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Relativistic corrections to gluon fragmentation into spin-triplet S-wave quarkonium

Geoffrey T. Bodwin and Jungil Lee*
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~Received 1 August 2003; published 11 March 2004!

We use the NRQCD factorization formalism to calculate the relativistic corrections to the fragmentation
function for a gluon fragmenting into a spin-tripletS-wave heavy quarkonium. We make use of the gauge-
invariant formulation of the fragmentation function of Collins and Soper. The color-octet contribution receives
a large, negative relativistic correction, while the color-singlet contribution receives a large, positive relativistic
correction. The considerable decrease in the color-octet contribution requires a corresponding increase in the
phenomenological value of the leading color-octet matrix element in order to maintain a fit to the Fermilab
Tevatron data.
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I. INTRODUCTION

In the nonrelativistic QCD~NRQCD! factorization ap-
proach, the rate of semi-inclusive quarkonium production
large transverse momentum (pT) is given as a sum of prod
ucts of short-distance coefficients and NRQCD matrix e
ments@1#. The short-distance coefficients are calculable
perturbative series in the strong-coupling constantas , while
the production matrix elements, at least so far, must be
termined by comparison with experimental data. The fi
theoretic ingredients that form the basis for the NRQCD f
torization approach for quarkonium production are the c
linear factorization of hard-scattering processes at largepT
@2–4# and the decomposition of the factored semi-inclus
production rate into NRQCD operator matrix elements a
short-distance coefficients@1#. The NRQCD factorization
formalism predicts that the NRQCD matrix elements are u
versal ~process independent!, and it also leads to a set o
rules @1# for the scaling of matrix elements and interactio
with v, wherev is the heavy-quark or heavy-antiquark v
locity in the quarkonium rest frame. (v2'0.3 for theJ/c,
andv2'0.1 for theY.! The confrontations of these expecte
properties of the NRQCD factorization formulas with expe
mental data are among the key tests of the NRQCD
proach.

The production of quarkonium at largepT in pp̄ collisions
provides a particularly important test of the NRQCD facto
ization approach. At apT of several times the quarkonium
mass, the quarkonium production cross section is domin
by a process in which a gluon fragments into a quarkoni
@5#. Other processes are suppressed by at least 1/pT

2 in the
cross section. Furthermore, the process in which the gl
fragments into the quarkonium through a color-octet he
quark-antiquark (QQ̄) channel dominates because it is e
hanced by a factorv4/as

2 relative to the color-singlet proces
@6#. It was pointed out by Cho and Wise@7# that a quarko-
nium that is produced through the color-octet process sho
have a substantial transverse polarization. The reason for
transverse polarization is that the fragmenting gluon is ne
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on its mass shell, and, hence, is nearly completely tra
versely polarized. In the color-octet fragmentation proce

that polarization is passed on to a producedQQ̄ pair, which
then evolves into a quarkonium state. According to t
velocity-scaling rules of NRQCD@1#, the evolution of the

QQ̄ pair into a quarkonium state is dominated by non-sp
flip interactions, which preserve the transverse polarizat
Spin-flip interactions are suppressed by at leastv2.

The prediction of substantial quarkonium transverse
larization at largepT relies not only on the validity of the
NRQCD factorization formulas for quarkonium productio
but also on the universality of the NRQCD matrix elemen
and the velocity-scaling rules. Therefore, experimental m
surements of the polarization prediction test many of
essential features of the NRQCD factorization formalis
Such measurements are also important in that they can
criminate between the NRQCD factorization approach a
the color-evaporation model, which predicts zero polari
tion for the produced quarkonium.

There have been several calculations, based on
NRQCD factorization approach, of the polarization of t
produced quarkonium as a function ofpT . These include
calculations ofJ/c polarization at leading order inas @7#, at
next-to-leading order inas @8#, and at next-to-leading orde
in as , including the effects of feeddown fromc8 and xc
states@9#; calculations ofc8 polarization at next-to-leading
order in as @8–11#; and calculations ofY polarization at
next-to-leading order inas @12#. These calculations are gen
erally in agreement with each other, although they are s
ject to large theoretical uncertainties, which arise mai
from uncertainties in the color-octet NRQCD matrix el
ments. The Collider Detector at Fermilab~CDF! data forJ/c
andc8 polarization@13# do not support either the predictio
of substantial transverse polarization at largepT or the pre-
diction of increasing transverse polarization with increas
pT . However, it must be said that only the points at t
highestpT are more than 1.5 standard deviations away fr
the predictions in Ref.@9#. In the case of theY polarization,
the CDF data@14# agree with the prediction@12#. However,
the experimental error bars are too large to allow one to d
firm conclusions about the presence of substantial transv
polarization.

In light of the possible discrepancy between the pred
ty,
©2004 The American Physical Society03-1
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tions forJ/c andc8 polarization and the CDF data, it seem
worthwhile to investigate the sizes of uncalculated contri
tions to the theoretical cross sections. Among such contr
tions are relativistic corrections, which begin in relative o
der v2. It is known in the case of quarkonium decay rat
that such corrections can be of the same size as the lea
contribution@15#. Investigations of relativistic corrections t
quarkonium decays of orderv4 @16# suggest that the order-v2

contribution gives the bulk of the correction to the leadi
contribution.

