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Impact of the finite volume effects on the chiral behavior offx and By
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We discuss the finite volume correctionsfip andBy by using one-loop chiral perturbation theory in full,
guenched, and partially quenched QCD. We show that the finite volume corrections to these quantities domi-
nate the physicalinfinite volume chiral logarithms.
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I. INTRODUCTION a discrepancy as an indication of the presence of chiral loga-

B  limited i t latti rithmic behavior, one should make sure that the effects of
ecause ot imited computing power, current 1attice CoM-g,;vq y/6lume are well under control. In particular, we would

putations of the hadronic matrix elements involving kaonSyyq 1 know how the finiteness of the lattice volume modi-
are pla_gue(_j by the necessity for introducing three importantoq the chiral logarithmic behavior df, and By. In this
approximations. o paper we present the expressions obtained in three versions
(1) The (partially) quenched approximation. of ChPT that are relevant to present and future lattice simu-
(2) The extrapolation in the light quark masses: becausgations, i.e., in quenched ChRQChPT), partially quenched
of the inability to simulate directly with the physical/d ChPT(PQChPT, and full (standaryl ChPT. Concerning the
quarks, one works with masses not lighter than about onePQChPT, we will consider the case bf,.=2 degenerate
half of that of the physical strange quark and then extrapoeynamical quarks, which is the current practice in the lattice
lates to the physicah,,q. Once the lighter quark masses are community. Those expressions, obtained in both the finite
probed on the lattice, such as those announced in[R&f. and infinite volume cases, are then used(iloshow that
the finiteness of the lattice volume also becomes an imporehiral logarithmic behavior of x andBy is indeed modified
tant approximation. by the finiteness of the volume, aKid) assess the amount of
(3) Degeneracy of valence quark masses in the kaon: maystematic uncertainty induced by the finiteness of the lattice
trix elements involving kaons are obtained with “kaons” volume. As expected, finite volume effects increase as the
consisting of degenerate valence quarks whose mass is tunfrtass of the valence light quark in the kaan,, becomes
in such a way as to produce a pseudoscalar meson with itimaller(we keep the strange quark mass fixed to its physical
mass equal to the physicalco=0.498 GeV. valug. For quark massesmy=my/3 and volumesV
In view of the great importance of tH€°-K® mixing am-  =(2 fm)3, the finite volume effects are negligible. We will
plitude in constraining the shape of the Cabibbo-Kobayashiargue that even if one manages to push the quark masses
Maskawa(CKM) unitarity triangle[2], a quantitative esti- closer tom,,q, finite volume effects will start overwhelming
mate of the systematic errors induced by the above listethe effects of the physicdinfinite volume chiral logs(un-
approximations is mandatory. That is where chiral perturbaless one uses very large volumeghis unfortunately com-
tion theory(ChPT) enters the picture and offers a systematicplicates the efforts currently being made in the lattice com-
approach for quantifyingat least roughlythe size of these munity to observe the chiral log behavior directly from the
errors. In ChPT one computes the coefficients of the chiralattice data. Our finite volume ChPT formulas figr andByg
logarithms for various hadronic quantities in order&ex-  may be used to disentangle the finite volume effect from the
amine whether or not the quenched approximation introduceghysical chiral logarithmic dependence. Obviously, this can
potentially large systematic errofb) guide the chiral ex- be done only if the volume is sufficiently large and thus the
trapolations, andc) quantify the impact of the degeneracy in finite volume corrections safely small enough to justify ne-
the quark masses on the evaluation of the hadronic matriglect of the unknown higher order corrections in the chiral
elements. The coefficients of the chiral logarithms are preexpansion.
dicted by quenched and full ChPT. Although convincing evi- The remainder of this paper is organized as follows. In
dence for the presence of chiral logarithms in any numericaSec. Il we compute the chiral log correctionsffpandBy in
lattice data is still missing, a slight discrepancy from theall three versions of ChPT in infinite volume. In Sec. Il we
linear (or quadrati¢ dependence on the variation of the light discuss the same chiral corrections but in the finite volume.
qguark mass is occasionally observed. Before identifying sucBoth these sets of expressions are then combined in Sec. IV
to examine the impact of the finite volume artifacts on the
chiral behavior offx andB . In Sec. V we discuss the finite
*Electronic address: Damir.Becirevic@th.u-psud.fr volume effects orfx and Bk and we briefly summarize in
TElectronic address: Giovanni.Villadoro@romadl.infn.it Sec. VI.
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Il. RESULTS IN INFINITE VOLUME Throughout the paper, the evaluation of the chiral loop

