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QCD strings with spinning quarks
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We construct a consistent action for a massive spinning quark on the end of a QCD string that leads to a pure
Thomas precession of the quark’s spin. The string action is modified by the addition of Grassmann degrees of
freedom to the string such that the equations of motion for the quark spin follow from boundary conditions,
just as do those for the quark’s position.
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I. INTRODUCTION

A consistent description of spin within a QCD strin
theory has been sought for many years. The addition of
namical spin to the bosonic string led to the developmen
supersymmetry and superstring theory@1#. Such theories are
more realistic as unified theories of elementary particle ph
ics than as phenomenological descriptions of hadronic sta

A more realistic description of hadronic states involv
the replacement of the free end of the dual resonance s
by the addition of a massive point quark to the end of
string. In 1977, Ida@2# analyzed the motion of a spinles
massive quark on the end of a bosonic string. The relativi
flux tube model@3#, derived from different assumptions,
mathematically equivalent to a bosonic string with a spinl
quark end and produces realistic meson spectra on ave
but there is no place for quark spin in this model. In th
paper we make a modification of the bosonic string p
bosonic quark model to introduce quark spin.

Our clue to constructing a consistent action comes fr
the suggestion of Buchmu¨ller @4# that the spin of the quark
should undergo pure Thomas precession because the q
sees a purely chromoelectric field in its rest frame. T
seems to be supported by experimental data@5,6# and is in
agreement with QCD@7,8#.

We begin in Sec. II by discussing the treatment of spin
pseudoclassical language. We show how to construct act
for a free fermion as well as a fermion with backgrou
scalar and vector potentials. We analyze the case of a s
potential in detail and show how the Thomas precess
manifests itself in this language.

In Sec. III we show in detail that the Fermi-Walker tran
port of the spin vector, which is the equation of motion of t
spin vector for a particle in a scalar potential, leads to T
mas precession of the spin in its rest frame.

In Sec. IV we use the example of a spinless quark coup
to the end of a string to argue for the form of the action
a spinning particle coupled to a modified Polyakov stri
action. The key idea is to obtain the equations of motion
the spin of the quark from boundary conditions, just as
0556-2821/2004/69~5!/054013~11!/$22.50 69 0540
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equations of motion of the quark’s position arise fro
boundary conditions. To this end, we introduce ne
Grassmann-valued fields on the string worldsheet.

In Sec. V we use the consistency of the equations of m
tion of the quark and the requirement of Thomas precess
to fix the parameters in the string action. The result is that
only modification of a free spinning quark plus free boson
string action is the replacement of the bosonic string posit
variable by the string position variable plus a term bilinear
worldsheet fermionic variables.

In Sec. VI we explore the fermionic gauge invariance
our string action. In the phenomenologically interesting ca
we find that the worldsheet fermionic variables are pu
gauge degrees of freedom.

We find the momentum and angular momentum from N
ether’s theorem in Sec. VII. These conserved quantities
the usual starting point for the numerical quantization of
relativistic flux tube model. Finally, we conclude in Se
VIII.

II. SPIN IN PSEUDOCLASSICAL MECHANICS

We choose to work within the framework of pseudocla
sical mechanics@9# because the formalism is elegant as w
as physically transparent; the transition from pseudoclass
to quantum mechanics is immediate. In this section we c
struct actions that produce the Dirac equation, both free
in background potentials, as an equation of motion and
show how the Thomas precession in a scalar potential m
fests itself in this language. The main disadvantage is th
requires some familiarity with the technical details of Dirac
constrained Hamiltonian mechanics@10,11# as well as clas-
sical mechanics with Grassmann variables@9,11#.

The easiest way to construct pseudoclassical actions
fermions is to consider the Dirac equation as a phase-sp
constraint and to construct consistent actions that yield
constraint. The first actions of this type were found by B
rezin and Marinov@12#, Barducci, Casalbuoni, and Lusann
@13#, and Brink, Deser, Zumino, Di Vecchia, and Howe@14#.
To represent the spin degrees of freedom of a fermion, a
©2004 The American Physical Society13-1
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of five Grassmann coordinates,jm and j5, are introduced.
Upon quantization, the Grassmann coordinates will beco
generators of a Clifford algebra and can be identified w
Dirac’s gamma matrices. The kinetic piece of the action
the Grassmann variables

Skinetic5E dt
i

2
~jmj̇m1j5j̇5!, ~2.1!

leads to the canonical second-class constraints

xm5pm2
i

2
jm'0, x55p52

i

2
j5'0. ~2.2!

