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Impact of the finite volume effects on the chiral behavior off K and BK
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We discuss the finite volume corrections tof K andBK by using one-loop chiral perturbation theory in full,
quenched, and partially quenched QCD. We show that the finite volume corrections to these quantities domi-
nate the physical~infinite volume! chiral logarithms.
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I. INTRODUCTION

Because of limited computing power, current lattice co
putations of the hadronic matrix elements involving kao
are plagued by the necessity for introducing three impor
approximations.

~1! The ~partially! quenched approximation.
~2! The extrapolation in the light quark masses: beca

of the inability to simulate directly with the physicalu/d
quarks, one works with masses not lighter than about o
half of that of the physical strange quark and then extra
lates to the physicalmu/d . Once the lighter quark masses a
probed on the lattice, such as those announced in Ref.@1#,
the finiteness of the lattice volume also becomes an imp
tant approximation.

~3! Degeneracy of valence quark masses in the kaon:
trix elements involving kaons are obtained with ‘‘kaon
consisting of degenerate valence quarks whose mass is t
in such a way as to produce a pseudoscalar meson wit
mass equal to the physicalmK050.498 GeV.

In view of the great importance of theK0-K0 mixing am-
plitude in constraining the shape of the Cabibbo-Kobaya
Maskawa~CKM! unitarity triangle @2#, a quantitative esti-
mate of the systematic errors induced by the above lis
approximations is mandatory. That is where chiral pertur
tion theory~ChPT! enters the picture and offers a systema
approach for quantifying~at least roughly! the size of these
errors. In ChPT one computes the coefficients of the ch
logarithms for various hadronic quantities in order to~a! ex-
amine whether or not the quenched approximation introdu
potentially large systematic error,~b! guide the chiral ex-
trapolations, and~c! quantify the impact of the degeneracy
the quark masses on the evaluation of the hadronic ma
elements. The coefficients of the chiral logarithms are p
dicted by quenched and full ChPT. Although convincing e
dence for the presence of chiral logarithms in any numer
lattice data is still missing, a slight discrepancy from t
linear ~or quadratic! dependence on the variation of the lig
quark mass is occasionally observed. Before identifying s
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a discrepancy as an indication of the presence of chiral lo
rithmic behavior, one should make sure that the effects
finite volume are well under control. In particular, we wou
like to know how the finiteness of the lattice volume mod
fies the chiral logarithmic behavior off K and BK . In this
paper we present the expressions obtained in three vers
of ChPT that are relevant to present and future lattice sim
lations, i.e., in quenched ChPT~QChPT!, partially quenched
ChPT ~PQChPT!, and full ~standard! ChPT. Concerning the
PQChPT, we will consider the case ofNsea52 degenerate
dynamical quarks, which is the current practice in the latt
community. Those expressions, obtained in both the fin
and infinite volume cases, are then used to~i! show that
chiral logarithmic behavior off K andBK is indeed modified
by the finiteness of the volume, and~ii ! assess the amount o
systematic uncertainty induced by the finiteness of the lat
volume. As expected, finite volume effects increase as
mass of the valence light quark in the kaon,mq , becomes
smaller~we keep the strange quark mass fixed to its phys
value!. For quark massesmq*ms/3 and volumes V
*(2 fm)3, the finite volume effects are negligible. We wi
argue that even if one manages to push the quark ma
closer tomu/d , finite volume effects will start overwhelming
the effects of the physical~infinite volume! chiral logs~un-
less one uses very large volumes!. This unfortunately com-
plicates the efforts currently being made in the lattice co
munity to observe the chiral log behavior directly from th
lattice data. Our finite volume ChPT formulas forf K andBK
may be used to disentangle the finite volume effect from
physical chiral logarithmic dependence. Obviously, this c
be done only if the volume is sufficiently large and thus t
finite volume corrections safely small enough to justify n
glect of the unknown higher order corrections in the chi
expansion.