In this paper, we calculate the relativistic corrections
relative orderv2 to the short-distance coefficients of both t
color-octet and color-singlet terms in the fragmentation fu
tion for a gluon to fragment into a spin-triplet quarkoniu
state. We carry out the calculation at leading order inas . In
computing the short-distance coefficients, we make use
the Collins-Soper definition of the fragmentation function
terms of a quantum chromodynamic~QCD! operator matrix
element@17#. In carrying out this calculation, we confirm th
results for the short-distance coefficients at leading orde
v @5#. As a check of our methods, we also compute the c
rection of relative orderv2 to the three-gluon decay rate of
spin-triplet quarkonium state and find that it agrees with
results of Refs.@16,18#. We find that the relativistic correc
tion to the color-octet fragmentation function is large a
negative, while the correction to the color-singlet fragmen
tion function is large and positive.

The remainder of this paper is organized as follows.
Sec. II we review the Collins-Soper definition of the fra
mentation function, and in Sec. III we use the NRQCD fa
torization formalism to write the expression for the fragme
tation function in terms of NRQCD operator matrix elemen
and perturbatively calculable short-distance coefficients
Sec. IV we describe the calculation of the short-distance
efficients. In Secs. V and VI we compute, respectively,
short-distance coefficients for the color-octet and col
singlet parts of the fragmentation function for a gluon fra
menting into a3S1 quarkonium state, through relative ord
v2. Finally, we discuss the implications of our results in S
VII.

II. COLLINS-SOPER DEFINITION
OF THE FRAGMENTATION FUNCTION

In this section we make use of the Collins-Soper defi
tion of the fragmentation function@17# to write, in terms of
NRQCD operator matrix elements and short-distance co
cients, the fragmentation function for a gluon to fragme
into a quarkonium state. The Collins-Soper definition w
first used in a calculation of a quarkonium fragmentat
function by Ma@19#.

Here, and throughout this paper, we use the follow
light-cone coordinates for a four-vectorV:

V5~V1,V2,V'!5~V1,V2,V1,V2!, ~1a!

V15~V01V3!/A2, ~1b!

V25~V02V3!/A2. ~1c!
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The scalar product of two four-vectorsV andW is then

V•W5V1W21V2W12V'•W' . ~2!

The fragmentation functionDg→H(z,m) is the probability
for a gluon that has been produced in a hard-scattering
cess to decay into a hadronH carrying a fractionz of the 1
component of the gluon’s momentum. This function can
defined, in a light-cone gauge, in terms of the matrix elem
of a bi-local operator involving two gluon field strength
@20#. In Ref. @17#, Collins and Soper introduced a gaug
invariant definition of the gluon fragmentation function:

Dg→H~z,m!5
2gmnzd23

2pk1~Nc
221!~d22!

E
2`

1`

dx2e2 ik1x2

3^0uGc
1m~0!E †~02!cbPH(zk1,0')E~x2!ba

3Ga
1n~01,x2,0'!u0&. ~3!

Here,Gmn is the gluon field-strength tensor,k is the momen-
tum of the field-strength tensor, andd5422e is the number
of space-time dimensions. There is an implicit average o
the color and polarization states of the initial gluon. T
parameterm is the factorization scale, which appears impli
itly through the dimensional regularization of the opera
matrix element. The operatorPH(P1,P') is a projection onto
states that, in the asymptotic future, contain a hadronH with
momentumP5„P1,P25(M21P'

2 )/(2P1),P'…, whereM
is the mass of the hadron:

PH(P1,0')5(
X

uH~P1,0'!1X&^H~P1,0'!1Xu. ~4!

The eikonal operatorE(x2) is a path-ordered exponential o
the gluon field that makes the expression~3! gauge invariant
by connecting the different space-time positions of the glu
field strengths:

E~x2!ba5P expF1 igE
x2

`

dz2A1~01,z2,0'!G
ba

, ~5!

where g is the QCD coupling constant, andAm(x) is the
gluon field. BothAm andGmn are SU~3!-matrix valued, with
the matrices in the adjoint representation. The manif
gauge invariance of expression~3! allows us to make use o
the Feynman gauge in order to simplify the calculation.

The definition~3! is invariant under boosts along the lon
gitudinal direction@17#. The fragmentation function is de
fined in a frame in which the transverse momentum of
hadron H vanishes:P'50' . However, the fragmentation
function is also invariant under boosts that change the tra
verse momentum of the hadron, while leaving the1 com-
ponents of all momenta unchanged@17#. @This can be seen
from the fact that the definition~3! is manifestly covariant,
except for dependences on the1 components of some quan
tities and on the dummy variablex2.# An explicit construc-
tion of such a Lorentz transformation is given in Append
3-2



i

a
ti

ol

ex
f
a

th
e,

r

it

d
t
cl
t

e

ep
o
de

ti

e

m
h

al
e

o

e
e

der
p-

r-

s

are
sive
y

t
se-

tion

e-
t

n of

RELATIVISTIC CORRECTIONS TO GLUON . . . PHYSICAL REVIEW D69, 054003 ~2004!
A. However, for the purposes of this calculation, we find
convenient to work in the frame in whichP'50' .

In general, the fragmentation function~3! involves the
long-distance dynamics of the evolution of gluon into
quarkonium state and, hence, is a nonperturbative quan
However, we may evaluate the short-distance part of ev
tion of the gluon into aQQ̄ stateH as a power series inas .
A convenient set of Feynman rules for the perturbative
pansion of Eq.~3! is given in Ref.@17#. For the purposes o
this calculation, we need only the standard QCD Feynm
rules and the special rule for the creation of a gluon by
operatorGa

1n in Eq. ~3!. The latter rule, in momentum spac
is a factor

1 ik1S gna2
Qnna

k1 D dab , ~6!

wherek is the momentum of the field-strength tensor,Q is
the momentum of the gluon,a anda are the vector and colo
indices, respectively, of the created gluon, andb is the color
index of the eikonal line. In the absence of interactions w
the eikonal line,k5Q.

