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We discuss a model for the study of quark-hadron duality in inclusive electron scattering based on solving
the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We
qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss the
similarities and differences to previous models that simplified the situation by treating either the quarks or all
particles as scalars. We discuss the scaling results for the plane-wave impulse approximation and final-state
interactions, and the approach to scaling using the analog of the Callan-Gross relatistéting.
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I. INTRODUCTION asymmetryA] at largexg;. There are many different theo-
retical predictions for this quantity, ranging from[Onbro-

Quark-hadron duality was first discovered experimentallyken SU6)] to 1 [PQCD] [26]. Experimental information on
in inclusive inelastic electron scattering by Bloom and Gil- A7 at largexg; would greatly enhance our understanding of
man[1] more than 30 years ago. In the past few years, quarkthe valence quark spin distribution functions. There are very
hadron duality has generated a lot of interest both on theecent new data from Jefferson Lab, going upxg=0.6
experimenta[2,3] and theoretical sidegt—17. Duality is a  [27], with small error bars, but the deep valence region of
major point in the planned 12 GeV upgrade of CEBAF atxg;—1 remains inaccessible in deep inelastic scattering. If
Jefferson Lal{18]. It is also the basis for using QCD sum duality is well understood, one may take data in the reso-
rules [19,20 and plays an important role in the study of nance region, apply a proper averaging procedure, and thus
semileptonic decays of heavy mesd@g,22. obtain results foA](xgj—1).

Quark-hadron duality implies that, in certain kinematic  Before describing new approaches to modeling duality, it
regions, the appropriate average of hadronic observables j§ worth remarking that a global duality of the correlation
described by aperturbative quantum chromodynamics functions for nonsingular, confining potentials was discussed
(PQCD result. This is of great practical interest, as we arepy Vainshtein, Zakharov, Novikov, and Shifmft9] in 1980
actually able to carry out a perturbative QCD calculation, inin the context of quantum-mechanical sum rules. New theo-
contrast with a full QCD or a full hadronic calculation. Sur- retical approaches to a better understanding of duality have
prisingly, duality was experimentally shown to hold in inclu- been based on modeling: one branch uses the nonrelativistic
sive inelastic electron scattering down to momentum transconstituent quark model, with some relativistic corrections,
fers of Q*~0.5 GeV* [2]. Duality also holds in the to describe duality4,6,10,13, and another branch starts the
semileptonic decay of heavy quark&3], and in the annihi- modeling with a relativistic one-body equatiofs,7—
lation e" e~ —hadrons. The exact manner of averaging de-9,15,16. The former branch makes contact with the phenom-
pends on the process. enology. It was started by the pioneering work of Close and

Duality is not only a very interesting phenomenon by it- |sgur [4], where the authors investigated how a summation
self, but it also has extremely important applications. As du-over the appropriate sets of nucleon resonances leads to par-
ality connects the resonance region, i.e., the region where then model results for the structure function ratios in the
final-state invariant masa/<2 GeV, and the deep inelastic SU(6) symmetric quark model. This work was recently ex-
region, one may infer information on one from the other. Thepanded[6] to include the effects of S(8) spin-flavor sym-
earliest example discussed was the extraction of the elastietry breaking. In10,11], the authors considered the first
nucleon form factor from the deep inelastic scaling curvefive low-lying resonances. Our results belong to the latter
[24]. In [25], higher twist contributions were inferred from branch. The goal of these modeling efforts is obvious: to gain
the resonance data. This connection afforded by dualitan understanding of quark-hadron duality and the conditions
opens up the largeg; regime experimentally, as high@®  under which it holds, by capturing just the essential physical
measurements are difficult to obtain—note that tege()  conditions of this rather complex phenomenon. We imposed
cross section contains the Mott cross section as a factor, andese basic requirements for a model: we require a relativis-
the Mott cross section is proportional toQf/. The largexg; tic description of confined valence quarks, and we treat the
region is much easier to access in the resonance region, hadrons in the infinitely narrow resonance approximation.
the necessarQ? values there are much smaller. This paper is the third in a series on modeling quark-

One of the most exciting and promising applications ofhadron duality in inclusive electron scattering—the reaction
duality will be the measurement of the neutron polarizationin which quark-hadron duality was first observed by Bloom
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and Gilman. Previously, we simplified the situation by first s
assuming that all particles involved are scaldis], and then Vy(N=V()=-3—- 3
relaxed these constraints for beam electrons and exchange

photons, and only assumed scalar quddd). While these with as=0.181 and where the color Coulomb potential is

simplifications are physically significant, they allowed us to ) . .
. . > . : corrected to allow for the running coupling constant in a
calculate all interesting quantities analytically or semiana- L
X .. manner similar to that used by Godfrey and Isf28]. The
lytically. We found that the features of quark-hadron duality X
o . vector potential then has the form
were reproduced qualitatively in both models. Now, we have
taken one more step towards a realistic description of the V(1) =V (r
problem: previously, we simplified the problem by discuss- o(N)=Ver(r)
ing scalar quarks, but now, we use proper spiguarks in —pg!ld 2
. X : S . 4 l+e ro
our model. This lays the foundation for investigating duality =— | a5t 2 aerf(yir) |, (4)
in polarization observables. 3rl 1+elbropalo 57
Also, for the first time, in this paper we present calcula-
tions for three different confining potentials. Previously, wewhere
used a linear potential in the Klein-Gordon equation, which

leads to a “relativistic oscillator.” Now, we present a scalar a.=0.118,
linear confining potential and combine it with a vector po-
tential, either a static color Coulomb potential or a running po=0.04,
color Coulomb potential.

The paper is organized as follows. First, we introduce the 5=0.01,

model and then give model results in the plane-wave impulse
approximation(PWIA) where the bound quark is knocked

into the continuum by the absorption of the virtual photon. a;=0.239,

The next section discussgscaling: the connection between

y scaling and Bjorken scaling;scaling results from our two a,;=0.271,

previous modelsy scaling in PWIA and including final-state

interactions(FSI), and the sensitivity to different potentials. y1=0.746 GeV,

Then, we discuss our results for sum rules in PWIA and FSI.

