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Modeling quark-hadron duality for relativistic, confined fermions
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We discuss a model for the study of quark-hadron duality in inclusive electron scattering based on solving
the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We
qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss the
similarities and differences to previous models that simplified the situation by treating either the quarks or all
particles as scalars. We discuss the scaling results for the plane-wave impulse approximation and final-state
interactions, and the approach to scaling using the analog of the Callan-Gross relation fory scaling.
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I. INTRODUCTION

Quark-hadron duality was first discovered experimenta
in inclusive inelastic electron scattering by Bloom and G
man@1# more than 30 years ago. In the past few years, qu
hadron duality has generated a lot of interest both on
experimental@2,3# and theoretical sides@4–17#. Duality is a
major point in the planned 12 GeV upgrade of CEBAF
Jefferson Lab@18#. It is also the basis for using QCD sum
rules @19,20# and plays an important role in the study
semileptonic decays of heavy mesons@21,22#.

Quark-hadron duality implies that, in certain kinema
regions, the appropriate average of hadronic observable
described by aperturbative quantum chromodynamic
~PQCD! result. This is of great practical interest, as we a
actually able to carry out a perturbative QCD calculation,
contrast with a full QCD or a full hadronic calculation. Su
prisingly, duality was experimentally shown to hold in incl
sive inelastic electron scattering down to momentum tra
fers of Q2'0.5 GeV2 @2#. Duality also holds in the
semileptonic decay of heavy quarks@23#, and in the annihi-
lation e1e2→hadrons. The exact manner of averaging d
pends on the process.

Duality is not only a very interesting phenomenon by
self, but it also has extremely important applications. As
ality connects the resonance region, i.e., the region where
final-state invariant massW,2 GeV, and the deep inelasti
region, one may infer information on one from the other. T
earliest example discussed was the extraction of the ela
nucleon form factor from the deep inelastic scaling cu
@24#. In @25#, higher twist contributions were inferred from
the resonance data. This connection afforded by dua
opens up the largexB j regime experimentally, as higherQ2

measurements are difficult to obtain—note that the (e,e8)
cross section contains the Mott cross section as a factor,
the Mott cross section is proportional to 1/Q4. The largexB j
region is much easier to access in the resonance regio
the necessaryQ2 values there are much smaller.

One of the most exciting and promising applications
duality will be the measurement of the neutron polarizat
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n at largexB j . There are many different theo

retical predictions for this quantity, ranging from 0@unbro-
ken SU~6!# to 1 @PQCD# @26#. Experimental information on
A1

n at largexB j would greatly enhance our understanding
the valence quark spin distribution functions. There are v
recent new data from Jefferson Lab, going up toxB j50.6
@27#, with small error bars, but the deep valence region
xB j→1 remains inaccessible in deep inelastic scattering
duality is well understood, one may take data in the re
nance region, apply a proper averaging procedure, and
obtain results forA1

n(xB j→1).
Before describing new approaches to modeling duality

is worth remarking that a global duality of the correlatio
functions for nonsingular, confining potentials was discus
by Vainshtein, Zakharov, Novikov, and Shifman@19# in 1980
in the context of quantum-mechanical sum rules. New th
retical approaches to a better understanding of duality h
been based on modeling: one branch uses the nonrelativ
constituent quark model, with some relativistic correctio
to describe duality@4,6,10,11#, and another branch starts th
modeling with a relativistic one-body equation@5,7–
9,15,16#. The former branch makes contact with the pheno
enology. It was started by the pioneering work of Close a
Isgur @4#, where the authors investigated how a summat
over the appropriate sets of nucleon resonances leads to
ton model results for the structure function ratios in t
SU~6! symmetric quark model. This work was recently e
panded@6# to include the effects of SU~6! spin-flavor sym-
metry breaking. In@10,11#, the authors considered the fir
five low-lying resonances. Our results belong to the lat
branch. The goal of these modeling efforts is obvious: to g
an understanding of quark-hadron duality and the conditi
under which it holds, by capturing just the essential physi
conditions of this rather complex phenomenon. We impo
these basic requirements for a model: we require a relati
tic description of confined valence quarks, and we treat
hadrons in the infinitely narrow resonance approximation

This paper is the third in a series on modeling qua
hadron duality in inclusive electron scattering—the react
in which quark-hadron duality was first observed by Bloo
©2004 The American Physical Society06-1
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and Gilman. Previously, we simplified the situation by fi
assuming that all particles involved are scalars@15#, and then
relaxed these constraints for beam electrons and exch
photons, and only assumed scalar quarks@16#. While these
simplifications are physically significant, they allowed us
calculate all interesting quantities analytically or semia
lytically. We found that the features of quark-hadron dual
were reproduced qualitatively in both models. Now, we ha
taken one more step towards a realistic description of
problem: previously, we simplified the problem by discus
ing scalar quarks, but now, we use proper spin-1

2 quarks in
our model. This lays the foundation for investigating dual
in polarization observables.

Also, for the first time, in this paper we present calcu
tions for three different confining potentials. Previously, w
used a linear potential in the Klein-Gordon equation, wh
leads to a ‘‘relativistic oscillator.’’ Now, we present a scal
linear confining potential and combine it with a vector p
tential, either a static color Coulomb potential or a runni
color Coulomb potential.

The paper is organized as follows. First, we introduce
model and then give model results in the plane-wave impu
approximation~PWIA! where the bound quark is knocke
into the continuum by the absorption of the virtual photo
The next section discussesy scaling: the connection betwee
y scaling and Bjorken scaling,y-scaling results from our two
previous models,y scaling in PWIA and including final-stat
interactions~FSI!, and the sensitivity to different potential
Then, we discuss our results for sum rules in PWIA and F
In the next section, we derive the analog of the Callan-Gr
relation fory scaling, and we investigate the onset of scal
through this relation. Then, we summarize our results
give a brief outlook.

