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QCD strings with spinning quarks
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We construct a consistent action for a massive spinning quark on the end of a QCD string that leads to a pure
Thomas precession of the quark’s spin. The string action is modified by the addition of Grassmann degrees of
freedom to the string such that the equations of motion for the quark spin follow from boundary conditions,
just as do those for the quark’s position.
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[. INTRODUCTION equations of motion of the quark’s position arise from
boundary conditions. To this end, we introduce new
A consistent description of spin within a QCD string Grassmann-valued fields on the string worldsheet.
theory has been sought for many years. The addition of dy- In Sec. V we use the consistency of the equations of mo-
namical spin to the bosonic string led to the development ofion of the quark and the requirement of Thomas precession
supersymmetry and superstring thety. Such theories are 10 fix the parameters in the string action. The result is that the
more realistic as unified theories of elementary particle physonly modification of a free spinning quark plus free bosonic
ics than as phenomenological descriptions of hadronic state{ring action is the replacement of the bosonic string position
A more realistic description of hadronic states involvesvariable by the s.trln.g pOS.ItIOI’] variable plus a term bilinear in
the replacement of the free end of the dual resonance stringjoridsheet fermionic variables. S
by the addition of a massive point quark to the end of the [N Sec. VI we explore the fermionic gauge invariance of
string. In 1977, Idg2] analyzed the motion of a spinless OUr s'trmg action. In the phenomenqloglcally '|nterest|ng case,
massive quark on the end of a bosonic string. The relativisti®v® find that the worldsheet fermionic variables are pure
flux tube model[3], derived from different assumptions, is 9auge degrees of freedom.
mathematically equivalent to a bosonic string with a spinless Ve find the momentum and angular momentum from No-
quark end and produces realistic meson spectra on averaggher's theorem in Sec. VIl. These conserved quantities are
but there is no place for quark spin in this model. In this he L'ls'uql starting point for the _numerlcal quant|zat|qn of the
paper we make a modification of the bosonic string p|usrelat|V|s:t|c flux tube model. Finally, we conclude in Sec.
bosonic quark model to introduce quark spin. VL.
Our clue to constructing a consistent action comes from
the suggestion of Buchitlar [4] that the spin of the quark Il SPIN IN PSEUDOCLASSICAL MECHANICS
should undergo pure Thomas precession because the quark
sees a purely chromoelectric field in its rest frame. This We choose to work within the framework of pseudoclas-
seems to be supported by experimental d&té] and is in  sical mechanic§9] because the formalism is elegant as well
agreement with QCI)7,8]. as physically transparent; the transition from pseudoclassical
We begin in Sec. Il by discussing the treatment of spin into quantum mechanics is immediate. In this section we con-
pseudoclassical language. We show how to construct actiorstruct actions that produce the Dirac equation, both free and
for a free fermion as well as a fermion with backgroundin background potentials, as an equation of motion and we
scalar and vector potentials. We analyze the case of a scalahow how the Thomas precession in a scalar potential mani-
potential in detail and show how the Thomas precessioffests itself in this language. The main disadvantage is that it
manifests itself in this language. requires some familiarity with the technical details of Dirac’s
In Sec. Il we show in detalil that the Fermi-Walker trans- constrained Hamiltonian mechanifh0,11] as well as clas-
port of the spin vector, which is the equation of motion of thesical mechanics with Grassmann varialdlies 1].
spin vector for a particle in a scalar potential, leads to Tho- The easiest way to construct pseudoclassical actions for
mas precession of the spin in its rest frame. fermions is to consider the Dirac equation as a phase-space
In Sec. IV we use the example of a spinless quark coupledonstraint and to construct consistent actions that yield this
to the end of a string to argue for the form of the action forconstraint. The first actions of this type were found by Be-
a spinning particle coupled to a modified Polyakov stringrezin and Marinoyf12], Barducci, Casalbuoni, and Lusanna
action. The key idea is to obtain the equations of motion of 13], and Brink, Deser, Zumino, Di Vecchia, and Hofet].
the spin of the quark from boundary conditions, just as theTo represent the spin degrees of freedom of a fermion, a set
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of five Grassmann coordinate§, and &5, are introduced. R %
Upon quantization, the Grassmann coordinates will become &s= 575 (2.10
generators of a Clifford algebra and can be identified with
Dirac’s gamma matrices. The kinetic piece of the action forThe free Dirac equation is proportional to
the Grassmann variables

i ¢|)=(p,&"+més)|y)=0. (2.12)

