultingk™ and|™ integral is over an antisymmetric
function ofk~ andl*, and therefore it vanishes. So the only
contribution comes from the Glauber region, where we can
setl~=0 outsideJP(1"=0/)",1,). As above, we perform
thel™ andk™ integrals in the limitM —0. The integrand
does not develop a singularity ki and/orl * strong enough
to compensate for the shrinkage of the integration region
f'\,"Mdk* whenM —0. Hence the diagram in Fig. (@ does
not contribute in the limiM —0. In a similar way as for the
diagram in Fig. 10a), none of the diagrams in Figs. &l—
11(f) contribute. The diagrams in Figs. (€]-11(e) vanish in
theM — 0 limit, while in the case of the diagram in Fig.(fL
FIG. 11. Contributions to the diagram in Fig. WOwhen the thek™ andl® integral is over an antisymmetric function of
gluon coming out of the boxed vertex is attached to the softne Kk~ andl™.
and when either or both gluons with momektand| areK gluons At this point we have discussed all the contributions ap-
and they are factored from the jéd)—(f). pearing on the right hand side of the evolution equat&s).
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Combining the partial results given by Eq$01) and(96) in +(aD(k, ) +a®(q, —k NTP(p, q.k,). (102
Eqg. (88), we arrive at the evolution equation governing the

high energy behavior of {2

Projecting out onto the color singlet in E4.02), we imme-
diately recover the celebrated BFKL equati®).

J
(an - —1)F2\2)’"b(p;( a.k,)

A
b_2 C. Evolution of T™ at LL
=2af yof U peypt g i ()
=2aslaeclbed W A (PadlL) We can now generalize EQLO2) to the case of " . The
evolution kernel in this case contains, in addition to a piece
K2 K—q)2 2 diagonal in the number of external gluons, also contributions
L (k=aq)7 ar ; . . N
> >+ 5 T 5 which relate jet functions with different number of external
1T(k=DT  (d=T(k=DT 17(q=D7T gluons
+ 9 (M1 -an o+
pA_+_1 FA (pA!qllei "'1knL)
IPa
. d°2, dPA L, kP k?, (ki+k)?
ZZQ’SZ faieblfa-eb- D-2 D725 (IiL+|jL_kiL_kjL) 2 2 + 2 2 22
i< ) (2m) (2m) I (k=17 15 (k=171 1515
R P TR
x (V% A ke T e k)
n n-1
c-ap n’ ’b~--bnr
+ 2, W) IS (0 a k)t 2 KGN, b @ T (103
i= n'=1
|
where ® | denotes a convolution in transverse momentum VII. CONCLUSIONS

space. The last term in E¢LO3) corresponds to the configu-
rations when one or more external gluons attach to a gluon or
a ghost lines forming the one loop kernel derived F(if').
Using the notation of Sec. V D, we can write E§03 at
r-loop order in the form

We have established a systematic method that shows that
it is possible to resum the large logarithms appearing in the
perturbation series of scattering amplitudes for2 par-
tonic processes to arbitrary logarithmic accuracy in the

P n , Regge limit. Up to corrections suppressed by powers of
pr———1|T{N= > kner{ =, |t|/s, the amplitude can be expressed as a sum of convolu-
IPa n'=1 (104 tions in transverse momentum space over soft and jet func-

tions (40). All the large logarithms are organized in the jet
It corresponds to Eq64) of Sec. V D when written in terms  functions (41). They are resummed using E¢$1) and/or
of the coefﬁcientscﬁ”'r) introduced in Eq.(60). From Eq. (56). Th_e evolution kernek in Eq. (56) is a calculab_le func-
(104 we immediately see that the following property of the fion of its arguments order by order in perturbation theory.

one loop kernel: This is the central result of our analysis.
(nn’11) S\’ 1) As an illustration of the general algorithm we have dem-
KT =0(n—n") LT, (105 onstrated it in an action at NLL for the amplitude and LL for

is satisfied. We recall that this step was essential in demont—he evolution equations. We reserve the study of the NLL

strating that the set of evolution equaticisd) forms a con- evolution, which addresses the Reggeization of a gluon at
sistent system; refer to the paragraph above(E4). NLL, for fu.ture. work[39] . ]