L . . . __integrals is made by using na& dimensional regularization
To simplify the presentation and for an easier comparison 9 y_using 9

with results available in the literature, we first briefly explain 21 the so called MS+1" renormalization scheme of
the notation adopted in this work and then present the exRef' (3]

pressions for the chiral logarithmic corrections that we com-

puted in all three versions of ChPT. B. One-loop chiral log corrections tof, and By

We begin by collecting the ChPT expressions fprand

Bk in infinite volume. We adopt the standard definition of the
For the full (unquenchedChPT we use the standard La- By parameter, namely,

grangian[3,4]

A. Chiral Lagrangians

2 KOlsy (1— ve)dsy (1—
LopmgtlOEN@S) 13y x's], @ o (KInlT9dsn(7dKh - o

——— - ,
3(K®I$7,(1= ¥5)d|0){0[sy,.(1~ y5)d[K®)

with f being the chiral limit of the pion decay constaft,
=132 MeV. In addition,
which is equal to 1 in the vacuum saturation approximation.

- _ —2(0fuu+dd|0) The bosonized version of the relevant left-left§=2) op-
X=2BoM= £2 M, erator reads
M=diagm,,my,mg), 3 f4
027 2= 0017529, 2 Nad 2% gs. ®
2id
S =ex L 2
To compute the chiral loop corrections f@, we use the
o standard bosonized left handed current:
T 7
— 4+ L 7T+ K+
\/E \/6 o f2
™ 9 JI;L:S')’;L(l_'YS)d_)iZ(Ea#ET)ds- (0
o= T -t — KO . (3)
V2 e
- _ 2 In the following we will leave out the analytic ternithose
K KO ~ V37 accompanied by low energy constarasd focus only on the

nonanalytic ones. As we will see, the analytic terms are not

For the calculation in QChPT we will use the Lagrangi::mrelevant t(.) the d|s<_:uss!on of fm'.te volume effects.
introduced in Refs[5,6]; The chiral logarithmic corrections th are

f2
cQChpr—gstr[(aﬂzf)(aﬂz)+2TX+XT2]—m§<bg

( fK ) ChPT 3 2| ( mi)

RS e —_——_— O [E—

a3, 00) (D), @ e aamtE O 2

where®,=st{ ®]/\/6, is proportional to the graded exten- ) mﬁ 2 mf,

sion of the’, the trace over the chiral group indices has +2milog Pl +m;log 2| ®

been replaced by the supertrace over the indices of the
graded grouBU(3|3), X SU(3|3)g, and the field® andy

are now graded extensions Bfand y, just defined above. PQChPT 1

Finally, we choose thé&sU(5|3), X SU(5|3)g setup for ( trK) =1- ————| mgg~ mg+(2mg—m’+méy
the PQChPT, i.e., three valence quarksd(s), with masses |\ f", 2(4wf)
mg=m,=mg#ms, and two degenerate sea quarks 2 2
(Ugear dseg Of massmg,,. The Lagrangian is of the same < M2s (M2 +m2ol Mis
form as the quenched one in Bg,), except that the indices 9 u? (M +Msglog u?

now run over the graded grol®U(5|3), X SU(5|3)g, and

the fields> and xy are extended to include the sea-quark m2Zm&s— m2(2m2 —m?2)
sector[7]. Moreover, because of the presence of sea quarks, -
the " decouples andb, can be integrated out of the La-
grangian[8]. 9

2
mzz)

m2

m

2(m2—m?)
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QChPT 2

2 _ 2 _ 2
fx Mss=2BoMsea  M5p=2Boms=2mg —m7,

ftree

2 2
(mg— aomy)

© 3(4nf)? , ,
My3= BO( ms+ msea)a Mmy3= BO( rnq + msea)- (11)

> (10

m

We stress that we work in the exact isospin symmetry limit,
i.e., my=m,=my. The results listed above agree with the
where ChPT, PQChPT, and QChPT stand for the full, parones available in the literature: E() was first obtained in
tially quenched ..=2), and quenched chiral perturbation Ref.[3], Eq. (9) in Refs.[9,10], and Eq.(10) in Refs.[5,6].
theory. In the above formulas, For theBy parameter, we obtain