Here we use Dirac’s wavy equal sign notation@10,11# for
‘‘weak equality,’’ which reminds us that the equalities cann
be taken before Poisson brackets are calculated. We de
the canonical momenta tojm and j5, defined to be the de
rivative of the Lagrangian from the right with respect to t

velocities j̇m and j̇5 respectively, bypm and p5. With this
convention, we obtain the following Poisson brackets:

$jm,pn%5$pn ,jm%5dn
m , ~2.3!

$j5 ,p5%5$p5 ,j5%51, ~2.4!

with all others being zero. Our conventions for pseudocl
sical mechanics are given in Appendix A.

The weak equalities in Eq.~2.2! can be replaced by stron
ones if we introduce the Dirac brackets@10#. From the defi-
nition in Appendix B and the Poisson brackets above,
find

$jm ,jn%D52 ihmn , ~2.5!

$jm ,j5%D50, ~2.6!

$j5 ,j5%D52 i , ~2.7!

wherehmn is the metric. Our convention ishmn5diag(21,
11,11,11).

The meaning of the Grassmann numbers becomes c
upon quantization. When we make the replacement ofi\
times Dirac brackets by anticommutators, we find that

quantum operatorsĵm and ĵ5 obey a Clifford algebra,

ĵmĵn1 ĵnĵm5\hmn ,

ĵmĵ51 ĵ5ĵm50, ~2.8!

ĵ5ĵ55
\

2
.

From these anticommutation relations, we see that the op

tors ĵm and ĵ5 can be represented as gamma matrices,

ĵm5A\

2
g5gm , ~2.9!
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ĵ55A\

2
g5 . ~2.10!

The free Dirac equation is proportional to

f̂uc&5~ p̂mĵm1mĵ5!uc&50. ~2.11!

Thus, we should introduce the constraint

f5pmjm1mj5'0 ~2.12!

into our action. This constraint does not have vanish
Dirac brackets with itself, but yields the Klein-Gordon o
erator:

K[
i

2
$pmjm1mj5 , pmjm1mj5%D

5
1

2
~p21m2!'0. ~2.13!

In order to be able to impose the constraintf̂ as in Eq.
~2.11!, f and any constraints, such asK, arising from it must
be first-class, which means the Dirac brackets of any pai
them yield a combination of other first-class constraints.
order for the set of constraints to close under Dirac brack
this last constraint must have vanishing Dirac brackets w
f. This is guaranteed by the~graded! Jacobi identity,

$f,K%D5
i

2
$f,$f,f%D%D50. ~2.14!

The dynamics of this system are given by the free acti
plus these constraints put in with Lagrange multipliersl,
ande:

S5E dt Fpmẋm1
i

2
~jmj̇m1j5j̇5!

1 i
l

m
~pmjm1mj5!2e

1

2
~p21m2!G . ~2.15!

We may eliminatep from Eq. ~2.15!, by using its~purely
algebraic! equation of motion. Similarly, we may then elim
natee from the intermediate action to find the action give
by Berezin and Marinov@12#,

S5E dt F2mA2 ẋ21
i

2
~jmj̇m1j5j̇5!1 il~j51u•j!G ,

~2.16!

where we have used the usual notation for the four-veloc

u5 ẋ/A2 ẋ2.
The Dirac equation in a background scalar fieldw and

vector fieldAm is obtained from the free equation by minim
substitution forAm and the addition ofw to the mass:

f5~p2A!mjm1~m1w!j5'0. ~2.17!
3-2
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We wish to use this as a constraint to construct an ac
in the same manner. We must again consider that the
straintf have vanishing Dirac brackets with itself. We fin

K[
i

2
$f,f%D5

1

2
~p2A!21

1

2
~m1w!22

i

2
jmjnFmn

1 i j5jm]mw'0, ~2.18!

whereFmn5]mAn2]nAm . The Jacobi identity again insure
that there are no further constraints.

As before, we implement these constraints by use
Lagrange multipliers, a commuting one,e, and an anti-
commuting one,l,

S5E dt Fpmẋm1
i

2
~jmj̇m1j5j̇5!1 i

l

m
f2eKG .

~2.19!

We note that the action for a spinless particle can be obta
by taking the spin variables to zero:jm→0, j5→0. The
Thomas-Bargmann-Michel-Telegdi equations of moti
@15–17# for the spin can be found from an analysis@12,18–
21# of the action~2.19! with w50 andAmÞ0.