The term diagonal in the number of external gluons in Eq. The derivation of the evolution equations and the proce-
(103 coincides with the evolution equation derived in Ref. dure for finding the kernels was given above in Coulomb
[5]. Our formalism, in addition to enabling us to go system-gauge. Clearly, it will be useful and interesting to reformu-
atically beyond LL accuracy, Ref39], indicates that even at late our arguments in covariant gauges. In addition, the con-
LL, in addition to the kernels found in Ref5], the kernel  nection of our formalism to the effective action approach to
has contributions which relate jet functions with different smallx and the Regge limit, Ref§23,24 should provide
number of external gluons. further insight.
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process of this work | have benefited from conversation$Urs when the internal lines become either parallel to the
with C.F. Berger, G.T. Bodwin, J.C. Collins, P.A. Grassi, xternal momenturp or soft. The most general pinch singu-
M.E. Tejeda-Yeomans, A.R. White, and K. Zoubos. lar surface consists of a subdiagram of collinear lines moving
in a direction of the external ghost. This subdiagram can
interact with itself through the exchange of soft quanta.
Power counting arguments similar to the ones given in Sec.
11l B show, however, that there is no IR divergence for these
In this appendix we will include the possibility of con- pinch singular points. This shows that the dimensionless
tracted vertices in the reduced diagram in Fig)1These are  function f in Eq. (A3) is IR finite. Hence the combination
associated with internal lindsollapsed to a pointwhich are  [tree level ghost propagatfor [ghost self-energy- [tree
off-shell by y/s. Our analysis closely follows Refi27] and  level ghost propagath 1/(p- p) [I1(p, p)[1/(p- p)], is sup-
[31]. pressed at least as much as a single tree level ghost propa-

If we go back to the argument that led us to EIf) for  gator 1/p- p). Therefore the contracted two point ghost ver-
the superficial degree of IR divergence for the soft part, Weex within a jet subdiagram contributes at least the same
see_that the_same reasoning as in the case_of e"e_me”taﬁfppression as a single tree level ghost propagator.
vertices applies to the case of contracted vertlcgs since the Gluon self-energyWith external momentunp, its most
result. (15 has been obtained by means of dlmen5|onabenera| tensor decomposition has the form
counting.

The analysis of contracted vertices connecting jet line h) = 2 Y Py
only is, however, more subtle. We have to demonstrate thggw(p’p) 9P T1 PP T2+ PP ot (PPt PuP) T
the suppression factors corresponding to the contracted ver- (A4)
tices are at least as great as the ones for the elementary . . ) )
vertices. The expressiof22) tells us that we can restrict AS Verified by explicit one-loop calculations in RefS7]
ourselves to the two and three point vertices. For these casednd [38] the gluon self-energy in Coulomb gauge is not
we analyze the full two and three-point subdiagrams, bytransverse. In EqA4), the f;=1f;[p®/ u?,p*/ u? as(u)] are
studying the tensor structures that are found after integratiofimensionless functions. Contractidg,, with tree level
over their internal loop momenta. gluon propagators, and using E40), the last two terms in

Before we discuss all the possible structures, we stat&q. (A4) drop out and the first and the second terms give at
some results which will be essential for the upcoming analyleast one factor op? in the numerator, which cancels one of

APPENDIX A: POWER COUNTING WITH CONTRACTED
VERTICES

sis. The first one is the simple Dirac matrix identity the (1p?) denominator factors. Since the maximum degree
) of IR divergence for the gluon self-energy occurs when all
aba=2(a-b)a—a” b. (Al)  the internal lines become either collinear to the external mo-

mentump or soft, we can use the results of the power count-
The other two follow from Eqs(7) and (11) for the gluon jng of Sec. 11l B to demonstrate that the dimensionless func-
propagator in Coulomb gauge, and hold for any jet momentgons f; are at worst logarithmically divergent. Therefore the
scaling ad 4~14~S(1" A" ,\9) collinear to the momen-  combination: ~ gluon-jet-line—2-point-gluon-contracted-ver-

