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Effective chiral Lagrangian in the chiral limit from the instanton vacuum
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We study the effective chiral Lagrangian in the chiral limit from the instanton vacuum. Starting from the
nonlocal effective chiral action, we derive the effective chiral Lagrangian, using the derivative expansion to
orderO(p4) in the chiral limit. The low energy constantsL1 , L2, andL3 are determined and compared with
various models and the corresponding empirical data. The results are in a good agreement with the data. We
also discuss the upper limit of the sigma meson, based on the present results.
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I. INTRODUCTION

Chiral perturbation theory (xPT) was introduced as a
effective field theory of QCD in a very low energy regim
@1#. Based on the chirally invariant Lagrangian with a set
coefficients,xPT has been a great success in describing v
low-energy phenomena of the strong interaction@2–5,55#.
While the structure of the Lagrangian is determined by
symmetry pattern in QCD, the coefficients are unknow
These unknown coefficients, known as low-energy consta
~LECs!, contain microscopic information about the quar
gluon dynamics which would be in principle determined
QCD. However, it requires formidable work to derive the
from QCD and thus is impractical. In fact, they are fitted
the experimental data such aspp scattering andKl4 decay
@2,6# and use them for describing or predicting other p
cesses. However, when one goes beyond the leading o
the number of the LECs start to increase very rapidly. Hen
it is not feasible to fix all LECs to empirical data.

There has been a great amount of works on the LE
within various chiral models@7–24#. Although dynamical in-
gredients of each model are different, almost all models
in good agreement with empirical data. Apart from som
models@15,21#, many models are based on local interactio
of quarks and mesons. While the nonlocality of the quark
be neglected in the range of quark momenta, for exam
k!1/r̄.600 MeV in which r̄ denotes the average size
the instanton, recent works on the pion wave functio
@25,26# and skewed parton distribution@27# show that it is of
great importance to consider the momentum-depend
quark mass in order to produce the correct end-point beh
ior of the quark virtuality. Similarly, a very recent study o
the effective weak chiral Lagrangian to orderO(p2) from the
instanton vacuum@28,29# asserts that the nonlocality of th
quark plays an essential role in improving previous res
@30# concerning theDT51/2 rule in the LECs. Furthermore
an appreciable merit of using the momentum-depend
quark mass as a regulator was already pointed out by
and Ripka@31#. The momentum-dependent quark mass p
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vides a consistent regularization of the effective action
which its real and imaginary parts are treated on the sa
footing and thus pertinent observables such as anoma
decaysp0→2g are safely recovered even ifM (k) acts as a
regulator.

In the present work, we shall investigate the effective c
ral Lagrangian from the instanton vacuum~see a recent re
view @32#!. We first consider the chiral limit as well as th
absence of the external fields. In order to take into acco
the effect of SU~3!-symmetry breaking, one has to modif
the effective chiral action originally obtained by Diakono
and Petrov@33#. Moreover, the vector and axial-vector cu
rents are not conserved in the presence of the nonlocal in
action. Thus, we first shall concentrate on the LECs in
chiral limit.

The outline of the present paper is as follows: In Sec
we briefly explain the instanton-induced chiral quark mod
emphasizing in particular the momentum dependence of
constituent quark mass and explain how to perform the
rivative expansion in the presence of the momentu
dependent constituent quark mass. In Sec. III, we show h
to derive theO(p4) effective chiral Lagrangian, using th
derivative expansion. In Sec. IV, we discuss the results
Sec. V we draw conclusion and make summary.

II. CHIRAL QUARK MODEL FROM
THE INSTANTON VACUUM

The instanton vacuum elucidates one of the most imp
tant low-energy properties of QCD, i.e., the mechanism
spontaneous breaking of chiral symmetry@34–36#. The
Banks-Casher relation@37# tells us that the spectral densit
n(l) of the Dirac operator at zero modes is proportional
the chiral condensate known as an order parameter of s
taneous breaking of chiral symmetry:

^c̄c&52
pn~0!

V(4)
. ~1!

The picture of the instanton vacuum provides a good real
tion of spontaneous breaking of chiral symmetry. A fin
density of instantons and anti-instantons produces the no
nishing value ofn(0), which triggers the mechanism of ch
ral symmetry breaking. The Euclidean quark propagator
the instanton vacuum acquires the following form with
©2004 The American Physical Society04-1
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momentum-dependent quark mass generated dynamic
identified with the coupling strength between quarks a
Goldstone bosons:

SF~k!5
k”1 iM ~k!

k21M2~k!
, ~2!

with

M ~k!5const3ANp2r̄2

VNc
F2~kr̄ !5M0F2~kr̄ !. ~3!