In the definition~3!, the transverse momentum of the ha
ron H is fixed. Therefore, the phase space is the produc
the phase-space factors of all of the other final-state parti
and the light-cone–energy-conserving delta function tha
implied by the integration overx2 in Eq. ~3!:

dFn5
4pM

S
dS k12P12(

i 51

n

ai
1D)

i 51

n dai
1dd22a'

2a1~2p!d21
,

~7!

whereS is the statistical factor for identical particles in th
final state,ai is the momentum of thei th final-state particle,
and the product is over all of the final-state particles exc
H. Since we use nonrelativistic normalization for the hadr
H, a factor 2M has been included in the phase space in or
to cancel the relativistic normalization ofH in the definition
~3!. In the remainder of this paper, we use nonrelativis
normalization for the hadronH and heavy quarkQ and an-
tiquarkQ̄, and we use relativistic normalization for all of th
other particles.

III. NRQCD FACTORIZATION

The fragmentation of a gluon into a heavy-quarkoniu
stateH involves many momentum scales, ranging from t
factorization scale of the fragmentation functionm, which
we assume to be of the order of the heavy-quark massm or
greater, to momenta much smaller thanm, for which nonper-
turbative effects are large. The NRQCD factorization form
ism allows one to make a systematic separation of mom
tum scales of orderm and larger from scales of ordermv or
smaller. Following this approach@1#, we write the fragmen-
tation function of a gluon fragmenting into a heavy quark
nium in the form
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Dg→H~z,m!5(
n

@dn~z,m!^O n
H&1dn8~z,m!^P n

H&#1O~v3!,

~8!

where theO n
H and P n

H are NRQCD operators, and th
dn(z,m) and dn8(z,m) are short-distance coefficients. Th
first term on the right-hand side of Eq.~8! contains the op-
erator matrix elements of leading order inv, and the second
term contains the operator matrix elements of relative or
v2. The indexn represents the quantum numbers of the o
erator. The matrix elementŝO n

H& and ^P n
H& are defined in

the rest frame ofH and are given, in the case of a3S1 state
H, by the vacuum expectation values of the following fou
quark operators:

O 1
H5x†s ic(

X
uH1X&^H1Xuc†s ix, ~9a!

O 8
H5x†s iTac(

X
uH1X&^H1Xuc†s iTax, ~9b!

P 1
H5

1

2m2 Fx†s i S i

2
DJ D 2

c(
X

uH1X&^H1Xu

3c†s ix1H.c.G , ~9c!

P 8
H5

1

2m2 Fx†s iTaS i

2
DJ D 2

c(
X

uH1X&^H1Xu

3c†s iTax1H.c.G , ~9d!

wherem is the heavy-quark mass,c is the Pauli field that
annihilates aQ, x is a Pauli field that creates aQ̄, and
x†DJc5x†(Dc)2(Dx)†c. The sum is over all final state
that contain the specified quarkonium stateH. The NRQCD
matrix elements are nonperturbative in nature, but they
universal, in that the same matrix elements describe inclu
production of 3S1 quarkonium states in other high-energ
processes.

IV. SHORT-DISTANCE COEFFICIENTS

The short-distance coefficients in Eq.~8! are independen
of the long-distance dynamics of hadronization and, con
quently, they are independent of the hadronic stateH. There-
fore, they can be calculated by examining the fragmenta
function for the case in which the stateH is a freeQQ̄ state.
We take the momenta of theQ andQ̄ to bep5P/21q and
p̄5P/22q, respectively. The heavy quark has thre
momentumq in the QQ̄ rest frame, and, so, the invarian
mass of theQQ̄ state is P254E2, where E5Am21q2.
Since the momentumq is fixed, the phase space of theQQ̄
pair is that of a single particle with momentumP, and it is
omitted in the phase-space integrations in the computatio
3-3
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the fragmentation function. The fragmentation function
this freeQQ̄ state is

Dg→QQ̄~z,m!5(
n

@dn~z,m!^O n
QQ̄&1dn8~z,m!^P n

QQ̄&#

1O~v3!. ~10!

The definitions of the NRQCD matrix elements^O n
QQ̄& and

^P n
QQ̄& are same as those in Eq.~9!, except for the replace

ment H→QQ̄. The short-distance coefficientsdn(z,m) and
dn8(z,m), which are common to both Eq.~8! and Eq.~10!,
can be obtained by comparing a perturbative calculation
the fragmentation function on the left-hand side of Eq.~10!
with a perturbative calculation of the NRQCD matrix el
ments on the right-hand side of Eq.~10!. While the fragmen-
tation function and the matrix elements in Eq.~9! may both
display sensitivity to long-range~infrared! interactions, that
sensitivity cancels in the short-distance coefficients.

In determining the coefficients of̂O n
QQ̄& and ^P n

QQ̄& in
Dg→QQ̄(z,m), it is convenient to make use of projection o
erators for the spin and color states of theQQ̄ pair. The
projection operators for theQQ̄ pair in the color-singlet and
color-octet configurations are

L15
1

ANc

d j i , ~11a!