Skinetic:J dr §(§M§#+§5§5)! 2.9 . .
Thus, we should introduce the constraint

leads to the canonical second-class constraints b=p, &+ Még~0 212

(2.2) into our action. This constraint does not have vanishing
Dirac brackets with itself, but yields the Klein-Gordon op-
erator:

i i
X,u,zw;/,_zgy,%o! X5=7T5_§§5%0'

Here we use Dirac’s wavy equal sign notatigt0,11] for

“weak equality,” which reminds us that the equalities cannot i

be taken before Poisson brackets are calculated. We denote K= E{p,ﬁ’“r més, pu&“+mésip

the canonical momenta t§* and &5, defined to be the de-

rivative of the Lagrangian from the right with respect to the 1

velocities ¢# and &5 respectively, by, and s. With this = §(p2+ m?)~0. (2.13
convention, we obtain the following Poisson brackets:

{er m ) ={m, ¥} = 6", (2.3 In order to be able to impose the constraifitas in Eq.
. (2.11), ¢ and any constraints, such sarising from it must
{€s, 775} = {75, E5) =1, (2.4) be first-class, which means the Dirac brackets of any pair of

them yield a combination of other first-class constraints. In
with all others being zero. Our conventions for pseudoclasorder for the set of constraints to close under Dirac brackets,
sical mechanics are given in Appendix A. this last constraint must have vanishing Dirac brackets with
The weak equalities in Eq2.2) can be replaced by strong ¢- This is guaranteed by thgraded Jacobi identity,
ones if we introduce the Dirac brackégt0]. From the defi-
nition in Appendix B and the Poisson brackets above, we

i
find {¢,K}D:§{¢,{¢,¢}D}D=O- (2.149
{&u.&bo= 1140, (2.9 The dynamics of this system are given by the free action,
plus these constraints put in with Lagrange multipliars
{é:l/‘ 155}D:01 (26) ande
{&s.é50p=—1, 2.7 A :
B S=f dr| P+ 5 (8,8 + Ess)
where 77, is the metric. Our convention ig,,,=diag(— 1,
+1,4+1,+1). _ ) 1,
The meaning of the Grassmann numbers becomes clear i (pugt+més) —e5 (p7+m7) | (2.19

upon quantization. When we make the replacementfof
times Dirac brackets by anticommutators, we find that the Wwe may eliminatep from Eq.(2.15, by using its(purely

quantum operatorASM and %5 obey a Clifford algebra, algebrai¢ equation of motion. Similarly, we may then elimi-
natee from the intermediate action to find the action given
gﬂév+gvguzﬁﬂuy, by Berezin and Marinoy12],
AA aa - i . .
Eudst Es6,=0, 28 S=f dr| —my—x*+ §<fﬂ§“+§555>+ix<§5+u~f)},

(2.1

where we have used the usual notation for the four-velocity,

=x/\—X2.

From these anticommutation relations, we see that the operg- The Dirac equation in a background scalar figldand

tors £, and s can be represented as gamma matrices,  ygctor fieldA , is obtained from the free equation by minimal
\/ﬁ substitution forA,, and the addition ofp to the mass:
E ooy 2.9
= N 27s%% 9 6=(p—A), (Mt e)&s~0. (217
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We wish to use this as a constraint to construct an action JL
in the same manner. We must again consider that the con- Pu=""2
straint ¢ have vanishing Dirac brackets with itself. We find X
K= i—{¢> ¢} :E(D—A)2+ 1(m+ ¢)?- i—f*‘g”F =(m+eju,— | &¢°F, -
277D 2 2 e m+ ¢ V=x2
+iésg"d,0~0, (2.18 \
B - o +1 —.ZP/’-VgV’ (2.2
whereF ,,=d,A,—3d,A,. The Jacobi identity again insures V=X
that there are no further constraints.
As before, we implement these constraints by use ofnd we have used the convenient notation
Lagrange multipliers, a commuting one, and an anti-
commuting one, Pu,=nu,,tuu, (2.26

for the projection operator perpendicular to the four-velocity.
In order to clarify the algebra in the rest of this section,
we follow Martemyanov and Shchepki1] and work to
(2.19 lowest order in the fermionic variables. In this approximation

. i . . A\
PuX!+ 5 (£, 84+ Ess) +1 - p—eK|.