The ratioN/V denotes the instanton density at equilibriu
and ther̄ is the average size of the instanton. The form fac
function F(kr̄) is related to the Fourier transform of th
would-be zero fermion mode of individual instantons. T
instanton densityN/V is expressed as a gap equation:

N

V
54NcE d4k

~4p!4

M2~k!

k21M2~k!
51 fm24. ~4!

Taking the average instanton sizer̄51/3 fm, one obtains
M0.350 MeV.

The instanton vacuum induces effective 2Nf-fermion in-
teractions @34–36#. For example, it has a type of th
Nambu–Jona-Lasinio model forNf52 while for Nf53 it
exhibits the ’t Hooft determinant@38#. Goldstone bosons ap
pear as collective excitations by quark loops generatin
dynamic quark mass. Eventually it is found that at low en
gies QCD is reduced to an interacting quark-Goldstone
son theory given by the following Euclidean partition fun
tion @36#

Z5E DcDc†DpaexpE d4xFc f
†a~x!i ]”c f

a~x!

1 i E d4kd4l

~2p!8
ei (k2 l )•xAM ~k!M ~ l !

3c f
†a~k!~Ug5! f gcg

a~ l !G , ~5!

whereUg5 stands for the pseudo-Goldstone boson:

Ug5~x!5U~x!
11g5

2
1U†~x!

12g5

2

5exp~ ipa~x!lag5 / f p!. ~6!

Thea is the color index,a51, . . . ,Nc andf andg are flavor
indices. M (k) is the constituent quark mass being no
momentum-dependent, which is expressed by Eq.~3!. Its
momentum dependence will play a main role in the pres
work. If we chooseF(kr̄) to be constant and add a regula
ization ~e.g., Pauli-Villars or proper-time!, the partition func-
tion becomes just that of the usualxQM. The original ex-
pression for theF(kr̄) @34#, which is obtained from the
05400
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Fourier transformation of the would-be zero fermion mo
of individual instantons with the sharp instanton distributi
assumed, is as follows:

F~kr̄ !52zS I 0~z!K1~z!2I 1~z!K0~z!2
1

z
I 1~z!K1~z! D .

~7!

Here I 0 , I 1 , K0, and K1 denote the modified Bessel func
tions, z is defined asz5kr̄/2. Whenk goes to infinity, the
form factorF(kr̄) has the following asymptotic behavior:

F~kr̄ !→ 6

~kr̄ !3
. ~8!

Actually, there are other ways of understanding the n
local effective interaction without relying on the instanto
vacuum@39–42#. In those cases, the momentum-depend
quark mass can be interpreted as a nonlocal regularizatio
Euclidean space. Hence, various types of theM (k) as a regu-
lator with the regularization parameterL;1/r̄ has been used
by different authors. For example, the dipole-typeM (k) is
used in the study of the pion wave function@26#, while the
Gaussian is employed in Ref.@43#.

Therefore, we will not confine ourselves to the express
given in Eq. ~7! but rather try three different types of th
M (k):

M ~k!55
Eqs.~3!,~7!,

M0S 4L2

4L21k2D 4

,

M0expS 2
k2

L2D ,

~9!

where the cutoff parameterL is taken as the inverse ofr̄.
The M (k) is normalized toM0 at k50. Originally, M0 is
found to be around 350 MeV. However, we will regardM0
as a free parameter ranging from 200 MeV to 450 MeV a
fit for eachM0 the parameterL to the pion decay constan
f p593 MeV. Figure 1 shows the momentum dependence
the three different types ofM (k) with M05350 MeV. The
dipole type displays the largest tale, while the Gaussian ta
the strongly suppressed tail, compared to other ones. As
be shown later, this difference appearing in the tail is ba
cally responsible for the different results in the LECs of t
effective weak chiral Lagrangian.