The remainder of this paper is organized as follows.
Sec. II we compute the chiral log corrections tof K andBK in
all three versions of ChPT in infinite volume. In Sec. III w
discuss the same chiral corrections but in the finite volum
Both these sets of expressions are then combined in Sec
to examine the impact of the finite volume artifacts on t
chiral behavior off K andBK . In Sec. V we discuss the finite
volume effects onf K and BK and we briefly summarize in
Sec. VI.
©2004 The American Physical Society10-1
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II. RESULTS IN INFINITE VOLUME

To simplify the presentation and for an easier compari
with results available in the literature, we first briefly expla
the notation adopted in this work and then present the
pressions for the chiral logarithmic corrections that we co
puted in all three versions of ChPT.

A. Chiral Lagrangians

For the full ~unquenched! ChPT we use the standard La
grangian@3,4#

LChPT5
f 2

8
tr@~]mS†!~]mS!1S†x1x†S#, ~1!

with f being the chiral limit of the pion decay constant,f p

5132 MeV. In addition,

x52B0M5
22^0uūu1d̄du0&

f 2
M,

M5diag~mu ,md ,ms!,

S5expS 2iF

f D , ~2!

F5S p0

A2
1

h

A6
p1 K1

p2
2

p0

A2
1

h

A6
K0

K2 K̄0 2A2

3
h

D . ~3!

For the calculation in QChPT we will use the Lagrangi
introduced in Refs.@5,6#:

LQChPT5
f 2

8
str@~]mS†!~]mS!1S†x1x†S#2m0

2F0
2

1a0~]mF0!~]mF0!, ~4!

whereF0[str@F#/A6, is proportional to the graded exten
sion of theh8, the trace over the chiral group indices h
been replaced by the supertrace over the indices of
graded groupSU(3u3)L3SU(3u3)R , and the fieldsS andx
are now graded extensions ofS andx, just defined above.

Finally, we choose theSU(5u3)L3SU(5u3)R setup for
the PQChPT, i.e., three valence quarks (u,d,s), with masses
mq[mu5mdÞms , and two degenerate sea quar
(usea, dsea) of massmsea. The Lagrangian is of the sam
form as the quenched one in Eq.~4!, except that the indices
now run over the graded groupSU(5u3)L3SU(5u3)R , and
the fieldsS and x are extended to include the sea-qua
sector@7#. Moreover, because of the presence of sea qua
the h8 decouples andF0 can be integrated out of the La
grangian@8#.
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Throughout the paper, the evaluation of the chiral lo
integrals is made by using naı¨ve dimensional regularization
and the so called ‘‘MS11’’ renormalization scheme o
Ref. @3#.

B. One-loop chiral log corrections tof K and BK

We begin by collecting the ChPT expressions forf K and
BK in infinite volume. We adopt the standard definition of t
BK parameter, namely,

BK5
^K̄0us̄gm~12g5!ds̄gm~12g5!duK0&

8

3
^K̄0us̄gm~12g5!du0&^0us̄gm~12g5!duK0&

, ~5!

which is equal to 1 in the vacuum saturation approximati
The bosonized version of the relevant left-left (DS52) op-
erator reads

O27
DS525g27

f 4

16
~S]mS†!ds~S]mS†!ds . ~6!

To compute the chiral loop corrections tof K , we use the
standard bosonized left handed current:

Jm
L 5 s̄gm~12g5!d→ i

f 2

4
~S]mS†!ds . ~7!

In the following we will leave out the analytic terms~those
accompanied by low energy constants! and focus only on the
nonanalytic ones. As we will see, the analytic terms are
relevant to the discussion of finite volume effects.

The chiral logarithmic corrections tof K are

S f K

f treeD ChPT

512
3

4~4p f !2 Fmp
2 logS mp

2

m2 D
12mK

2 logS mK
2

m2 D 1mh
2 logS mh

2

m2 D G , ~8!

S f K

f treeD PQChPT

512
1

2~4p f !2 FmSS
2 2mK

2 1~2mK
2 2mp

2 1mSS
2 !

3 logS m23
2

m2 D 1~mp
2 1mSS

2 !logS m13
2

m2 D
2

mK
2 mSS

2 2mp
2 ~2mK

2 2mp
2 !

2~mK
2 2mp

2 !
logS m22

2

mp
2 D G ,

~9!
0-2
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S f K

f treeD QChPT

512
1

3~4p f !2 F ~m0
22a0mK

2 !