2 2 2 2
_ MoMi — aOmeZZI ( mzz) 1
2 2 '
2(mg—m2)

ch
B |\ T 2 mK mo(mg+m2) (mZ)  (7Tmg—-mZ)m?  [m?
=1- mz+malog| — | + ————"log| — | + ——————"log| —| |, (12)
tree K K 2 2 2
Bk (47f)2 w? 4my 4my w?
By PQChPT , i+ m? 52
B{{ee = _—(4771‘)2 mggtms— ——— o 2 +mK +2log 2
1 m2 +m? m3s—m?2
2 K T SS
_E Mss 2 +m11- 2 _ 2 (13
2mg mig —m:
QChPT 2 2 2 2 2 2
Bk 1 2 2 mk g+m2 mz o Moyt Mk M3
oo =1-——— 1 6mi+6milog| — +3m? —| > | +3m3, >—log| —
Bk 3(4mf) M K K M
4, 2 2 2 2 2 2 2 2
| mitmgm? 7] Y T ms,m2  m2 mg+mgmZ—m og ™
Y 2 @o| SMy 2 2 2 2 09| —
Mic(Mi —m2) 7 K My my—mz M
2 4, 2 2 4 2
M3, My + M Moy — My, m3;
— > > | — . (14
My My — My, yu

These results also agree with the ones previously computednction are sent to infinity. To abbreviate the expressions,
in full ChPT [11,12, PQChPT[10], and QChPT[6,13], we first introduce
where more details about the actual calculation can be found. . .
WZ=q7+ M7, wg=0’+my,
Ill. RESULTS IN FINITE VOLUME

2 _ 32 2
The calculation of the chiral logarithmic corrections in a 022~ A Mz 19
finite box of volumeV=L2, with periodic boundary condi- and analogously foi;3,w,3, with the corresponding masses
tions, is completely analogous to that in infinite volume, ex-already defined in Eq11). As in infinite volume my and «g
cept for the fact that loop integrals now become sums oveare then' parameters of the quenched theory.
discretized three-momenta. As on the lattice, at the end of the For the decay constarft; in all three versions of the
calculation, the times of the kaon fields in the correlationChPT, we obtain,

ChPT
fy 3 1 2 1
= BRCER A P 19
PQChPT
T )T L s [ mesTmy | mes e, (i+i) més mﬁ(i_i) an
flree 8f2L 5 | 20° 203, w13 w3 mi-mi\@p 0|
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QChPT 2 2 2
(f_Ke) 1 1 D {m% l‘z(i_i)_m_zz_ﬁu (18)

fure 24f23 5 mig—mi\ @, w2l @3, o

2 (1 1) 1 1
- | - T4
mﬁ—mf, Wg7 W22 wgz wi 0 p

while for the By parameter we have

Bk ChPT_ 1 s 2m2 mZ+md 7Tmi-m2
(B}{ee) +4f2L3 q | wﬁ - mﬁww - mﬁw” , 19
(BK>PQC“PT_ 1 z'(mﬁ+mi>(m§s—mi> (M +m)(mds—m3,)  2mE
el are s | amied | omiad )
| mg—mi+2mg(migmm?)  myg—may+ 2mg(mis m3,) 20
M () MEopdmi-me) | 29
(BK QChPT_ 1 m2+m2 1 mi+mi 1 mz mimitmi mi+mi 4 ( 1 1 ”
BK> R [ M o, M om o 6| mal, Mol m-mlle, wx
ag | Ma(m5+mg)  mZ(m2+mg) 2<mﬁ+mim§2>< 1 1) )1
o2l o, o mem? e, wxl|| )

We are now faced with the problem of evaluating the sumavhere &(L,M) is simply the difference between the finite

over discrete momentg=2=n/L, with ne Z°. volume sum and the infinite volume integral. This function is
finite and needs no regularization since it represents an in-

A. Evaluation of the chiral loop sums frared effect. In other words, the integral and the sum diverge

The sums that appear in the calculation of the tadpold? the same way. Equatiof24) can then be considered as a
diagrams are of the form way to regularize the sums which, in addition, allows us to
adopt the same renormalization scheme for both integrals

1 22) and sums.
In the following few steps, we show hog(L,M) is
simplified to
whereM stands for the generic mass. It is very easy to verify
that

1

L3 (i (&2+M2)S'