tum p, defined in Eq(2) tex—gluon-jet-line, behaves the same way as a gluon jet line
o o for the purpose of the jet power counting.
IA"Nag(la,7) =0\ Vs), Fermion self-energyln the massless fermion limit, the
o most general matrix structure of the fermion self-energy is
LA Nag(la, ) =ONs), (A2) _ _
%(p,p)=pPg:+bg2, (A5)
for all components of3. We now proceed to discuss the o
particular cases. with dimensionless functiong;=g;[ p%/ u?,p? u?, ag(u)],
Ghost self-energyThe most general covariant structure is, i =1,2. When we sandwich the fermion self-energy between
usingp-p=p?,° the tree level fermion denominators, the first term in Eq.
(A5) behaves the same way as the tree level fermion propa-
(p,p)=p-pfp¥ u2 p? 2 aq w)l, (A3)  gator, modulo logarithmic enhancements due to the function

g;. The second term, however, is absent from the fermion
whereu is a scale introduced by a UV/IR regularization of self-energy as was shown in R¢81] using the method of
Feynman diagrams arglis the momentum of an internal jet induction and Ward identities. The idea was to study a varia-

tion of the fermion self-energy by making an infinitesimal

Lorentz boost on the external momentum. This implies a

SIn the rest of this subsection we are concerned the momenturrelationship between the ¢ 1) and ther-loop self-energy.
factors only, and we omit dependence on the color structure. Assuming that the term proportional fpis absent from the
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r-loop expansion Sen shows that it is also absent from thexternal gluons, give suppression factors, as in &@),

(r+1)-loop expansion. So the first term in E&5) is the  which cancel the 12‘\ enhancement. The leftover momentum

only possible structure of the fermion self-energy when itsl4 provides the same suppression factor as the elementary

external momentum is jetlike and approaches mass sheNertex. Using the collinear power counting of Sec. Il B, one

Now let us investigate the 3 point functions. can immediately see that the IR divergence of the dimension-
Fermion-gluon-fermion vertex functiol’,,, can depend less functions multiplying these tensor structures is not

on vectors that scale ds, |, in Eq. (A2), provided all worse than logarithmic. Hence, there is a suppression factor

momenta external to the contracted vertex are collinear ta '/ associated with every contracted 3 gluon vertex.

momentump, given in Eq.(2). It has one Lorentz index, Ghost-gluon-antighost three point verté®’hen all lines

and neglecting the fermion masses, it contains an odd nunexternal to the contracted vertex are of the ottggrthe most

ber of gamma matrices. This implies that the most generajeneral tensor structure for this contracted vertex is

tensor and gamma matrix expansionlyf involves(1) y,,,

(2) Yl a/(1a-15) and all permutations of,, , I, 5, and I&hy+ Thho + O(NM2s), (A6)

) TAANA, TAIRI(Ta-TA), TAlRI(1 A1), TAl4I1A.

(3) Il AT AT (Tala). TalA/( r A T/l with  dimensionless  functions h;=h;[12/u?, 13/u?,
The differences between the listed set of structures angls(,u)], i=1,2, which are at most logarithmically IR diver-

other possible combinations a\"*s), as can be shown gent. Using Eq(A2), we see that when the momenta in Eq.

using Egs.(Al), (A2). The listed gamma matrix structures (ag) are contracted with the tree level gluon propagator, we

are multiplied by dimensionless quctlons, which can depenget g suppression of the order of the transverse jet momen-

on the combinationds, 13, 1,2, 1,2, in addition to the tum, and that this contracted vertex gives the same suppres-

renormalization scale and the running coupling. Using thesion as the elementary three point vertex, at least.

arguments similar to the ones leading to E2B), we easily

verify that the above mentioned dimensionless functions areappeNDIX B: VARYING THE GAUGE-FIXING VECTOR

at most logarithmically divergent. Next we analyze the pos-

sible Dirac structures. In this appendix we study the effect of an infinitesimal
(1) The first case has the same structure as the elementapost, performed on the gauge fixing vecigron an expec-

vertex, and therefore causes the same suppression as the t@tion of a time ordered product of fields, denoted @y

ementary vertex. taken between physical states. The gauge-fixing and the
(2) The fermion-gluon-fermion composite 3-point vertex ghost terms in the QCD Lagrangian are

is sandwiched between the factdis and f,, originating

from the numerators of the fermion propagators external to Loi(X)=— igz(x)

the composite vertex. Therefore the terms from case 2 where o+ 277

I is on the first or third position in the string of the gamma

matrices provide a suppressigihz. On the other hand in the Lghost X) = ~ ba(X) dgreJa(X)/ A,

case, whetf, is in the middle of this string of three gamma

matrices, we encounter the combinatifry, I after taking respectively. In Eq(B1), SA is a Grassmann parameter de-

into account the numerators of the external fermions. Usingining the BRS transformatiorh,(x) is an antighost field
Eqg. (A1), we can immediately recognize that this combina- a '

tion provides a suppression”.