In the next section, we derive the analog of the Callan-Gross v,=5.40 GeV. (5)

relation fory scaling, and we investigate the onset of scaling
through this relation. Then, we summarize our results and

give a brief outlook We assume that only the light quark carries a charge, and

we choose unit charge for the light quark for simplicity. The
inclusive cross section is given by the usual Rosenbluth

Il. THE MODEL equation
Our model consists of a constituent quark bound to an
infinitely heavy diquark and is represented by the Dirac d?c Q4 Q2 0
Hamiltonian JOdE Mot ERL(q,V)‘F z_qZHanZE Rr(q,v) .
A=t BM+ V(1) +V, (1), 1) ©
where the scalar potential is a linear confining potentiaVheré ooy is the Mott cross sectionq is the three-
given by momentum transfer from the electron to the targeis the
energy transfer, an@?= g?— v?. The longitudinal and trans-
Vi (r)=br, b=0.18 Ge\. (2)  verse response functions for the model are given by

We have used the constituent quark mass in this paper, as our _

main interest is the study of quark-hadron duality, which sets RL(Q,v)=2 [(Wy|e¥ W) |?8(v+Eq—Ef)  (7)
in at rather low Q2. Experimentally, Q>~0.5 GeV is !

enough. In this kinematic region, the appropriate degree of

freedom is the constituent quark, which has acquired mas3"

through spontaneous chiral symmetry breaking. We have

2
used a value for the quark mass afh=258.46 B iq-r 9
MeV—obtained previously in a fit to heavy mesdas$]. In RT(q'V)_Z .21 (W ile' e[ W)l

our model, the vector potential is provided by a vector color

Coulomb potential. Calculations will be presented where the X o(v+Eo—Ey), (8)

vector color Coulomb potential is absent, that\is(r)=0,
where the vector potential is the simple static Coulomb powhereE, is the ground-state energy. In terms of these re-
tential sponse functions, the structure functions are
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1
W(Q%#)= 5Re(q,») ©) f(ZW)sEp+q5(v+Eo Epi
and (p+a)+m
XTr 7“%7”“"%([3)4‘”3([))] ,

2

Q* Q
Wo(Q% )=~ RU(q)+ —5R(q,p). (10 (12
q 2q L
where the vector and scalar momentum density distributions
The Dirac wave functions and energy eigenvalues are ob?,(P) and ny(p) are defined in terms of the ground-state
tained by integrating the Dirac equation using the Rungewave function,

Kutta-Feldberg technique and solutions are obtained for en-

ergies up to 12 GeV with the radial quantum numbemof (+)
=200 and| x| <70. V101 (P)Y 1(‘Qp)

In our model, we excite the bound quark from the ground Vg m(p) = (13
state to higher-energy states, and we do not allow it to decay. '/’10% (p)yl%(ﬂp)

Thus, we do not include any particle production in our

model, and we are strictly quantum-mechanical in this sensétS

We do not have any gluons in our model either, which means

that we do not gncounter any radiative correcuo.ns. Since the ,(p)= ( no(p) ﬂns(p)) (14)
response functions consist of a sum &ffunctions, we Pl

choose to smear out the response functions by folding with a

narrow Gaussian for purposes of visualization. The smeare¥ith

response functions are then given by

1 " _
n(P)= 5[ d2(P)+ 1 (P)] (15
1 ® ’
RL(T)(qu):Efxdv'e[(”” e and
XREE ), an ()=~ 0k (P L (o 16

Before presenting numerical results, we would like to re-
mind our readers that, while the present model is more realyng
istic than its predecessors, its results should not be compared
guantitativelyto inclusive electron scattering from a nucleon. 1, (=) 5
Due to the assumption of an infinitely heavy antiquéok Ns(P)= 5[40 (P) = ¥ 17 (P)]- 17)
diquark to which the light quark is bound, our calculation
most resemb|eS |nC|US|Ve eleCtron Scatte“ng from a After perform|ng the angular |ntegra|s the response func_
B-meson, which has never been measured. However, thgyns can be written as
goal of our work is to gain a qualitative understanding of
duality, and the current simplification is no impediment to

this. 1 y+2q 0
Ru(q,v)= 16720y dppj (v+Eg)n,(p)+mny(p)

Ill. THE PLANE-WAVE IMPULSE APPROXIMATION q Y

The analog to PQCD for this model is the plane-wave (v+Eg)?+p?—g®—m* _
- o : + nS(p) (18)
impulse approximation, where the bound quark is knocked 2p
into the continuum by the absorption of the virtual photon.
The response tensor for this approximation is and

1 (y+2q (v+Ep)?—p2+g?>—m? (v+Eg)%—p?—q2—m?

ns(p) i,
(19

Rr(q,v)= dppy (v+Eg)nd(p) —mny(p)—

w2qJlyl 2q 2pq
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where 20— . . .

o \ — q=2GeV

\‘ L T q=4GeV
y="\(r+Eg?-m’~q. (20 T IR T ARG -

. q=10 GeV
IV. y SCALING .