L8
a5A2Tji

a , ~11b!

wherei and j are the quark color indices in the fundamen
~triplet! representation,a is the octet color index, andNc
53. Spin-projection operators, accurate to all orders inv,
have been given in Ref.@16#.1 For the spin-triplet state, the
projection operator is

L~P,q,e* !5La~P,q!ea* 5N~p”̄2m!e”*
P” 12E

4E
~p”1m!,

~12!

wheree is the polarization of the heavy-quark pair, andN
5@2A2E(E1m)#21. Note that we use nonrelativistic no
malization for the heavy-quark spinors. IfC is the full QCD
amplitude for a process, then the spin-triplet part of that a
plitude isM5Tr(CL).

The S-wave part ofM is

MS-wave5M01
q2

m2
M21O~q4!, ~13!

where the first two terms on the right-hand side of Eq.~13!
are the leading and first subleading terms in thev expansion.
Here,

1Projection operators that are accurate to lowest order in the
relativistic expansion have been given previously@21#.
05400
r

f

l

-

M05Muq→0 , ~14a!

M25
m2I ab

2~d21!

]2M
]qa]qb U

q→0

,

~14b!

where

I ab52gab1PaPb/~4E2!. ~15!

The matrix elements of theQQ̄ NRQCD operators are nor
malized as

^O 1
QQ̄&52~d21!Nc , ~16a!

^O 8
QQ̄&5~d21!~Nc

221!, ~16b!

^P n
QQ̄&5

q2

m2
^O n

QQ̄&. ~16c!

The quantities that we calculate in this paper are all fin
Thus, we may putd54 in Eqs.~3!, ~7!, and~16!.

V. COLOR-OCTET CONTRIBUTION

Let us calculate the color-octet contribution to the fra
mentation of a gluon into aQQ̄ pair in full QCD. The Feyn-
man diagram for the color-octet part of the fragmentat
function in leading order inas is shown in Fig. 1. The circles
represent the gluon field strengths and the double lines
resent the eikonal operator. The momentumk5(k1,k2,k')
flows into the circle on the left and out the circle on the rig
The vertical line represents the final-state cut. In leading
der in as , the final state consists of aQQ̄ pair with total
momentumP5„zk1,P2/(2zk1),0'….

The Feynman diagram in Fig. 1 includes relativistic co
rections to all orders inv. The phase-space element is o
tained by settingn50 andS51 in Eq. ~7!:

dF05
4pM

k1
d~12z!. ~17!n-

FIG. 1. Feynman diagram for the color-octet contribution
leading order inas to the fragmentation function for a gluon frag

menting into a color-octet spin-tripletQQ̄ pair.
3-4
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The color-octet contribution can be extracted by tracing o
the projection operatorL8

a @Eq. ~11b!# on both the left-hand
and right-hand sides of the cut. Summing over the color
dexa, we obtain the color factor (Nc

221)/2. The spin-triplet
contribution can be extracted by tracing over the project
operatorLa @Eq. ~12!# on the left-hand side of the cut an
the projection operatorLb on the right-hand side of the cu
Multiplying by the prefactor in Eq.~3! and the phase-spac
element~17!, we obtain

D8
QQ̄~z!52

pasMM S-wave
as M S-wave

bt*

8E4
gmnI stS gna2

Pnna

k1 D
3S gmb2

Pmnb

k1 D d~12z!, ~18!

whereI st is given in Eq.~15!, and

M S-wave
as 5Tr~gaLs!S-wave52A2gasS 12

q2

6m2D 1O~v4!.

~19!

In the last equality in Eq.~19!, we have made use of Eq
~14!. Contracting vector indices, factoring out the normaliz
tion of the octet matrix elements given in Eqs.~16b! and
~16c!, and settingM52E, we obtain

D8
QQ̄~z!5

pasd~12z!

3~Nc
221!m3 F ^O 8

QQ̄&2
11

6
^P 8

QQ̄&G1O~v4!

5d8~z!^O 8
QQ̄&1d88~z!^P 8

QQ̄&1O~v4!, ~20!

where d8(z) and d88(z) are the short-distance coefficient
We obtain the contribution to the fragmentation function
a gluon fragmenting into a quarkoniumH by replacing the
QQ̄ operator matrix elements in Eq.~20! by H operator ma-
trix elements:

D8
H~z!5

pasd~12z!

3~Nc
221!m3

^O 8
H&F12

11

6
v8

21O~v4!G , ~21!

where

v8
25^P 8

H&/^O 8
H&. ~22!

Our result for the term of leading order inv in Eq. ~21! is in
agreement with the results of Refs.@22,23#.

VI. COLOR-SINGLET CONTRIBUTION

Now let us calculate the color-singlet part of the fragme
tation function for a gluon fragmenting into aQQ̄ pair in full
QCD. The Feynman diagram for this process at leading o
in as is shown in Fig. 2. We assign the momenta and po
ization indices for the particles in this process as follows

g* ~k,a!→QQ̄~P,s!1g~a,ma!1g~b,mb!, ~23!
05400
r
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wherek, P, a, andb are momenta anda, s, ma , andmb are
polarization indices. Owing to the color-singlet and sp
triplet quantum number of theQQ̄ pair, the final state mus
contain at least two gluons that couple to the heavy-qu
line. Hence, in leading order inas , there are no diagrams fo
this process, in any gauge, in which a gluon couples to
eikonal line.