S=fd7'

we have

We note that the action for a spinless particle can be obtained
by taking the spin variables to zerg, —0, &—0. The _ PF"
Thomas-Bargmann-Michel-Telegdi equations of motion u,= mT<p’ (2.27
[15-17 for the spin can be found from an analygi®,18—
21] of the action(2.19 with ¢=0 andA ,#0. _ £ F

The action for a particle interacting with a background & :()\_ 5 u,+u,és, (2.28
Yang-Mills field can be constructed by using additional a mte )
Grassmann variables for the internal degrees of freedom
[22]. . &su-F o

Because we are interested only in the Thomas precession E5=A m+ ¢ —u-é (229

here, from now on we consider the action with a scalar po-
tential only, so we seA ,=0. Eliminating firstp,,, and then
e, in the action Eq(2.19 with A,=0, we find

S=Jd7

+iN(ést+u-§)

The momentum and angular momentum of the system can
be found by Noether’s theorem. We make an infinitesimal
Poincaretransformation of the variables

Sxt=al+ ot X,

V=3 Sk, + £5o)

i é5EH0
m-+ ¢

SEt=wh &, 2.3
. (2.20 =g (2.30

and extract the conserved quantities from

This action is the same as the one analyzed by Martemyanov L SRL
and Shchepkin21]. 5S=A(.—bw‘) +A(.—6§”)
IEH

The equations of motion from the acti¢®.20) are IxH
Pu=Fu. .29 APt s A 2.3
L =atAp, 5® i (2.3)
§5Fp. R/ 4 . . . .
Eu=NULt (2.22  whered"/9¢* denotes the derivative acting from the right,
¢ and A denotes the difference in values between final and
initial times. In Eq.(2.31) we have also used the equations of
- &F 22 motion.
§5=N— m+e¢’ (2.23 We find that the total angular momentum is a sum of
orbital and spin pieces
where .
Jur=L TS =X Py~ 16,6, (2.32
&€ 0 - . )
F o= (@ §s€-de /_Xzy (2.24) The total angular momentum, as wgll as each piece sepa
® B m+ ¢ rately, obeys the Dirac brackets relation
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{‘],uv ,J#/V!}D: - ﬂMVrJV,ur - 77V,U,’JMV’ + nVV"J,u,,u’

+ 77/.1,;1,"3111/’ . (233)
The Pauli-Lubanski vector,
S,=— Eewaﬁu”saﬁ, (2.34

represents the spin of the particle and is purely spatial in th

rest frame of the particle;
u-s=0. (2.39
We use the convention thag,,5= +1. Using the identity
€apys€” 0= — 8[, 8,07, (2.36
we may revert Eq(2.34 to find
1£7¢P=— "B ss+i(U EP—uPEY) (u-§). (2.37)
Using Eq.(2.37, we find the rate of change &f,
. i . . :
S,u,= Eeﬂuaﬂuygagﬁ+ I ep,vaﬁuvgagﬁ1
=U,(U-S)Fie€,,,pu"uu-§)Er

(2.38

+i eﬂmﬂuvg“gﬁ.

We observe that the equation of motion &' must have the

form

Er=—Uk(u- &)+ ut(anything, (2.39

in order for the Pauli-Lubanski vector to be Fermi-Walker
transported along the worldline of the particle. That is,spr

to obey

s,=u,u,s"=(u,u,—u,u,)s". (2.40

Equation(2.40 is the condition that there is no torque on the
spin. The spin thus undergoes Thomas precession, as we wgl.

see in the next section.