This effective theory of quarks and light Goldstone m
sons applies to quark momenta up to the inverse size of
instanton,r̄21.600 MeV, which may act as a scale of th
model (mxQM). A merit to derive thexQM from the instan-
ton vacuum lies in the fact that the scale of the mode
naturally determined byr̄21. Furthermore, mesons and bar
ons can be treated on the same footing in thexQM. For
example, the model has been very successful in descri
the properties of the baryons@44#.
4-2
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III. EFFECTIVE CHIRAL LAGRANGIAN TO ORDER O„p4
…

The low-energy effective QCD partition function given
Eq. ~5! is the starting point of the present work. Havin
integrated out the quark fields of Eq.~5!, we obtain

Z5E Dpaexp~2Seff@pa# !, ~10!

where theSeff@pa# stands for the effective chiral action:

Seff@pa#52Ncln detD~Ug5!. ~11!

Here, theD(Ug5) is the Dirac operator defined by

FIG. 1. The dependence of theM (k) on uku. The solid curve
draws the Diakonov-PetrovM (k), the dashed one shows th
dipole-type parametrization ofM (k), and the dotted one corre
sponds to the Gaussian type ofM (k).
05400
D5 i ]”1 iAM ~2 i ]!Ug5AM ~2 i ]!. ~12!

The Dirac operator is not Hermitian, so that it is useful
divide the effective action into the real and imaginary par

ReSeff5
1

2
~Seff1Seff* !52

1

2
Ncln det@D†D#, ~13!

i Im Seff5
1

2
~Seff2Seff* !52

1

2
Ncln det@D/D†#.

~14!

It is already known that the imaginary part of the effecti
chiral action is identical to the Wess-Zumino-Witten acti
@45,46# with the correct coefficient, which arises from th
derivative expansion of the imaginary part toO(p5) @47–
52#. An appreciable merit of using the momentum-depend
quark mass as a regulator was already pointed out by
and Ripka@31#. The momentum-dependent quark mass p
vides a consistent regularization of the effective action giv
in Eq. ~11! in which its real and imaginary parts are treat
on the same footing and thus pertinent observables suc
anomalous decaysp0→2g are safely recovered even
M (k) acts as a regulator. Hence, in this work, we will co
centrate on the real part of the effective chiral action wh
will provide us with the effective chiral Lagrangian with th
LECs determined. In the present work, we first consider
case of the chiral limit and turn off the external fields. Fu
thermore, we keep only the leading order in the largeNc .

In order to calculate the real part given in Eq.~13!, we
subtract the vacuum part and use the derivative expans
We therefore write
ReSeff@pa#2ReSeff@0#52
Nc

2
Tr lnS D†D

D0
†D0

D
52

Nc

2 E d4xE d4k

~2p!4
e2 ikxtr lnS D†D

D0
†D0

D eikx

52
Nc

2 E d4xE d4k

~2p!4
tr lnS D†~]→]1 ik !D~]→]1 ik !

D0
†~]→]1 ik !D0~]→]1 ik !

D •1

52
Nc

2 E d4xE d4k

~2p!4
tr lnS 12

N

D0
†~]1 ik !D0~]1 ik !

D •1

5
Nc

2 E d4xE d4k

~2p!4
tr lnS 1

D0
†D0

N1
1

2

1

D0
†D0

N
1

D0
†D0

N

1
1

3

1

D0
†D0

N
1

D0
†D0

N
1

D0
†D0

N1
1

4

1

D0
†D0

N
1

D0
†D0

N
1

D0
†D0

N
1

D0
†D0

N1••• D •1, ~15!

where
4-3
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N5D0
†~]1 ik !D0~]1 ik !2D†~]1 ik !D~]1 ik !. ~16!

Here we have used a complete set of plane waves for the calculation of the functional trace, summing over all states a
the trace inx. ‘‘tr’’ then denotes the usual matrix trace over flavor and Dirac spaces. The right-hand side~RHS! of Eq. ~15! can
now be expanded in powers of the derivatives of the pseudo-Goldstone boson fields,]”Ug5, and of 2ik•]1]2. The operators
D†D andD0

†D0 in Eq. ~15! can be expanded as follows:

D†~]1 ik !D~]1 ik !52]222ik•]1k22AM ~2 i ]1k!~ /]Ug5!AM ~2 i ]1k!

1AM ~2 i ]1k!U2g5M ~2 i ]1k!Ug5AM ~2 i ]1k!, ~17!

D0
†~]1 ik !D0~]1 ik !52]222ik•]1k21M2~2 i ]1k!. ~18!