In the frame in which Eq.~3! is defined, we can choos
the transverse direction so that

P5S zk1,
~2E!2

2zk1
,0,0D , ~24a!

a5S yk1,
a'

2

2yk1
,a',0D , ~24b!

b5S wk1,
b'

2

2wk1
,b'cosf,b'sinf D , ~24c!

wheref is the azimuthal angle ofb relative toa. The vari-
ablesy andw are the light-cone fractions of final-state glu
ons: y5a1/k1, and w5b1/k1, with z1y1w51. The
phase-space element of the process can be obtained by
ing the substitutionsn52, S52, a15a, anda25b in Eq.
~7!. It is useful in carrying out the phase-space integration
express the variablesa' , b' , and f in terms of Lorentz-
invariant dimensionless variablesea , eb , andx:

ea5
P•a

P2
5

1

2 S za'
2

~2E!2y
1

y

zD ,

~25a!

eb5
P•b

P2
5

1

2 S zb'
2

~2E!2w
1

w

z D , ~25b!

x5
a•b

P2
5

1

2~2E!2 S wa'
2

y
1

yb'
2

w
22a'b'cosf D .

~25c!

FIG. 2. One of the Feynman diagrams for the color-singlet c
tribution at leading order inas to the fragmentation function for a

gluon fragmenting into a color-singlet spin-tripletQQ̄ pair. The
other diagrams are obtained by permuting the connections of
gluons to the heavy-quark lines.
3-5
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Note that only the invariant variablex depends on the angl
f. In terms of the variablesea andeb , the phase space is

dF25
M ~2E!4

4z2k1~2p!3EF
, ~26a!

where

E
F

[E
0

`

deaE
0

`

debE
0

12z

dy

3E
0

2pdf

2p
uS ea2

y

2zD uS eb2
w

2zD ~26b!

and we have integrated over the azimuthal angle ofa and the
variablew. Theu functions in Eq.~26b! impose the require-
ment of the positivity of the variablesa'

2 andb'
2 . We defer

the discussion of the change of variables fromf to x to
Appendix B.

The color-singlet contribution can be extracted by trac
over the projection operatorL1 @Eq. ~11a!# on both sides of
the final state cut. Using charge-conjugation symmetry
relate diagrams involving permutations of the gluon conn
tions to the heavy-quark lines~Fig. 2!, we find that the color
factor is

S dabc

4ANc
D 2

5
~Nc

224!~Nc
221!

16Nc
2

. ~27!

The spin-triplet contribution can be extracted by tracing o
the projection operatorLa @Eq. ~12!# on the left-hand side o
the cut and the projection operatorLb on the right-hand side
of the cut. Multiplying by the prefactor in Eq.~3! and the
phase-space element~26a!, we obtain

D1
QQ̄~z!5

~Nc
224!as

3M

32pz52dNc
2 E

F

J•A
~112ea12eb12x!2

,

~28!

where the scalar product inJ•A denotes the sum over all th
repeated vector indices appearing in the product of the
sorsJ andA. These tensors are defined as

J52gmngmana
gmbnb

I stS gna2
knna

k1 D S gmb2
kmnb

k1 D ,

~29a!

A5M^ M* [M S-wave
amambsM S-wave

* bnanbt , ~29b!

M amambs5TrFga
1

p”2k”2m
gma

1

p”̄2b”2m
gmbLs~P,q!G

15 perm., ~29c!

whereI st is given in Eq.~15!, and the terms labeled ‘‘perm.
in Eq. ~29c! are generated by permuting the gluon mome
and polarization indices (2k,a),(a,ma),(b,mb). In Eq.
~29!, we have made use of the gauge invariance of
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Collins-Soper form of the fragmentation function~3! to carry
out the calculation in the Feynman gauge. We obtain
S-wave contributions of leading order inv and of relative
orderv2 in Eq. ~29b! by applying Eqs.~13! and ~14! to the
spin-triplet amputated amplitude~29c!.

Substituting Nc53, using Eq. ~16! to factor out the

NRQCD matrix element̂O 1
QQ̄&56Nc , and retaining terms

through relative orderv2 in J•A and in the phase-spac
factor M52E, we obtain

D1
QQ̄~z!5

5as
3m

2592pzEF

F0^O 1
QQ̄&1S 1

2
F01F2D ^P 1

QQ̄&

~112ea12eb12x!2

1O~v4!

5d1~z!^O 1
QQ̄&1d18~z!^P 1

QQ̄&1O~v4!, ~30!

where d1(z) and d18(z) are the short-distance coefficient
and

F05J•~M0^ M0* !uq→0 , ~31a!

F25m2
]

]q2 H J•ReF S M012
q2

m2
M2D ^ M0* G J

q→0

.

~31b!

@Note that, althoughM0 andM2 are independent ofq, the
factors J in Eq. ~31! introduce a dependence onq2.# We
obtain the contribution to the fragmentation function for
gluon fragmenting into a quarkoniumH by replacing theQQ̄
operator matrix elements in Eq.~30! by H operator matrix
elements:

D1
H~z!5

5as
3m^O 1

H&
2592pz E

F

F01S 1

2
F01F2D v1

2

~112ea12eb12x!2
1O~v4!,

~32!

wherev1
2 is given by

v1
25^P 1

H&/^O 1
H&, ~33!

rather than by Eq.~22!.
The evaluations ofF0 andF2 in Eqs.~31! are straightfor-

ward, but quite involved. We computeF0 andF2 using RE-

DUCE @24#. As a check, we carry out independent calculatio
using theFEYNCALC package@25# in MATHEMATICA @26#. By
making the replacementsJ→2gmana

gmbnb
gabI st and k2

→0 and multiplying by the appropriate factor, we also o
tain the decay rate of the processY→ggg, including the
relativistic correction. Our results agree with those in Re
@16,18#. The rather lengthy expressions forF0 and F2 are
given in aMATHEMATICA notebook file@27#.