2
m0

2mK
2 2a0mp

2 m22
2

2~mK
2 2mp

2 !
logS m22

2

mp
2 D G , ~10!

where ChPT, PQChPT, and QChPT stand for the full, p
tially quenched (Nsea52), and quenched chiral perturbatio
theory. In the above formulas,
ut

n

a

x
ve
th

on

05401
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mSS
2 52B0msea, m22

2 [2B0ms52mK
2 2mp

2 ,

m23
2 5B0~ms1msea!, m13

2 5B0~mq1msea!. ~11!

We stress that we work in the exact isospin symmetry lim
i.e., mq[mu5md . The results listed above agree with th
ones available in the literature: Eq.~8! was first obtained in
Ref. @3#, Eq. ~9! in Refs.@9,10#, and Eq.~10! in Refs.@5,6#.

For theBK parameter, we obtain
S BK

BK
treeD ChPT

512
2

~4p f !2 FmK
2 1mK

2 logS mK
2

m2 D 1
mp

2 ~mK
2 1mp

2 !

4mK
2

logS mp
2

m2 D 1
~7mK

2 2mp
2 !mh

2

4mK
2

logS mh
2

m2 D G , ~12!

S BK

BK
treeD PQChPT

512
2

~4p f !2 H mSS
2 1mp

2 2
mK

4 1mp
4

2mK
2

1mK
2 F logS mK

2

m2 D 12 logS m22
2

m2 D G
2

1

2 S mSS
2

mK
2 1mp

2

2mK
2

1mp
2

mSS
2 2mp

2

mK
2 2mp

2 D logS m22
2

mp
2 D J , ~13!

S BK

BK
treeD QChPT

512
1

3~4p f !2 H 6mK
2 16mK

2 logS mK
2

m2 D 13mp
2

mK
2 1mp

2

mK
2

logS mp
2

m2 D 13m22
2

m22
2 1mK

2

mK
2

logS m22
2

m2 D
2m0

2F mK
4 1m22

2 mp
2

mK
2 ~mK

2 2mp
2 !

logS m22
2

mp
2 D 24G22a0F3mK

2 2
m22

2 mp
2

mK
2

1
mp

2

mK
2

mK
4 1mK

2 mp
2 2mp

4

mK
2 2mp

2
logS mp

2

m2 D
1

m22
2

mK
2

mK
4 1mK

2 m22
2 2m22

4

mK
2 2m22

2
logS m22

2

m2 D G J . ~14!
ns,

s

These results also agree with the ones previously comp
in full ChPT @11,12#, PQChPT @10#, and QChPT@6,13#,
where more details about the actual calculation can be fou

III. RESULTS IN FINITE VOLUME

The calculation of the chiral logarithmic corrections in
finite box of volumeV5L3, with periodic boundary condi-
tions, is completely analogous to that in infinite volume, e
cept for the fact that loop integrals now become sums o
discretized three-momenta. As on the lattice, at the end of
calculation, the times of the kaon fields in the correlati
ed

d.

-
r
e

function are sent to infinity. To abbreviate the expressio
we first introduce

vp
2 5qW 21mp

2 , vK
2 5qW 21mK

2 ,

v22
2 5qW 21m22

2 , ~15!

and analogously forv13,v23, with the corresponding masse
already defined in Eq.~11!. As in infinite volume,m0 anda0
are theh8 parameters of the quenched theory.

For the decay constantf K in all three versions of the
ChPT, we obtain,
S f K

f treeD ChPT

512
3

8 f 2L3 (
qW

S 1

vp
1

2

vK
1

1

vh
D , ~16!

S f K

f treeD PQChPT

511
1

8 f 2L3 (
qW

FmSS
2 2mp

2

2vp
3

1
mSS

2 2m22
2

2v22
3

24S 1

v13
1

1

v23
D1

mSS
2 2mK

2

mK
2 2mp

2 S 1

v22
2

1

vp
D G , ~17!
0-3
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S f K

f treeD QChPT

512
1

24f 2L3 (
qW

H m0
2F 2

mK
2 2mp

2 S 1

vp
2

1

v22
D2

1

v22
3

2
1

vp
3 G2a0F 2mK

2

mK
2 2mp

2 S 1

vp
2

1

v22
D2

m22
2

v22
3

2
mp

2

vp
3 G J , ~18!

while for theBK parameter we have

S BK

BK
treeD ChPT

511
1

4 f 2L3 (
qW

F2mK
2

vK
3

2
mK

2 1mp
2

mK
2 vp

2
7mK

2 2mp
2

mK
2 vh

G , ~19!