The action for a particle interacting with a backgrou
Yang-Mills field can be constructed by using addition
Grassmann variables for the internal degrees of freed
@22#.

Because we are interested only in the Thomas preces
here, from now on we consider the action with a scalar
tential only, so we setAm50. Eliminating firstpm , and then
e, in the action Eq.~2.19! with Am50, we find

S5E dt F2S m1w1
i j5jm]mw

m1w DA2 ẋ21
i

2
~jmj̇m1j5j̇5!

1 il~j51u•j!G . ~2.20!

This action is the same as the one analyzed by Martemya
and Shchepkin@21#.

The equations of motion from the action~2.20! are

ṗm5Fm , ~2.21!

j̇m5lum1
j5Fm

m1w
, ~2.22!

j̇55l2
j•F

m1w
, ~2.23!

where

Fm52]mS w1
i j5j•]w

m1w DA2 ẋ2, ~2.24!
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pm5
]L

] ẋm

5~m1w!um2
i

m1w
j5jnFn

um

A2 ẋ2

1 i
l

A2 ẋ2
Pmnjn, ~2.25!

and we have used the convenient notation

Pmn5hmn1umun ~2.26!

for the projection operator perpendicular to the four-veloc
In order to clarify the algebra in the rest of this sectio

we follow Martemyanov and Shchepkin@21# and work to
lowest order in the fermionic variables. In this approximati
we have

u̇m5
PmnFn

m1w
, ~2.27!

j̇m5S l2
j5u•F

m1w Dum1u̇mj5 , ~2.28!

j̇55l2
j5u•F

m1w
2u̇•j. ~2.29!

The momentum and angular momentum of the system
be found by Noether’s theorem. We make an infinitesim
Poincare´ transformation of the variables

dxm5am1vm
nxn,

djm5vm
njn, ~2.30!

and extract the conserved quantities from

dS5DS ]L

] ẋm
dxmD 1DS ]RL

]j̇m
djmD

5amDpm1
1

2
vmnDJnm , ~2.31!

where]R/]j̇m denotes the derivative acting from the righ
and D denotes the difference in values between final a
initial times. In Eq.~2.31! we have also used the equations
motion.

We find that the total angular momentum is a sum
orbital and spin pieces

Jmn5Lmn1Smn5x[mpn]2 i jmjn . ~2.32!

The total angular momentum, as well as each piece se
rately, obeys the Dirac brackets relation
3-3
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$Jmn ,Jm8n8%D52hmn8Jnm82hnm8Jmn81hnn8Jmm8

1hmm8Jnn8 . ~2.33!

The Pauli-Lubanski vector,

sm52
1

2
emnabunSab, ~2.34!

represents the spin of the particle and is purely spatial in
rest frame of the particle;

u•s50. ~2.35!

We use the convention thate0123511. Using the identity

eabgdemnrd52d [a
m db

n dg]
r , ~2.36!

we may revert Eq.~2.34! to find

i jajb52eabgdugsd1 i ~uajb2ubja!~u•j!. ~2.37!

Using Eq.~2.37!, we find the rate of change ofsm

ṡm5
i

2
emnabu̇njajb1 i emnabunj̇ajb,

5um~ u̇•s!1 i emnabunu̇a~u•j!jb

1 i emnabunj̇ajb. ~2.38!

We observe that the equation of motion forjm must have the
form

j̇m52u̇m~u•j!1um~anything!, ~2.39!

in order for the Pauli-Lubanski vector to be Fermi-Walk
transported along the worldline of the particle. That is, forsm
to obey

ṡm5umu̇nsn5~umu̇n2u̇mun!sn. ~2.40!

Equation~2.40! is the condition that there is no torque on t
spin. The spin thus undergoes Thomas precession, as we
see in the next section.

III. THOMAS PRECESSION

In this section we demonstrate that a vector that und
goes Fermi-Walker transport in a circular orbit will prece
in its rest frame at the Thomas frequency.

The spin vector of a gyroscope moved along a spacet
path xm(t) in the absence of net torque undergoes Fer
Walker transport. We take laboratory time to be the worldl
parameter;t5t. The rate of change of its spin vector then

dsm

dt
5Vm

nsn, ~3.1!

with

Vm
n5umu̇n2u̇mun , ~3.2!
05401
e
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e
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where theum is the four velocity tangent toxm(t) and a dot
means derivative with respect tot.