PHYSICAL REVIEW D69, 054013 (2004

where theu” is the four velocity tangent ta*(t) and a dot
means derivative with respect to
We make the 31 identifications

ul=1,
u= v, (3.3

and we note that the spin vector in {tsoninertia) rest frame
is

sO'=A“'VsV, (3.4

WhereA“'V is the Lorentz transformation to the rest frame of
the particle

y—1 — W

A =8+ (y-1 . 3.5
— YW —Uz—VV

The equation of motion satisfied by the rest-frame spin vec-
tor is

9% 9\ o= AstAs
H_&( S)— S S
=AA 5o+ AQA " 1s,. (3.6

The rotation matrix3.2) is

0 v
QF =9 . o] (3.7
vV VW—VW

Simplifying the right hand side of Ed3.6), we find

— SO

D _ . 3.8
dt v> \0 w—w 3.8

ince the rest frame spisy,, has no time component, we
have

Ill. THOMAS PRECESSION ds, y-1 y—1

(W—=W) - §=— ——(VXV)X5. (3.9
v

In this section we demonstrate that a vector that under- E: 02
goes Fermi-Walker transport in a circular orbit will precess
in its rest frame at the Thomas frequency. _ The acceleration of a particle in uniform circular motion with
The spin vector of a gyroscope moved along a spacetlmgngmar velocitye is
path x*(7) in the absence of net torque undergoes Fermi-
Walker transport. We take laboratory time to be the worldline

parameterr=t. The rate of change of its spin vector then is V=XV, (3.10
ds* In the case of uniform circular motion, E.9) becomes
— =08, (3.
dt ds,
with g - (T DexXs=QrXs, (3.1
Q# =u*u,—Uutu,, (3.2  whereQ is the Thomas frequency.

054013-4



QCD STRINGS WITH SPINNING QUARKS PHYSICAL REVIEW [®9, 054013 (2004

IV. STRING WITH ONE FIXED AND ONE MASSIVE END B. Spinning quark

A. Spinless quark In this section we make an ansatz for the form of the
action. In order to have pure Thomas precession, we need an
Caction for the fermionic variable§* whose variation has the
orm

A string with one fixed end and a massive quark on the
other end is described by an action that is the sum of the fre
massive point particle action and a free string action, which
we take in Polyakoy23] form,

T 1 -
S=— —f drf dU\/—hhab&aX“&bXﬂ—mj dry—x2.
2 0 so that we obtain Eq(2.39, the condition necessary for

(4. Thomas precession.
The term i6&-u(u-£) looks like —idé -Frés/m
=—i8&-p*&s/m, if we use the equations of motiam: &
= — & and make the identificatiomu* = F*.
We can obtain such a boundary variation by introducing
\p/orldsheet fermionic variablesE#(o,7) and Es(o,7)
whose boundary conditions are

EX(Lr)=84(7),

5Socf d7 8¢, [ig“+iuk(u-§)], 4.7

Here X*(o,7) are the coordinates of the string worldsheet
parametrized byr and o, h,, is the metric on the string
worldsheet withh=det(h,,), x*(7) are the coordinates of
the quark worldline,T is the string tension, anch is the
quark mass. We use small latin letters for worldsheet tenso
indices.

We require that the string end at=0 is fixed at the
origin, X(0,7)=0. To make this an interacting theory, we
must impose the condition that the endoat 1 ends on the

quark: Es(1,m)=E&s(7), (4.8
and then replacing,X* in the string action4.1) b
XH(1,7)=x"(7). 4.2 placinga g actiort4.1) by
: .
The variation of the action under variations that preserve [IG=0X"—a 0,5 Es— B EFdams. (4.9

the end-point conditions,
We will fix the parametersr and 8 by requiring consistency

oX#(0,m)=0, (4.3 of the equations of motion and pure Thomas precession of
the spin.
OX#(1,1)=oxH(7), (4.9 In analogy to the spinless case, we take our action to be
the sum of the free Berezin-Marind 2] action (2.16) for
is the particle and a Polyakov action modified by the replace-

ment of 3,X* by 114 defined in Eq.(4.9):

—Jd < fde_hab SXH
= T \/:—T odr Fa( OX*) X, S=fd7'

V=X 5 (£,8 Esko) M€+ )

T 1
_Ef drfodox/—hhangHbM. (4.10

:f dr ox* p}t|0=l_i mXM
dr\ . |2
C. Equations of motion

- j dod7 5X*dap), (4.5 Under variations of th&* andx* that obey the boundary
conditions Eqs(4.3), we find the variation of the action to be

after an integration by parts. Here we have used the notation o » ,
p2 for the current density of spacetime momentum on the _ XX, X*P €
© 6S= | dr|m Erin '
V—x? G

worldsheet,
—Tf do d7 v —hh®a,(sX*) I, ,

pi =085/ 8(d.X*) = —Ty—hhgpX,, . (4.6)