Since the dynamic quark mass in Eqs.~17!,~18! contains the derivatives, we need to expand it to orderO(]4):

AM ~2]222ik•]1k2!5AM ~k2!S 12
M̃ 8

2M
]22

~M̃ 8!2

8M2
]41

M̃ 9

4M
]42 i

M̃ 8

M
ka]a2 i

~M̃ 8!2

2M2
ka]a]21 i

M̃ 9

M
ka]a]2

1
~M̃ 8!2

2M2
kakb]a]b2

M̃ 9

M
kakb]a]b1

3~M̃ 8!3

4M3
kakb]a]b]22

3M̃ 8M̃ 9

2M2
kakb]a]b]2

1
M̃-
M

kakb]a]b]21 i
~M̃ 8!3

2M3
kakbkr]a]b]r2 i

M̃ 8M̃ 9

M2
kakbkr]a]b]r1 i

2M̃-
3M

kakbkr]a]b]r

2
5~M̃ 8!4

8M4
kakbkrks]a]b]r]s1

3~M̃ 8!2M̃ 9

2M3
kakbkrks]a]b]r]s2

~M̃ 9!2

2M2
kakbkrks]a]b]r]s

2
2M̃ 8M̃-

3M2
kakbkrks]a]b]r]s1

M̃-8

3M
kakbkrks]a]b]r]sD 1O~]5!, ~19!

M ~2]222ik•]1k2!5M ~k2!2M̃ 8]222M̃ 9kakb]a]b1
1

2
M̃ 9]212M̃-kakb]a]b]21

2

3
M̃-8kakbkrks]a]b]r]s

22iM̃ 8ka]a12iM̃ 9ka]a]21
4

3
iM̃ -kakbkr]a]b]r1O~]5!, ~20!

M2~2]222ik•]1k2!5M2~k2!22MM̃ 8]21~M̃ 8!2]41MM̃ 9]424iMM̃ 8ka]a14i ~M̃ 8!2ka]a]214iMM̃ 9ka]a]2

24~M̃ 8!2kakb]a]b24MM̃ 9kakb]a]b112M̃ 8M̃ 9kakb]a]b]214MM̃-kakb]a]b]2

18iM̃ 8M̃ 9kakbkr]a]b]r1
8

3
iMM̃ -kakbkr]a]b]r14~M̃ 9!2kakbkrks]a]b]r]s

1
16

3
M̃ 8M̃-kakbkrks]a]b]r]s1

4

3
MM̃-8kakbkrks]a]b]r]s1O~]5!, ~21!

where

M5M ~k!, M̃ 85
1

2k

dM~k!

dk
5

1

2k
M 8~k!,

M̃ 95
1

4k3 S d2M ~k!

dk2
k2

dM~k!

dk D 5
1

4k3
„M 9~k!k2M 8~k!…,

M̃-5
1

8k5 S k2
d3M

dk3
23k

d2M

dk2
13

dM

dk D 5
1

8k5
„M-~k!k223M 9~k!k13M 8~k!…,
054004-4
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M̃-85
1

16k7 S k3
d4M

dk4
26k2

d3M

dk3
115k

d2M

dk2
215

dM

dk D ,

5
1

16k7
„M-8~k!k326M-~k!k2115M 9~k!k215M 8~k!…. ~22!

Having carried out the necessary arithmetic and grouped terms for each order in the meson momentum, we final
the effective chiral Lagrangian to orderO(p4) with the momentum-dependent quark mass. The effective chiral Lagran
L (2) to orderO(p2) is given as follows:

L (2)5
f p

2

4
^]mU†]mU&. ~23!

In Eq. ~23! ^ & denotes the flavor trace andf p is the well-known pion decay constantf p593 MeV expressed by

f p
2 54NcE d4k

~2p!4

M2~k!2
1

2
M ~k!M 8~k!k1

1

4
M 82~k!k2

„k21M2~k!…2
. ~24!