We make the 311 identifications

u05g,

u5gv, ~3.3!

and we note that the spin vector in its~noninertial! rest frame
is

s0
m85Lm8

nsn, ~3.4!

whereLm8
n is the Lorentz transformation to the rest frame

the particle

Lm8
n5dm8

n1S g21 2gv

2gv
~g21!

v2 vvD . ~3.5!

The equation of motion satisfied by the rest-frame spin v
tor is

ds0

dt
5

d

dt
~Ls!5L̇s1L ṡ

5L̇L21s01LVL21s0 . ~3.6!

The rotation matrix~3.2! is

Vm
n5g2S 0 v̇

v̇ vv̇2 v̇v
D . ~3.7!

Simplifying the right hand side of Eq.~3.6!, we find

ds0

dt
5

g21

v2 S 0 0

0 vv̇2 v̇v
D s0 . ~3.8!

Since the rest frame spin,s0, has no time component, w
have

ds0

dt
5

g21

v2 ~vv̇2 v̇v!•s052
g21

v2 ~v3 v̇!3s0 . ~3.9!

The acceleration of a particle in uniform circular motion wi
angular velocityv is

v̇5v3v. ~3.10!

In the case of uniform circular motion, Eq.~3.9! becomes

ds0

dt
52~g21!v3s05VT3s0 , ~3.11!

whereVT is the Thomas frequency.
3-4
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IV. STRING WITH ONE FIXED AND ONE MASSIVE END

A. Spinless quark

A string with one fixed end and a massive quark on
other end is described by an action that is the sum of the
massive point particle action and a free string action, wh
we take in Polyakov@23# form,

S52
T

2E dtE
0

1

dsA2hhab]aXm]bXm2mE dtA2 ẋ2.

~4.1!

Here Xm(s,t) are the coordinates of the string worldshe
parametrized byt and s, hab is the metric on the string
worldsheet withh5det(hab), xm(t) are the coordinates o
the quark worldline,T is the string tension, andm is the
quark mass. We use small latin letters for worldsheet ten
indices.

We require that the string end ats50 is fixed at the
origin, X(0,t)50. To make this an interacting theory, w
must impose the condition that the end ats51 ends on the
quark:

Xm~1,t!5xm~t!. ~4.2!

The variation of the action under variations that prese
the end-point conditions,

dXm~0,t!50, ~4.3!

dXm~1,t!5dxm~t!, ~4.4!

is

dS5E dt Sm
ẋmd ẋm

A2 ẋ2
D 2TEds dt A2hhab]a~dXm!]bXm ,

5E dt dxmF pm
1 us512

d

dt S mẋm

A2 ẋ2
D G

2E ds dt dXm]apm
a , ~4.5!

after an integration by parts. Here we have used the nota
pm

a for the current density of spacetime momentum on
worldsheet,

pm
a 5dS/d~]aXm!52TA2hhab]bXm . ~4.6!

We see in Eq.~4.5! that the force that moves the quark aris
from the boundary condition~4.2!. The key idea of our work
is to make a parallel construction with fermionic variables
the case of a spinning quark. In our construction, the mo
of the quark’s spin comes about as a result of introduc
new fermionic variables on the string and the boundary c
ditions imposed upon them.
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B. Spinning quark

In this section we make an ansatz for the form of t
action. In order to have pure Thomas precession, we nee
action for the fermionic variablesjm whose variation has the
form

dS}E dt djm@ i j̇m1 i u̇m~u•j!#, ~4.7!

so that we obtain Eq.~2.39!, the condition necessary fo
Thomas precession.

The term idj•u̇(u•j) looks like 2 idj•Fmj5 /m
52 idj•p1mj5 /m, if we use the equations of motionu•j

52j5 and make the identificationmu̇m5Fm.
We can obtain such a boundary variation by introduc

worldsheet fermionic variablesJm(s,t) and J5(s,t)
whose boundary conditions are

Jm~1,t!5jm~t!,

J5~1,t!5j5~t!, ~4.8!

and then replacing]aXm in the string action~4.1! by

Pa
m[]aXm2a

i

m
]aJmJ52b

i

m
Jm]aJ5 . ~4.9!

We will fix the parametersa andb by requiring consistency
of the equations of motion and pure Thomas precession
the spin.