Duality implies that we see scaling at high enough energy

and momentum transfers, and that the results in the reso- Towagi, . "]
nance region, for lower momentum transfers, oscillate o o
around this scaling cury@]. So, the first point that needsto | ———7o .. e
be checked is the onset of scaling in our model. For our 4 5

previous two models, we were able to show analytically that
there is scaling, and that the scaling curves for PWIA and 12 ' ' ' ' '
FSI coincide exactly. This result is in contras{@, where a 10} 3
30% difference was found between the PWIA and FSI scal-

ing curves. IN7], a different one-body equation, a semirela- = B
tivistic Hamiltonian of the formH=\/[p|?+ Jor for mass- 2 6
less quarks, was used, whereas we have used a Klein-Gordon 2 4
equation in our previous modeling, appropriate for spinless >

“quarks” with mass. Now that we use the Dirac equation, we 2
will again have to investigate the important question of 0

whether the two scaling curves coincide or not. The scaling
behavior, and a possible violation of “FSI scaling curve A
=PWIA scaling curve,” would have implications for our
interpretation of deep inelastic scattering data, where one ) )
usually assumes that FSI can be neglected. The question of FIG. 1. The .tranSferred energy as a function of the scaling
whether and how scaling may arise in the presence of Fﬁar'able“ lorvanous \.'alues ofine fgur'momemum tr?nﬁr(mp
has been discussed in the literature before, both for nonrel&a nej, and as a function of the scaling varialyléor various values
S S ’ f the three-momentum transfgr(bottom panel

tivistic [30—37 and relativistic[33] approaches. Here, we ©

are interested in duality, and we need to compare the F§}
scaling results with the PWIA scaling results.

Note that there is a certain arbitrariness in defining
“scaling”—have we reached scaling only once all curves
coincide perfectly, or is a minimal shift in the curves when
e.g., doubling the momentum, enough? In the following, w

that “scaling” hed when the ch in th %)ractical significance.
say that 'scaling” IS reached when the change IN e CUNVE IS 1o a4y elements take their simplest form if calculated
minimal for a very substantial change in the momentum

as functions ofg. Therefore, we considey scaling in this
transfer. paper, and use the scaling variable as defined in (0.
This variable leads to scaling for fixéd|=q [17]. The ki-

A. Bjorken scaling and y scaling nematics accessed inysscaling analysis are shown in Figs.

In our two previous papers on modeling dualis, 16, 1 and 2. Figure 1, bottom panel, shows the values of the
we have presented our results for the scaling functions &nergy transfer accessed in the range froye=—2 GeV to

fixed Q2 as functions of a scaling variable In the Bjorken

limit Q?—%, u goes to Ugj=(M/m)xgj, where Xg; 50 ' ' ' BN
=Q?/2Mv is Bjorken’s scaling variable, andg; is the ap- 40F 4 ]
propriately rescaled version ofy; for the case of a target
with infinite massM. The values of the energy transfer
accessed for various, fixed values@f are shown in Fig. 1
in the top panel.

is clear from Fig. 1 that we will not be able to reach the
high Q2 values found necessary for scaling in our mdde]]

with energy transfers of less than 12 GeV. Note that the peak
of the structure function’'W, is localized aroundi~2—3,

'so the higherQ? values accessible at larger have little

We would like to point out that the previously used sim- <o N
plification of modeling the quark as a scalar has allowed us L
to obtain analytic results for the structure functions, giving -10 ]
us access to high-energy transfers and f@fhwithout any -20 ' ' ' : '

: : 1.5 -1 -0.5 0 0.5 1 1.5
practical, numerical problems. Now, however, we have to y (GeV)

rely on a solely numerical solution of the Dirac equation, and

cannot push to arbitrarily higQ? and » values anymore. In FIG. 2. The transferred four-momentu@? as a function of the
particular, we find about 28 000 energy eigenstates, all belowcaling variabley for various values of the three-momentum trans-
12 GeV energy. While this is an impressive number of stateder q.
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y=2 GeV—this is the range in which we have non- 0.5 : : :
negligible contributions to our response functions and struc- _ — q=2GeV all scalar model
ture functions. Figure 2 shows that we are now probing a ':‘> 0.4F .. q=6Gev 7
different kinematic region than in scaling: we access both o ——-q=10 GeV PWIA
spacelike and timelike values of the four-momentum transfer Q03 1
Q2. At lower, negativey values,Q? is spacelike and rather =
large. In this region, we can easily reach large values asso- = ) ]
ciated with scaling ini- or x-type variables. The accessed VJS 01l |
values decrease slowly with increasigg and at a point
where yo=E,+0O(1/q), we reach the photopoinQ?=0. 0 . ) ;
Note that due to the fact that is independent o in a first y (GeV)
approximation, the photopoint is reached at the sgvaue
independent of the considered three-momentum trargsfer 0.5 T . . .
Fory>y,, we probe the timelike region. Note that one also i all scalar model
reaches timelike values )2 for y<—2q—Ey+O(1/q); in o 04 1
this region, however, we find zero strength of the responses, é
and it is practically irrelevant for our case. = 0.3 i
(o}
< 0.2f 1
B. Comparison with previous results 5.“
In order to provide a connection betweerscaling andy %3 0.1 i

-—- Q* =10 GeV’

scaling, we show our results for our two previous models " . . . . .
with scalar quarks foy scaling. We start out with the all- % 1 2 3 4 5
scalar results discussed[ib5]. In [15], we treated the beam, L

exchange particle, and quark target as scalars. This simplified FIG. 3. The scaling functio, of the all-scalar model15] is

tre_atment aI_Iows fO'T an analytic solution of the pmble.m'plotted versuy for several values of the three-momentum trangfer
With all particles being scalars, only one structure function,

h is it d i . n:a the top panel, and it is plotted versudor several values of the
appears, there is little structure, and scaling sets in aroung,,. momentum transfe®? in the bottom panel. The results shown

Q?~15 Ge\. Scaling for the PWIA sets in at very 0@  |.ve been calculated in PWIA.