II. THE MODEL

Our model consists of a constituent quark bound to
infinitely heavy diquark and is represented by the Dir
Hamiltonian

Ĥ5a•p̂1b~m1Vs~r !!1Vv~r !, ~1!

where the scalar potential is a linear confining poten
given by

Vs~r !5br, b50.18 GeV2. ~2!

We have used the constituent quark mass in this paper, a
main interest is the study of quark-hadron duality, which s
in at rather low Q2. Experimentally, Q2'0.5 GeV2 is
enough. In this kinematic region, the appropriate degree
freedom is the constituent quark, which has acquired m
through spontaneous chiral symmetry breaking. We h
used a value for the quark mass ofm5258.46
MeV—obtained previously in a fit to heavy mesons@28#. In
our model, the vector potential is provided by a vector co
Coulomb potential. Calculations will be presented where
vector color Coulomb potential is absent, that is,Vv(r )50,
where the vector potential is the simple static Coulomb
tential
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Vv~r !5Vc~r !52
4

3

as

r
~3!

with as50.181 and where the color Coulomb potential
corrected to allow for the running coupling constant in
manner similar to that used by Godfrey and Isgur@29#. The
vector potential then has the form

Vv~r !5Vcr~r !

52
4

3r S ac

11e2r0 /d

11e(Abr2r0)/d
1(

i 51

2

a ierf~g i r !D , ~4!

where

ac50.118,

r050.04,

d50.01,

a150.239,

a250.271,

g150.746 GeV,

g255.40 GeV. ~5!

We assume that only the light quark carries a charge,
we choose unit charge for the light quark for simplicity. Th
inclusive cross section is given by the usual Rosenbl
equation

d2s

dVdE
5sMottH Q4

q4
RL~q,n!1S Q2

2q2
1tan2

u

2D RT~q,n!J ,

~6!

where sMott is the Mott cross section,q is the three-
momentum transfer from the electron to the target,n is the
energy transfer, andQ25q22n2. The longitudinal and trans
verse response functions for the model are given by

RL~q,n!5(
f

u^C f ueiq•ruC0&u2d~n1E02Ef ! ~7!

and

RT~q,n!5(
f

(
i 51

2

u^C f ueiq•ra i uC0&u2

3d~n1E02Ef !, ~8!

where E0 is the ground-state energy. In terms of these
sponse functions, the structure functions are
6-2
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W1~Q2,n!5
1

2
RT~q,n! ~9!

and

W2~Q2,n!5
Q4

q4
RL~q,n!1

Q2

2q2
RT~q,n!. ~10!

The Dirac wave functions and energy eigenvalues are
tained by integrating the Dirac equation using the Run
Kutta-Feldberg technique and solutions are obtained for
ergies up to 12 GeV with the radial quantum number on
>200 anduku<70.

In our model, we excite the bound quark from the grou
state to higher-energy states, and we do not allow it to de
Thus, we do not include any particle production in o
model, and we are strictly quantum-mechanical in this se
We do not have any gluons in our model either, which me
that we do not encounter any radiative corrections. Since
response functions consist of a sum ofd functions, we
choose to smear out the response functions by folding wi
narrow Gaussian for purposes of visualization. The smea
response functions are then given by

RL(T)~q,n!5
1

Ape
E

2`

`

dn8e2[(n2n8)2]/ e2

3RL(T)
unsmeared~q,n8!. ~11!

Before presenting numerical results, we would like to
mind our readers that, while the present model is more r
istic than its predecessors, its results should not be comp
quantitativelyto inclusive electron scattering from a nucleo
Due to the assumption of an infinitely heavy antiquark~or
diquark! to which the light quark is bound, our calculatio
most resembles inclusive electron scattering from
B-meson, which has never been measured. However,
goal of our work is to gain a qualitative understanding
duality, and the current simplification is no impediment
this.

III. THE PLANE-WAVE IMPULSE APPROXIMATION

The analog to PQCD for this model is the plane-wa
impulse approximation, where the bound quark is knock
into the continuum by the absorption of the virtual photo
The response tensor for this approximation is
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Wmn5
1

8E d3p

~2p!3

m

Ep1q
d~n1E02Ep1q!

3TrFgm
g•~p1q!1m

2m
gn@g•nv~p!1ns~p!#G ,

~12!

where the vector and scalar momentum density distributi
nv(p) and ns(p) are defined in terms of the ground-sta
wave function,

C10
1
2 m~p!5S c

10
1
2

(1)
~p!Y

0
1
2

m
(Vp)

c
10

1
2

(2)
~p!Y

1
1
2

m
(Vp)

D ~13!

as

nv~p!5S nv
0~p!,

p

upu
nv

s~p! D ~14!

with

nv
0~p!5

1

2p
@c

10
1
2

(1) 2~p!1c
10

1
2

(2) 2~p!# ~15!

and

nv
s~p!5

1

p
c

10
1
2

(1)
~p!c

10
1
2

(2)
~p!; ~16!

and

ns~p!5
1

2p
@c

10
1
2

(1) 2~p!2c
10

1
2

(2) 2~p!#. ~17!

After performing the angular integrals, the response fu
tions can be written as

RL~q,n!5
1

16p2q
E

uyu

y12q

dppH ~n1E0!nv
0~p!1mns~p!