1 1

o1 1
im = > ELM)=5 2

L L35G (g2+MY)s 5 (?+M?)s
(s L Jaar|s+ 2
) 47l s+§ f diq 1 s B ™ 2 J' d*q 1
- T(y 2t @ 2 e (2m)* (g?+M?)>H 12
For finite L, one can write 1 (= 1
— s—1 77‘M2_ 77'(:‘12
1 1 F(S)fo drr ‘e 3 % e
25 (@P+Mm?p 1 (= eq -
1 - dTTS_le_Tsz &9 e_qu
VanT| s+ E) 4 . I'(s)Jo (2m)3
q
=£(L,M)+ f :
gs( ) F(S) (271_)4 (q2+M2)S+1/2 1 fmd 12 1’a 47T2’7' 3 1
= —_— e 7 — —
(24) r(s)Jo LN 2 )| g2
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. tree

tree “log"

— “log"
_ [ 253 o gAML Ip Llife B, "(L)/ B,
(27)%T(s)Jo s
, (7 312
<P =] |, (25
where the elliptic theta functio(7) is defined as
)= 3 e ™ (26)
n=-—ow
and satisfies the Poisson summation fornjis)
£
2 = 04 )\ vl
T [T 9 F -4 0.
*r1)= \@ﬂ<7 : 27 %o N TH 03
] %07 0z 04 06 080 02 04 06 08"
Applying the formula(27) to Eq. (25), we get r r
1 - L2 FIG. 1. From top to bottom, we plot the chiral logarithmic cor-
(L M)= —J drrS 52~ ™ x| 93 _) _1} rections as predicted in full, partially quenchedse=mge/m2"™s
(4m)3¥2(s)Jo 4r =0.5) and quenched ChPT, respectively, as functions of the light
(28) valence quark mass=m,/mg, where the strange quark mass is
q

o ) fixed to its physical value. In each plot the thick line corresponds to
In the asymptotic limitl.— o, the theta function behaves as the physical(infinite volume chiral logarithm, whereas the other

9(L2/47)~1+2e " -"*7, so that in the same limit we can four curves correspond to the logarthmic contributions computed in

write the finite volumeV=L3, where forL we choose the values shown
in the legend. The renormalization scale is chosen to e
3T e~ ML =1 GeV.
£(L,M) (2M?)%27s (29

-
I'(s)(27)%2 (ML)?~s using the expressions presented in the previous section for
both fx andBy in all three versions of ChPT. From that plot
IV, IMPACT OF FINITE VOLUME EFFECTS we see that' itis very difficult to distingu'is_h between physical
ON THE CHIRAL BEHAVIOR OF f. AND B chiral _Iogarlthms(th|ck curves an(_d the f|n|t_e volume effect,
K K even if one manages to work with very light quarks on the
In recent years considerable effort has been invested igurrently used lattice volumes. For smaller masses, at which
controlling the chiral extrapolations of the hadronic matrix the chiral logarithms are expected to set in, the finite volume
elements computed on a lattice. To guide the extrapolatiofffects completely overwhelm the physical nonlinearity.
from the directly accessible quark masses0.5 down to the A possible way out would be to fit the lattice data to the
physicalr —r,4=0.04, one can rely on the expressions Ob_fmlte volume forms(see Sec. I)l and not to those of the

tained in ChPTquenched, partially quenched, or julThose infinite volume, given in Sec. Il. That, of course, is legiti-

expressions, however, contain chiral logarithmic terms whic Nfli_tg)'f gﬁgTa?;unTjgsthgi;]’::;d't%/hgfgzrevggxct;fr;zagwgmordtgr
so far have not been observed in the numerical studies. A ) Y, P 9

guark mass and get closer to the region in which the chir 16).

logarithms become clearly visible. However, by decreasin

the quark mass, the sensitivity to the finiteness of the lattice
box of sideL becomes more pronounced. Moreover, the fi- ) ) ) ) .
nite volume effects modify the nonlinear light quark depen- In this sect.lon we combl'ne the formula; derived in Secs.
dence in the same way, i.e., they enhance the chiral logs. THeand Il to discuss the shift of c and Bk induced by the
problem is that the nonlinearity induced by the finite volumefinite volume effects. Before embarking on this issue, we
is larger than that due to the presence of physical chiral |Ogafjrst briefly remmd the reader about the similar shift in the
rithms. To illustrate that statement, in Fig. 1 we plot thecase of the pion mass where, for laigethe one-loop ChPT

chiral log contributions in the finite and infinite volumes, by €xpression indeed agrees with the general formula derived
by Luscher in Ref[17]. Since the analogous general formu-

las forfx andBy do not exist, we will derive them by taking

The functiond(r) is obtained from the commonly used function the largeL limit of our one-loop ChPT formulas.
94(u,q) =37 _.q"°e®", after replacingu=0 andgq=e"". For
the numerical analysis, we use the function predefinegAm-
EMATICA, namely, EllipticThetg3, 0,e™7]. For more details on the
elliptic functions, see Ref14].