In analogy to the spinless case, we take our action to
the sum of the free Berezin-Marinov@12# action ~2.16! for
the particle and a Polyakov action modified by the repla
ment of]aXm by Pa

m defined in Eq.~4.9!:

S5E dt F2mA2 ẋ21
i

2
~jmj̇m1j5j̇5!1 il~j51u•j!G

2
T

2E dtE
0

1

dsA2hhabPa
mPbm . ~4.10!

C. Equations of motion

Under variations of theXm andxm that obey the boundary
conditions Eqs.~4.3!, we find the variation of the action to b

dS5E dt Fm
ẋmd ẋm

A2 ẋ2
1 ilS d ẋmPmnjn

A2 ẋ2
D G

2TE ds dt A2hhab]a~dXm!Pbm ,

5E dt dxmF pm
1 us512

d

dt S mẋm

A2 ẋ2
1 il

Pmnjn

A2 ẋ2
D G

2E ds dt dXm]apm
a , ~4.11!
3-5
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where we have again used the notationpm
a for the current

density of spacetime momentum on the worldsheet, whic
this case is

pm
a 5dS/d~]aXm!52TA2hhabPbm . ~4.12!

The vanishing of the variationdS leads to equations of mo
tion for the quark and the string,

dpm

dt
5Fm52TA2hh1bPbmus51 , ~4.13!

05]a~A2hhabPbm!, ~4.14!

where the quark’s momentum is given by
so

la

05401
in pm5mum1 il
Pmnjn

A2 ẋ2
, ~4.15!

with the usual projector,Pmn5hmn1umun .
Under variations of the fermionic variablesJm(s,t),

J5(s,t), jm(t) andj5(t), obeying

dJm~1,t!5djm~t!,

dJ5~1,t!5dj5~t!, ~4.16!

that preserve the boundary conditions~4.8!, we find the
variation of the action to be
dS5E dt F ildjmum1 ildj51
i

2
~djmj̇m1jmdj̇m1dj5j̇51j5dj̇5!G2

i

mE ds dt @a~]adJmJ51]aJm dJ5!

1b~dJm]aJ51Jm]adJ5!#pm
a ,

5E dt F S ilum2 i j̇m1a
i

m
j5FmD djm1S il2 i j̇52b

i

m
jmFmD dj5G1

i

mE dt @~adJmJ51bJmdJ5!pm
1 #us50

2
i

mE ds dt $@aJ5]apm
a 1~a2b!]aJ5pm

a #dJm1@bJm]apm
a 2~a2b!]aJmpm

a #dJ5%. ~4.17!
he
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Using the notation of Eq.~4.13!, and the equation of motion
~4.14!, we find the equations of motion

j̇m5lum1aj5

Fm

m
, ~4.18!

j̇55l2bjm

Fm

m
, ~4.19!

05~a2b!A2hhabPam]bJ5 , ~4.20!

05~a2b!A2hhabPam]bJm. ~4.21!

These last two equations of motion, Eqs.~4.20! and ~4.21!,
would be automatically satisfied ifa5b.

The equation of motion for the metrichab yields the van-
ishing of the stress-energy tensor, also known as the Vira
constraint,

Tab5Pa
mPbm2

1

2
habh

cdPc
mPdm50. ~4.22!

Variation of the multiplierl yields the equation of motion,

umjm1j550, ~4.23!

that becomes the Dirac equation constraint in canonical
guage
ro

n-

pmjm1mj5'0. ~4.24!

The Klein-Gordon mass-shell condition,

1

2
~p21m2!'0, ~4.25!

arises directly from squaring the momentum~4.15!. Equation
~4.25! can also be found by taking the Dirac bracket of t
constraint~4.24! with itself, as in Eq.~2.13!.

We also need boundary conditions on the string fermio
variables at the fixed end,Jm(0,t) andJ5(0,t), in order to
make the second integral in Eq.~4.17! vanish. We cannot
impose 05TA2hh1bPbmus50 because that is the force o
the fixed end, which cannot vanish. The correct bound
conditions are Dirichlet, of which the simplest are

Jm~0,t!50, ~4.26!

J5~0,t!50. ~4.27!

V. DETERMINATION OF a AND b

A. Conservation of the Dirac equation constraint

We begin by looking at the equations of motion inl50
gauge in order to make the ideas clearer. Withl50, Eq.
~4.13! becomes
3-6
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u̇m5
Fm

m
. ~5.1!

Using this, we simplify Eq.~4.18! and Eq.~4.19! to

j̇m5aj5u̇m, ~5.2!

j̇552bjmu̇m. ~5.3!