1
~n1E0!21p22q22m2

2p
nv

s~p!J ~18!

and
RT~q,n!5
1

8p2q
E

uyu

y12q

dppH ~n1E0!nv
0~p!2mns~p!2

~n1E0!22p21q22m2

2q

~n1E0!22p22q22m2

2pq
nv

s~p!J ,

~19!
6-3
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where

y5A~n1E0!22m22q. ~20!

IV. y SCALING

Duality implies that we see scaling at high enough ene
and momentum transfers, and that the results in the r
nance region, for lower momentum transfers, oscill
around this scaling curve@2#. So, the first point that needs t
be checked is the onset of scaling in our model. For
previous two models, we were able to show analytically t
there is scaling, and that the scaling curves for PWIA a
FSI coincide exactly. This result is in contrast to@7#, where a
30% difference was found between the PWIA and FSI sc
ing curves. In@7#, a different one-body equation, a semire
tivistic Hamiltonian of the formH5Aupu21Asr for mass-
less quarks, was used, whereas we have used a Klein-Go
equation in our previous modeling, appropriate for spinl
‘‘quarks’’ with mass. Now that we use the Dirac equation, w
will again have to investigate the important question
whether the two scaling curves coincide or not. The sca
behavior, and a possible violation of ‘‘FSI scaling cur
5PWIA scaling curve,’’ would have implications for ou
interpretation of deep inelastic scattering data, where
usually assumes that FSI can be neglected. The questio
whether and how scaling may arise in the presence of
has been discussed in the literature before, both for nonr
tivistic @30–32# and relativistic@33# approaches. Here, w
are interested in duality, and we need to compare the
scaling results with the PWIA scaling results.

Note that there is a certain arbitrariness in defin
‘‘scaling’’—have we reached scaling only once all curv
coincide perfectly, or is a minimal shift in the curves whe
e.g., doubling the momentum, enough? In the following,
say that ‘‘scaling’’ is reached when the change in the curv
minimal for a very substantial change in the moment
transfer.

A. Bjorken scaling and y scaling

In our two previous papers on modeling duality@15,16#,
we have presented our results for the scaling function
fixed Q2 as functions of a scaling variableu. In the Bjorken
limit Q2→`, u goes to uBj5(M /m)xBj , where xBj
5Q2/2Mn is Bjorken’s scaling variable, anduBj is the ap-
propriately rescaled version ofxBj for the case of a targe
with infinite massM. The values of the energy transfern
accessed for various, fixed values ofQ2 are shown in Fig. 1
in the top panel.

We would like to point out that the previously used sim
plification of modeling the quark as a scalar has allowed
to obtain analytic results for the structure functions, givi
us access to high-energy transfers and highQ2 without any
practical, numerical problems. Now, however, we have
rely on a solely numerical solution of the Dirac equation, a
cannot push to arbitrarily highQ2 andn values anymore. In
particular, we find about 28 000 energy eigenstates, all be
12 GeV energy. While this is an impressive number of sta
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it is clear from Fig. 1 that we will not be able to reach th
high Q2 values found necessary for scaling in our model@16#
with energy transfers of less than 12 GeV. Note that the p
of the structure functionnW2 is localized aroundu'223,
so the higherQ2 values accessible at largeru have little
practical significance.

The matrix elements take their simplest form if calculat
as functions ofq. Therefore, we considery scaling in this
paper, and use the scaling variable as defined in Eq.~20!.
This variable leads to scaling for fixeduqu5q @17#. The ki-
nematics accessed in ay-scaling analysis are shown in Fig
1 and 2. Figure 1, bottom panel, shows the values of
energy transfern accessed in the range fromy522 GeV to

FIG. 1. The transferred energyn as a function of the scaling
variableu for various values of the four-momentum transferQ2 ~top
panel!, and as a function of the scaling variabley for various values
of the three-momentum transferq ~bottom panel!.

FIG. 2. The transferred four-momentumQ2 as a function of the
scaling variabley for various values of the three-momentum tran
fer q.
6-4
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y52 GeV—this is the range in which we have no
negligible contributions to our response functions and str
ture functions. Figure 2 shows that we are now probin
different kinematic region than inu scaling: we access bot
spacelike and timelike values of the four-momentum trans
Q2. At lower, negativey values,Q2 is spacelike and rathe
large. In this region, we can easily reach large values a
ciated with scaling inu- or x-type variables. The accessedQ2

values decrease slowly with increasingy, and at a point
where y05E01O(1/q), we reach the photopoint,Q250.
Note that due to the fact thaty0 is independent ofq in a first
approximation, the photopoint is reached at the samey value
independent of the considered three-momentum transfeq.
For y.y0, we probe the timelike region. Note that one al
reaches timelike values ofQ2 for y,22q2E01O(1/q); in
this region, however, we find zero strength of the respon
and it is practically irrelevant for our case.

B. Comparison with previous results

In order to provide a connection betweenu scaling andy
scaling, we show our results for our two previous mod
with scalar quarks fory scaling. We start out with the all
scalar results discussed in@15#. In @15#, we treated the beam
exchange particle, and quark target as scalars. This simpl
treatment allows for an analytic solution of the proble
With all particles being scalars, only one structure funct
appears, there is little structure, and scaling sets in aro
Q2'15 GeV2. Scaling for the PWIA sets in at very lowQ2

of about 2 GeV2. Keep in mind that we scatter from a
infinitely heavy target, so that a comparison of numeri
values forQ2 for the onset of scaling with actual nucleo
data is meaningless.