We see in Eq(4.5) that the force that moves the quark arises
from the boundary conditiot4.2). The key idea of our work mx &
is to make a parallel construction with fermionic variables in f dr oxt pu ol— — Puv
the case of a spinning quark. In our construction, the motion \ = w/—x
of the quark’s spin comes about as a result of introducing
—f dodr 5X"(7apz, (4.11

new fermionic variables on the string and the boundary con-
ditions imposed upon them.
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where we have again used the notatigh for the current P, &

. . . . 14
density of spacetime momentum on the worldsheet, which in p,=mu,+i\ £ —, (4.15
this case is —x2

— — [ b
PZ— 8/ 8(3X#) = =Ty —hh* Iy, . (412 with the usual projecto? ,,= 77, +U,U,.

Under variations of the fermionic variablés*(o,7),

The vanishing of the variatiodS leads to equations of mo- Zc(0.7), £4(7) and&g(7), obeying

tion for the quark and the string,

SEM(1,7)=6E"(7),
OLLT”“:Ff —TV=hh'I,,[,—;, (4.13 i !
85 5(1,7)= 8&s(7), (4.16
0=da(\—hh3°II, ), (4.14

that preserve the boundary conditiof%.8), we find the
where the quark’s momentum is given by variation of the action to be

8S=f dr

+B(6E 9,25+ E 9,055) 105,

s

[
_Ej da—dT{[aESﬁapi"'(a_ﬂ)[?aESpZ] 5E#+[,85#aap2_(a_ﬂ)&aaﬂpi]555}- (4.17

_ _ i . . . . i o
|>\5§ﬂu#+|>\5§5+5(5§M,§M+§M55#+5g5§5+555g5)}—Ej dodr[a(d,08 Es+ d,E" 5E5)

(lAuM—|§M+aE§5FM>5§“+ |)\—|§5—,BE§“FM)5§5 +EJ' dr[(aﬁ:“szrB:“&:E—,)pi]lf,:o

Using the notation of Eq4.13), and the equation of motion p, &M+ még=~0. (4.24
(4.14), we find the equations of motion

u The Klein-Gordon mass-shell condition,

-§“=)\u“+a§5ﬁ, (4.18

1
E(p2+ m?)~0, (4.25
. F#
§s=A =L, m’ (419 arises directly from squaring the moment@nl5. Equation
(4.25 can also be found by taking the Dirac bracket of the
0=(a—B)y—hh®Il,,d,Zs, (420  constraint(4.24 with itself, as in Eq.(2.13.
We also need boundary conditions on the string fermionic
0=(a—B)\—hh?Il,,q,5E*. (4.21)  variables at the fixed en&*(0,r) and=¢(0,7), in order to

_ _ make the second integral in E4.17) vanish. We cannot
These last two equations of motion, E¢$.20 and (4.21),  impose 0=T—hh'"Il,,|,_, because that is the force on
would be automatically satisfied if= 4. the fixed end, which cannot vanish. The correct boundary

The equation of motion for the metrit,, yields the van-  conditions are Dirichlet, of which the simplest are
ishing of the stress-energy tensor, also known as the Virasoro

constraint, 20,1 =0, (4.26
1 _ B
Tap=1411,,— EhathdHé‘HdM=0. (4.22) Z5(0,7)=0. (4.27)
Variation of the multiplier\ yields the equation of motion, V. DETERMINATION OF a AND B
UkE, + £5=0, 4.23 A. Conservation of the Dirac equation constraint

We begin by looking at the equations of motionNr=0
that becomes the Dirac equation constraint in canonical langauge in order to make the ideas clearer. With 0, EQq.
guage (4.13 becomes
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. F#
ut=—o1, (5.1

Using this, we simplify Eq(4.18 and Eq.(4.19 to
&= agsUt, (5.2

5= — BE, UM, (5.3

The equation of motion(4.23 that leads to the Dirac
equation,

Uté,+ E5=0, (5.4)

must be constant in time for consistency. We find
d . .o
g (UEut ) mu-dtu-E+és
=U-é+afsu-u—pBEé-u

=(1-pB)u-£=0. (5.5

Thus, for consistency we must haye=1.
In a general gauge with# 0, we obtain a similar result:

d _ pF F.e
d_r(p §M+m§5)—a§5?+(1—,3)w

F-¢
:(1_B)F:0' (56)

as long agp-F=0, which is required for the consistency of
the mass-shell relatiofd.25. We take up this issue at the

end of this section.

