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Relativistic corrections to gluon fragmentation into spin-triplet S-wave quarkonium
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We use the NRQCD factorization formalism to calculate the relativistic corrections to the fragmentation
function for a gluon fragmenting into a spin-tripl&twave heavy quarkonium. We make use of the gauge-
invariant formulation of the fragmentation function of Collins and Soper. The color-octet contribution receives
a large, negative relativistic correction, while the color-singlet contribution receives a large, positive relativistic
correction. The considerable decrease in the color-octet contribution requires a corresponding increase in the
phenomenological value of the leading color-octet matrix element in order to maintain a fit to the Fermilab
Tevatron data.
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I. INTRODUCTION on its mass shell, and, hence, is nearly completely trans-
versely polarized. In the color-octet fragmentation process,

In the nonrelativistic QCXNRQCD) factorization ap-  that polarization is passed on to a produc@@ pair, which
proach, the rate of semi-inclusive quarkonium production athen evolves into a quarkonium state. According to the
large transverse momentumy( is given as a sum of prod- velocity-scaling rules of NRQCI)1], the evolution of the
ucts of short-dlstance.coefflments gnd NRQCD matrix eIe-Qa pair into a quarkonium state is dominated by non-spin-
ments[l]: The §hor_t-d|stance coefﬂme_nts are calculqble Alip interactions, which preserve the transverse polarization.
perturbatlvg series in the strong-coupling constant while Spin-flip interactions are suppressed by at ledst
the pro%uct:)tlon matrix elem(_arrllts, at I(_aast sol fgr, musr: b?. ?e- The prediction of substantial quarkonium transverse po-
termme_ Oy comparison wit expenmenta ata. The fie dIarization at largept relies not only on the validity of the
theoretic ingredients that form the basis for the NRQCD fac-NRQCD factorization formulas for quarkonium production,

torization approach for quarkonium production are the coly, + 21c5 on the universality of the NRQCD matrix elements

linear factorization of harc_l-scatterlng processes at Iaprge_ and the velocity-scaling rules. Therefore, experimental mea-
[2—4] and the decomposition of the factored semi-inclusive

. ; ) urements of the polarization prediction test many of the
production rate into NRQCD operator matrix elements andS P P y

. o - essential features of the NRQCD factorization formalism.
short-distance coefficientgl]. The NRQCD factorization . . .
formalism predicts that the NRQCD matrix elements are uni-SUCh measurements are also important in that they can dis

versal (process independentand it also leads to a set of criminate between the NRQCD factorization approach and

. : ; .~ _the color-evaporation model, which predicts zero polariza-
rules[1] for the scaling of matrix elements and interactions,. for th duced Koni
with v, wherev is the heavy-quark or heavy-antiquark ve- tion for the produced guarkonium. .
locit i,n the quarkonium rest framep~0.3 for theJ/ There have been several calculations, based on the
and1¥2~o 1 fgr they .) The confrontafions c‘)f these explgéted NRQCD factorization approach, of the polarization of the
properties of the NRQCD factorization formulas with experi- produced quarkonium as a function pf. These include

calculations of)/ ¢ polarization at leading order iag [7], at
g}ggﬁ: data are among the key tests of the NRQCD alor'lext-to-leading order imxg [8], and at next-to-leading order

in ag, including the effects of feeddown fromt’ and x.

The production of quarkonium at largg in pp collisions  gia1eq[9]: calculations ofy’ polarization at next-to-leading
provides a particularly important test of the NRQCD factor- 5 qer in as [8-11]; and calculations ofY polarization at

ization approach. At @y of several times the quarkonium ey 1o-leading order i, [12]. These calculations are gen-
mass, the quarkonium production cross section is dominatega|ly in agreement with each other, although they are sub-
by a process in which a gluon fragments into a quarkoniumect 1 |arge theoretical uncertainties, which arise mainly
[5]. Other processes are suppressed by at legdtifi'the  from uncertainties in the color-octet NRQCD matrix ele-
Cross sectipn. Furthermore,_ the process in which the gluoments. The Collider Detector at Fermil&BDF) data ford/
fragments into the_quarkonlum through a color-octet heavyynq ¢ polarization[13] do not support either the prediction
quark-antiquark QQ) channel dominates because it is en-of substantial transverse polarization at laggeor the pre-
hanced by a factav4/a§ relative to the color-singlet process diction of increasing transverse polarization with increasing
[6]. It was pointed out by Cho and Wig&] that a quarko- py. However, it must be said that only the points at the
nium that is produced through the color-octet process shoullighestp; are more than 1.5 standard deviations away from
have a substantial transverse polarization. The reason for thiee predictions in Ref.9]. In the case of th& polarization,
transverse polarization is that the fragmenting gluon is nearlyhe CDF datd 14] agree with the predictiofl2]. However,