In order to evaluate the integrals in Eq.~32!, we use Eq.
~25c! to replacef with x, as we have already mentioned, a
we carry out they integration analytically. This procedure i
described in detail in Appendix B. The integration metho
3-6
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that we use are similar to those in Ref.@5#. However, in Ref.
@5#, the short-distance coefficientd1(z) is expressed as
two-dimensional integral, which is then evaluated nume
cally. In the present calculation, we carry out the integratio
over the three variablesea , eb , andx numerically. This pro-
cedure allows one to extract information about the ene
spectrum of the radiated gluons. The results of this numer
integration are presented in Fig. 3 and in Table I.

We note that the short-distance coefficientd18(z) becomes
negative for some values ofz. The complete fragmentatio
function, to all orders inv, is an integral of the square of
quantity and is, therefore, positive. However, the individu
contributions in thev expansion need not be positive.

We estimate the fragmentation probability by integrati
the fragmentation functionD1

H(z) over the longitudinal frac-
tion z:

E
0

1

dzD1
H~z!58.2931024

•

as
3

m3
^O 1

H&@112.45v1
21O~v4!#.

~34!

Our result for the term of leading order inv in Eq. ~34! is in
agreement with the result of Ref.@5#.

VII. DISCUSSION

We have computed the contributions of leading order inv
and the relativistic corrections of relative orderv2 to the
fragmentation function for a gluon to fragment into a3S1
heavy-quarkonium state. We have computed both the co
bution in which the producedQQ̄ pair is in a color-octet
state and the contribution in which theQQ̄ pair is in a color-
singlet state. Our results of leading order inv agree with
those of Refs.@22,23# for the color-octet contribution and
with those of Ref.@5# for the color-singlet contribution. Ou
results for the corrections of relative orderv2 are new.

We estimate the relative sizes of the relativistic corr
tions for fragmentation intoJ/c by taking v1

2 and v8
2 from

FIG. 3. The color-singlet short-distance coefficientsd1(z) and
d18(z), which are defined in Eq.~30!. The scaling factors in this
figure arec1510243as

3/m3 andc18510233as
3/m3.
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the Gremm-Kapustin relation@28#

v1
25v8

25
M22mpole

mQCD
, ~35!

where mpole is the pole mass andmQCD is the mass that
appears in the NRQCD action. The Gremm-Kapustin relat
follows from the equations of motion of NRQCD and
accurate up to corrections of relative orderv2. In the original
work of Gremm and Kapustin@28#, a relation was given only
for v1. In Eq. ~35!, we have included the Gremm-Kapust
relation for v8, which can be derived in exactly the sam
manner as the Gremm-Kapustin relation forv1. Dimensional
regularization of the matrix elements^P 1

H& and^P 8
H& is im-

plicit in the Gremm-Kapustin relation@29#. Taking mQCD

5mpole51.4 GeV and MJ/c53.097 GeV, we obtainv1
2

5v8
250.21. One should regard this as only a rough estim

of the sizes ofv1 and v8. In fact, for mpole in the range
1.2 GeV,mpole,1.6 GeV, which corresponds to the late
Particle Data Group compilation@30#, the values ofv1

2 and
v8

2 given by Eq.~35! can even become negative.2 On the
other hand, the estimate forv1 that we obtain is in accor-

2Note that negative values ofv1
2 are allowed since, owing to the

subtractions of power divergences that are implicit in dimensio
regularization, the corresponding matrix element is not posit
definite.

TABLE I. Numerical values of the color-singlet short-distan
coefficientsd1(z) and d18(z), which are defined in Eq.~30!. The
scaling factors in this table arec1510243as

3/m3 and c1851023

3as
3/m3.

z d1(z)/c1 d18(z)/c18

0 0 0
0.05 7.25 20.746
0.10 9.27 20.842
0.15 10.2 20.808
0.20 10.7 20.709
0.25 10.9 20.564
0.30 11.0 20.382
0.35 10.9 20.162
0.40 10.7 0.0974
0.45 10.5 0.400
0.50 10.2 0.752
0.55 9.80 1.16
0.60 9.33 1.63
0.65 8.77 2.18
0.70 8.10 2.82
0.75 7.33 3.57
0.80 6.43 4.47
0.85 5.40 5.58
0.90 4.20 7.01
0.95 2.75 9.10
1 0 14.7
3-7
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G.T. BODWIN AND J. LEE PHYSICAL REVIEW D69, 054003 ~2004!
dance with expectations from the NRQCD velocity-scali
rules @1#, and it lies in the central part of the range 0.
,v1

2,0.6, which follows from a lattice calculation@31# un-
der the assumption thatmc lies in the range 1.2 GeV,mc

,1.6 GeV. Insertingv1
25v8

250.21 into Eqs.~21! and ~34!,
we find that the relativistic corrections change the sho
distance coefficients for the color-octet contribution and
color-singlet contribution by about240% and 50%, respec
tively.

We see that, in the case of theJ/c, the estimated relativ-
istic corrections are quite large in comparison with the c
tributions of leading order inv2. This is not unexpected
given that such large relativistic corrections also appea
charmonium decays.3 Nevertheless, these large relativist
corrections cast some doubt on the validity of thev expan-
sion for charmonium. One can hope that, as is the cas
charmonium decays@16#, the corrections of relative orderv4

will turn out to be significantly smaller than the correctio
of relative orderv2.

