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Effective chiral Lagrangian in the chiral limit from the instanton vacuum
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We study the effective chiral Lagrangian in the chiral limit from the instanton vacuum. Starting from the
nonlocal effective chiral action, we derive the effective chiral Lagrangian, using the derivative expansion to
orderO(p*) in the chiral limit. The low energy constarits, L,, andL5 are determined and compared with
various models and the corresponding empirical data. The results are in a good agreement with the data. We
also discuss the upper limit of the sigma meson, based on the present results.
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[. INTRODUCTION vides a consistent regularization of the effective action in
which its real and imaginary parts are treated on the same
Chiral perturbation theory ¥PT) was introduced as an footing and thus pertinent observables such as anomalous
2 . . 0 i
effective field theory of QCD in a very low energy regime decaysm — 2y are safely recovered evenM (k) acts as a
[1]. Based on the chirally invariant Lagrangian with a set ofregula;or. . hall i _ he effective chi
coefficients,yPT has been a great success in describing ver¥ In the present work, we shall investigate the effective chi-
low-energy phenomena of the strong interact[@+5,55. "?II Lagrangian from the Instanton v.acug(sge a recent re-
While the structure of the Lagrangian is determined by theview [32]). We first consider the chiral limit as well as the

symmetry pattern in QCD, the coefficients are unknown absence of the external fields. In order to take into account
y yp T the effect of SW3)-symmetry breaking, one has to modify
These unknown coefficients, known as low-energy constan

c . . e inf ) b h K e effective chiral action originally obtained by Diakonov
(LECs), contain microscopic information about the quark- 5n4 petro\[33]. Moreover, the vector and axial-vector cur-
gluon dynamics which would be in principle determined by rents are not conserved in the presence of the nonlocal inter-

QCD. However, it requires formidable work to derive them action. Thus, we first shall concentrate on the LECs in the
from QCD and thus is impractical. In fact, they are fitted to chiral limit.
the experimental data such asr scattering an,, decay The outline of the present paper is as follows: In Sec. Il
[2,6] and use them for describing or predicting other pro-we briefly explain the instanton-induced chiral quark model,
cesses. However, when one goes beyond the leading ordesimphasizing in particular the momentum dependence of the
the number of the LECs start to increase very rapidly. Henceconstituent quark mass and explain how to perform the de-
it is not feasible to fix all LECs to empirical data. rivative expansion in the presence of the momentum-
There has been a great amount of works on the LECslependent constituent quark mass. In Sec. Ill, we show how
within various chiral model§7—24). Although dynamical in- to derive theO(p?) effective chiral Lagrangian, using the
gredients of each model are different, almost all models aréerivative expansion. In Sec. IV, we discuss the results. In
in good agreement with empirical data. Apart from someSec. V we draw conclusion and make summary.
models[15,21], many models are based on local interactions
of quarks and mesons. While the nonlocality of the quark can II. CHIRAL QUARK MODEL FROM
be neglected in the range of quark momenta, for example, THE INSTANTON VACUUM

k<1/p=600 MeV in whichp denotes the average size of  The instanton vacuum elucidates one of the most impor-
the instanton, recent works on the pion wave functiongant low-energy properties of QCD, i.e., the mechanism of
[25,26 and skewed parton distributi¢@7] show that it is of  spontaneous breaking of chiral symmetig4—36. The
great importance to consider the momentum-dependerBanks-Casher relatiof87] tells us that the spectral density
quark mass in order to produce the correct end-point behav,(\) of the Dirac operator at zero modes is proportional to

ior of the quark virtuality. Similarly, a very recent study on the chiral condensate known as an order parameter of spon-
the effective weak chiral Lagrangian to ordB(’pZ) from the taneous breaking of chiral symmetry:

instanton vacuuni28,29 asserts that the nonlocality of the
quark plays an essential role in improving previous results —
[30] concerning theAT=1/2 rule in the LECs. Furthermore, (Pih)= -
an appreciable merit of using the momentum-dependent
quark mass as a regulator was already pointed out by Balfhe picture of the instanton vacuum provides a good realiza-
and Ripka[31]. The momentum-dependent quark mass protion of spontaneous breaking of chiral symmetry. A finite
density of instantons and anti-instantons produces the nonva-
nishing value ofv(0), which triggers the mechanism of chi-
*Email address: hachoi@pusan.ac.kr ral symmetry breaking. The Euclidean quark propagator in
"Email address:hchkim@pusan.ac.kr the instanton vacuum acquires the following form with a
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momentum-dependent quark mass generated dynamicalllfourier transformation of the would-be zero fermion mode
identified with the coupling strength between quarks andf individual instantons with the sharp instanton distribution
Goldstone bosons: assumed, is as follows:

K+iM (k) _ 1
=m, 2 F(kp)=2z IO(Z)Kl(Z)_Il(Z)KO(Z)_Ell(Z)Kl(Z) :

(0
Herely, 1,1, Ko, andK; denote the modified Bessel func-

tions, z is defin_ed ag= kF/Z. Whenk goes to infinity, the
form factorF(kp) has the following asymptotic behavior:

Sr(k)

with
w2p?
VN,

M (k) = constx F2(kp)=MF2(kp). (3)
The ratioN/V denotes the instanton density at equilibrium o
and thep is the average size of the instanton. The form factor F(kp)—

function F(kp) is related to the Fourier transform of the
would-be zero fermion mode of individual instantons. The
instanton densit\N/V is expressed as a gap equation:

(kp)® °

Actually, there are other ways of understanding the non-
local effective interaction without relying on the instanton
4 5 vacuum[39-42. In those cases, the momentum-dependent
N dk Mk - k be interpreted local regularization |
__4ch =1 fm4 (4)  Quark mass can be interpreted as a nonlocal regularization in

(47)* K2+ M?(k) Euclidean space. Hence, various types ofhe) as a regu-

\%

_ lator with the regularization parametér- 1/p has been used
Taking the average instanton sige=1/3 fm, one obtains py different authors. For example, the dipole-tyldgk) is
M=350 MeV. used in the study of the pion wave functip?6], while the

The instanton vacuum induces effectivBl2fermion in-  Gaussian is employed in Rd#3].

teractions [34—-3§. For example, it has a type of the  Therefore, we will not confine ourselves to the expression
Nambu—Jona-Lasinio model fod;=2 while for Ny=3 it  given in Eq.(7) but rather try three different types of the
exhibits the 't Hooft determinariB88]. Goldstone bosons ap- M(k):

pear as collective excitations by quark loops generating a

dynamic quark mass. Eventually it is found that at low ener- ( Egs.(3),(7),
gies QCD is reduced to an interacting quark-Goldstone bo- 5 \ 4
son theory given by the following Euclidean partition func- o( 4A
tion [36] M (k)= 14 4A2+K? 9
k2
sz Dz//Dz//TDwaepr d*x| ¢ “(X)i by (x) Moex )
\
d*kd?l where the cutoff parametet is taken as the inverse of
; o Aitk=1)-x p .
+'f 2me© VM(M(1) The M(K) is normalized toM, at k=0. Originally, M is

found to be around 350 MeV. However, we will regavt},

as a free parameter ranging from 200 MeV to 450 MeV and
, 5 it for eachM, the parameten to the pion decay constant
f ,=93 MeV. Figure 1 shows the momentum dependence of
the three different types d¥1(k) with My=350 MeV. The
dipole type displays the largest tale, while the Gaussian takes

XK (U79) g (1)

whereU?s stands for the pseudo-Goldstone boson:

1+ s 1— s the strongly suppressed tail, compared to other ones. As will
U75(X)=U(X)T+UT(X)T be shown later, this difference appearing in the tail is basi-
cally responsible for the different results in the LECs of the
=exp(i T (X)\2ys/f ). (6) effective weak chiral Lagrangian.
This effective theory of quarks and light Goldstone me-
The « is the color indexa=1, ... N andf andg are flavor ~ sons applies to quark momenta up to the inverse size of the

indices. M(k) is the constituent quark mass being now jnstanton,p *=600 MeV, which may act as a scale of the
momentum-dependent, which is expressed by Bj. Its  model (o). A merit to derive theyQM from the instan-
momentum dependence will play a main role in the presenfon vacuum lies in the fact that the scale of the model is
work. If we choose=(kp) to be constant and add a regular- naturally determined by~ . Furthermore, mesons and bary-
ization (e.g., Pauli-\/i”ars or propel’-tin’)ethe pal’tition fUnC' ons can be treated on the same footing in mM For