(B1)

and

(3) Based on the preceding arguments it is obvious that )= —3-A(X)= =T d— (- I n1- Au(X B2
also the structures included in item 3 supply at least the same 9a(%) a(X) [o=(n-a)m]-Ad). (B2)
suppression factor as the elementary vertex. Let us consider an infinitesimal boost with velocif on a

Therefore, we conclude that the composite 3-pointyauge fixing vector performed in the plus-minus plane
fermion-gluon-fermion vertex behaves as the elementary ver-

tex for the purposes of the jet power counting.
Three gluon vertexv,,,,,, with external momenta collin-

ear to mo_mentuerA. This vertex (?an depend on_ mqmenta where the vectors; and 7 are defined in Eq9) and (35),

Ia, | a defined above and the metric tengpy; . Taking into  respectively. Since only the gauge fixing and the ghost terms
account the dimension of the 3 gluon Green fUnCt|0n, its OnIMn the QCD Lagrangian depend 0f) we can Wwrite to accu-
possible tensor structure involves combinations of the formacy 0(542)

[g,,)4+perm+O(\Y2s)] and [I41415/15+ O\ 2{s)],

n—n'=n+ndpB, (B3)

with all possible replacements dfy—I|,. These tensor 0)=(0(7n"))—(O(n))
structures are multiplied by dimensionless functions. The

former is the same as in the case of an elementary vertex and _ < 7 J0 5,3>

it therefore supplies the same suppression factor as the el- an®

ementary vertex. The latter also provides the same suppres- )
sion as the elementary vertex, since the two momenta, say 'f 4

. . =—= X X X
I4, 15, after being contracted with the propagators of the & d™x(O(7)9a(X) 89a(x))
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—i f d*X(O(7)by(X) O] SareTa(X)/SAT).

(B4)
Using the BRS invariance of the QCD Lagrangian and the @) <)
BRS transformation rule for an antighost field FIG. 12. Two-loop diagram illustrating the idea of the tulip-
1 garden formalismT,,T,, T3 are the possible tulips.
Oprda(X)/ A = Ega(x)a (BS)

The simplicity of the tree level Ward identities puts strong
we arrive at limitations on the sets of diagrams that can combine to form
different diagrammatic contributions to EB7). For dia-
o 4 grams of set(1), the topology of the original diagram is
0)= —lf d"x((grsO/ 8A)D4(X) 89a(X)).  (B6)  nchanged, and a 1P diagram remains 1PI. For diagrams of
set (2), generally 1PI diagrams remain 1PI, except in the

Taking a variation 0fy,(x) in Eq. (B6), we obtain special case of a diagram that is two-particle reducible, with
these two lines separated by a single propagator. In this case,
- 4 A the contraction of the internal line that separates the other

50) If 0"X(( 80/ 9 )ba(x) two will bring those two lines together at a single vertex,

~ ~ producing a diagram precisely of the topology shown in Fig.
X[(9-9) n+(n-9)n]- As(X))- (B7) 4. On the one hand, by EqB7) all such diagrams must
cancel in the full perturbative sum. On the other hand, the
same topology results from a diagram that is one-particle
reducible with respect to a single line, which is then con-
tracted as a result of the tree-level Ward identity. The latter
diagram, however, is not included in the set of 1Pl diagrams
with which we work. The application of the Ward identity to