V. FINITE VOLUME CORRECTIONS

A. Contact with Lu scher’s formula

To make contact with Lscher’s formula, we subtract the
one-loop chiral correction to the pion massuared as ob-
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—— ChPT
T 7| —— QChPT
PQChPT (r_=1)
i — - — PQChPT (r_=0.5)
02 — — PQChPT (r_=0.2)
[ 1 FIG. 2. The finite volume cor-
0.0 - 1 0.0 rections to fy in full, partially
r 1 quenched, and quenched theory,
] Egs.(33), (34), (35), respectively.
-0.2 - -0.2 The partially quenched case that
| we consider is the one with\;
=2 dynamical quarks degenerate
in mass for which we take g,
' ' ‘ ' ‘ ‘ =me/m™=1,050.2.  Each
I ] plot corresponds to a different
02 L 4t 102 value of the size of the side of the
10 1 box L, indicated in the plots. We
| I \\\k ] keep the same scale, to better ap-
0.0 + - = 0.0 preciate the reduction of the finite
[ 1 volume effects a4 is increased.
-0.2 1r 4 =02
L=2.0 fm L=2.5fm
0 0.2 04 06 0 0.2 04 0.6
r r
tained in the fulllunquenchedChPT in infinite volume from To recover Ligcher's formula, one takes the limit
the one obtained in a finite volume. By evaluating the sums;—, which amounts to using the asymptotic fo@g) in
as described in the previous section, we have Eq. (30),
(=) Am_ 3(mw)2 e Mab a1
1 m2\ 1 m’, m, 2\ f ) (27m, L)% 3y
=ZBomq|1+ 5| mZlog| — ——mfllog(—z) ]
(4mf) M where only the leading exponential has been kept. The ben-
efit of Eq. (30) is that it offers insight into the subleading
1 1 1 terms, suppressed by higher powerseif™=- in Llscher’s
m,zT(L)=ZBOmq 1+ TsE ( ——)l formula. In the range of volumes in which the right-hand
2017 g \og 3w, side of Eq.(31) becomes sizable, the subleading exponential

terms cannot be neglected and the form(88) has to be
used. For the volumes currently used in lattice simulations,

these corrections are important if one is to work with very
m2 m2 () light pions.

Before closing this subsection, two important comments
are in order, though. First, Ilsgher’s formula relates the fi-
nite volume shift of the pion mass to the-7 scattering
amplitude. Equatioit31) refers to the tree levet-7 scatter-
ing amplitude. A recent study in Refl6] shows that the
inclusion of the NLO chiral corrections to the-7r scattering
amplitude produces a sizable correction to E23f). It is,
however, not clear whether or not such a conclusion persists
in the full (nonasymptotigcase, i.e., Eq30). It is even less
o _ 5 ] _ _ clear if such a conclusion carries over to other quantities. To

Notice that the functioy,(M*,0L), defined in Ref[18], is re-  rg50lve that issue, one should compute the finite volume two-
lated to£y(L,M) through loop chiral correction to the pion masand to other quanti-
ties), which is beyond the scope of the present work. It is
clear, however, that before this point is clarified, one cannot
safely use the one-loop calculation to correct for the finite

Am?

w

_ mZ(L) —mZ ()

, (30

1 1
= 212 Eup(Lmy) — 551/2('—,”17;)

which coincides with the result of Ref18].2 Analytic terms
in m2() and m2(L) were omitted since they cancel in
(AmZ2)/mZ.

e
§S<L,M>=T;gs+m(M2,o,L>.
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AB, /B,