Equation~24! has been already derived~see, for example, Refs.@39,43#!. We will use Eq.~24! to fix the cutoff parameterL.
When we switch off the momentum dependence of the constituent quark mass, we end up with the well-known expre
the xQM for f p

2 :

f p
2 54Nc

2E d4k

~2p!4

M2

~k21M2!2
, M5const, ~25!

which is logarithmically divergent.
The O(p4) effective chiral Lagrangian in the chiral limit is obtained as follows:

L (4)5L1^]mU†]mU&21L2^]mU†]nU&21L3^]mU†]mU]nU†]nU&, ~26!

whereL1 , L2, andL3 denote the LECs for theO(p4) effective chiral Lagrangian:

L15
Nc

4 E d4k

~2p!4

1

~k21M2!4 FM41
1

6
M4M 821

1

24
M4M 842

1

6
M5M 92

1

24
M5M 82M 92

1

2k
M5M 8

2
1

24k
M5M 832

1

2
kM3M 81

7

12
kM3M 832

1

6
kM4M 8M 92

1

4
k2M2M 842

1

6
k2M3M 91

1

12
k2M3M 82M 9

2
1

24
k3MM 832

1

6
k3M2M 8M 91

1

8
k4MM 82M 9G , ~27!

L252L1 , ~28!

L35NcE d4k

~2p!4

1

~k21M2!4 F2M42
13

16
M4M 822

1

8
M4M 841

53

96
M5M 91

3

16
M5M 82M 91

41

32k
M5M 8

1
3

16k
M5M 832

19

32
kM3M 92

3

4
kM3M 832

1

8
kM4M 8M 91

3

8
k2M2M 841

41

96
k2M3M 91

1

16
k3MM 83

1
1

16
k3M2M 8M 92

3

16
k4MM 82M 92

1

32
M6M 922

1

24
M6M 8M-1

1

96
M7M-82

1

32k3
M7M 82

1

32k2
M6M 82

1
1

32k2
M7M 92

3

16k
M6M 8M 91

1

16k
M7M-1

3

16
kM5M-1

23

32
k2M2M 822

1

16
k2M4M 922

1

12
k2M4M 8M-

1
1

32
k2M5M-81

3

32
k3MM 81

3

16
k3M3M-2

3

32
k4MM 92

1

32
k4M2M 922

1

24
k4M2M 8M-1

1

32
k4M3M-8

1
1

k5MM-1
1

k6MM-8G . ~29!

16 96

054004-5
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TABLE I. The low energy constantsL1 , L2 , L3.

M0~MeV! L~MeV! L1(31023) L2(31023) L3(31023)

Local xQM 350 1905.5 0.79 1.58 23.17
DP 350 611.7 0.82 1.63 23.09
Dipole 350 611.2 0.82 1.63 22.97
Gaussian 350 627.4 0.81 1.62 22.88
GL 0.960.3 1.760.7 24.462.5
Bijnens 0.660.2 1.260.4 23.661.3
Arriola 0.96 1.95 25.21
VMD 1.1 2.2 25.5
Holdom ~1! 0.97 1.95 24.20
Holdom ~2! 0.90 1.80 23.90
Bolokhov et al. 0.63 1.25 2.50
Alfaro et al. 0.45 0.9 21.8
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Equation ~28! is the large-Nc relation which was derived
from the OZI rule for the meson scattering amplitude@3#. If
we turn off the momentum dependence of the constitu
quark mass, we reproduce the results of the usualxQM.
Equations~27!–~29! are our main results.

IV. RESULTS AND DISCUSSION

The parameters in the present model are the constit
quark massM0 at k250 and the cutoff parameterL in Eq.
~9!. The cutoff parameterL is fixed by reproducing the pion
decay constantf p

2 . Having chosen theL, we are able to
calculate the LECsL1 , L2, and L3, numerically. The only
free parameter we have is theM0. In Table I, the results of
the L1 , L2, andL3 are listed withM05350 MeV. The re-
sults are found to be rather insensitive to the types ofM (k).
They are compared with those from other models. In Tabl
GL denotes the empirical data obtained by Gasser
Leutwyler @2#. The results are in good agreement with Re
@2,18#. It is interesting to compare the present results w
those from Ref. @15#, since it emphasizes also th
momentum-dependence of the quark mass. Holdomet al.

FIG. 2. The dependence ofL1 on M0. The solid curve stands fo
the result with the form factor from the instanton vacuum given
Eq. ~9!, the dashed one draws the result with the dipole typeM (k),
and the dotted one designates the result with the Gaussian on
05400
nt

nt

I,
d
.
h

@15# used two different values of the quark self-energyS(p).
Holdom ~1! represents the quark self-energyS(p)1

52M3/(M21p2), while Holdom ~2! designatesS(p)2

54M3/(3M21p2). M denotes the constituent quark mas
Figures 2, 3 and 4 draw the dependence of theL1 , L2,

andL3 on theM0, respectively. While the results with thre
different M (k) show a similar behavior in smallerM0, they
become rather different asM0 increases. In particular, th
Gaussian type ofF(k) drastically suppresses the LECs
higher values ofM0. The reason can be found in the beha
ior of theM (k). The Gaussian type ofF(k) decreases rathe
strongly ask increases, compared to other two different typ
of form factors.