the experimental error bars are too large to allow one to draw

firm conclusions about the presence of substantial transverse
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tions forJ/¢ and ¢’ polarization and the CDF data, it seems The scalar product of two four-vectoxsandW is then
worthwhile to investigate the sizes of uncalculated contribu-
tions to the theoretical cross sections. Among such contribu- V-W=V*W +V W' =V, -W, . (2
tions are relativistic corrections, which begin in relative or-
derv?. It is known in the case of quarkonium decay rates The fragmentation functioD_.(z, 1) is the probability
that such corrections can be of the same size as the leadifigr @ gluon that has been produced in a hard-scattering pro-
contribution[15]. Investigations of relativistic corrections to Cess to decay into a hadréhcarrying a fractiore of the +
quarkonium decays of ordef [16] suggest that the order? ~ component of the gluon’s momentum. This function can be
contribution gives the bulk of the correction to the leadingdefined, in a light-cone gauge, in terms of the matrix element
contribution. of a bi-local operator involving two gluon field strengths
In this paper, we calculate the relativistic corrections of[20]. In Ref. [17], Collins and Soper introduced a gauge-
relative ordemn? to the short-distance coefficients of both the invariant definition of the gluon fragmentation function:
color-octet and color-singlet terms in the fragmentation func-

tion for a gluon to fragment into a spin-triplet quarkonium —g,wzd’3 e iktxe
state. We carry out the calculation at leading ordesdn In Dg—n(z,p)= N2 _ o axe

X : . 27k (NE—=1)(d—2) ) —=
computing the short-distance coefficients, we make use of
the Collins-Soper definition of the fragmentation function in X(0|G¢*(0)ET(07)cbPr(zk*.0,)E(X Dba
terms of a quantum chromodynami@CD) operator matrix i
elemen{17]. In carrying out this calculation, we confirm the XG2"(0",x7,0,)|0). 3)

results for the short-distance coefficients at leading order in

v [5]. As a check of our methods, we also compute the corHere,G,, is the gluon field-strength tensdrjs the momen-

rection of relative ordep? to the three-gluon decay rate of a tum of the field-strength tensor, add=4—2¢ is the number

spin-triplet quarkonium state and find that it agrees with theof space-time dimensions. There is an implicit average over

results of Refs[16,18. We find that the relativistic correc- the color and polarization states of the initial gluon. The

tion to the color-octet fragmentation function is large andparamete is the factorization scale, which appears implic-

negative, while the correction to the color-singlet fragmentaitly through the dimensional regularization of the operator

tion function .is large an.d positivg. . matrix element. The operat@® -+ p ) is a projection onto
The remainder of this paper is organized as follows. Ingtates that, in the asymptotic future, contain a hadtamith

Sec. Illwe review the Cplllns—Soper definition of the frag- momentumP = (P*,P~ = (M2+ PJZ_)/(2P+)!PJ_)7 whereM

mentation function, and in Sec. Ill we use the NRQCD fac-

torization formalism to write the expression for the fragmen-

tation function in terms of NRQCD operator matrix elements

and perturbatively calculable short-distance coefficients. In PH(p+,0L)=E [H(PT,0)+X}{H(P,0)+X|. (4

Sec. IV we describe the calculation of the short-distance co- X

efficients. In Secs. V and VI we compute, respectively, the

short-distance coefficients for the color-octet and color-The eikonal operatof(x~) is a path-ordered exponential of

singlet parts of the fragmentation function for a gluon frag-E)he gluon ftigld ttr?at dr?fakestthe exptr.ess(ein g.etl.uge ir}vterl]rianlt
menting into a3S; quarkonium state, through relative order y connecting the difierent space-time positions ot the giuon

v2. Finally, we discuss the implications of our results in Sec.f'GId strengths:
VII.

is the mass of the hadron:

E(X )pa=P exr{ +ig f ~dz A*(07,27,00)| , (5
Il. COLLINS-SOPER DEFINITION x ba

OF THE FRAGMENTATION FUNCTION
where g is the QCD coupling constant, an@#*(x) is the

In this section we make use of the Collins-Soper defini-gjyon field. BothA, andG,, are SU3)-matrix valued, with
tion of the fragmentation functiofi.7] to write, in terms of  the matrices in the adjoint representation. The manifest
NRQCD operator matrix elements and short-distance coeffiyayge invariance of expressié®) allows us to make use of
cients, the fragmentation function for a gluon to fragmentihe Feynman gauge in order to simplify the calculation.
into a quarkonium state. The Collins-Soper definition was  The definition(3) is invariant under boosts along the lon-
first used in a calculation of a quarkonium fragmentationgitydinal direction[17]. The fragmentation function is de-

function by Ma[19]. . _ fined in a frame in which the transverse momentum of the
~ Here, and throughout this paper, we use the followinghadronH vanishes:P, =0, . However, the fragmentation
light-cone coordinates for a four-vector function is also invariant under boosts that change the trans-

verse momentum of the hadron, while leaving thecom-

V=(VI V7V )= (VT VT V), (18 ponents of all momenta unchanggd?]. [This can be seen
from the fact that the definitioi3) is manifestly covariant,

VE=(VO+V3)/42, (1b)  except for dependences on thecomponents of some quan-
tities and on the dummy variable .] An explicit construc-

V*=(V°—V3)/\/§. (1o  tion of such a Lorentz transformation is given in Appendix
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A. However, for the purposes of this calculation, we find it
convenient to work in the frame in whidh, =0, . Dyn(z.p)=2 [da(z.u)(O N +d}(z.u)(P)]+0(v?),

In general, the fragmentation functig) involves the " ®)
long-distance dynamics of the evolution of gluon into a
guarkonium state and, hence, is a nonperturbative quantityhere theO,ﬁ' and PE are NRQCD operators, and the
However, we may evaluate the short-distance part of evolug (z ;) and d/(z,u) are short-distance coefficients. The
tion of the gluon into & Q stateH as a power series ia;. first term on the right-hand side of E¢B) contains the op-
A convenient set of Feynman rules for the perturbative exerator matrix elements of leading orderun and the second
pansion of Eq(3) is given in Ref[17]. For the purposes of term contains the operator matrix elements of relative order
this calculation, we need only the standard QCD Feynmam?. The indexn represents the quantum numbers of the op-
rules and the special rule for the creation of a gluon by thesrator. The matrix elemen({’)ﬁ) and(PE) are defined in
operatorG, ” in Eq. (3). The latter rule, in momentum space, the rest frame of and are given, in the case of3$, state
is a factor H, by the vacuum expectation values of the following four-

quark operators:

) QVna
+ va _ . .
+ik (9 o | Oan 6) O =x"o' WS [H+X)(H+X|u'a'x, (93)
wherek is the momentum of the field-strength tensQris H_  t i-a t ita
the momentum of the gluom; anda are the vector and color Og=x'o'T "/IEX: [H+XKH+ X[y o' T, (9b)
indices, respectively, of the created gluon, #&nig the color
index of the eikonal line. In the absence of interactions with 1 i\2
the eikonal linek=Q. Pil=— XTUI(ED) >, [H+X)H+X]|
In the definition(3), the transverse momentum of the had- 2m X
ron H is fixed. Therefore, the phase space is the product of
the phase-space factors of all of the other final-state particles X yto'y+H.c, (90
and the light-cone—energy-conserving delta function that is
implied by the integration ovex™ in Eq. (3): ,
1 i
47M " " da’d’ %a P8 XTUIT&(§D> 43 IHEX) X
a i il
db,=——38 kT—P"— > a —
" S 21 ' ).Hl 2at(2m)d1t .
@ Xyt Ty +H.c.|, (9d)

whereS is the statistical factor for identical particles in the wherem is the heavy-quark massg; is the Pauli field that
final statea; is the momentum of theth final-state particle, gnnihilates aQ, y is a Pauli field that creates @, and

and the product is over all of the final-state particles except T5¢: (D) (Dx) . The sum is over all final states

H. Since we use nonrelativistic normalization for the hadro h - .
H, a factor 2V has been included in the phase space in orderzthat contain the specified quarkonium stéteThe NRQCD