Figure 3 ~top panel! shows the correspondingy-scaling
plot for the PWIA. One can see clearly that forq52 GeV,
scaling has already set in. Obviously, there are no reson
bumps in the PWIA plot, as the final state is a fictitious ‘‘fre
quark.’’ In the bottom panel of Fig. 3, we show the sam
PWIA scaling function, plotted for fixed four-momentum
transferQ2 versusu. The overall features of the curves, plo
ted either way, are the same: they are smooth and s
quickly. In theu-scaling plot, one sees that scaling has se
at Q256 GeV2, and the changes from the lower value
Q252 GeV2 to Q256 GeV2 are tiny.

Figure 4, top panel, shows they-scaling plot for the all-
scalar model including FSI. Here, one can see that sca
does take a while to set in—the lowest value forq that is
displayed, q52 GeV, still shows the typical resonanc
bump structure. However, the overall shape even at lowq is
already very close to the scaling curve, but slightly shift
towards highery values. The scaling curve is approximat
reasonably atq56 GeV, and the curves start to coincid
with each other onceq510 GeV is reached.

This is contrasted with theu-scaling plot for the all-scala
model including FSI in the bottom panel of Fig. 4. One c
see how the resonance bumps at lowerQ2 give way to
smooth curves at larger values of the four-momentum tra
fer. One can see that scaling sets in just in the same w
independent of which set of kinematic variables one choo
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for plotting. For practical reasons—the current matrix e
ments take their simplest form as a function ofq—we
choose to present our results as functions ofq andy.

Now, we will proceed to show they-scaling results for the
‘‘scalar quark model’’@16# too. This will allow us to study
the transition from a simple model to a more sophistica
version, and to point out differences and common featu
In @16#, we included the proper spins for the beam electro
and the exchange photons, but still treated the quark a
scalar. We will refer to this model as the ‘‘scalar qua
model’’ in the present paper. This model has a conser
current, and a much richer structure, due to the fact that
photon can have transverse and longitudinal polarizat
which leads to two structure functions. In Fig. 5, top pan
the PWIA results definitely scale more slowly than for t
all-scalar model. Scaling is reached atq520 GeV. Not sur-
prisingly, the FSI results, shown in the bottom panel of F
5, exhibit an even slower scaling. Even fromq520 GeV to
q550 GeV, a small difference is visible in the scalin
curves. This is the slowest onset ofy scaling which we have
encountered so far, and this mirrors precisely what we
pected from our previousu-scaling results. Now we are in
good position to progress to the main topic of this pap
namely the results for proper spin-1

2 quarks. Our study of the
onset of scaling for PWIA and FSI will allow us to draw
some conclusions about the onset ofu scaling for the FSI
case, even if we cannot calculate for the necessaryQ2 nu-
merically. First, we are going to present results for the PW
for three different potentials.

FIG. 3. The scaling functionScq of the all-scalar model@15# is
plotted versusy for several values of the three-momentum transfeq
in the top panel, and it is plotted versusu for several values of the
four-momentum transferQ2 in the bottom panel. The results show
have been calculated in PWIA.
6-5
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C. y scaling in PWIA

First, we show our results for PWIA, where we expe
scaling to set in at lower momentum transfers than for
FSI results. For the FSI results, the scaling curve is gener
in our model by many overlapping resonances, and
needs to reach kinematics where a sufficient number of r
nances is accessible to see scaling.

The scaling variabley is defined by Eq.~20!, and by in-
verting to findn as a function ofy andq, the response func
tions can be written as functions ofq andy. For example, the
PWIA response functions~18! and ~19! can be rewritten as

RL~q,y!5
1

16p2q
E

uyu

y12q

dppHA~y1q!21m2nv
0~p!

1mns~p!1
y212qy1p2

2p
nv

s~p!J ~21!

and

RT~q,y!5
1

8p2q
E

uyu

y12q

dppHA~y1q!21m2nv
0~p!

2mns~p!2
y212qy12q22p2

2q

3
y212qy2p2

2pq
nv

s~p!J . ~22!

FIG. 4. The scaling functionScq of the all-scalar model is plot-
ted versusy for several values of the three-momentum transferq in
the top panel, and it is plotted versusu for several values of the
four-momentum transferQ2 in the bottom panel. The results show
have been calculated including final-state interactions~FSI!.
05400
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In the limit of largeq, the PWIA response functions be
come

lim
q→`

RL~q,y!5
1

16p2Euyu

`

dppH nv
0~p!1

y

p
nv

s~p!J ~23!

and

lim
q→`

RT~q,y!5
1

8p2Euyu

`

dppH nv
0~p!2

y

p
nv

s~p!J . ~24!

These response functions therefore scale iny. Note that the
longitudinal response is shifted toward positivey while the
transverse is shifted toward negativey, sincenv

s(p) is posi-
tive. The overall peak heights of the longitudinal and tran
verse responses in PWIA have roughly a 1:2 ratio.

We start by investigating the behavior of the PWIA r
sponses for the linear potential:Vs5br,Vv50. In Fig. 6,
bottom panel, we show the longitudinal responseRL for vari-
ous, lower three-momentum transfersq. Here, one sees
clearly that both the peak height and the width of the pe
are reduced significantly by increasingq for q,10 GeV.
The peak position also shifts very slightly to lowery values.
In Fig. 6, top panel, we show the longitudinal responseRL
for various high three-momentum transfersq. There is a
small but visible change in going fromq510 GeV to q

FIG. 5. The scaling functionS2cq of the ‘‘scalar quark’’ model is
plotted versusy for several values of the three-momentum trans
q. The results shown in the top panel have been calculated
PWIA, i.e., for the bound-free transition. The results shown in
bottom panel have been calculated including final-state interacti
i.e., for the bound-bound transition.
6-6
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520 GeV. Scaling is reached forq540 GeV, and the
curves corresponding to even higher momentum transfers
incide.