Apart from the relation of the largeNc limit, there is an
additional relation in the localxQM: 2L21L350. The dual-
resonance model has the same relation@23,24#. However, the
quantity 2L21L3 is not equal to zero in the present mode
Interestingly, this relation is deeply related to the upp
bound of the lightest resonances inpp scattering. A recent
work @53# has shown that the upper bound of the masse
the r ands mesons can be expressed in terms of the LE

FIG. 3. The dependence ofL2 on M0. The solid curve stands fo
the result with the form factor from the instanton vacuum given
Eq. ~9!, the dashed one draws the result with the dipole typeM (k),
and the dotted one designates the result with the Gaussian on
4-6
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L2 and L3. In particular, the following expression for th
upper bound of thes-meson mass was derived:

Ms,665@110.44D10.33D21O~D3!# MeV, ~30!

where

D52
2L21L3

L2
. ~31!

In fact, the ratioD is determined by thepp scattering length
as follows@54#:

D523
a2

2

a2
0

1O~mp
2 !'20.260.6, ~32!

wherea2
2 , a2

0 denote theD-wave scattering length forI 50
and I 52, respectively. Though it is hard to judge mode
based on this empirical value because of the large error,
still of great interest to see the difference between mod
While the present results are similar to those obtained fr
other models, the ratioD in Eq. ~30!, which is an important
quantity to determine the upper limit of the resonances,

FIG. 4. The dependence ofL3 on M0. The solid curve stands fo
the result with the form factor from the instanton vacuum given
Eq. ~9!, the dashed one draws the result with the dipole typeM (k),
and the dotted one designates the result with the Gaussian on

FIG. 5. The dependence ofD on M0. The solid curve stands fo
the result with the form factor from the instanton vacuum given
Eq. ~9!, the dashed one draws the result with the dipole typeM (k),
and the dotted one designates the result with the Gaussian on
05400
is
s.
m

s-

tinguishes the models. In Fig. 5, the dependence of the r
D on M0 is drawn. While the result with the form factor i
Eq. ~9! shows relatively mild dependence onM0, those with
the dipole and Gaussian form factors depend strongly
M0. It can be easily understood from the dependence of
L2 andL3 on M0 as drawn in Figs. 3 and 4.

In Table II we list the results forD and the upper limit of
the sigma meson mass. As shown in Table II, we can fin
very interesting fact: Except for the present model, all oth
models presented here give negative values ofD. As a result,
while the present work gives the upper limit ofMs below
640 MeV, all other models in Table II predict it rather larg
In particular, Ref.@19# gives a fairly large value of the uppe
limit of Ms : 961 MeV. Though the models of Ref.@15#
contain the momentum-dependent quark mass, their va
of D are quite different from the present one. Thus the val
of D distinguish the present work from other models.

V. CONCLUSIONS

In the present work, we investigated theO(p4) effective
chiral Lagrangian in the chiral limit, based on the nonloc
chiral quark model derived from the instanton vacuum. Sta
ing from the effective chiral action, we carried out a deriv
tive expansion with respect to the pion momenta in orde
get the effective chiral Lagrangian to orderO(p4). The low-
energy constants~LECs! which encode QCD dynamics hav
been obtained. We calculated the LECs, employing three
ferent types ofM (k). The LECs are insensitive to the type
of the form factors. We found that the results are in a go
agreement with the empirical data. Though they are
much different from those of other models, the present
sults for the ratioD turn out to be rather different from them

A full investigation into the low-energy constants inclu
ing SU~3! symmetry breaking and external fields is und
way.
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TABLE II. D and the upper limit ofMs .

2L21L3(31023) D <Ms~MeV!

local xQM 0 0 665
Type 1 1.67 20.103 637.2
Type 2 0.29 20.178 619.9
Type 3 0.387 20.243 606.9
Arriola 21.31 0.672 960.7
VMD ~Ref. @51#! 21.1 0.5 866.2
Holdom ~1! 20.3 0.154 715.3
Holdom ~2! 20.3 0.167 720
Bolokhov et al. 0 0 665
Alfaro et al. 0 0 665
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