of about 2 GeV. Keep in mind that we scatter from an

infinitely heavy target, so that a comparison of numericalfor plotting. For practical reasons—the current matrix ele-
values forQ? for the onset of scaling with actual nucleon ments take their simplest form as a function gf~we

data is meaningless. choose to present our results as functions ahdy.
Figure 3(top panel shows the correspondingscaling Now, we will proceed to show thgscaling results for the
plot for the PWIA. One can see clearly that fpe=2 GeV,  “scalar quark model”[16] too. This will allow us to study

scaling has already set in. Obviously, there are no resonantke transition from a simple model to a more sophisticated
bumps in the PWIA plot, as the final state is a fictitious “free version, and to point out differences and common features.
quark.” In the bottom panel of Fig. 3, we show the sameln [16], we included the proper spins for the beam electrons
PWIA scaling function, plotted for fixed four-momentum and the exchange photons, but still treated the quark as a
transferQ? versusu. The overall features of the curves, plot- scalar. We will refer to this model as the “scalar quark
ted either way, are the same: they are smooth and scalaodel” in the present paper. This model has a conserved
quickly. In theu-scaling plot, one sees that scaling has set ircurrent, and a much richer structure, due to the fact that the
at Q?=6 Ge\?, and the changes from the lower value of photon can have transverse and longitudinal polarization,
Q%=2 Ge\? to Q?=6 Ge\? are tiny. which leads to two structure functions. In Fig. 5, top panel,
Figure 4, top panel, shows thescaling plot for the all- the PWIA results definitely scale more slowly than for the
scalar model including FSI. Here, one can see that scalingll-scalar model. Scaling is reachedgat 20 GeV. Not sur-
does take a while to set in—the lowest value &pthat is  prisingly, the FSI results, shown in the bottom panel of Fig.
displayed, q=2 GeV, still shows the typical resonance 5, exhibit an even slower scaling. Even fram20 GeV to
bump structure. However, the overall shape even atdosv  q=50 GeV, a small difference is visible in the scaling
already very close to the scaling curve, but slightly shiftedcurves. This is the slowest onsety$caling which we have
towards highely values. The scaling curve is approximated encountered so far, and this mirrors precisely what we ex-
reasonably afj=6 GeV, and the curves start to coincide pected from our previous-scaling results. Now we are in a
with each other oncg=10 GeV is reached. good position to progress to the main topic of this paper,
This is contrasted with the-scaling plot for the all-scalar namely the results for proper spinquarks. Our study of the
model including FSI in the bottom panel of Fig. 4. One canonset of scaling for PWIA and FSI will allow us to draw
see how the resonance bumps at lov@" give way to  some conclusions about the onsetwscaling for the FSI
smooth curves at larger values of the four-momentum transzase, even if we cannot calculate for the neces&ryu-
fer. One can see that scaling sets in just in the same wawerically. First, we are going to present results for the PWIA
independent of which set of kinematic variables one choosefr three different potentials.
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— q=2GeV
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S 03 5 T
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FIG. 4. The scaling functios, of the all-scalar model is plot-

s FIG. 5. The scaling functioss, of the “scalar quark” model is
ted versug for several values of the three-momentum trangfaer

plotted versug for several values of the three-momentum transfer

the top panel, and it is [znlptted versusfor several values of the q. The results shown in the top panel have been calculated in
four-momentum transfeQ" in the bottom panel. The results shown PWIA, i.e., for the bound-free transition. The results shown in the

have been calculated including final-state interactiérs). bottom panel have been calculated including final-state interactions,
Lo i.e., for the bound-bound transition.
C. y scaling in PWIA '

First, we show our results for PWIA, where we expect In the limit of largeq, the PWIA response functions be-
scaling to set in at lower momentum transfers than for thecome
FSI results. For the FSI results, the scaling curve is generated

in our model by many overlapping resonances, and one _ 1 (= 0 y
needs to reach kinematics where a sufficient number of reso- ~ ImR.(q,y)= 6 2] dppj n,(p)+ Bni(P) (23
nances is accessible to see scaling. g 7

The scaling variablg is defined by Eq(20), and by in-
verting to findv as a function ofy andq, the response func-
tions can be written as functions gfandy. For example, the
PWIA response function€l8) and(19) can be rewritten as

and

lim R+( )=i wd {no( )—an( )] (24)
Tqu 8’772 |y‘ pp v p p v p .

q—»w

— 1 y+2q / 2 2.0
Ru(q.y)= 16772qu dpp) Vy+a)"+mn,(p) These response functions therefore scalg. iNote that the
205 ) longitudinal response is shifted toward posi;[bmvhile the
ye+2qy+p° transverse is shifted toward negatiyesincen,(p) is posi-
mn(p)+ 2p nv(p)] @D tive. The overall peak heights of the longitudinal and trans-
verse responses in PWIA have roughly a 1:2 ratio.
and We start by investigating the behavior of the PWIA re-
L , sponses for the linear potentiaks=br,V,=0. In Fig. 6,
_ y+aq 0 bottom panel, we show the longitudinal respoRs€efor vari-
RT(q’y)_Swquly dpp) V(y+q)"+mn,(p) ous, lower three-momentum transfegs Here, one sees
clearly that both the peak height and the width of the peak
y2+2qy+29°— p? are reduced significantly by increasingfor q<10 GeV.
—mny(p) - 2q The peak position also shifts very slightly to lowevalues.
5 5 In Fig. 6, top panel, we show the longitudinal respofge
><y +2qy—p ns( )] 22) for various high three-momentum transfeys There is a
2pq o(P)[- small but visible change in going from=10 GeV toq
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T T

PWIA ; —— q=10GeV

0.7 T T T
06k—q=10GeV <

1 \ —--q=40GeV ]
-— q =100 GeV

- 0.5F ——. q=40Gev
% 0.4 —— a=100Gev

S 0.3}
—

& 0.2}

0.1}

-1
R, (GeV™)

n
v

-1
R, (GeV')

=
)
T

=]
'
[

0
y (GeV)

_— S FIG. 7. The transverse response functi®pis plotted versuy
FIG. 6. The longitudinal response functi® is plotted versus for several low(bottom panal and high(top panel values of the

y for several low(bottom panéland high(top panel values of the three-momentum transfer The results shown have been calculated
three-momentum transfer The results shown have been calculated . . . )
. . . ; in PWIA, using the linear potential.
in PWIA, using the linear potential.