B. Thomas precession

Using the equation of motio®.23 in Eq. (5.2), we find

é"z—ad"(u-§)+ku". (5.7

PHYSICAL REVIEW [®9, 054013 (2004

Remarkably, this combination is also the key to simplifying
potential interactions of two fermion24].

The consistent action for a QCD string with a spinning
quark on one end that undergoes pure Thomas precession can
be written using Eq(5.9) as

S=Jd7

T
- EJ’O dO‘J dr \/—hhabﬁaX“&bXM.

V=X (6,8 Esko) M€+ )

(5.10

Because we have= B, the equations of motiof4.20
and(4.21) are automatically satisfied and the boundary con-
ditions on E# and Z5 at the fixed end can be relaxed
slightly,

E™(0,7)E5(0,7)=0. (5.17

D. Conservation of the mass-shell constraint

We used the conditiop-F=0 in Eq.(5.6). This condi-
tion is also necessary for the conservation of the mass-shell
relation (4.25),

0= 4 p2rmr)=p.F 5.1
=5 g, P tm)=p-F. (5.12

We show that Eq(5.12) follows from the equations of mo-
tion of the full action(5.10. To begin, we use the equations
of motion(4.13), (4.18, and(4.19 and the expressiof@.15

for the quark’'s momentum to calculate the boundary value

M|,y =M~ 51 &
=m$<“—i()\u"+ %F”) §5—i§“()\— E)

m
= \/__)'(Zpu+ i_gug. F.
m

Using the nilpotency of¢é-F and the Virasoro constraint
(4.22, we find

(5.13

The analysis of Sec. Il showed that it was necessary for Eq.
(2.39 to hold in order to have pure Thomas precession.
Comparing Eq(5.7) to Eq.(2.39, we find it necessary that
a=1 in order to have pure Thomas precession.

R

m

60‘){#|U:1F,u,

_ . - ' my/—hhto
C. Consistent action and boundary conditions Tz?oé\,’#&bé\f#
Becausax= =1 from the consistency and pure Thomas X o=1
precession requirements, the string variablg is a total _
derivative, my—hht? §
——— hgph®%9 X 94,
4= g,x*, (5.9 ARES i
with _
i :(5% mﬁthaCXﬂﬁdXM =0.
—X
XH=XHt— —EHFE;. 5.9 o=1
m 5 (5.9 (5.14
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We have used'®hy,=55=0 in the last line. If we do the invariance of the particle action, so the gauge paraméters
same analysis keeping and 8 arbitrary, after a bit of alge- must vanish at the boundary. Obviousti* is gauge invari-

bra we find ant,
Sy X*=0, (6.9
p-F=i(1-p)——=(&F), (5.19
—x2 so the string actiort5.10 is invariant as well. Because we

have as many first-class constraints as fermionic variables,
again showing the necessity of havigg-1. there are no dynamical fermionic degrees of freedom on the

string; except for their values at the boundary, they are pure

VI. FERMIONIC GAUGE INVARIANCE gauge.

Just as for a free Dirac particle action, the particle piece of
the action(4.10 has a local supersymmetry generated by the
Dirac constraint

The string portion of the actio(b.10 has two fermionic
constraints,

i — ~

©,=1II,~ —P,5s~0, (6.2) ¢=p-E+més~0. (6.9
. The gauge variation of* is
i

b=+ EPM:‘M%O' (6.2 8, xP={x", i pdlo=iné*. (6.10

wherell ,, 115, andP,, are the momenta conjugate B,  The gauge variations of the other variables are
Hs, andX* respectively. The fermionic constraints together

with the Virasoro constraint¢4.22 are all first-class. It is 6,p,=0,
easy to compute the Poisson brackets
8,8 = = 7p*,
{©,,D,}={D,, , Ps}={P5,Ps}=0. 6.3
Because the stress tengdi22 is traceless, there are only 0,&5=— nm. (6.11)
two independent Virasoro constraints, which we may take in . .
The Lagrange multiplier fields ande have gauge variations
the form[1]
1 5,N=—ym,
Lizz(PiTX’)Z. (6.4) 7 7
2iNy
After a bit of algebra, we find the Poisson brackets 6,8=— m (6.12