with c2(x) representing the ghost field, to derive the gaugelP! diagrams only, therefore, results in terms that would can-
variation for a connected Green function. However, our jetcel this special set of one-particle reducible diagrams, in
functions are one-particle irreducible in external soft lineswhich the only line that spoils irreducibility is contracted to
and we therefore cannot apply E@®7) directly, and must @ point. These are the dlagrams.sh_own in Fig. 4, in which the
find an analog for this subset of diagrams. The modificatiorghost-gluon vertex of Eq(B8) is inserted between one-
of Eq. (B7) due to the restriction to 1P| diagrams is, how- Particle irreducible subdiagrams in all possible ways. The
ever, not difficult to identify. ghost line ending at this composite vertex is continuously
Let us consider the graphical analog of the derivation ofconnected to the variation of a gluon propagator, according
Eq. (B7) just outlined. The variation iny may be imple- 10 Eq.(B7). The full composite vertex of the Ward identity in
mented as a change in the gluon propagator and, in Coulom%q; (B7) appears only at true external lines _of the 1PI jet.
gauge, the ghost-gluon interaction, which is algalepen- ~ This vertex is given by the momentum factor in £87) and
dent. This is the viewpoint that was taken in axial gauge in'S "epresented by the double line crossing a gluon line in Fig.
Ref. [32]. At lowest order in the variation, the modified 13 b_elow. Diagrams that_are r_edymble in one or more inter-
gluon propagator produces scalar-polarized gluon lineghal Im(_as can be tr_eateq ina similar manner. The “Ieftover’f
which decouple through repeated applications of tree-levelerms in the Ward identities for each set of diagrams of defi-
Ward identities to the sum over all diagrams. The relevanf'ité reducibility properties1PI, 2P, etd, must cancel in the
tree-level identities are given in ReB4]. We need not de- full sum, reproducing the identity for Green functions,
scribe these identities in detail here. We need only note thaed- (B7).
they are to be applied to any diagram in which a scalar po-
Iari_zed gluon appears at an i.nternal vertex. Every_such a_ppli— APPENDIX C: TULIP-GARDEN EORMALISM
cation produces a sum of diagrams, each of which fall into
one of two sets(1) diagrams in which an internal gluon line In this appendix we illustrate how a given Feynman dia-
is transformed to a yet another ghost line ending in a scalagram contributing to the proces¢s) in the leading power can
polarization and(2) diagrams in which one gluon line is be systematically written in the forif27). For concreteness
contracted to a point. The new vertex formed in the formedet us consider a two loop diagram where the quarks interact
case is the ghost term, and in the latter case it is the ghostia the exchange of a one rung gluon ladder as in Fig. 12.
gluon vertex of the BRS variatiofB8). Equation(B7) must ~ The important contributions of this diagram come from the
result from the cancellation of all diagrams, &%, in which  regions when all of the exchanged gluons are soft, Fig)12
an internal gluon line is contracted. Contracted external linesr when the gluons attached to tequark line are soft,
provide the ghost-gluon terms, and the ghost lines of Bet while the rest of the gluons carries momenta parallel to the
eventually provide the ghost terms of the BRS variations— direction (they belong to jeB), Fig. 14b), or when the
(B8) of external fields in Eq(B7). two gluon lines attached to tH& quark line are soft and the

Substituting forO a product ofn gluon fields, we can use Eq.
(B7), together with the rule for the BRS transformation of a
gluon field

SareA(X)/ SA = 3,,c3(X) +5f2PAD (X)c(x),  (BB)
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VA,B — i
—_—k' UA,B . k F i€ l l
2
_ —1 > > > >
""" EEERTTT T kek e pa L ls
v — i@
ay—oﬂv\.=| w PB - -
k
rososl--»---4 = —t5a(k) = —i[(fi- ke + (1 k)ia] FIG. 14. Two loop diagram demonstrating the origin of the
« Glauber(Coulomb region.
— ik2g.a—
W;];.%"B = (k" gap = ko kg) performing S(T,)S(T3)F we leave these gluon lines out of
the game and make soft approximations only on the gluon
-c lines attaching to the ladder’s rung. Two gardens are equiva-
M = —igsfabeGu lent if the soft approximation is identical for both of them.
res s O oo 8Jabe Juy . . . .
a, b b, v Fr is defined by Eq(C1). The contribution toFz comes
c from the integration region whergk|= /s for all gluons
. coming out of the central soft part. As a result, the contribu-
g 3 = ~igsfave g tion to Fg is suppressed by positive powers gf-t/y/s.
s i Therefore we can ignore the contribution frég within the
36, Iz accuracy at which we are working.
k , 3. = Qofave K¥ We can now rewrite Eq(C1), as
ol e A
- a b"*-

F=2 GET(—l)““Sﬁl)--&Tn,l) S(T)F+Fg.