tion becomes just that of the usugQM. The original ex-  example, the model has been very successful in describing
pression for theF(kp) [34], which is obtained from the the properties of the baryond4].
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D=id+iVM(—id)UrM(—id). (12
w00k \ — Z”’“’A) . | The Dirac operator is not Hermitian, so that it is useful to
A;ﬂgf;z’z%z) divide the effective action into the real and imaginary parts:
=
2 L rstym— L ;
=] ReSg = E(Seﬁ+ St =— ENCIn defD'D], (13
~2
=
100} : 1 oo 1 :
i Im Sg= E(Seﬁ— Sei)=— chm defD/D'].
, (14)
P B! |>.>'1\.>\.ﬁ‘.~.—'_p —
500 1000 1500 2000 It is already known that the imaginary part of the effective
k [MeV] chiral action is identical to the Wess-Zumino-Witten action

. [45,44 with the correct coefficient, which arises from the
FIG. 1. Th_e dependence of thd(k) on |k|. The solid curve derivative expansion of the imaginary part @(p®) [47—
draws the Diakonov-PetroM(k), the dashed one shows the 52]. An appreciable merit of using the momentum-dependent
dipole-type parametrization of1(k), and the dotted one corre- : PP 9 . P
. quark mass as a regulator was already pointed out by Ball
sponds to the Gaussian type Mf(k). .
and Ripka[31]. The momentum-dependent quark mass pro-
lll. EFFECTIVE CHIRAL LAGRANGIAN TO ORDER  O(p*) vides a consistent regularization of the effective action given
_ N _ ~in Eq. (1) in which its real and imaginary parts are treated
The low-energy effective QCD partition function given in on the same footing and thus pertinent observables such as
Eq. (5 is the starting point of the present work. Having anomalous decaysr®—2y are safely recovered even if

integrated out the quark fields of EG), we obtain M (k) acts as a regulator. Hence, in this work, we will con-
centrate on the real part of the effective chiral action which

Z= f Darexp( — Sel 7°1), (10)  Will provide us with the effective chiral Lagrangian with the
LECs determined. In the present work, we first consider the

case of the chiral limit and turn off the external fields. Fur-

a i i in-
where theS.4 7%] stands for the effective chiral action: thermore, we keep only the leading order in the lakge

Ser[ 78] = — N In detD (U 75). (11) In order to calculate the real part given in H43), we
subtract the vacuum part and use the derivative expansion.
Here, theD(U?5) is the Dirac operator defined by We therefore write

. N D
ReSg 71— ReS0]=— 7Tr|n 5’5

N d*k . D'D
=——CJ d4xJ — e ®4rn —
2 (2m)* DiDg

N d*k DY(9—d+ik)D(d— d+ik)
=——J d4xJ trin{ — . _
2 (2m)* D{(d— a+ik)Dg(d— d+ik)

N d*k
=——°Jd4xJ trin{ 1
2 (2m)*

N, d*k 1 1 1 1
=—fd4xf trinl ——N+5 ——N——N
2 (2m)* DDy  2D{D, D{Dy
1 1 1 1 1 1 1 1 1

+= N N N+ — N N N
3DplD, DD, DDy 4D}D, DD, DDy D{D,

eikx

N
D{(a+ik)Do(a+ik)

N+---)~1, (15)

where
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N=D{(d+ik)Dg(a+ik)—DT(d+ik)D(d+ik). (16)

Here we have used a complete set of plane waves for the calculation of the functional trace, summing over all states and taking
the trace inx. “tr” then denotes the usual matrix trace over flavor and Dirac spaces. The right-han@Rsi&@e of Eq. (15) can

now be expanded in powers of the derivatives of the pseudo-Goldstone bosonigtdsand of k- 9+ 2. The operators

DD andD]D, in Eq. (15) can be expanded as follows:

DT(9+ik)D(d+ik)=— %= 2ik- 9+ k?— yM(—id+k)(/9U?s) yM(—id+k)

+ VM (=id+Kk)U "M(—iad+k)U?s\M(—=id+k), (17
D{(a+ik)Do(a+ik)=—3?—2ik- 9+ k?>+M?(—id+k). (19

Since the dynamic quark mass in E&7),(18) contains the derivatives, we need to expand it to of@le*):

/ ,'\7'/ (M/)Z Mrr Mr (M!)Z M/r
7 o N N PP 4 _4_-_ _ 2,V 2
JVM(=d%=2ik- 9+ k%) =M (k )kl VK a2 o'+ I Kada T Kool +i 17 Kadad
( 7)2 i\7|” ( 7)3 ) 3"\7'/"\7'!/ ,