=20 GeV. Scaling is reached foqg=40 GeV, and the Figure 9 shows the longitudinétiop panel and transverse
curves corresponding to even higher momentum transfers ceesponsegbottom panel as a function ofy for momentum
incide. ) transfers from 2 to 10 GeV with a width e=0.02 GeV for
In Fig. 7, we show the corresponding results for the transsmoothing[recall Eq.(11)]. As the momentum transfer in-
verse response functidRy. For the low momentum trans- creases, the average response moves to lgyeerd since the

fers, bottom panel, one sees that increasinads to an  gensity of states is also increasing, the curves become in-

increase in peak height and width, along with a small shift of¢ea5ingly smooth. The longitudinal response approaches the
the peak position towards lowgvalues. The top panel with

the high momentum transfers shows that scaling sets in fastarsymptotic result from above, while the transverse response
'9 u W N9 ! %pproaches it from below. The log/curves with the visible
for Ry than forR_ . Changes are smaller from ogevalue to

the next, and the curves coincide orge 40 GeV. resonance bumps oscillate around the smoother curves ob-

It is interesting to consider the onset of scaling when mak—talned for higher momentum transfer.

ing our modeling more realistic: in the transition from the

“all-scalar” to the “scalar quark” model, we observed a con- T
siderable slowdown in the onset of scaling, due to the addi-
tional structure, and to the more complicated form of the
terms. Now, we have added the proper spin to the quarks, but
interestingly, we see no significant change in the scaling be-
havior. This is illustrated in Fig. 8, where we show high-
results for the scalar quark model and our current model.
While the two models obviously lead to different scaling
curves, theonsetof scaling occurs at roughly the same mo-
mentum transfers in both cases. From this, we have to con-
clude that the spin of the quark does not play a significant -1
role in the onset of scaling.

— q=10GeV

scalar quark model

2cq

——-q=40GeV

)or S

-1

spin-1/2 quarks

RT (GeV
[—]
<L

|-

0
y (GeV)

FIG. 8. A comparison of the onset of scaling for the “scalar
quark” model and the model with quark spin. The transverse re-
Now we will show the scaling behavior with FSI in- sponse functiorR; and the scaling functiors,, of the “scalar

cluded. For reasons of numerical feasibility, we restrict ourquark” model are plotted versug The results shown have been
selves to momentum transfers @& 10 GeV. calculated in PWIA, and have already been shown in Figs. 7 and 5.

D. y scaling in FSI
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FIG. 9. The longitudinal response functiéf (top panel and
the transverse response functigp are plotted versug for several
values of the three-momentum transéprThe results shown have
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— £=0.01 GeV
...... €=0.02 GeV
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FIG. 10. The transverse response calculated for the linear poten-
tial in FSI atg=10 GeV for various values of the Gaussian smooth-
ing parametek.

E. Model dependence

Calculations for the linear-plus-Coulomb potential are
shown in Fig. 11, and for the linear-plus-running potential in
Fig. 12. These figures show features consistent with those of
the linear potential alone. One can see that the linear poten-
tial leads to the highest peak value for b&h andR, , and
has the narrowest width, while the linear-plus-running poten-
tial has the lowest peak height and the largest width. In all
cases, we have not quite reached the scaling limit yet, but as
the changes from=6 GeV toq=10 GeV are small, we are

been calculated including FSI, using the linear potential. _Iinear + Coulomb __ .
------ 4 GeV

Before comparing the scaling curves obtained in PWIA 1.5r e

and with FSI, we need to investigate the influence of our S T O 10 Gev

smoothing procedure for th&function in energy. This is an E L 4

artifact of our model, as we assume that the resonances do -

not decay. In[16], we used a Breit-Wigner-type smoothing -

procedure, and the width had some influence on the nu- 051 ’

merically obtained scaling curves. However, for the scalar

quarks discussed ifiL6], we could find an analytic expres- 92 o5 : 15

sion for the scaling curve with FSI. This is not the case here,
so this matter deserves careful investigation. The PWIA cal-
culation does not suffer from this problem, as the knocked-
out, “free” quark can have any energy, in contrast to the

fixed-energy resonance final states included in FSI. There-
fore, comparing the FSI and PWIA scaling curves is not

entirely straightforward.

In Fig. 10, we show the transverse resporde at q
=10 GeV, including FSI, calculated for various values of
the Gaussian smoothing parameterWe show curves for
£=0.02 GeV, the value used for all other plots in this paper,
and fore=0.01, 0.04, and 0.08 GeV. While a smaller value
of ¢ leads to less smoothing and visible resonance bumps
even at higheq, the overall shape, peak position, and width

-1
R, (GeV")

are not changed. For larger valuesefthere is no visible
difference from the original curve with=0.02 GeV. There-
fore, the dependence on the smoothing paramet&s so

FIG. 11. The longitudinal response functi® (top panel and
the transverse response functigp are plotted versug for several
values of the three-momentum transéerThe results shown have

weak that it will not influence our comparison of the PWIA been calculated including FSI, using the linear-plus-Coulomb po-

and FSI scaling curves.

tential.
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------- linear + Coulomb
Ilnear + runnlng — 2GeV 061 Iinear:running 7]
[——— linear PWIA ;
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. > 04f -
2 A
® S I
] = 03} -
i} [ae] 3
- 0.2 .
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FIG. 13. The longitudinal response functi®) (top panel and

FIG. 12. The longitudinal response functi® (top panel and  the transverse response functi@n are plotted versug for three-
the transverse response functi@n are plotted versug for several ~ momentum transfeq=10 GeV. Results obtained for various po-
values of the three-momentum transterThe results shown have tentials in PWIA and ESI are shown.
been calculated including FSI, using the linear-plus-running poten-
tial. derived in this section we can test whether our model be-
haves in this way.