The equation of motion~4.23! that leads to the Dirac
equation,

umjm1j550, ~5.4!

must be constant in time for consistency. We find

d

dt
~umjm1j5!5u̇•j1u• j̇1 j̇5

5u̇•j1aj5u•u̇2bj•u̇

[~12b!u̇•j50. ~5.5!

Thus, for consistency we must haveb51.
In a general gauge withlÞ0, we obtain a similar result

d

dt
~pmjm1mj5!5aj5

p•F

m
1~12b!

F•j

m

5~12b!
F•j

m
50, ~5.6!

as long asp•F50, which is required for the consistency o
the mass-shell relation~4.25!. We take up this issue at th
end of this section.

B. Thomas precession

Using the equation of motion~4.23! in Eq. ~5.2!, we find

j̇m52au̇m~u•j!1lum. ~5.7!

The analysis of Sec. II showed that it was necessary for
~2.39! to hold in order to have pure Thomas precessi
Comparing Eq.~5.7! to Eq. ~2.39!, we find it necessary tha
a51 in order to have pure Thomas precession.

C. Consistent action and boundary conditions

Becausea5b51 from the consistency and pure Thom
precession requirements, the string variablePa

m is a total
derivative,

Pa
m5]aX m, ~5.8!

with

X m[Xm2
i

m
JmJ5 . ~5.9!
05401
q.
.

Remarkably, this combination is also the key to simplifyin
potential interactions of two fermions@24#.

The consistent action for a QCD string with a spinni
quark on one end that undergoes pure Thomas precessio
be written using Eq.~5.9! as

S5E dt F2mA2 ẋ21
i

2
~jmj̇m1j5j̇5!1 il~j51u•j!G

2
T

2E0

1

dsE dt A2hhab]aX m]bXm . ~5.10!

Because we havea5b, the equations of motion~4.20!
and~4.21! are automatically satisfied and the boundary co
ditions on Jm and J5 at the fixed end can be relaxe
slightly,

Jm~0,t!J5~0,t!50. ~5.11!

D. Conservation of the mass-shell constraint

We used the conditionp•F50 in Eq. ~5.6!. This condi-
tion is also necessary for the conservation of the mass-s
relation ~4.25!,

05
1

2

d

dt
~p21m2!5p•F. ~5.12!

We show that Eq.~5.12! follows from the equations of mo
tion of the full action~5.10!. To begin, we use the equation
of motion~4.13!, ~4.18!, and~4.19! and the expression~4.15!
for the quark’s momentum to calculate the boundary valu

mX mus515mẋm2 i j̇mj52 i jmj̇5

5mẋm2 i S lum1
j5

m
FmD j52 i jmS l2

j•F

m D
5A2 ẋ2pm1

i

m
jmj•F. ~5.13!

Using the nilpotency ofj•F and the Virasoro constrain
~4.22!, we find

p•F5
m

A2 ẋ2
]0X mus51Fm

5FmA2hh1b

A2 ẋ2
]0X m]bXmGU

s51

5FmA2hh1b

2A2 ẋ2
h0bhcd]cX m]dXmGU

s51

5d0
1Fm

A2h

2A2 ẋ2
hcd]cX m]dXmGU

s51

50.

~5.14!
3-7
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We have usedh1bh0b5d0
150 in the last line. If we do the

same analysis keepinga andb arbitrary, after a bit of alge-
bra we find

p•F5 i ~12b!
l

A2 ẋ2
~j•F !, ~5.15!

again showing the necessity of havingb51.

VI. FERMIONIC GAUGE INVARIANCE

The string portion of the action~5.10! has two fermionic
constraints,

Fm5Pm2
i

m
PmJ5'0, ~6.1!

F55P51
i

m
PmJm'0, ~6.2!

wherePm , P5, andPm are the momenta conjugate toJm,
J5, andXm respectively. The fermionic constraints togeth
with the Virasoro constraints~4.22! are all first-class. It is
easy to compute the Poisson brackets

$Fm ,Fn%5$Fm ,F5%5$F5 ,F5%50. ~6.3!

Because the stress tensor~4.22! is traceless, there are onl
two independent Virasoro constraints, which we may take
the form @1#

L65
1

2
~P6TX 8!2. ~6.4!

After a bit of algebra, we find the Poisson brackets

$L6~s!,L6~% !%5T@L6~s!1L6~% !#d8~s2% !,

$L6~s!,L7~% !%50,

$L6~s!,Fm~% !%50,

$L6~s!,F5~% !%50. ~6.5!