FIG. 13. Feynman rules for the eikonal lines, ghost lines, and Th=

special vertices. (C2
) o This expression is indeed in the form of E7) since the

other gluons are collinear to the direction(they belong to  ierm S(T)F is of that form and the subtractions
jet A), Fig. 12c). The possible central soft exchange parts(_l)nﬂs(-rl). -.S(T,_,) modify only the soft functiorS
are called tulips. In our case the possible tulips are denoteg Eq.(27), but do not alter the form of the equation. We can
asTy,T,, T3 in Fig. 12. The garden is defined as a nested sefherefore conclude that the contribution to a given Feynman
of tulips {Ty, ... Ty} such thatTiCT;,, fori=1,....n  giagram in leading power can be expressed in the first fac-
—1.InFig. 12{Tq}, {To}, {Ts}, {T1,Ta}, {T2. T3} are the  torized form given by Eq(27).
possible gardens.

For a given tulip we make the soft approximation, con-

L . o APPENDIX D: FEYNMAN RULES
sisting of attaching a soft gluon to jétvia the— component

of its polarization only and to jeB via the + component of In Fig. 13, we list the Feynman rules for the lines and the
its polarization. The result of this soft approximation for avertices encountered in the text. The double lines are eikonal
given Feynman diagrarR corresponding to a tulif is de- lines, while the dashed lines represent ghosts. The four vec-

notedS(T)F. It has obviously the form of Eq27). Follow-  tors 5, % are defined in Eqg9) and (35), respectively. The
ing the prescription given in Ref§32] and[4] we write the  conventions for the gluon-ghost and gluon-eikonal vertices
contribution to a given diagrarfi in the form (third and second from the bottom of Fig.)l&e the follow-
ing. We start with a color index of a gluon external to the
F=E (— 1)n+1s(-|—1). - S(T,)F+Fg, (C1) diagram defining the evolution k_ernel, see, for in_stance, Fig.
G 8(a), then proceed to the gluon internal to the diagram and
finally to the ghost/eikonal line in order to assign the color
where the sum over inequivalent gardens, as defined beloyhgices of f,,.. For the three point antighost-gluon-ghost
G in Eq. (C1) is understood. The meaning of this expressionyertex at the bottom of Fig. 13, we start with an antighost
is the following. For a given garden consisting of a set ofarrow flowing out of the vertexthen proceed to the ghost

tulips {Ty, ... ,Tn}, we start with the largest tuli, and  and finally we reach the gluon line.
make the soft approximation for the gluon lines coming out

of it. Then forT,_,; we proceed the same way as . If
some of the lines coming out df,_; are identical to the
ones coming out off, we leave them untouched. For in- In this appendix we exhibit the origin of the Glauber
stance, if we consider a gardéf,, T} from Fig. 12, we (Coulomb region using the two-loop diagram shown in Fig.
first perform the soft approximation on tulip; and then 14. Consider a situation when the upper gluon loop is a part
proceed to tulipl,. However the lines coming out df, and  of J,. Momentumk of the exchanged gluon flows through
T3 which attach to theB quark line are identical so when jet lines with momentd,=1—k andl;=pa—1—qg+k.

APPENDIX E: ORIGIN OF GLAUBER REGION
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The components ok can be pinched by double poles The two poles given by EGE1) are located in opposite half
coming from the denominators of the gluon propagatdrs planes since in the region considergd,|; >0. This indi-
+ie and (@—k)*+ie. In addition to these pinches, the com- cates that we must consider the possibility that the different
ponentk™ can be pinched by the singularities of the jet linescomponents of the soft momentukrtan scale differently.

I2 andls, at values For instance, we can hade’ ~k, ~o/s andk™ ~\+/s

- |§L—i€ where A\<o<1. Indeed, the power counting performed
kKo=I"=——F—, in Sec. Ill B shows that the singularities originating from
2|2 - . .
these regions can produce a logarithmic enhancement. We
12 i also note that it is only minus components that are pinched
K- =]+ —% 'E_ (E1) in this way by the lines inl,, and plus components by the
23 lines inJg.
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