By using an integral representation of the energy-
conservings function and replacing eigenenergies with the
Hamiltonian operator, the response functions can be written

not far away from it, either. The low-results clearly oscil-

late around the higlo- results, as expected from duality.
Figure 13 shows a comparison of the FSI and PWIA cal-

culations atq=10 GeV for the longitudinal and transverse

responses. At this momentum transfer, the corresponding F

and PWIA calculations differ by small changes in magnitude = dt

and peak position. Since the calculations are not yet con- R (q,v)= 2—e' .

verged to the scaling limit, it is not clear whether this repre- i

sents a failure to scale to the same limit or is simply a mani- GOSN i S Ay i

festation of differing rates of convergence. X(WolePHie I xg TPl | o)
On a fundamental level, this is important as FSI is usually ®

assumed to be negligible in the analysis of deep inelastic —f

scattering data. Recently, however, some authors have

pointed out that FSI—through gluon exchange between fast n

outgoing partons and target spectators—can make contribu-

tions to the leading twist structure functions at sma]I[34]. = dt

Still, the changes we see here are small, and one does notr.(q, )= 2 it

make much of a mistake in neglecting the effect of all the ~w 2T

FSls combined. ><(\If0|e‘”(‘3'x)‘aie“q'xe“H(b’X)teiq'xai|\Ifo>

V. SUM RULES 2 = dt
>

dt . e
_wzelVt<\I,O|elH(p,x)te—lH(p+q,x)t|\I,O> (25)

eI vt

Some of the features of this model can be explored further w2T

and more precisely by means of energy-weighted sum rules. o X

This will allow us to get a better feeling for the bulk features X (W@ PNty e HPHaN g, | o) (26)

of our results, such as peak position and width. Moments that

become constant at high momentum transfer are another sigshere the momentum shift operator has been recognized and

nature of quark-hadron dualiy8], and with the sum rules used in the last step for both response functions.
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The energy-weighted sum rules are defined as integrals of A ————1—— 71—

the response functions overe<py<oo weighted with pow-
ers ofv. This integral can be simplified by writing
. n 13,
naivt_ [ 7 ivt 1] \';"‘“"hs-;.f_.m~_
e ( i 5 e (27 w3 05|11 ————
i II —_— :inear S
and then integrating by parts to give fy o liboars ru%i?g
/ — — linear PWIA
w M S :inear + Coulpmt')D \F;VVI\RA
— -+ linear + running
SLn(q):j dVVnRL(qvV) 0 1 1 I 1 1
- 0 2 4 6 8 10 12
q(GeV)
a\" - -
=i—| (¥ eiH(p,x)'[e—iH(p-%—q,x)t W), 1
i) o ohoo
(28)
0.8F
and
o N m'g 0.6 - Ij
Sta(Q) = dvr"R(q,v) — linear
—o0 I8 3 e linear + Coulomb
y ~ — - linear + running
044 — — linear PWIA 7
2 1 g\n R R oA .=~ linear + Coulomb PWIA
:E (i E) <\I’O|eiH(p’x)ta’iefiH(erq’x)tai|‘I’o>t:o. .,'I’ - linear + running PWIA
=1 025 2 4 6 8 10 12
(29 q (GeV)

The momentum-shifted Hamiltonian for our model is FIG. 14. The positive energg=0 moment of the longitudinal

A A response functioiftop panel and the transverse response function
H(p+a,x)=a-q+H(p.x). (B0 (bottom panel calculated with FSI and in PWIA for the linear,

linear-plus-Coulomb, and linear-plus-running potentials.
As a result, the sum rules can be reduced to nested commu- P P gp

tators involvingH, a-q, and¢; .
The first three sum rules for the longitudinal response are (M0 ):SL(T)l (33

Sio(Q) = (ol ¥o)=1,
Si1(a) = (ol @-d o) =0,

_ S
Sia(9)=9% (31) Av =1/ ﬁ ~ (e (34)

The first of these is the Coulomb sum rule and simply re-
flects the conservation of charge. We have assumed that the Figure 14 shows the positive-enengy-0 moments of the
charge of the bound quark is 1 for simplicity. The second oflongitudinal and transverse response functions. $@r the
these indicates that the response is roughly antisymmetriesults for the linear, linear-plus-Coulomb, and linear-plus-
aboutr=0. The third indicates that the width of the distri- running potentials are virtually identical except at
bution is increasing asg. This is consistent with the case >10 GeV, where the moment starts to fall off due to finite
where the longitudinal response consists of peaks at positiveaange of excitation energies that have been calculated. The
and negative-energy transfers of roughly equal magnitudeorresponding calculations in PWIA vary at smaldue to
and opposite signs that are moving away from the origin invariations in the available phase space, but must apprbach
opposite directions by a distance proportionabtorhe ex-  for g—. It is clear from this figure that neither the FSI
istence of the negative-energy peak is a consequence of tlwalculations nor the PWIA calculations have reached their
presence of the negative-energy solutions to the Dirac equaaturation values at the highest valuesqathat have been
tion, which are not physical in a simple one-body model. calculated here. Although it is plausible that the full results
The positive-energy contribution can be isolated by defin-may be approaching the PWIA values for lameit is not

and the rms variation in energy transfer as

ing the positive-energy moments possible to determine that this is the case based on these
calculations.
Y Similar results can be seen for the transverse moment
SLmn(@) fo Ay R m (G, ). B2 shown in the bottom panel of Fig. 14, although there is a

greater variation among the full calculations at lower values
Since then=0 moment is no longer normalized to 1, we can of g. In this case, the asymptotic value of the moment for the
define the average energy transfer as PWIA calculations is 1.