MW /)3 M/MH ZMW

( :
2

5(M )4 S(M/)ZM// ( //)2
gt KKK oKo9adpdy = KKk K 0ap, 00~ — KKk Ko,

ZM’M”’ MVVI! .
— Wkakﬁkpklraaaﬂ&p&(r_F mkakﬁkpk(raao"ﬁﬁp&ﬂ +O(0" ), (19)
M(—3%—2ik- 9+ k3 =M(k?) —M' 92— 2M"K K43, +E|\7|"a2+2|\7|"'k K 50,0 50%+ v MK K gK Ky odgd,dy
aKpdadpt 5 oKpdadpd™+ M BKp 8%
. . 4
—2iM 'K, 2IM K40, 9%+ 5 1M KK gK 13, 33, + O(°), (20)

3
M2(— %= 2ik-d+k?)=MZ(k?)—2MM ' 3%+ (M")25*+ MM"3*— 4iMM 'k ,d,,+ 4i (M ") %k ,d,,0>+ 4iIMM "k 3., 5°
—4(M ")k K33 10 5= MM K K 59 0 g+ 12N MK 1K 5 0 0%+ AMM K K 30 0 7

~ 8. ~
H INA H " "2
+8|M M kakﬁkpﬁaﬁﬁﬁp-i- §|MM kakﬁkpéaéﬂ&p+4(l\/| ) kakﬁkpkaﬁao’ﬁﬂp&g

16 - 4
MWKk gk K00+ 3 MM KK gk K000, 0,7+ O(), (22)
where
M =Mk |\7|'—1 dM(k)—lM’k
=M(k), =5k Tdk 2k (k),
~ 1 [d®M(k) dM(k)| 1 M0k M (K0)
4k®\  dk? dk 4k3 ’
M = ! k2 d°M kOI2 dM = M”(k)k?—3M" (k)k+3M"'(k
= a8 W_ W ?( (k)ke— (kk+ (k)),
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VI k3d4M 6k2d3M+15kd2M I
16k7\  dk* dk® dk? dk )’
1
=——(M""(k)k3=6M"(k)k?>+15M" (k)k—15M " (k)). (22)

16k’

Having carried out the necessary arithmetic and grouped terms for each order in the meson momentum, we finally obtain
the effective chiral Lagrangian to ord€(p*) with the momentum-dependent quark mass. The effective chiral Lagrangian
£ to orderO(p?) is given as follows:

%
£®=75(3,0%9,0). (23

In Eq. (23) () denotes the flavor trace arig is the well-known pion decay constahf=93 MeV expressed by
M2(k)— 1|v|(|<)|\/|’(|<)|<+ 1|v|’2(|<)k2
d*k 2 4

2:
fo 4N°f (2a)* K2+ M2(k))? ' 4

Equation(24) has been already derivégee, for example, Reff39,43)). We will use Eq.(24) to fix the cutoff parameteA.
When we switch off the momentum dependence of the constituent quark mass, we end up with the well-known expression of

the yQM for f2:

, o d%k  M?
fw=4NcJ 2 (M) M = const, (25

which is logarithmically divergent.
The O(p*) effective chiral Lagrangian in the chiral limit is obtained as follows:

L®=14(3,U9,U)2+Lxa,U%,U)?+Ly(d,UT9,00,U"9,U), (26)

whereL ;, L,, andL; denote the LECs for th©(p*) effective chiral Lagrangian:

L1:¥f (s:;(k2+1M2)4[M4+%M4M’2+%1M4M’4—%MSM”—%M5M’2M”—%M5M’
—%MSM“—%kM3M’+112kM3M’3—%kM4M’M”—%kZMZM"‘—%k2M3M”+1i2k2M3M’2M”
—2—14k3MM’3—%k3M2M’M”+%k4MM'2M” : (27)

L,=2L,, (28)