S BK

BK
treeD PQChPT

511
1

4 f 2L3 (
qW

F ~mK
2 1mp

2 !~mSS
2 2mp

2 !

2mK
2 vp

3
1

~mK
2 1m22

2 !~mSS
2 2m22

2 !

2mK
2 v22

3
1

2mK
2

vK
3

2
mK

4 2mp
4 12mK

2 ~mSS
2 2mp

2 !

mK
2 vp~mK

2 2mp
2 !

1
mK

4 2m22
4 12mK

2 ~mSS
2 2m22

2 !

mK
2 v22~mK

2 2mp
2 !

G , ~20!

S BK

BK
treeD QChPT

512
1

2 f 2L3 (
qW

H mp
2 1mK

2

mK
2

1

vp
1

m22
2 1mK

2

mK
2

1

v22
2

mK
2

vK
3

2
m0

2

6 Fm22
2 1mK

2

mK
2 v22

3
1

mp
2 1mK

2

mK
2 vp

3
2

4

mK
2 2mp

2 S 1

vp
2

1

v22
D G

1
a0

6mK
2 Fm22

2 ~m22
2 1mK

2 !

v22
3

1
mp

2 ~mp
2 1mK

2 !

vp
3

2
2~mK

4 1mp
2 m22

2 !

mK
2 2mp

2 S 1

vp
2

1

v22
D G J . ~21!
m

o

rif

e
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We are now faced with the problem of evaluating the su
over discrete momentaqW 52pnW /L, with nW PZ3.

A. Evaluation of the chiral loop sums

The sums that appear in the calculation of the tadp
diagrams are of the form

1

L3 (
qW

1

~qW 21M2!s
, ~22!

whereM stands for the generic mass. It is very easy to ve
that

lim
L→`

1

L3 (
qW

1

~qW 21M2!s

5

A4pGS s1
1

2D
G~s!

E d4q

~2p!4

1

~q21M2!s11/2
. ~23!

For finite L, one can write

1

L3 (
qW

1

~qW 21M2!s

5js~L,M !1

A4pGS s1
1

2D
G~s!

E d4q

~2p!4

1

~q21M2!s11/2
,

~24!
05401
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wherejs(L,M ) is simply the difference between the finit
volume sum and the infinite volume integral. This function
finite and needs no regularization since it represents an
frared effect. In other words, the integral and the sum dive
in the same way. Equation~24! can then be considered as
way to regularize the sums which, in addition, allows us
adopt the same renormalization scheme for both integ
and sums.

In the following few steps, we show howjs(L,M ) is
simplified to

js~L,M !5
1

L3 (
qW

1

~qW 21M2!s

2

A4pGS s1
1

2D
G~s!

E d4q

~2p!4

1

~q21M2!s11/2

5
1

G~s!
E

0

`

dtts21e2tM2 1

L3 (
qW

e2tqW 2

2
1

G~s!
E

0

`

dtts21e2tM2E d3q

~2p!3
e2tqW 2

5
1

G~s!
E

0

`

dtts21e2tM2H F1L qS4p2t

L2 DG3

2
1

8~pt!3/2J

0-4
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5
L2s23

~2p!2sG~s!
E

0

`

dtts21e2t(ML/2p)2

3H @q~t!#32S p

t D 3/2J , ~25!

where the elliptic theta functionq(t) is defined as1

q~t![ (
n52`

`

e2tn2
~26!

and satisfies the Poisson summation formula@15#

q~t!5Ap

t
qS p2

t D . ~27!

Applying the formula~27! to Eq. ~25!, we get

js~L,M !5
1

~4p!3/2G~s!
E

0

`

dtts25/2e2tM2
3Fq3S L2

4t D21G .
~28!