054006-10



MODELING QUARK-HADRON DUALITY FOR ... PHYSICAL REVIEW D 69, 054006 (2004

constant vector potential into the Dirac equation. This has the
effect of simply shifting the spectrum. As a result, we can

use this shift to place all of the ground-state energies at the
same value. This shift has no effect on the response functions

S ) . ) .
3 for the FSI calculations, but will correct for the differences in
~oosE . phase space in the PWIA. In fact, we already have applied
o i 1 S this shift above in the section gnscaling.
& | - ==Tlinear ¥ running Figure 15, bottom panel, shows the rms widths for the
I e s | various calculations of the longitudinal response. The
& linear + running PWIA asymptotic value of this width in the PWIA is given by
i 1 1 1 1 1
00, 2 4 G6 v 8 10 12 1
e o]
360 im A v =| — [ “dpptnlip)
05 gq—° 1277 0
1 . 27112
— dpp®ns( )) . @37
144774( fo PPTLLP

In all three cases, the width of the FSI calculation is close to
that of the corresponding PWIA calculation. This suggests
that the width of the response is determined largely by the

— linear
----- linear + Coulomb
— — linear + running

——- linear PWIA - width of ground-state momentum distributions.
+=-- linear + Coulomb PWIA . .
- linear + running PWIA 1 While we have not yet reached convergence to the scaling
0 ! ! L limit at the momentum transfers for which we have calcu-
0 2 4 6 8 10 12
q (GeV) lated, one can clearly see that the moments do flatten out

with higher momentum transfers, qualitatively agreeing with
FIG. 15. The differenceg—(v), between the average energy the observations in duality experiments.
transfer(v), and the momentum transféop panel, and the rms
width Ay, (bottom panel both for the longitudinal response, cal- VI. THE “ y-SCALING CALLAN-GROSS RELATION”
culated with FSI and in PWIA for the linear, linear-plus-Coulomb,
and linear-plus-running potentials. From x scaling in the deep inelastic region, the Callan-
Gross relatio 35] 2xF;(x)=F,(x) is known to hold. The
The asymptotic values dfv) (1) for the PWIA are given  physical significance of the Callan-Gross relation is that one
by scatters off spirg objects, which have a dominant contribu-
tion from the magnetization current, i.e., in the transverse
J dpp*ns(p) (35 part of the structure functions. In the real world, the Callan-
1220 PP, (P Gross relation needs to be corrected for radiative effects, and
is then observed to hold in the experimental data from the
and deep inelastic region. In our model, there are no radiative
corrections, as we do not allow the production of new par-

I|m <V>L:q_E0+

q—®

1 (= ticles. Our model is, so far, entirely quantum-mechanical in
lim(v);=q—Eq— 2f dpp3nf,(p). (36) this sense. Therefore, we expect the Callan-Gross relation to
a—e 12m%Jo hold as inx or u scaling. As we focus o scaling, we now

N d?rive the analog of the Callan-Gross relation, using the fact
Note that the longitudinal and transverse responses are Oﬁsf%at both the longitudinal and the transverse response scale
from one another by terms that depend upgiip). Since ror largeq

the average value of the energy transfer increases linearly The structure function®V, ,W, are related to the longitu-

with g, it is convenient to plot this moment gs-(v), . This dinal and transverse respons@sand R~ b
guantity is shown in the top panel of Fig. 15 for the three FSI ponge oY

and three PWIA calculations used in the previous figures. 1

Here the three FSI calculations have very similar average W1=§RT (39
positions while the average positions of the PWIA calcula-

tions show large differences. This is the result of the sensi: d

tivity of the position of the peak of the PWIA response to the

difference in energy of the bound state and the lowest plane- 4 2

wave state. In the FSI calculation, both the ground and ex- WZZQ_RL+ Q—RT. (39)
cited states see the same potential, which seems to limit the q* 2q2

size of the shift in peak position for the three different po-

tentials. For purposes of comparison, it is possible to elimi-The Callan-Gross relation can be obtained from these equa-
nate this disparity in the PWIA calculations by introducing ations by reexpressing and v in terms ofx and Q?, and
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increasingQ? at fixedx. In order to find an analogous rela- 1.1 . T r
tion for y scaling, we reexpre€®? andv in terms ofq andly, PWIA, linear potential
and then increase at fixedy. The kinematic factors in this 1.05 i
limit become
Q? 2
VF_) EO_ Yy (40) ‘
q 095} —— 4=200GeV |
—— q=400 GeV
and q = 1000 GeV
4
1
Q—4~>O —2) —0. (42
q q

The two functionsF; =MW, andF,= vW,, in this limit
are

1 1
Fl:MWlZEMRTHEMRT' (42)

Q4 2
F2: VW2: V_RL“F V_RT*)(EO_y)RT .
q’ 29?

(43

Direct comparison of Eqs(42) and (43) yields F,
=F.(2/IM)(Eo—Y). Substituting the definitions of,; and
F,, one obtains the analog of the Callan-Gross relatioryfor ~ FIG. 16. The Callan-Gross ratigy is plotted versuy for sev-
scaling, eral values of the three-momentum transferThe results shown

have been calculated in PWIA with a linear potential. Note the
2Wy(Eg—y)=vW,. (44)  different scales employed in the two panels.

We now proceed to check whether our numerical resultsesponse function plots show that the curves coincidegfor
fulfill the Callan-Gross relation, i.e., if we have reached the=40 GeV, at the latest, the Callan-Gross ratio is more sen-
scaling region already. First, we show results for PWIA,sitive and still shows slight changes for increasing three-
where we can access arbitrarily higlwvithout any numerical momentum transfers.
problems. In order to display the approach to scaling, we Comparing the approach otg to 1 for different poten-
show the ratio of the left-hand side to the right-hand side ofials, Fig. 17 shows that linear, Coulomb, and running poten-
Eq. (44), r cg=2W;(Eo—Y)/¥W,. In Fig. 16, top panel, we tials h.ave an almost identical scaling behavior, both at low-
show r for the linear potential for values of the three- @nd highg values. _ _
momentum ranging frong=10 GeV tog=1000 GeV. As In Fig. 18, we show ¢ calculated including FSI foqg

expected, scaling has set in at these high momentum trans.10 GeV, the highest value we have attained for FSI calcu-

fers: the deviations afg from 1 are very small, at the level ations. The calculations shown are performed for the differ-
of 5% or less forq>60cgev. It is interesting to ,note that for ent p_otentlals considered in this paper, and one can see that,
highery values, »W, dominates, while for lowey values just like for PWIA, the results for the Callan-Gross ratig;