In Fig. 7, we show the corresponding results for the tra
verse response functionRT . For the low momentum trans
fers, bottom panel, one sees that increasingq leads to an
increase in peak height and width, along with a small shift
the peak position towards lowery values. The top panel with
the high momentum transfers shows that scaling sets in fa
for RT than forRL . Changes are smaller from oneq value to
the next, and the curves coincide onceq540 GeV.

It is interesting to consider the onset of scaling when m
ing our modeling more realistic: in the transition from th
‘‘all-scalar’’ to the ‘‘scalar quark’’ model, we observed a con
siderable slowdown in the onset of scaling, due to the ad
tional structure, and to the more complicated form of t
terms. Now, we have added the proper spin to the quarks
interestingly, we see no significant change in the scaling
havior. This is illustrated in Fig. 8, where we show highq
results for the scalar quark model and our current mo
While the two models obviously lead to different scalin
curves, theonsetof scaling occurs at roughly the same m
mentum transfers in both cases. From this, we have to c
clude that the spin of the quark does not play a signific
role in the onset of scaling.

D. y scaling in FSI

Now we will show the scaling behavior with FSI in
cluded. For reasons of numerical feasibility, we restrict o
selves to momentum transfers ofq<10 GeV.

FIG. 6. The longitudinal response functionRL is plotted versus
y for several low~bottom panel! and high~top panel! values of the
three-momentum transferq. The results shown have been calculat
in PWIA, using the linear potential.
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Figure 9 shows the longitudinal~top panel! and transverse
responses~bottom panel! as a function ofy for momentum
transfers from 2 to 10 GeV with a width ofe50.02 GeV for
smoothing@recall Eq.~11!#. As the momentum transfer in
creases, the average response moves to lowery, and since the
density of states is also increasing, the curves become
creasingly smooth. The longitudinal response approaches
asymptotic result from above, while the transverse respo
approaches it from below. The low-q curves with the visible
resonance bumps oscillate around the smoother curves
tained for higher momentum transfer.

FIG. 7. The transverse response functionRT is plotted versusy
for several low~bottom panel! and high~top panel! values of the
three-momentum transferq. The results shown have been calculat
in PWIA, using the linear potential.

FIG. 8. A comparison of the onset of scaling for the ‘‘scal
quark’’ model and the model with quark spin. The transverse
sponse functionRT and the scaling functionS2cq of the ‘‘scalar
quark’’ model are plotted versusy. The results shown have bee
calculated in PWIA, and have already been shown in Figs. 7 an
6-7
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Before comparing the scaling curves obtained in PW
and with FSI, we need to investigate the influence of o
smoothing procedure for thed function in energy. This is an
artifact of our model, as we assume that the resonance
not decay. In@16#, we used a Breit-Wigner-type smoothin
procedure, and the widthG had some influence on the nu
merically obtained scaling curves. However, for the sca
quarks discussed in@16#, we could find an analytic expres
sion for the scaling curve with FSI. This is not the case he
so this matter deserves careful investigation. The PWIA c
culation does not suffer from this problem, as the knock
out, ‘‘free’’ quark can have any energy, in contrast to t
fixed-energy resonance final states included in FSI. Th
fore, comparing the FSI and PWIA scaling curves is n
entirely straightforward.

In Fig. 10, we show the transverse responseRT at q
510 GeV, including FSI, calculated for various values
the Gaussian smoothing parameter«. We show curves for
«50.02 GeV, the value used for all other plots in this pap
and for«50.01, 0.04, and 0.08 GeV. While a smaller val
of « leads to less smoothing and visible resonance bu
even at higherq, the overall shape, peak position, and wid
are not changed. For larger values of«, there is no visible
difference from the original curve with«50.02 GeV. There-
fore, the dependence on the smoothing parameter« is so
weak that it will not influence our comparison of the PW
and FSI scaling curves.

FIG. 9. The longitudinal response functionRL ~top panel! and
the transverse response functionRT are plotted versusy for several
values of the three-momentum transferq. The results shown have
been calculated including FSI, using the linear potential.
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E. Model dependence

Calculations for the linear-plus-Coulomb potential a
shown in Fig. 11, and for the linear-plus-running potential
Fig. 12. These figures show features consistent with thos
the linear potential alone. One can see that the linear po
tial leads to the highest peak value for bothRT andRL , and
has the narrowest width, while the linear-plus-running pot
tial has the lowest peak height and the largest width. In
cases, we have not quite reached the scaling limit yet, bu
the changes fromq56 GeV toq510 GeV are small, we are

FIG. 10. The transverse response calculated for the linear po
tial in FSI atq510 GeV for various values of the Gaussian smoo
ing parameter«.

FIG. 11. The longitudinal response functionRL ~top panel! and
the transverse response functionRT are plotted versusy for several
values of the three-momentum transferq. The results shown have
been calculated including FSI, using the linear-plus-Coulomb
tential.
6-8
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not far away from it, either. The low-q results clearly oscil-
late around the high-q results, as expected from duality.

Figure 13 shows a comparison of the FSI and PWIA c
culations atq510 GeV for the longitudinal and transvers
responses. At this momentum transfer, the corresponding
and PWIA calculations differ by small changes in magnitu
and peak position. Since the calculations are not yet c
verged to the scaling limit, it is not clear whether this rep
sents a failure to scale to the same limit or is simply a ma
festation of differing rates of convergence.