In the asymptotic limitL→`, the theta function behaves a
q(L2/4t);112e2L2/4t, so that in the same limit we ca
write

js~L,M !→ 3Ap

G~s!~2p!3/2

e2ML

~ML !22s
~2M2!3/22s. ~29!

IV. IMPACT OF FINITE VOLUME EFFECTS
ON THE CHIRAL BEHAVIOR OF f K AND BK

In recent years considerable effort has been investe
controlling the chiral extrapolations of the hadronic mat
elements computed on a lattice. To guide the extrapola
from the directly accessible quark massesr'0.5 down to the
physicalr→r u/d50.04, one can rely on the expressions o
tained in ChPT~quenched, partially quenched, or full!. Those
expressions, however, contain chiral logarithmic terms wh
so far have not been observed in the numerical studies
important task before the lattice community is to lower t
quark mass and get closer to the region in which the ch
logarithms become clearly visible. However, by decreas
the quark mass, the sensitivity to the finiteness of the lat
box of sideL becomes more pronounced. Moreover, the
nite volume effects modify the nonlinear light quark depe
dence in the same way, i.e., they enhance the chiral logs.
problem is that the nonlinearity induced by the finite volum
is larger than that due to the presence of physical chiral lo
rithms. To illustrate that statement, in Fig. 1 we plot t
chiral log contributions in the finite and infinite volumes, b

1The functionq(t) is obtained from the commonly used functio

q3(u,q)5(n52`
` qn2

e2nui, after replacing,u50 andq5e2t. For
the numerical analysis, we use the function predefined inMATH-

EMATICA, namely, EllipticTheta@3, 0, e2t]. For more details on the
elliptic functions, see Ref.@14#.
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using the expressions presented in the previous section
both f K andBK in all three versions of ChPT. From that plo
we see that it is very difficult to distinguish between physic
chiral logarithms~thick curves! and the finite volume effect
even if one manages to work with very light quarks on t
currently used lattice volumes. For smaller masses, at wh
the chiral logarithms are expected to set in, the finite volu
effects completely overwhelm the physical nonlinearity.

A possible way out would be to fit the lattice data to t
finite volume forms~see Sec. III! and not to those of the
infinite volume, given in Sec. II. That, of course, is legit
mate if one assumes the validity of the next to leading or
~NLO! ChPT formulas. Finally, the curves corresponding
L51 fm should be taken cautiously because this value m
be too small for ChPT to set in, as recently discussed in R
@16#.

V. FINITE VOLUME CORRECTIONS

In this section we combine the formulas derived in Se
II and III to discuss the shift off K and BK induced by the
finite volume effects. Before embarking on this issue,
first briefly remind the reader about the similar shift in t
case of the pion mass where, for largeL, the one-loop ChPT
expression indeed agrees with the general formula der
by Lüscher in Ref.@17#. Since the analogous general form
las for f K andBK do not exist, we will derive them by taking
the largeL limit of our one-loop ChPT formulas.

A. Contact with Lü scher’s formula

To make contact with Lu¨scher’s formula, we subtract th
one-loop chiral correction to the pion mass~squared! as ob-

FIG. 1. From top to bottom, we plot the chiral logarithmic co
rections as predicted in full, partially quenched, (r sea5msea/ms

phys

50.5) and quenched ChPT, respectively, as functions of the l
valence quark massr 5mq /ms , where the strange quark mass
fixed to its physical value. In each plot the thick line corresponds
the physical~infinite volume! chiral logarithm, whereas the othe
four curves correspond to the logarthmic contributions compute
the finite volumeV5L3, where forL we choose the values show
in the legend. The renormalization scale is chosen to bem
51 GeV.
0-5
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FIG. 2. The finite volume cor-
rections to f K in full, partially
quenched, and quenched theor
Eqs.~33!, ~34!, ~35!, respectively.
The partially quenched case tha
we consider is the one withNf

52 dynamical quarks degenera
in mass for which we taker sea

5msea/ms
phys51,0.5,0.2. Each

plot corresponds to a differen
value of the size of the side of th
box L, indicated in the plots. We
keep the same scale, to better a
preciate the reduction of the finite
volume effects asL is increased.
m

n

en-
g

d
tial

ns,
ry

nts
-
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not
ite
tained in the full~unquenched! ChPT in infinite volume from
the one obtained in a finite volume. By evaluating the su
as described in the previous section, we have

mp
2 ~`!