{L+(0),L+(@)}=T[L+(0)+L+(0)]6 (c—0),
{L+(0),Lz(0)}=0,

VIl. ENERGY AND ANGULAR MOMENTUM

The numerical quantization of the relativistic flux tube

{L+(0),®,(0)}=0 model starts from the conserved quantities of the system. The

s L) ’ . . . . .
canonical form of these quantities for the string with a spin-

{L.(0),P5(0)}=0. (6.5  ning quark is only slightly different from those for the spin-

less case. In this section we calculate the four-momentum
By acting in combination on the field& through Poisson and the angular momentum of our system.
brackets, The action, Eq.(5.10, is invariant under infinitesimal
translations and Lorentz transformations,
(SHA:{A,H/'L(I)M‘F HS(I)S}! (66)
the constraint$6.1) generate the following fermionic gauge x(m)=al+ ol X (1),

invariance of the action: SXH( 0 7) =8k + wh X0 7),

i
5HX:U’:

E(H“E5+E“H5), SEM(T)= " E7(7),
SyEH=H*, SEM (o, 1) =" B (0,T). (7.0
SyEs=Hs. (6.7 Noether’s theorem guarantees the existence of conserved to-

tal momentumP, and conserved total angular momentum
Here H*=H*(o,7) and Hs=Hs(o,7) are Grassmann- 7,,, which can be computed from the vanishing change in
valued functions on the string worldsheet. This is not anthe action:
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1 have a reasonable canonical formulation, unlike &ql0).
0S=atAP,+ 5 0"'AT,,=0, (7.2 We also note that the second term of E8.2) is similar to

one added by Martemyanov and Shchepki], though

assuming the use of the equations of motion. From(E¢),  there are additional terms in E¢8.2) not present in their

we find explicitly action. _
We have not considered the case of a quark at each end,

however the generalization is immediate. We introduce a set
of Grassmann variables for each quagk,, &s;, with i
=1,2. In this case, however, the variables for one quark

1 _ commute with those of the oth¢R4], just as the gamma
T =XuP) = €L+ fo do(X(,Py—Ell,) matrices of two different fermions commute. We also intro-
duce a set of worldsheet fermionic variables for each quark
and make the generalization in the string action

1
P“=p“+j doP* (7.3
0

1
:X[,upv]_ig,u,gv_l— JO dO'X[I_LPV] y (74)

1
XEoXr=Xt—| > —EFEg;. (8.3
whereX”=X"—(i/m)E”Es. In the last line of Eq(7.4) we i=12 M

have used the constrain{®.2) and(6.1). _ )
Though the £ variables of each quark are Grassmann-

valued, theE variables of one quark should commute with
the E variables of the other.

Starting from the requirement that an action for a spinning We have not considered the case of a massless quark,
quark on the end of a string should lead to pure Thomasvhich appears to be somewhat problematic in our formalism.
precession of the quark spin, we have shown how to con©n the other hand, there is no problem treating very light,
struct a consistent action for a massive spinning quark on theut still massive, quarks in this formalism.
end of a QCD string whose other end is fixed. To do so, we Although we have partially analyzed our action in the
introduced additional fermionic variables on the QCD stringgeneral case ot # 8, we have not pursued the analysis with
itself and required that the equations of motion of the quark’sx# 1 because we are most interested in the phenomenologi-
fermionic variables arise from boundary conditions on thecally relevanta=8=1 case. In the more general case, the
string. The two parameters we introducedandg, are fixed fermionic constraints on the worldsheet are not all first-class
to unity by the requirements of pure Thomas precession andnd some of the fermionic variables on the worldsheet may
consistency of the equations of motion, respectively. become dynamical, though additional terms in the action