On a fundamental level, this is important as FSI is usua
assumed to be negligible in the analysis of deep inela
scattering data. Recently, however, some authors h
pointed out that FSI—through gluon exchange between f
outgoing partons and target spectators—can make cont
tions to the leading twist structure functions at smallxBj @34#.
Still, the changes we see here are small, and one does
make much of a mistake in neglecting the effect of all t
FSIs combined.

V. SUM RULES

Some of the features of this model can be explored furt
and more precisely by means of energy-weighted sum ru
This will allow us to get a better feeling for the bulk featur
of our results, such as peak position and width. Moments
become constant at high momentum transfer are another
nature of quark-hadron duality@3#, and with the sum rules

FIG. 12. The longitudinal response functionRL ~top panel! and
the transverse response functionRT are plotted versusy for several
values of the three-momentum transferq. The results shown have
been calculated including FSI, using the linear-plus-running po
tial.
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derived in this section we can test whether our model
haves in this way.

By using an integral representation of the energ
conservingd function and replacing eigenenergies with t
Hamiltonian operator, the response functions can be wri
as

RL~q,n!5E
2`

` dt

2p
eint

3^C0ueiH (p̂,x)te2 iq•xe2 iH (p̂,x)teiq•xuC0&

5E
2`

` dt

2p
eint^C0ueiĤ (p̂,x)te2 iH (p̂1q,x)tuC0& ~25!

and

RT~q,n!5(
i 51

2 E
2`

` dt

2p
eint

3^C0ueiH (p̂,x)ta ie
2 iq•xe2 iH (p̂,x)teiq•xa i uC0&

5(
i 51

2 E
2`

` dt

2p
eint

3^C0ueiĤ (p̂,x)ta ie
2 iH (p̂1q,x)ta i uC0&, ~26!

where the momentum shift operator has been recognized
used in the last step for both response functions.

-

FIG. 13. The longitudinal response functionRL ~top panel! and
the transverse response functionRT are plotted versusy for three-
momentum transferq510 GeV. Results obtained for various po
tentials in PWIA and FSI are shown.
6-9
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The energy-weighted sum rules are defined as integra
the response functions over2`,n,` weighted with pow-
ers ofn. This integral can be simplified by writing

nneint5S 2 i
]

]t D
n

eint ~27!

and then integrating by parts to give

SLn~q!5E
2`

`

dnnnRL~q,n!

5S i
]

]t D
n

^C0ueiH (p̂,x)te2 iH (p̂1q,x)tuC0& t50

~28!

and

STn~q!5E
2`

`

dnnnRT~q,n!

5(
i 51

2 S i
]

]t D
n

^C0ueiH (p̂,x)ta ie
2 iH (p̂1q,x)ta i uC0& t50 .

~29!

The momentum-shifted Hamiltonian for our model is

H~ p̂1q,x!5a•q1H~ p̂,x!. ~30!

As a result, the sum rules can be reduced to nested com
tators involvingH, a•q, anda i .

The first three sum rules for the longitudinal response

SL0~q!5^c0uc0&51,

SL1~q!5^c0ua•quc0&50,

SL2~q!5q2. ~31!

The first of these is the Coulomb sum rule and simply
flects the conservation of charge. We have assumed tha
charge of the bound quark is 1 for simplicity. The second
these indicates that the response is roughly antisymm
aboutn50. The third indicates that the width of the distr
bution is increasing asq. This is consistent with the cas
where the longitudinal response consists of peaks at posi
and negative-energy transfers of roughly equal magnit
and opposite signs that are moving away from the origin
opposite directions by a distance proportional toq. The ex-
istence of the negative-energy peak is a consequence o
presence of the negative-energy solutions to the Dirac e
tion, which are not physical in a simple one-body model.

The positive-energy contribution can be isolated by de
ing the positive-energy moments

SL(T)n~q!5E
0

`

dnnnRL(T)~q,n!. ~32!

Since then50 moment is no longer normalized to 1, we c
define the average energy transfer as
05400
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^n&L(T)5
SL(T)1

SL(T)0
~33!

and the rms variation in energy transfer as

DnL(T)5ASL(T)2

SL(T)0
2^n&L(T)

2 . ~34!

Figure 14 shows the positive-energyn50 moments of the
longitudinal and transverse response functions. ForSL0, the
results for the linear, linear-plus-Coulomb, and linear-plu
running potentials are virtually identical except atq
.10 GeV, where the moment starts to fall off due to fin
range of excitation energies that have been calculated.
corresponding calculations in PWIA vary at smallq due to
variations in the available phase space, but must approa1

2

for q→`. It is clear from this figure that neither the FS
calculations nor the PWIA calculations have reached th
saturation values at the highest values ofq that have been
calculated here. Although it is plausible that the full resu
may be approaching the PWIA values for largeq, it is not
possible to determine that this is the case based on t
calculations.

Similar results can be seen for the transverse mom
shown in the bottom panel of Fig. 14, although there is
greater variation among the full calculations at lower valu
of q. In this case, the asymptotic value of the moment for
PWIA calculations is 1.

FIG. 14. The positive energyn50 moment of the longitudinal
response function~top panel! and the transverse response functi
~bottom panel!, calculated with FSI and in PWIA for the linear
linear-plus-Coulomb, and linear-plus-running potentials.
6-10
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The asymptotic values of^n&L(T) for the PWIA are given
by

lim
q→`

^n&L5q2E01
1

12p2E0

`

dpp3nv
s~p! ~35!

and

lim
q→`

^n&T5q2E02
1

12p2E0

`

dpp3nv
s~p!. ~36!