= ChPT
—— QChPT
———————— PQChHPT (r =1)
— - — PQChPT (r_=0.5)
02 — — PQCHPT (r_=0.2)
00 1 0.0
02 F 1 — -0.2
1t L=1.5fm | FIG. 3. The finite volume cor-
11 L P 1 rections to By in full, partially
: ; : — ‘ quenched, and quenched theory,
1 [ Egs.(38), (39), (40), respectively.
02 - 1 F L 102
[ 1 \
0.0 - - . 0.0
—02 - - L 1 02
L=2.0fm | | L=2.5 fm
' ' ' | L L L | L L L 1 ' ' 1 L L L | L L L |
0 0.2 04 06 0 0.2 04 0.6
r r

volume effects. At present the one-loop ChPT finite volume Af, | CPPT
expressions are useful for making a rough estimate of the (f—) == — [l my) +2&5(L, my)
finite volume corrections. The second comment is that the K 8f

derivation of Lischer’s formula relies crucially on unitarity.

Since the unitarity in the partially quenched and quenched +éudlmy)], (33
theories is lost, Lecher’s formula is not valid in these theo-

ries. POCh 2 2
AfK Q PT 1 mSS_ m,n_
T YE — 5 ¢al.mg)
B. Finite volume corrections tofy K
We now use the expressions for the decay condtant n m%s_ 32 L
derived in the infinitd Eqs. (8)—(10)] and finite[Eqgs. (16)— 5 Sadbmp)
(18)] volume cases, to estimate the shift fig due to the
finiteness of the volume. For that purpose we define —A4[ &1L myg) + &1(LMog) |
2 2

Af fr(L)—fk() Mss— Mk

= K (32 +— 5 [&ua(L,my) = &1L, my) ],

fK fK(OO) My —mz

(34)
It should be clear that the analytic terms multiplied by the
low energy constantémitted in Secs. Il and I)lcancel in QChPT 2 2
the ratio(32).% Finally, we have Afk __ b oMk mo[g (L,myy)
f 2 2 2 1/2\ =112
K 12f| mg—m:
2 2
SWritten schematicallyf () = f"*{1+log..+Cmy) is equivalent _ _ Mo~ @Mz,

to f®&=fy () (1—log.—Cmy), where the analytic term is multi- SESHE 2 Eard L, Mz2)
plied by the generic low energy constaditf"¢is the same in finite
and infinite volumes, so that one simply obtaiRgL) = fx()(1 mg— aogm;
—log.+log,). Thus, at this order, the effects of low energy con- - 2 a(Lmy) (. (35

stants cancel.
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Similar expressions in full and quenched ChPT, but for thenounced if m, is increased tom,=0.65 GeV or m,
case in which the kaon consists of two quarks degenerate in o 7 Gev, values sometimes also quoted in the literature.
mass, were obtained in Rdf]. For the general nondegen-  From Fig. 2 we see that the finite volume effects become
erate case and for PQChPT, the above formulas are new. 3ore pronounced as the light quark gets closer to the physi-
Ref. [19], the finite volume terms are taken into accountcq| y/d quark mass. In particular, they result in shifting the
while computing the full ChPT corrections fg relevant to quenched « toward a larger value, whereas the shiftfgfin
the lattice computation of this quantity with staggeredy (unquenched QCD is opposite, i.e., the finite volume
quarks. _ . effects lower the value of,. The partially unquenched
_In Fig. 2, we illustrate the finite volume effects as pre- cases lie between the two. We see that the quenched chiral
dicted by the above formulas. Since the mass of the strangggS become dominant as soon as the mass of the valence
quark is directly simulated on the Iatticr?, we keep it fixed. Asquark becomes lighter than the sea-quark mass. We did not
for the light quark we define=m,/mg™®, which we then  pjot the case when the valence and sea quarks are degenerate
vary asr e[rysq,1], wherer 4= (m,+mg)/2ms=0.04[20].  since such a curve is very close to the full ChPT case. It is
We also use the Gell-Mann-Oakes-Rent@&MOR) and  worth noticing that in the region af<0.2 the finite volume
Gell-Mann—Okubo formulas, namely, effects for the partially quenchefg , with r.=1, are larger
than for the quenched case.