L?’:ch ((ijrk)“(k2+1|\/|2)4 _|v|4_1_2|v|4|v|r2_%M4Mr4+g—2m5m”+%MSMQM%%MSM,

3 19 3 1 3 41 1
+ 5nar3 3N 3n173_ 4np "y _ 2np 2 /4_|_ AW "y 3 13
_16kM M —32kM M 4kM M 8kM M'M 8k MM _96k M*M —16k MM
1 3 1 1 1 1 1
SN2NA TN 4 12N epgrn2__ TVRAV InNamr _ Ny 6pg 72
+—16k M“M'M _16k MM’'“M —32M M —24M MM +—96M M —3 3M M —3 2M M
1 3 1 3 23 1 1
\ar _ IV RAV L npm Snam 2NA20N 12 2np 42 AVEIVRAY LA
+—2M M _16kM M'M +_16kM M +—16kM M +—32k MM _16k M*M —12k M*M'M

1 3 3 3 1 1 1
AV EIV LA 3 ’ 3na3na 4 ”n__ ANA2NA 12 ANA2NA T NN Anpa 3
+—32kM M +—32k MM +—16kM M —32k MM —32kM M —24kM MM +—32kM M

+ 1 k5MMm+ 1 kGMMH// 29
16 96 : (29)
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TABLE I. The low energy constants,, Lo, L.

Mo(MeV) A(MeV) L,(x10°%) L,(x1073) Ly(x1073)
Local yQM 350 1905.5 0.79 1.58 —-3.17
DP 350 611.7 0.82 1.63 —-3.09
Dipole 350 611.2 0.82 1.63 —2.97
Gaussian 350 627.4 0.81 1.62 —2.88
GL 0.9+0.3 1.70.7 —4.4+25
Bijnens 0.6-0.2 1.2+0.4 —-3.6-1.3
Arriola 0.96 1.95 —-5.21
VMD 1.1 2.2 —-55
Holdom (1) 0.97 1.95 —4.20
Holdom (2) 0.90 1.80 —-3.90
Bolokhov et al. 0.63 1.25 2.50
Alfaro et al. 0.45 0.9 -1.8

Equation (28) is the largeN. relation which was derived [15] used two different values of the quark self-enekgyp).
from the OZI rule for the meson scattering amplity@¢ If  Holdom (1) represents the quark self-energ¥(p);
we turn off the momentum dependence of the constituent2M3/(M2+p?), while Holdom (2) designates3 (p),

quark mass, we reproduce the results of the ug@M.  =4M3/(3M?+p?). M denotes the constituent quark mass.
Equations(27)—(29) are our main results. Figures 2, 3 and 4 draw the dependence oflthe L,,
andL; on theMy, respectively. While the results with three
IV. RESULTS AND DISCUSSION differentM (k) show a similar behavior in smallé,, they

hecome rather different aldl, increases. In particular, the
Gaussian type of(k) drastically suppresses the LECs at
higher values oM. The reason can be found in the behav-
ior of the M (k). The Gaussian type &f(k) decreases rather
strongly as increases, compared to other two different types
of form factors.

Apart from the relation of the larghl. limit, there is an
additional relation in the locg¢QM: 2L,+L3;=0. The dual-
resonance model has the same relati8)24. However, the
ﬁuantity A ,+L5 is not equal to zero in the present model.
nterestingly, this relation is deeply related to the upper
bound of the lightest resonancesnr scattering. A recent
work [53] has shown that the upper bound of the masses of
the p and o mesons can be expressed in terms of the LECs

The parameters in the present model are the constitue
quark massM, at k?=0 and the cutoff paramete¥ in Eq.
(9). The cutoff parameteh is fixed by reproducing the pion
decay constanti. Having chosen the\, we are able to
calculate the LEC4. 4, L,, andLg, numerically. The only
free parameter we have is tihé,. In Table I, the results of
thelL,, L,, andLj3 are listed withMy=350 MeV. The re-
sults are found to be rather insensitive to the typesi¢k).
They are compared with those from other models. In Table |
GL denotes the empirical data obtained by Gasser an
Leutwyler[2]. The results are in good agreement with Refs.
[2,18]. It is interesting to compare the present results with
those from Ref.[15], since it emphasizes also the
momentum-dependence of the quark mass. Holdsral.