Note that the longitudinal and transverse responses are o
from one another by terms that depend uponnv

s(p). Since
the average value of the energy transfer increases line
with q, it is convenient to plot this moment asq2^n&L . This
quantity is shown in the top panel of Fig. 15 for the three F
and three PWIA calculations used in the previous figur
Here the three FSI calculations have very similar aver
positions while the average positions of the PWIA calcu
tions show large differences. This is the result of the se
tivity of the position of the peak of the PWIA response to t
difference in energy of the bound state and the lowest pla
wave state. In the FSI calculation, both the ground and
cited states see the same potential, which seems to limi
size of the shift in peak position for the three different p
tentials. For purposes of comparison, it is possible to eli
nate this disparity in the PWIA calculations by introducing

FIG. 15. The differenceq2^n&L between the average energ
transfer^n&L and the momentum transfer~top panel!, and the rms
width DnL ~bottom panel!, both for the longitudinal response, ca
culated with FSI and in PWIA for the linear, linear-plus-Coulom
and linear-plus-running potentials.
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constant vector potential into the Dirac equation. This has
effect of simply shifting the spectrum. As a result, we c
use this shift to place all of the ground-state energies at
same value. This shift has no effect on the response funct
for the FSI calculations, but will correct for the differences
phase space in the PWIA. In fact, we already have app
this shift above in the section ony scaling.

Figure 15, bottom panel, shows the rms widths for t
various calculations of the longitudinal response. T
asymptotic value of this width in the PWIA is given by

lim
q→`

DnL5F 1

12p2E0

`

dpp4nv
0~p!

2
1

144p4 S E
0

`

dpp3nv
s~p! D 2G 1/2

. ~37!

In all three cases, the width of the FSI calculation is close
that of the corresponding PWIA calculation. This sugge
that the width of the response is determined largely by
width of ground-state momentum distributions.

While we have not yet reached convergence to the sca
limit at the momentum transfers for which we have calc
lated, one can clearly see that the moments do flatten
with higher momentum transfers, qualitatively agreeing w
the observations in duality experiments.

VI. THE ‘‘ y-SCALING CALLAN-GROSS RELATION’’

From x scaling in the deep inelastic region, the Calla
Gross relation@35# 2xF1(x)5F2(x) is known to hold. The
physical significance of the Callan-Gross relation is that o
scatters off spin-12 objects, which have a dominant contribu
tion from the magnetization current, i.e., in the transve
part of the structure functions. In the real world, the Calla
Gross relation needs to be corrected for radiative effects,
is then observed to hold in the experimental data from
deep inelastic region. In our model, there are no radia
corrections, as we do not allow the production of new p
ticles. Our model is, so far, entirely quantum-mechanica
this sense. Therefore, we expect the Callan-Gross relatio
hold as inx or u scaling. As we focus ony scaling, we now
derive the analog of the Callan-Gross relation, using the
that both the longitudinal and the transverse response s
for largeq.

The structure functionsW1 ,W2 are related to the longitu
dinal and transverse responsesRL andRT by

W15
1

2
RT ~38!

and

W25
Q4

q4
RL1

Q2

2q2
RT . ~39!

The Callan-Gross relation can be obtained from these eq
tions by reexpressingq and n in terms of x and Q2, and
6-11
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increasingQ2 at fixedx. In order to find an analogous rela
tion for y scaling, we reexpressQ2 andn in terms ofq andy,
and then increaseq at fixedy. The kinematic factors in this
limit become

n
Q2

2q2
→E02y ~40!

and

Q4

q4
→OS 1

q2D→0. ~41!

The two functions,F15MW1 andF25nW2, in this limit
are

F15MW15
1

2
MRT→

1

2
MRT , ~42!

F25nW25n
Q4

q4
RL1n

Q2

2q2
RT→~E02y!RT .

~43!

Direct comparison of Eqs.~42! and ~43! yields F2
5F1(2/M )(E02y). Substituting the definitions ofF1 and
F2, one obtains the analog of the Callan-Gross relation foy
scaling,

2W1~E02y!5nW2 . ~44!

We now proceed to check whether our numerical res
fulfill the Callan-Gross relation, i.e., if we have reached t
scaling region already. First, we show results for PWI
where we can access arbitrarily highq without any numerical
problems. In order to display the approach to scaling,
show the ratio of the left-hand side to the right-hand side
Eq. ~44!, r CG52W1(E02y)/nW2. In Fig. 16, top panel, we
show r CG for the linear potential for values of the thre
momentum ranging fromq510 GeV toq51000 GeV. As
expected, scaling has set in at these high momentum tr
fers: the deviations ofr CG from 1 are very small, at the leve
of 5% or less forq>60 GeV. It is interesting to note that fo
higher y values,nW2 dominates, while for lowery values,
2W1(E02y) is larger. As in the calculation of the respon
functions, we have applied the energy shift to adjust the
ference in phase space in PWIA. Note that we have omi
the regionsy,21 GeV andy.0.7 GeV from our graphs
as they do not contain any strength in the responses.
latter is the area where (E02y) undergoes a sign chang
leading to a spike in the ratior CG that is unrelated to the
interesting physics—there is hardly any strength in the
sponses fory.0.5 GeV.

For lowerq values, see the bottom panel of Fig. 16, sc
ing has clearly not yet set in, and the deviations ofr CG from
unity are large. Comparing these results forr CG with the
onset of scaling observed in the PWIA response functionsRL
and RT , as discussed in Sec. IV C, we see thatr CG gives
additional information on the scaling behavior. While t
05400
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response function plots show that the curves coincide foq
540 GeV, at the latest, the Callan-Gross ratio is more s
sitive and still shows slight changes for increasing thr
momentum transfers.