52B0mqH11
1

~4p f !2Fmp
2 logS mp

2

m2 D 2
1

3
mh

2 logS mh
2

m2 D G J ,

mp
2 ~L !52B0mqF11

1

2 f 2L3(
qW

S 1

vp

2
1

3vh
D G ,

⇒
Dmp

2

mp
2 [

mp
2 ~L !2mp

2 ~`!

mp
2 ~`!

5
1

2 f 2 F j1/2~L,mp!2
1

3
j1/2~L,mh!G , ~30!

which coincides with the result of Ref.@18#.2 Analytic terms
in mp

2 (`) and mp
2 (L) were omitted since they cancel i

(Dmp
2 )/mp

2 .

2Notice that the functiongr(M2,0,L), defined in Ref.@18#, is re-
lated tojs(L,M ) through

js~L,M!5
A4p

G~s!
gs11/2~M2,0,L !.
05401
s,
To recover Lu¨scher’s formula, one takes the limitL

→`, which amounts to using the asymptotic form~29! in
Eq. ~30!,

Dmp

mp
.

3

2S mp

f D 2 e2mpL

~2pmpL !3/2
, ~31!

where only the leading exponential has been kept. The b
efit of Eq. ~30! is that it offers insight into the subleadin
terms, suppressed by higher powers ine2mpL in Lüscher’s
formula. In the range of volumes in which the right-han
side of Eq.~31! becomes sizable, the subleading exponen
terms cannot be neglected and the formula~30! has to be
used. For the volumes currently used in lattice simulatio
these corrections are important if one is to work with ve
light pions.

Before closing this subsection, two important comme
are in order, though. First, Lu¨scher’s formula relates the fi
nite volume shift of the pion mass to thep-p scattering
amplitude. Equation~31! refers to the tree levelp-p scatter-
ing amplitude. A recent study in Ref.@16# shows that the
inclusion of the NLO chiral corrections to thep-p scattering
amplitude produces a sizable correction to Eq.~31!. It is,
however, not clear whether or not such a conclusion pers
in the full ~nonasymptotic! case, i.e., Eq.~30!. It is even less
clear if such a conclusion carries over to other quantities.
resolve that issue, one should compute the finite volume t
loop chiral correction to the pion mass~and to other quanti-
ties!, which is beyond the scope of the present work. It
clear, however, that before this point is clarified, one can
safely use the one-loop calculation to correct for the fin
0-6
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FIG. 3. The finite volume cor-
rections to BK in full, partially
quenched, and quenched theor
Eqs.~38!, ~39!, ~40!, respectively.
m
th
th
.

he
-

he

-

n-
volume effects. At present the one-loop ChPT finite volu
expressions are useful for making a rough estimate of
finite volume corrections. The second comment is that
derivation of Lüscher’s formula relies crucially on unitarity
Since the unitarity in the partially quenched and quenc
theories is lost, Lu¨scher’s formula is not valid in these theo
ries.

B. Finite volume corrections to f K

We now use the expressions for the decay constantf K ,
derived in the infinite@Eqs.~8!–~10!# and finite@Eqs.~16!–
~18!# volume cases, to estimate the shift inf K due to the
finiteness of the volume. For that purpose we define

D f K

f K
[

f K~L !2 f K~`!

f K~`!
. ~32!

It should be clear that the analytic terms multiplied by t
low energy constants~omitted in Secs. II and III! cancel in
the ratio~32!.3 Finally, we have

3Written schematically,f K(`)5 f tree(11 log`1Cmq) is equivalent
to f tree5 f K(`)(12 log`2Cmq), where the analytic term is multi
plied by the generic low energy constantC. f tree is the same in finite
and infinite volumes, so that one simply obtainsf K(L)5 f K(`)(1
2 log`1logL). Thus, at this order, the effects of low energy co
stants cancel.
05401
e
e
e

d

S D f K

f K
D ChPT

52
3

8 f 2
@j1/2~L,mp!12j1/2~L,mK!