By acting in combination on the fieldsA through Poisson
brackets,

dHA5$A,HmFm1H5F5%, ~6.6!

the constraints~6.1! generate the following fermionic gaug
invariance of the action:

dHXm5
i

m
~HmJ51JmH5!,

dHJm5Hm,

dHJ55H5 . ~6.7!

Here Hm5Hm(s,t) and H55H5(s,t) are Grassmann
valued functions on the string worldsheet. This is not
05401
r

n

n

invariance of the particle action, so the gauge parameterH
must vanish at the boundary. ObviouslyX m is gauge invari-
ant,

dHX m[0, ~6.8!

so the string action~5.10! is invariant as well. Because w
have as many first-class constraints as fermionic variab
there are no dynamical fermionic degrees of freedom on
string; except for their values at the boundary, they are p
gauge.

Just as for a free Dirac particle action, the particle piece
the action~4.10! has a local supersymmetry generated by
Dirac constraint

f5p•j1mj5'0. ~6.9!

The gauge variation ofxm is

dhxm5$xm, ihf%D5 ihjm. ~6.10!

The gauge variations of the other variables are

dhpm50,

dhjm52hpm,

dhj552hm. ~6.11!

The Lagrange multiplier fieldsl ande have gauge variations

dhl52ḣm,

dhe52
2ilh

m
. ~6.12!

VII. ENERGY AND ANGULAR MOMENTUM

The numerical quantization of the relativistic flux tub
model starts from the conserved quantities of the system.
canonical form of these quantities for the string with a sp
ning quark is only slightly different from those for the spin
less case. In this section we calculate the four-momen
and the angular momentum of our system.

The action, Eq.~5.10!, is invariant under infinitesima
translations and Lorentz transformations,

dxm~t!5am1vm
nxn~t!,

dXm~s,t!5am1vm
nXn~s,t!,

djm~t!5vm
njn~t!,

dJm~s,t!5vm
nJn~s,t!. ~7.1!

Noether’s theorem guarantees the existence of conserve
tal momentumPm and conserved total angular momentu
Jmn , which can be computed from the vanishing change
the action:
3-8
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dS5amDPm1
1

2
vmnDJnm50, ~7.2!

assuming the use of the equations of motion. From Eq.~7.2!,
we find explicitly

P m5pm1E
0

1

dsPm ~7.3!

Jmn5x[mpn]2j [mpn]1E
0

1

ds~X[mPn]2J [mPn] !

5x[mpn]2 i jmjn1E
0

1

dsX[mPn] , ~7.4!

whereX n5Xn2( i /m)JnJ5. In the last line of Eq.~7.4! we
have used the constraints~2.2! and ~6.1!.

VIII. DISCUSSION

Starting from the requirement that an action for a spinn
quark on the end of a string should lead to pure Thom
precession of the quark spin, we have shown how to c
struct a consistent action for a massive spinning quark on
end of a QCD string whose other end is fixed. To do so,
introduced additional fermionic variables on the QCD stri
itself and required that the equations of motion of the qua
fermionic variables arise from boundary conditions on
string. The two parameters we introduced,a andb, are fixed
to unity by the requirements of pure Thomas precession
consistency of the equations of motion, respectively.

Our action has a consistent fermionic symmetry that
lows us to gauge away the stringy fermionic degrees of fr
dom. Other authors@25–27# have argued for the existence
a supersymmetry on the QCD string worldsheet when th
are spinning quarks on the boundary. It would be interes
to know if our fermionic symmetry is that supersymmet
As one piece of evidence, we can make contact with
Wilson super-loop approach@26–28# by making a change o
variables in our action, Eq.~5.10!. When we make the vari
able change

Xm→Xm1
i

m
JmJ5 ,

xm→xm1
i

m
jmj5 , ~8.1!

in the string and quark actions respectively, we are led to
Polyakov bosonic string action plus a quark action

Sq5E dt ~2mA2 ẋ22 iumu̇njmjn1••• !, ~8.2!

where we have neglected to write the kinetic terms for
fermions, the Dirac constraint, some higher-order fermio
pieces, and a total time derivative. The second term yie
the interaction of the quark’s spin with the string worldshe
Unfortunately, this action is not simple and does not seem
05401
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have a reasonable canonical formulation, unlike Eq.~5.10!.
We also note that the second term of Eq.~8.2! is similar to
one added by Martemyanov and Shchepkin@21#, though
there are additional terms in Eq.~8.2! not present in their
action.