The value of the color-singlet matrix element^O 1
H& is

fixed by quarkonium decay rates. Therefore, the large r
tivistic correction to the short-distance coefficient of t
color-singlet contribution to the fragmentation function w
directly affect the theoretical predictions for quarkoniu
production rates. However, in the case ofJ/c production at
the Tevatron, the color-singlet fragmentation contribution
less than 5% of the total theoretical prediction over a w
range ofpT @32–34#. Therefore, the relativistic correction t
the color-singlet short-distance coefficient will have little e
fect on the predictions for either theJ/c production rate or
polarization at the Tevatron.

The color-octet matrix element̂O 8
H& in Eq. ~21! is, at

present, obtained by fitting the Tevatron data forJ/c produc-
tion to the complete theoretical expression, which is do
nated at the largest values ofpT by the color-octet fragmen
tation contribution. Therefore, the large decrease in the sh
distance coefficient for the color-octet contribution w
result in a corresponding large increase in the fitted value
the matrix element̂O 8

H&. The net result is that the phenom
enology ofJ/c production at the Tevatron, for either thepT
distribution or the polarization, will be largely unaffected b
the relativistic correction to the color-octet short-distance
efficient. Since, in leading order inas , the matrix element
^O 8

H& typically appears only in the fragmentation contrib
tion to a process, we expect the phenomenology of o
processes to be similarly unaffected. We note that, even
the increase in the fitted value of^O 8

H& that would result
from the relativistic correction, the value of that matrix el
ment would still be somewhat smaller than is expected fr
the velocity scaling rules.4 However, the relativistic correc
tion may be important in comparing phenomenological v
ues of^O 8

H& with future lattice calculations.

3See, for example, Ref.@16#.
4See, for example, Ref.@32# for fitted values of the matrix ele

ments.
05400
t-
e

-

in

in

a-

s
e

i-

rt-

of

-

er
th

-

ACKNOWLEDGMENTS

We thank Eric Braaten for making a number of use
comments and, particularly, for providing us with detail
information on the phase-space-integration method of R
@5#. We also thank Andrea Petrelli for the use of some of
MATHEMATICA code. Work in the High Energy Physics Div
sion at Argonne National Laboratory is supported by the
S. Department of Energy, Division of High Energy Physic
under Contract No. W-31-109-ENG-38.

APPENDIX A: LORENTZ TRANSFORMATION
FOR THE FRAGMENTATION FUNCTION

We wish to construct a Lorentz transformation th
changes the transverse components of the hadron’s mom
tum while leaving the1 components of all four-vectors un
changed. We will construct a particular transformation fro
a frame in which the fragmenting gluon has vanishing tra
verse momentum to a frame in which the quarkonium h
vanishing transverse momentum. Such a transformation
already discussed in Ref.@17#. Here, we give an explicit
construction.

Given a basis set of four linearly independent four-vect
that span the four-dimensional space-time, a transforma
is a Lorentz transformation if and only if it leaves all scal
products of the basis four-vectors invariant. Using the no
tion V5(V1,V2,V1,V2), we choose for our basis set in th
original Lorentz frame

k5S k1,
k2

2k1
,0,0D , ~A1a!

p5S zk1,
p21p'

2

2zk1
,p',0D , ~A1b!

n5~0,1,0,0!, ~A1c!

e25~0,0,0,1!, ~A1d!

where we have taken the 1 direction to be alongp' . We
assume thatn is invariant under the Lorentz transformatio
which implies that the1 components of all four-vectors ar
also invariant. We also assume, for simplicity, thate2 is in-
variant. Then, the transformed basis vectors are

k85S k1,
k21p'

2 /z2

2k1
,
2p'

z
,0D , ~A2a!

p85S zk1,
p2

2zk1
,0,0D , ~A2b!

n85~0,1,0,0!, ~A2c!

e285~0,0,0,1!. ~A2d!
3-8
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The transformed vectors are completely fixed by the requ
ment that all of the scalar products be invariant under
transformation and the requirements thatp'8 50' , n85n,
ande285e2.

Using Eqs.~A1! and ~A2!, we can construct an explici
transformation matrix L in the light-cone basis n̄
5(1,0,0,0),n5(0,1,0,0),e15(0,0,1,0), ande25(0,0,0,1).
L is defined byV85LV, where V is any four-vector, ex-
pressed as a column vector. It follows thatL is given in terms
of the untransformed and transformed light-cone basis v
tors by

L5S n̄8•n n8•n e18•n e28•n

n̄8•n̄ n8•n̄ e18•n̄ e28•n̄

2n̄8•e1 2n8•e1 2e18•e1 2e28•e1

2n̄8•e2 2n8•e2 2e18•e2 2e28•e2

D . ~A3!

From Eq.~A1!, we see that the light-cone basis vectors c
be written in terms ofk, p, n, ande2 as

n̄5
1

k1 S k2n
k2

2k1D , ~A4a!

n5n, ~A4b!

e15
1

2p'
F2~p2zk!1n

z2k22p22p'
2

zk1 G , ~A4c!

e25e2 . ~A4d!

Then, the transformed light-cone basis vectors are

n̄85
1

k1 S k82n
k2

2k1D , ~A5a!

n5n, ~A5b!

e185
1

2p'
F2~p82zk8!1n

z2k22p22p'
2

zk1 G ,

~A5c!

e285e2 . ~A5d!

Substituting Eqs.~A4! and~A5! into Eq.~A3! and using Eqs.
~A1! and ~A2!, we obtain

L5S 1 0 0 0

p'
2

2~p1!2
1 2

p'

p1
0

2
p'

p1
0 1 0

0 0 0 1

D . ~A6!
05400
-
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The inverse transformation from the primed coordinates
the unprimed coordinates is given byL215L(p'→2p').