1j1/2~L,mh!#, ~33!

S D f K

f K
D PQChPT

5
1

8 f 2 H mSS
2 2mp

2

2
j3/2~L,mp!

1
mSS

2 2m22
2

2
j3/2~L,m22!

24@j1/2~L,m13!1j1/2~L,m23!#

1
mSS

2 2mK
2

mK
2 2mp

2 @j1/2~L,m22!2j1/2~L,mp!#J ,

~34!

S D f K

f K
D QChPT

52
1

12f 2 H a0mK
2 2m0

2

mK
2 2mp

2 @j1/2~L,m22!

2j1/2~L,mp!#2
m0

22a0m22
2

2
j3/2~L,m22!

2
m0

22a0mp
2

2
j3/2~L,mp!J . ~35!
0-7
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Similar expressions in full and quenched ChPT, but for
case in which the kaon consists of two quarks degenera
mass, were obtained in Ref.@6#. For the general nondegen
erate case and for PQChPT, the above formulas are new
Ref. @19#, the finite volume terms are taken into accou
while computing the full ChPT corrections tof K relevant to
the lattice computation of this quantity with stagger
quarks.

In Fig. 2, we illustrate the finite volume effects as pr
dicted by the above formulas. Since the mass of the stra
quark is directly simulated on the lattice, we keep it fixed.
for the light quark we definer 5mq /ms

phys, which we then
vary asr P@r u/d,1#, wherer u/d5(mu1md)/2ms50.04 @20#.
We also use the Gell-Mann-Oakes-Renner~GMOR! and
Gell-Mann–Okubo formulas, namely,

mp
2 52B0msr , mK

2 52B0ms

r 11

2
,

mh
252B0ms

r 12

3
. ~36!

The illustration in Fig. 2 is made for realistic volumes cu
rently used in lattice simulations:LP@1 fm,2.5 fm#. In ob-
taining the quenched curves, we assumem050.6 GeV and
a050.05. The curves are insensitive to the value ofa0. On
the other hand, the effect shown in Fig. 2 becomes p
u
th
a

05401
e
in

In
t

ge

-

nounced if m0 is increased tom050.65 GeV or m0

50.7 GeV, values sometimes also quoted in the literatur
From Fig. 2 we see that the finite volume effects beco

more pronounced as the light quark gets closer to the ph
cal u/d quark mass. In particular, they result in shifting th
quenchedf K toward a larger value, whereas the shift off K in
full ~unquenched! QCD is opposite, i.e., the finite volum
effects lower the value off K . The partially unquenched
cases lie between the two. We see that the quenched c
logs become dominant as soon as the mass of the val
quark becomes lighter than the sea-quark mass. We did
plot the case when the valence and sea quarks are degen
since such a curve is very close to the full ChPT case. I
worth noticing that in the region ofr &0.2 the finite volume
effects for the partially quenchedf K , with r sea51, are larger
than for the quenched case.

C. Finite volume corrections toBK

We proceed in a completely analogous way as in the
subsection and define

DBK

BK
[

BK~L !2BK~`!

BK~`!
. ~37!

The corresponding ChPT expressions read
S DBK

BK
D ChPT

5
1

4 f 2 F2
mK

2 1mp
2

mK
2

j1/2~L,mp!12mK
2 j3/2~L,mK!2S 72

mp
2

mK
2 D j1/2~L,mh!G , ~38!

S DBK

BK
D PQChPT

52
1

2 f 2 F S 5mK
2 2mp

2

2mK
2 2

mSS
2 2mK

2

mK
2 2mp

2 D j1/2~L,m22!1S mK
2 1mp

2

2mK
2 1

mSS
2 2mp

2

mK
2 2mp

2 D j1/2~L,mp!

1
~mK

2 1m22
2 !~m22

2 2mSS
2 !

4mK
2

j3/2~L,m22!2mK
2 j3/2~L,mK!2

~mK
2 1mp

2 !~mSS
2 2mp

2 !

4mK
2

j3/2~L,mp!G , ~39!