5 5 r+1

m_=2Bomqr, mK=ZBOmsT,
) C. Finite volume corrections toBy
r+
mfI=ZBOmsT. (36) We proceed in a completely analogous way as in the last
subsection and define
The illustration in Fig. 2 is m for realistic volum r-
e illustratio g s made for realistic volumes cu ABK= By (L) — By(o)

rently used in lattice simulation&:e[1 fm,2.5 fm]. In ob-
taining the quenched curves, we assumyg=0.6 GeV and
ao=0.05. The curves are insensitive to the valuexgf On
the other hand, the effect shown in Fig. 2 becomes proThe corresponding ChPT expressions read

Bk By () ' St

AB\S"PT 1 m2 +m?2 , m2
B, =— | =~z &uAL.my) +2micEap(L M) — | 7= — | Ea(Lm,) |, (39
K 4f My My
( ABK) PQChPT 1 |[5mz—m2 misma mz+m2  mis m>
— S — L mp) + + Lm,
BK 2f2 Zmﬁ mi— mi_ 51/2( 22) Zmﬁ mi— mi_ §1/2( )
(Mg +m3,) (M~ m3g , (Mg +m2)(m&s—m?)
+ 5 & L Myp) —Mic€3o(L, My ) — 5 Eap(L,my) |, (39
Amy Ami
(ABK)QC"PT 1 2m? 3mz—m?  ap/ mz+m: m2
— == = i +— L.m
Bk 212 | [ 3(mz—m?) mg 3lmz—m2 m2 bl mz2)
ng N mﬁ+m§7 Qg mﬁ+mi+ mi) L)+ (mﬁ+m§2)(m§—aom§z)§ (LM
- - — | [Su2d LMy 320 L, My
3(mg—-m2)  mg 3 mg-m2 mg 6m2
, (m2+m2)(m3— agm?)
+miégp(l,my) + 5 Eap(Lm,) . (40)
My

The illustration, similar to the one discussed in the previousonlinearities which would otherwise be attributed to the
subsection, is provided in Fig. 3. We observe that, as in th@hysical chiral logarithms.

case off, the finite volume effects become pronounced as—

the light valence quark is lowered toward the physicad By “physical chiral logarithms,” we mean the chiral logarithmic
qguark mass. Moreover, they have a tendency to enhance tlehavior in infinite volume.
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D. Asymptotic L —o formulas for fx and By quenched. After working out the formulas in both infinite
As discussed at the beginning of this section, the differ2nd finite volumes, we were able to discuss the impact of the

ence of the one-loop ChPT formulas for the pion mass in thdinite volume effects on the chiral behavior B and By .

finite and infinite volumesi) reproduces Lscher’s general We show that in most situations the_p_hysical Chiral_loga-
formula at LO andii) allows one to estimate the size of the rithms are completely drowned in the finite volume artifacts.

corrections suppressed in “écher's formula. Similar In other words, unambiguously disentangling the physical
asymptotic formulas fofc andBy can be obtained from our chiral logarithms from the finite volume lattice artifacts does
full ChPT expressions f%AfK/fKK and ABy /By, i.e., Egs. not appear to be feasible unless very large volumes are used.

(33) and (38), respectively. By using the asymptotic form We also discussed the shift 6f andBy induced by the

(29), we get finiteness of the volume. In our discussion we fix the strange
quark in the kaon to its physical masg, whereas the mass
Afg 9/m_\2 e ™Mt of the light quark is varied betweem¢/25 andmg. This
T Z(T = mimics the current lattice QCD studies in which the strange
K (2mm,L) quark is directly accessed on the lattice while the accessible
5 5 ) .. light quarks have =m,/mge (0.5,1), so that an extrapola-
ABx 3 mgtmzim; e Mr 4p tion to the physicatq=0.04 is necessary.
By 2 m2 f (27m_L)3¥2° (41) The results of our calculation indicate that for0.25 the

finite volume effects are very small as longlas2 fm. In
To check how good an approximation these formulas are tghat region we provide a simple asymptotic formula which is
the complete ones, given in Eg83) and (38), we made a an accurate approximation of the full ChPT expressions.
numerical comparison of the two, and conclude that for vol- From our formula it is also obvious that the finite volume
umes larger than (2 fm)and masses=1/4, Eq.(41) is an  corrections tofx andBy are different in quenched and par-
excellent approximation. Otherwise, i.e., in the region intially quenched QCD from those obtained in full QCD.
which the finite volume effects become important, theTherefore, if in practical numerical simulations one wants to
asymptotic formg41) become inadequate and Eq33) and  see only the effects afun)quenching, the finite volume ef-
(38) should be used. We note, in passing, that formulas simifects must be kept under control.
lar to those in Eq(41), but in the quenched case, were re-
ported in Refs[5,6]. ACKNOWLEDGMENTS
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