We have not considered the case of a quark at each
however the generalization is immediate. We introduce a
of Grassmann variables for each quark,j i

m , j5 i , with i
51,2. In this case, however, the variables for one qu
commute with those of the other@24#, just as the gamma
matrices of two different fermions commute. We also intr
duce a set of worldsheet fermionic variables for each qu
and make the generalization in the string action

Xm→X m5Xm2 i (
i 51,2

1

mi
J i

mJ5 i . ~8.3!

Though the J variables of each quark are Grassman
valued, theJ variables of one quark should commute wi
the J variables of the other.

We have not considered the case of a massless qu
which appears to be somewhat problematic in our formalis
On the other hand, there is no problem treating very lig
but still massive, quarks in this formalism.

Although we have partially analyzed our action in th
general case ofaÞb, we have not pursued the analysis wi
aÞ1 because we are most interested in the phenomeno
cally relevanta5b51 case. In the more general case, t
fermionic constraints on the worldsheet are not all first-cl
and some of the fermionic variables on the worldsheet m
become dynamical, though additional terms in the act
may be necessary to preserve the first-class nature of
Virasoro constraints.

We hope to present soon a numerical quantization of
action.
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APPENDIX A: PSEUDOCLASSICAL MECHANICAL
CONVENTIONS

We take a canonical form for an action to have the velo
ties to the right of the momenta,

S5E L dt5E dt @piq̇
i1paj̇a2H~q,p,p,j!#,

~A1!

where qi and pi are bosonic variables andja and pa are
fermionic variables andH is a Grassmann even function. Th
variation ofH under a change of a fermionic variable such
dja is

dH5
]RH

]ja dja, ~A2!
3-9
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where ]RH/]ja denotes the derivative from the right. W
could equally well have used

dH5dja
]LH

]ja , ~A3!

since it has the same value. Variation of the action lead
the usual canonical equations of motion,

q̇i5
]H

]pi

ṗi52
]H

]qi

j̇a52
]RH

]pa
5

]LH

]pa

ṗa52
]RH

]ja 5
]LH

]ja . ~A4!

The last two relations of Eq.~A4! follow becauseH is an
even Grassmann parity function. These relations can be
cinctly summarized by the introduction of a Poisson brack

ż5$z,H%, ~A5!

wherez is any ofqi , pi , ja, or pa and the Poisson bracke
of any two functionsA andB is

$A,B%5(
i

S ]A

]qi

]B

]pi
2

]A

]pi

]B

]qi D
1(

a
S ]RA

]ja

]LB

]pa
1

]RA

]pa

]LB

]ja D . ~A6!

APPENDIX B: DIRAC BRACKETS

When a system has second-class constraints and
wishes to set them strongly to zero, consistency requires
the Poisson brackets of the system be modified so that
-

tt

05401
to

c-
t,

ne
at
he

Poisson bracket of any second-class constraint with
other phase space function is identically zero. This modifi
Poisson bracket is called a Dirac bracket.

The simplest example is illuminating, though artificia
We imagine a dynamical system in which there are 2N phase
space variables and two second-class constraints,qN'0 and
pN'0. These constraints hold for all time soqN andpN are
irrelevant variables; no physical quantity should depe
upon them. The correct procedure is to ignore these varia
and replace the Poisson bracket,

$A,B%5(
i 51

N S ]A

]qi

]B

]pi
2

]A

]pi

]B

]qi D , ~B1!

by the Dirac bracket

$A,B%D5 (
i 51

N21 S ]A

]qi

]B

]pi
2

]A

]pi

]B

]qi D . ~B2!

The Dirac bracket~B2! of qN or pN with any other phase
space function will obviously vanish.

For a more complicated system with second-class c
straintsx i'0, the Dirac bracket is less obvious. The mat
of Poisson brackets of the second-class constraints

$x i ,x j%5D i j , ~B3!

has a nonvanishing determinant, and is therefore inverti
We denote the matrix inverse toD i j by D i j , and define the
Dirac bracket of any two functionsA andB as

$A,B%D[$A,B%2$A,x i%D
i j $x j ,B%. ~B4!

The desired property now follows,

$A,xk%D5$A,xk%2$A,x i%D
i j $x j ,xk%

5$A,xk%2$A,x i%D
i j D jk

5$A,xk%2$A,x i%dk
i [0. ~B5!

We note that some authors use$A,B%* to denote the Dirac
bracket.
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