APPENDIX B: PHASE SPACE FOR THE COLOR-OCTET
CONTRIBUTION

In this appendix we describe the manipulations that
carry out on the phase space for the color-singlet contri
tion to the fragmentation function@Eq. ~26!# in order to put it
into a form that is suitable for numerical integration. W
write the phase-space integration as

E
F

5E
0

`

deaE
0

`

debE
0

12z

dyE
0

2pdf

2p
Q, ~B1!

whereQ5u@ea2(y/2z)#u@eb2(w/2z)#.
Since the integrand depends onf only through the vari-

ablex @Eq. ~25c!#, it is an even function off. Therefore, we
may restrict the range off to 0 to p and double the inte-
grand:*0

2pdf/(2p)→*0
pdf/p. In the range 0<f<p, f is

a single-valued function ofx. Consequently, we can make
change of integration variables in which we replacef with x.
Using Eq.~25!, we rewritex as

x5
1

2
~a21b222ab cosf!, ~B2a!

where

a5A2w

z S ea2
y

2zD , ~B2b!

b5A2y

z S eb2
w

2zD . ~B2c!

Note that, owing to the constraintQ, a andb are real and
positive. The JacobianJ for the change of the variables i
given by

J5S dx

df D 21

5
1

ab sinf
5

z

A2A12By2Cy2

5
z

AC~y2y2!~y12y!
, ~B3a!

where

A5@zx2~12z!ea#2, ~B3b!

B52zxS ea2eb1
12z

z D1~12z!ea~ea1eb!,

~B3c!

C5~ea1eb!222x, ~B3d!

y65
B6AD

C
, ~B3e!
3-9
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D5B22AC

52z2x~2eaeb2x!F12z

z S ea1eb2
12z

2z D2xG .
~B3f!

Using Eq. ~B3a!, we arrive at the following form for the
phase space:

E
F

5E
0

`

deaE
0

`

debE
0

12z

dyE
0

pdf

p
Q

5E
0

`

deaE
0

`

debE dxE dy
zQ

pAC~y2y2!~y12y!
,

~B4!

where we have interchanged thex andy integrations, and we
have not yet specified the ranges of integration on the rig
hand side of Eq.~B4!.

Now let us work out the ranges of integration. The d
nominator on the right-hand side of Eq.~B4! has zeros aty
5y1 and y5y2 . ~There is no zero atC50, sincey1 and
y2 become infinite at that point.! As can be seen from Eq
~B3a!, the denominator of Eq.~B4! is proportional to sinf.
Therefore, its zeros correspond tof50 andf5p, which
are the end points of thef integration. We conclude that th
range ofy is restricted toy2<y<y1 . In order fory to have
a nonzero range, we must haveD.0. This implies thatx lies
either below both zeros ofD(x) or above both zeros o
D(x). We now argue that the latter range is unphysic
Clearly, forx large enough, then Eq.~B2! has solutions only
for y lying outside the physical region 0<y<12z and
Q(y)51. Furthermore,y is on the boundary of the physica
region if and only ifx is equal to a zero ofD(x). @To see
this, note that the zeros ofD(x) occur precisely when the
range ofy vanishes. From Eq.~B2a!, we see that the range o
y vanishes if and only ifa50 or b50. Buta50 or b50 if
and only if y50 or y512z or Q50, that is, if and only if
y is on the boundary of the physical region.# Then, by con-
tinuity, we conclude thaty lies in the physical region if and
only if x is restricted to be less than either of the zeros ofD.
Therefore, we require thatx satisfy

x<xmax~z,ea ,eb!

5minF2eaeb ,
12z

z S ea1eb2
12z

2z D G . ~B5!

Since, in this range ofx, y automatically satisfies 0<y<1
2z andQ(y)51, we can drop those explicit constraints o
05400
t-

-

l.

y. For fixedz, the constraintQ51 implies thatea1eb>(1
2z)/(2z). This constraint has already been satisfied by v
tue of the constraintx<xmax. However, for purposes of im
proving numerical-integration efficiency, we can explicit
impose it on the range ofeb . Taking all of the constraints on
the integration variables into account, we have for the pha
space integration

E
F

5E
0

`

deaE
max$0,[(12z)/2z] 2ea%

`

debE
0

xmax

dx

3E
y2

y1

dy
z

pAC~y2y2!~y12y!
. ~B6!

It turns out that there is noy dependence in the denom
nator of the integrand and that the numerator of the integr
is a polynomial iny of degree two. Therefore, they integra-
tion is easily performed:

Yn[E
y2

y1

dy
yn

pA~y2y2!~y12y!

5 (
r 50

r<n/2 n!GS r 1
1

2DBn22r~B22AC!r

r ! ~2r !! ~n22r !!GS 1

2DCn

. ~B7!

The explicit forms that are needed for the integrand in
present calculation are

Y051, ~B8a!

Y15
B

C
, ~B8b!

Y25
3B22AC

2C2
. ~B8c!

In carrying out the integrations overz, ea , eb , andx numeri-
cally, we made use of the adaptive Monte Carlo routineVE-

GAS @35#. We also checked our results using the built-
numerical-integration package inMATHEMATICA @26#. Spe-
cial care must be taken in carrying out thex integration nu-
merically. In the limitsea→0 or eb→0, the range of thex
integration vanishes. This can cause a large round-off e
in the Monte Carlo integration. We avoided this problem
making a further change of variablesx52eaebt. The inte-
gration interval fort is 0,t,xmax/(2eaeb).
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