¢ L th lativisti lization 6f in the definii hatrix elements are nonperturbative in nature, but they are
0 cancel he refalivistic normaiization etin the definition universal, in that the same matrix elements describe inclusive
(3). In the remainder of this paper, we use nonrelativistic

. 3 . . . _
normalization for the hadrohl and heavy quarl and an- production of °S; quarkonium states in other high-energy

) = e S processes.

tiquarkQ, and we use relativistic normalization for all of the

other particles. IV. SHORT-DISTANCE COEFFICIENTS

Il NROCD FACTORIZATION The short-distance coefficients in E8) are independent
-NRQ of the long-distance dynamics of hadronization and, conse-

The fragmentation of a gluon into a heavy-quarkoniumduently, they are independent of the hadronic stat&here-
stateH involves many momentum scales, ranging from thefore, they can be calculated by examining the fragmentation
factorization scale of the fragmentation functigny which  function for the case in which the stdtkis a freeQQ state.
we assume to be of the order of the heavy-quark mass e take the momenta of th@ andQ to bep=P/2+q and

greater, to momenta much smaller thrapfor which nonper-  —_ P/2— respectively. The heav uark has three-
turbative effects are large. The NRQCD factorization formal-p 9 P y- y

ism allows one to make a systematic separation of momerl'oMmentumg in the QQ rest frame, and, so, the invariant
tum scales of ordem and larger from scales of order or ~ Mass of theQQ state is P?=4E?, where E=\m”+¢’.
smaller. Following this approadi], we write the fragmen- Since the momenturg is fixed, the phase space of tREQ
tation function of a gluon fragmenting into a heavy quarko-pair is that of a single particle with momentu®) and it is
nium in the form omitted in the phase-space integrations in the computation of
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the fragmentation function. The fragmentation function for r\
this freeQQ state is
_ — p P
Dy-a(z:4)= 2 [dn(z,m){(OR) +di(2,m)(PRY)]
+0(v3). 10 > >
@7 (19 kS k—p k-p uk

The definitions of the NRQCD matrix elemer(t® ??) and J
(PJ°) are same as those in E@), except for the replace-
mentH—>Q6 The short-distance coefficients(z, «) and FIG. 1. Feynman diagram for the color-octet contribution at
d’ !(z,1), which are common to both E8) and Eq.(10), leading order inag to the fragmentation function for a gluon frag-

can be obtained by comparing a perturbative calculation oftenting into a color-octet spin- tripl@Q par.
the fragmentation function on the left-hand side of E)

with a perturbative calculation of the NRQCD matrix ele- M0=M|qﬂo, (149
ments on the right-hand side of E4.0). While the fragmen-
tation function and the matrix elements in £§) may both m21e8 92 M
display sensitivity to long-rangénfrared interactions, that 2= 5(d=1) e
sensitivity cancels in the short-distance coefficients. ( ) 99%q 40
In determining the coefficients qf©9?) and(PQ%) in (14b

Dgy-.0q(z 1), itis convenient to make use of projection op-
erators for the spin and color states of Q&) pair. The

projection operators for th@Q pair in the color-singlet and |9A=—gP+ PPAI(4E?). (15)
color-octet configurations are

where

The matrix elements of th@6 NRQCD operators are nor-

1 .
A= Té‘ji , (113 malized as
i (099 =2(d-1)N,, (163
a=121%, (11b B
(099 =(d—1)(N2-1), (16b)

wherei andj are the quark color indices in the fundamental
(triplet) representationa is the octet color index, andll; 5

=3. Spin-projection operators, accurate to all orders ,n <PQ6>: q_<OQ5> (160
have been given in Ref16].! For the spin-triplet state, the 2 '

projection operator is

The quantities that we calculate in this paper are all finite.

A(P,q,e*)=A“(P,q)e§=N(K— m) % Thus, we may put=4 in Egs.(3), (7), and(16).

(12) V. COLOR-OCTET CONTRIBUTION

where € is the polarization of the heavy-quark pair, aNd
=[2V2E(E+m)]~%. Note that we use nonrelativistic nor-
malization for the heavy-quark spinors.dfis the full QCD
amplitude for a process, then the spin-triplet part of that am;
plitude is M =Tr(CA).