S DBK

BK
D QChPT

5
1

2 f 2 H F 2m0
2

3~mK
2 2mp

2 !
2

3mK
2 2mp

2

mK
2 2

a0

3
S mK

2 1mp
2

mK
2 2mp

2 1
mp

2

mK
2 D Gj1/2~L,m22!

2F 2m0
2

3~mK
2 2mp

2 !
1

mK
2 1mp

2

mK
2 2

a0

3
S mK

2 1mp
2

mK
2 2mp

2 1
mp

2

mK
2 D Gj1/2~L,mp!1

~mK
2 1m22

2 !~m0
22a0m22

2 !

6mK
2

j3/2~L,m22!

1mK
2 j3/2~L,mK!1

~mK
2 1mp

2 !~m0
22a0mp

2 !

6mK
2

j3/2~L,mp!J . ~40!
he

c

The illustration, similar to the one discussed in the previo
subsection, is provided in Fig. 3. We observe that, as in
case off K , the finite volume effects become pronounced
the light valence quark is lowered toward the physicalu/d
quark mass. Moreover, they have a tendency to enhance
s
e
s

the

nonlinearities which would otherwise be attributed to t
physical chiral logarithms.4

4By ‘‘physical chiral logarithms,’’ we mean the chiral logarithmi
behavior in infinite volume.
0-8
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D. Asymptotic L\` formulas for f K and BK

As discussed at the beginning of this section, the diff
ence of the one-loop ChPT formulas for the pion mass in
finite and infinite volumes~i! reproduces Lu¨scher’s genera
formula at LO and~ii ! allows one to estimate the size of th
corrections suppressed in Lu¨scher’s formula. Similar
asymptotic formulas forf K andBK can be obtained from ou
full ChPT expressions forD f K / f K and DBK /BK , i.e., Eqs.
~33! and ~38!, respectively. By using the asymptotic for
~29!, we get

D f K

f K
.2

9

4 S mp

f D 2 e2mpL

~2pmpL !3/2
,

DBK

BK
.2

3

2

mK
2 1mp

2

mK
2 S mp

f D 2 e2mpL

~2pmpL !3/2
. ~41!

To check how good an approximation these formulas ar
the complete ones, given in Eqs.~33! and ~38!, we made a
numerical comparison of the two, and conclude that for v
umes larger than (2 fm)3 and massesr *1/4, Eq.~41! is an
excellent approximation. Otherwise, i.e., in the region
which the finite volume effects become important, t
asymptotic forms~41! become inadequate and Eqs.~33! and
~38! should be used. We note, in passing, that formulas s
lar to those in Eq.~41!, but in the quenched case, were r
ported in Refs.@5,6#.

VI. SUMMARY

In this work we computed the one-loop chiral correctio
to the decay constantf K and to the bag parameterBK in all
three versions of ChPT, i.e., full, quenched, and partia
s-

g.
t
ys

05401
-
e

to
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quenched. After working out the formulas in both infini
and finite volumes, we were able to discuss the impact of
finite volume effects on the chiral behavior off K and BK .
We show that in most situations the physical chiral log
rithms are completely drowned in the finite volume artifac
In other words, unambiguously disentangling the physi
chiral logarithms from the finite volume lattice artifacts do
not appear to be feasible unless very large volumes are u

We also discussed the shift off K andBK induced by the
finiteness of the volume. In our discussion we fix the stran
quark in the kaon to its physical massms , whereas the mas
of the light quark is varied betweenms/25 andms . This
mimics the current lattice QCD studies in which the stran
quark is directly accessed on the lattice while the access
light quarks haver 5mq /msP(0.5,1), so that an extrapola
tion to the physicalr u/d50.04 is necessary.

The results of our calculation indicate that forr *0.25 the
finite volume effects are very small as long asL*2 fm. In
that region we provide a simple asymptotic formula which
an accurate approximation of the full ChPT expressions.

From our formula it is also obvious that the finite volum
corrections tof K andBK are different in quenched and pa
tially quenched QCD from those obtained in full QCD
Therefore, if in practical numerical simulations one wants
see only the effects of~un!quenching, the finite volume ef
fects must be kept under control.
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