MoF>(k/A) 1.670

i MoF2(k/A)
0.830f ————-— D L s (i)’

© Moexp(~*/A%)

© Moexp(~*/A%)

1.650

os2of 4 kT
& i 1630 B
= 0810 = :
X | X 1610
~ 0.800 ~ .
— 1.590
0.790f i
I 1.570}
200 250 300 350 400 450 200 250 300 350 400 450
M, [MeV] M, [MeV]

FIG. 2. The dependence bf on M. The solid curve stands for FIG. 3. The dependence b on M. The solid curve stands for
the result with the form factor from the instanton vacuum given inthe result with the form factor from the instanton vacuum given in
Eq. (9), the dashed one draws the result with the dipole fyi{&), Eq. (9), the dashed one draws the result with the dipole tyi{&),
and the dotted one designates the result with the Gaussian one. and the dotted one designates the result with the Gaussian one.
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TABLE Il. A and the upper limit oM, .
—2.60[ MoF2(k/A)
ool - o ()’ 2L,+L4(X1073) A <M (MeV)
FEI © Moexp(—k*/A?%)
~ —2.80 local yQM 0 0 665
'9 9 90' Type 1 1.67 —0.103 637.2
X Type 2 0.29 -0.178 619.9
= 3007 Type 3 0.387 —0.243 606.9
—3.10p Arriola -1.31 0.672 960.7
_3.00/ VMD (Ref.[51]) -11 0.5 866.2
e Holdom (1) -03 0.154 715.3
200 250 300 350 400 450 Holdom (2) -03 0.167 720
Mo [MeV] Bolokhov et al. 0 0 665
FIG. 4. The dependence bf on M. The solid curve stands for Alfaro et al. 0 0 665

the result with the form factor from the instanton vacuum given in
Eq. (9), the dashed one draws the result with the dipole tyi{&), ) ) ) )
and the dotted one designates the result with the Gaussian one. tinguishes the models. In Fig. 5, the dependence of the ratio
A on Mg is drawn. While the result with the form factor in
L, and L. In particular, the following expression for the Ed.(9) shows relatively mild dependence dfy, those with
upper bound of ther-meson mass was derived: the dipole and Gaussian form factors depend strongly on
M. It can be easily understood from the dependence of the
M,<6651+0.44A+0.3A2+0(A%)] MeV, (30 L, andLs; on M, as drawn in Figs. 3 and 4.

In Table Il we list the results foA and the upper limit of

where the sigma meson mass. As shown in Table I, we can find a
very interesting fact: Except for the present model, all other
2L,+Lg . .
A=— —Q (3D models presented here give negative values.ohs a result,
2

while the present work gives the upper limit bf, below
640 MeV, all other models in Table Il predict it rather large.
In particular, Ref[19] gives a fairly large value of the upper
limit of M,: 961 MeV. Though the models of Refl5]

In fact, the ratioA is determined by ther7 scattering length
as follows[54]:

a2 contain the momentum-dependent quark mass, their values
A=—3-24 O(m?)~—0.2+0.6, (32  of A are quite different from the present one. Thus the values
ad of A distinguish the present work from other models.

wherea3, aJ denote theD-wave scattering length fdr=0

and =2, respectively. Though it is hard to judge models V. CONCLUSIONS

based on this empirical value because of the large error, itis | the present work, we investigated tBgp*) effective

still of great interest to see the difference between modelshjral Lagrangian in the chiral limit, based on the nonlocal
While the present results are similar to those obtained fronghiral quark model derived from the instanton vacuum. Start-
other models, the ratid in Eq. (30), which is an important jng from the effective chiral action, we carried out a deriva-
quantity to determine the upper limit of the resonances, distive expansion with respect to the pion momenta in order to

get the effective chiral Lagrangian to ord@¢p*). The low-

—0.02 ~ T L s energy constantd ECs) which encode QCD dynamics have
N ——- Mo (m) ] been obtained. We calculated the LECs, employing three dif-
R Moczp(~K/A) ferent types oM (k). The LECs are insensitive to the types
: . of the form factors. We found that the results are in a good
:ZF Y agreement with the empirical data. Though they are not
R 018t e Y ] much different from those of other models, the present re-
I SN ] sults for the ratid\ turn out to be rather different from them.
< e S A full investigation into the low-energy constants includ-
—0.261 \\\ 1 ing SU3) symmetry breaking and external fields is under
R way.

200 250 300 350 400 450
My [MeV] ACKNOWLEDGMENTS
FIG. 5. The dependence af on M. The solid curve stands for H-C.K. is grateful to K. Goeke, M. E’olyakpv, P. POby”FS&
the result with the form factor from the instanton vacuum given inand M. Musakhanov for valuable discussions and critical

Eg. (9), the dashed one draws the result with the dipole fyi{&), comments. The present work is supported by the Korean
and the dotted one designates the result with the Gaussian one. Research FoundatioiKRF-2002-041-C00067
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