Comparing the approach ofr CG to 1 for different poten-
tials, Fig. 17 shows that linear, Coulomb, and running pot
tials have an almost identical scaling behavior, both at lo
and high-q values.

In Fig. 18, we showr CG calculated including FSI forq
510 GeV, the highest value we have attained for FSI cal
lations. The calculations shown are performed for the diff
ent potentials considered in this paper, and one can see
just like for PWIA, the results for the Callan-Gross ratior CG
are very similar.

This similarity to the behavior of the PWIA curves lead
us to a direct comparison of the PWIA and FSI results for
linear potential in Fig. 19. The PWIA and FSI agree ve
nicely. For lowerq values, the FSI results obviously lead
oscillatory behavior, but they average to the smooth PW
result. The PWIA and FSI results for the Coulomb potent
also track each other very closely. For the running poten
the differences between FSI and PWIA are a bit more visib
but FSI and PWIA results are still very close.

While this is no proof, this behavior leads one to t
conjecture that scaling for FSI should set in at the samq
value as for PWIA, and that therate of convergencein both
cases is the same. Note that this result does not imply tha
individual scaling results for PWIA and FSI are the sam
Quite on the contrary, as we found that the FSI results

FIG. 16. The Callan-Gross ratior CG is plotted versusy for sev-
eral values of the three-momentum transferq. The results shown
have been calculated in PWIA with a linear potential. Note t
different scales employed in the two panels.
6-12
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MODELING QUARK-HADRON DUALITY FOR . . . PHYSICAL REVIEW D 69, 054006 ~2004!
q510 GeV are not that close to the PWIA scaling curve, a
as the PWIA results did not change dramatically fromq
510 GeV to higherq values, the conjecture of the same ra
of convergence suggests that the final scaling results
PWIA and FSI might be different.

VII. SUMMARY AND OUTLOOK

In the present paper, we have expanded our modelin
quark-hadron duality to describe a more realistic situati
we now include the spin of the quark. Numerically, this

FIG. 17. The Callan-Gross ratior CG is plotted versusy for the
linear, Coulomb, and running potential, for three-momentum tra
fers q52, 10, 20, and 100 GeV. The results shown have b
calculated in PWIA. Note the different scales employed in the t
panels.

FIG. 18. The Callan-Gross ratior CG is plotted versusy for three-
momentum transferq510 GeV. The results shown have been c
culated in FSI with a linear, Coulomb, and running potential.
05400
d

in

of
:

more complicated than the all-scalar model@15# and the sca-
lar quark model@16#, where the solutions could be foun
analytically. However, the inclusion of the quark spin pav
the way to study spin structure functions, which are one
the most promising areas for the practical application
quark-hadron duality.

We have tracked the changes introduced by making
models more realistic. Most notably, adding spin to the qu
does not seem to influence the onset of scaling: our pre
model shows about the same scaling behavior as the s
quark model. This is in contrast to the major changes
scaling behavior observed when going from the all-sca
model to the scalar quark model.

As before, we have seen that the features of duality
served in experiments, namely scaling, oscillation of
resonances around the scaling curve, and flat momen
higher momentum transfer, are reproduced qualitatively.
have used a constituent quark mass ofm5258.46 MeV for
our calculations. This number was taken from a fit to hea
mesons@28#. However, nothing hinges on using that partic
lar value: we changed our quark mass tom510 MeV, in
order to have a value reminiscent of a current quark ma
and repeated our calculations. It turns out that, while sca
does set in a little faster, there are no qualitative change
the results.

In spite of the considerable numerical effort, we have n
yet reached full convergence in FSI. Therefore, the import
question of whether the FSI scaling curve coincides with
PWIA scaling curve could not be answered with certain
yet. At the highestq value we reached,q510 GeV, we still
see small differences between FSI and PWIA curves. Fur
investigation of the high-q region with different methods
will be the subject of a future paper.

Our findings are different from the results in@8#. There,
the author used massless quarks and a specific assum
about the potential, namely an identical functional form f
the scalar potentialVs and the vector potentialVv . The con-
dition Vs5Vv leads to a simplification in the numerics, a
upper and lower components decouple. Results reporte
@8# indicate a much larger difference between FSI and PW
results atq510 GeV. This may be due to the potential ch
sen there.

For the first time, we have discussed several different

-
n
o

FIG. 19. The Callan-Gross ratior CG is plotted versusy for three-
momentum transfersq52 GeV andq510 GeV. The results shown
have been calculated in PWIA and FSI with a linear potential.
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S. JESCHONNEK AND J. W. Van ORDEN PHYSICAL REVIEW D69, 054006 ~2004!
tentials. The combination of a scalar linear potential an
vector color Coulomb potential~either with a running cou-
pling constant or without! can be considered a fairly realist
approximation to nature. We were also able to demonst
that the observed qualitative features of duality—scali
low-q duality, convergence of the moments—persist no m
ter which potential is used. This hints at quark-hadron dua
as a fairly general property of inclusive electron scatteri
While the shape of the response functions is clearly in
enced by the ground-state momentum distribution, and th
fore by the potential, the rate of convergence to scaling
unaffected by the choice of potential, as demonstrated
studying the validity of they-scaling Callan-Gross relation

Duality has been thoroughly explored experimentally
D
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the unpolarized nucleon structure functions, and new data
polarization observables are available, too, both from Jef
son Lab@36# and Hermes at DESY@37#. We will apply our
model to the calculation of spin structure functions next.
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