) . . are very similar.
2Wy(Eo—y) is larger. As in the calculation of the response = r,iq simjlarity to the behavior of the PWIA curves leads

functions, we have applied the energy shift to adjust the difys 1 4 direct comparison of the PWIA and FSI results for the
ference_ in phase space in PWIA. Note that we have omitte@,ear potential in Fig. 19. The PWIA and FSI agree very
the regionsy<<—1 GeV andy>0.7 GeV from our graphs, njcely. For lowerq values, the FSI results obviously lead to

as they do not contain any strength in the responses. Thgscillatory behavior, but they average to the smooth PWIA
latter is the area whereEg—y) undergoes a sign change, result. The PWIA and FSI results for the Coulomb potential
leading to a spike in the ratioc that is unrelated to the also track each other very closely. For the running potential,
interesting physics—there is hardly any strength in the rethe differences between FSI and PWIA are a bit more visible,
sponses foy>0.5 GeV. but FSI and PWIA results are still very close.

For lowerq values, see the bottom panel of Fig. 16, scal- While this is no proof, this behavior leads one to the
ing has clearly not yet set in, and the deviations @ from  conjecture that scaling for FSI should set in at the same
unity are large. Comparing these results feg with the  value as for PWIA, and that thate of convergenca both
onset of scaling observed in the PWIA response functi®yns cases is the same. Note that this result does not imply that the
and Ry, as discussed in Sec. IV C, we see thgg gives individual scaling results for PWIA and FSI are the same.
additional information on the scaling behavior. While the Quite on the contrary, as we found that the FSI results at

054006-12



MODELING QUARK-HADRON DUALITY FOR.. ..

PHYSICAL REVIEW D 69, 054006 (2004
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q =20 GeV
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S 1
< q =100 GeV e
0.95} — linear R
-+ Coulomb 4 .
~ running linear potential
0T 05 ' 0.3

0
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FIG. 19. The Callan-Gross ratig is plotted versuy for three-
momentum transferg=2 GeV andg=10 GeV. The results shown
have been calculated in PWIA and FSI with a linear potential.

more complicated than the all-scalar mofigb] and the sca-
lar quark model[16], where the solutions could be found
analytically. However, the inclusion of the quark spin paves
the way to study spin structure functions, which are one of

0.5 — linear . the most promising areas for the practical application of
PWIA - rclflflll‘l’r'l‘;b quark-hadron duality.
. , , , We have tracked the changes introduced by making our
1 -0.5 0 0.5 models more realistic. Most notably, adding spin to the quark
y (GeV) does not seem to influence the onset of scaling: our present

FIG. 17. The Callan-Gross ratigg is plotted versuy for the

model shows about the same scaling behavior as the scalar

linear, Coulomb, and running potential, for three-momentum transquark model. This is in contrast to the major changes in
fers q=2, 10, 20, and 100 GeV. The results shown have beerscaling behavior observed when going from the all-scalar
calculated in PWIA. Note the different scales employed in the twomodel to the scalar quark model.

panels.

As before, we have seen that the features of duality ob-
served in experiments, namely scaling, oscillation of the

g=10 GeV are not that close to the PWIA scaling curve, andesonances around the scaling curve, and flat moments at
as the PWIA results did not change dramatically frgm higher momentum transfer, are reproduced qualitatively. We

=10 GeV to higheq values, the conjecture of the same ratehave used a constituent quark massvof 258.46 MeV for

of convergence suggests that the final scaling results iaur calculations. This number was taken from a fit to heavy

PWIA and FSI might be different.

VIl. SUMMARY AND OUTLOOK

mesong28]. However, nothing hinges on using that particu-
lar value: we changed our quark massnte=10 MeV, in
order to have a value reminiscent of a current quark mass,
and repeated our calculations. It turns out that, while scaling

In the present paper, we have expanded our modeling afoes set in a little faster, there are no qualitative changes in
quark-hadron duality to describe a more realistic situationthe results.

we now include the spin of the quark. Numerically, this is

In spite of the considerable numerical effort, we have not
yet reached full convergence in FSI. Therefore, the important

2 T T . question of whether the FSI scaling curve coincides with the
— linear PWIA scaling curve could not be answered with certainty
15k -~ Coulomb yet. At the highest value we reachedj=10 GeV, we still
’ = EROng see small differences between FSI and PWIA curves. Further
. investigation of the highy region with different methods
o1 — 1 will be the subject of a future paper.
T Our findings are different from the results [i]. There,
the author used massless quarks and a specific assumption
0.5f FSL, q =10 GeV 1 about the potential, namely an identical functional form for
the scalar potential g and the vector potentidl, . The con-
07 05 : 015 dition Vs=V,, leads to a simplification in the numerics, as

upper and lower components decouple. Results reported in

[8] indicate a much larger difference between FSI and PWIA
FIG. 18. The Callan-Gross ratig. is plotted versuy for three-  results aij=10 GeV. This may be due to the potential cho-

momentum transfeq=10 GeV. The results shown have been cal- sen there.

culated in FSI with a linear, Coulomb, and running potential. For the first time, we have discussed several different po-

0
y (GeV)
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tentials. The combination of a scalar linear potential and ahe unpolarized nucleon structure functions, and new data on

vector color Coulomb potentigkither with a running cou- polarization observables are available, too, both from Jeffer-

pling constant or withoutcan be considered a fairly realistic son Lab[36] and Hermes at DESY37]. We will apply our

approximation to nature. We were also able to demonstratgodel to the calculation of spin structure functions next.

that the observed qualitative features of duality—scaling,

low-qg duality, convergence of the moments—persist no mat-

ter which potential is used. This hints at quark-hadron duality ACKNOWLEDGMENT

as a fairly general property of inclusive electron scattering.
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