Our action has a consistent fermionic symmetry that al-may be necessary to preserve the first-class nature of the
lows us to gauge away the stringy fermionic degrees of freeVirasoro constraints.
dom. Other authorf25-27 have argued for the existence of  We hope to present soon a numerical quantization of this
a supersymmetry on the QCD string worldsheet when theraction.
are spinning quarks on the boundary. It would be interesting
to know if our fermionic symmetry is that supersymmetry. ACKNOWLEDGMENT
As one piece of evidence, we can make contact with the
Wilson super-loop approadl26—28 by making a change of We thank C. Goebel for reading the manuscript. This
variables in our action, Eq5.10. When we make the vari- Work was supported in part by the U.S. Department of En-
able change ergy under Contract No. DE-FG02-95ER40896.

VIIl. DISCUSSION

D e APPENDIX A: PSEUDOCLASSICAL MECHANICAL
m~ = CONVENTIONS

i We take a canonical form for an action to have the veloci-
XM — xH+ 55“55, (8.1 ties to the right of the momenta,

in the string and quark actions respectively, we are led tothe ~ g— J Ldr= J dr[p.q + 7, —H(q,p,m &)1,

Polyakov bosonic string action plus a quark action (AD)

Sq:f dq-(—m\/—xz—iu“u”gﬂfﬁ --+), (8.2 whereq andp; are bosonic variables angf* and 7, are
fermionic variables an#ll is a Grassmann even function. The
where we have neglected to write the kinetic terms for the/riation ofH under a change of a fermionic variable such as
fermions, the Dirac constraint, some higher-order fermionic®¢” IS
pieces, and a total time derivative. The second term yields R
the interaction of the quark’s spin with the string worldsheet. SH= J"H
Unfortunately, this action is not simple and does not seem to 9E”

5¢*, (A2)
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where 9RH/9&* denotes the derivative from the right. We Poisson bracket of any second-class constraint with any
could equally well have used other phase space function is identically zero. This modified
Poisson bracket is called a Dirac bracket.

The simplest example is illuminating, though artificial.
We imagine a dynamical system in which there akephase
space variables and two second-class constrajgts,0 and
since it has the same value. Variation of the action leads t®\~0. These constraints hold for all time gq andpy, are
the usual canonical equations of motion, irrelevant variables; no physical quantity should depend
upon them. The correct procedure is to ignore these variables

d"H

IEX’

SH = 5¢¢ (A3)

q= ﬁ and replace the Poisson bracket,
Ip;
" B}_% (aA JB  JA aB) -
Ibi:—i-lr s\ eq apy ap;ad' )
Jq
by the Dirac bracket
o H  gH -
=" = JA B JA /B
w, Jdm, _ gnoe moe
{ABlo IZl <3Q' ap;  Ip; 3ql)' B2
: FH  H
Ta= T Gga g (A4)  The Dirac bracke(B2) of gy or py With any other phase
space function will obviously vanish.
The last two relations of EqA4) follow becauseH is an For a more complicated system with second-class con-

even Grassmann parity function. These relations can be sutraintsy;~0, the Dirac bracket is less obvious. The matrix
cinctly summarized by the introduction of a Poisson bracket0f Poisson brackets of the second-class constraints

z={z,H}, (A5) {xixih=Ai, (B3)

has a nonvanishing determinant, and is therefore invertible.
We denote the matrix inverse t; by A”, and define the
Dirac bracket of any two function& andB as

wherezis any ofq', p;, &%, or , and the Poisson bracket
of any two functionsA andB is

JA B 0A B .
- - A,Bly={A,B}—{A, xi}A"'{y: ,Bl. B4
(A8}-3 (&q. - aq,) [ABlo={ABI~{AxJAUy Bl (B4

The desired property now follows,
dRA 9B oRA 4B )
+Z‘ IE &WQJF(;_% 9| (AB) {Axido={Axd —{AxitA {x; . xud
={Axid—{Axit AT Ay

APPENDIX B: DIRAC BRACKETS )

={Axi} —{Axi} 6,=0. (BS)

When a system has second-class constraints and one
wishes to set them strongly to zero, consistency requires that/e note that some authors us&,B}* to denote the Dirac
the Poisson brackets of the system be modified so that theracket.
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