The Swave part ofM is

Let us calculate the color-octet contribution to the frag-

mentation of a gluon into ® Q pair in full QCD. The Feyn-
man diagram for the color-octet part of the fragmentation
function in leading order imr is shown in Fig. 1. The circles
represent the gluon field strengths and the double lines rep-
resent the eikonal operator. The momentkm(k™,k ™k, )

5 flows into the circle on the left and out the circle on the right.
M wave= Mo+ q—2M2+O(q4), (13)  The vertical line represents the final-state cut. In leading or-

der in ag, the final state consists of @Q pair with total
momentumP = (zk",P?/(2zk"),0,).

where the first two terms on the right-hand side of B The Feynman diagram in Fig. 1 includes relativistic cor-
are the leading and first subleading terms indhexpansion.  actions to all orders in. The phase-space element is ob-
Here, tained by settingi=0 andS=1 in Eq.(7):

PP . 4

Projection operators that are accurate to lowest order in the non- dd,= 8(1-72). (17)

relativistic expansion have been given previoys§].
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The color-octet contribution can be extracted by tracing over r\
the projection operatoA§ [Eq. (11b)] on both the left-hand
and right-hand sides of the cut. Summing over the color in-
dexa, we obtain the color factomN>—1)/2. The spin-triplet
contribution can be extracted by tracing over the projection
operatorA“ [Eq. (12)] on the left-hand side of the cut and
the projection operatoh? on the right-hand side of the cut.
Multiplying by the prefactor in Eq(3) and the phase-space

element(17), we obtain  : A
QQ) o\ _ TasMM §aeM é—?/‘ave v P.n, J
Dg~(z)=— Y= 9l 57| Gva™ Kt

FIG. 2. One of the Feynman diagrams for the color-singlet con-
PN tribution at leading order i to the fragmentation f_unction for a
9.5~ ’1 )5(1—2), (18 gluon fragmenting into a color-singlet spin-tripl&Q pair. The
k other diagrams are obtained by permuting the connections of the
gluons to the heavy-quark lines.

X

wherel ., is given in Eq.(15), and
5 wherek, P, a, andb are momenta and, o, u,, andu, are
wo ar o wo q olarization indices. Owing to the color-singlet and spin-
Swave= TT(Y*A )S—wave:_\/ig l__z +O(U4)- p. gfo! . . 9 P
triplet quantum number of th® Q pair, the final state must
(19 contain at least two gluons that couple to the heavy-quark

line. Hence, in leading order ing, there are no diagrams for

In the last equality in Eq(19), we have made use of Eq. thjs process, in any gauge, in which a gluon couples to the
(14). Contracting vector indices, factoring out the normaliza-gjkonal line.

tion of the oc‘get matrix eIement; given in Eq46b and In the frame in which Eq(3) is defined, we can choose
(160), and settingl =2E, we obtain the transverse direction so that
= Tago(1l—2) = 11 = (2E)?
D2 = —————|(0§%)— =(P§Y| +O*) P=| zk* 0,0 24
3%D= 3 i (080 5 (PR rOl 2k 00, (243
—dg(2)(09D+d4(2)(PSY+0(w%, (20 22
=|yk",——.a,,0], (24b)
where dg(z) and di(z) are the short-distance coefficients. 2yk

We obtain the contribution to the fragmentation function for
a gluon fragmenting into a quarkoniukh by replacing the

QQ operator matrix elements in ERO) by H operator ma-
trix elements:

b2
b:(wk*,ﬁ,blcosd:,blsinqb), (240
w

where ¢ is the azimuthal angle df relative toa. The vari-

H Tasd(1-2) 11 , 4 ablesy andw are the light-cone fractions of final-state glu-
Ds(Z)=W<Os> 1= 5vetOW@ |, (2D  ons:y=a'/k*, and w=b*/k*, with z+y+w=1. The
(Ne=1)m phase-space element of the process can be obtained by mak-
Where ing the substitutiong=2, S=2, a;=a, anda,=b in Eq.
(7). It is useful in carrying out the phase-space integration to
v§=<7>§>/<(9§>. (22) express th_e variablea;l, bi_, and ¢ in term§ of Lorentz-
invariant dimensionless variableg, e,, andx:
Our result for the term of leading orderinin Eqg. (21) is in 2
agreement with the results of Ref&2,23. o — P-a _ }( za, N X)
TP 2leey z)
VI. COLOR-SINGLET CONTRIBUTION (259
Now let us calculate the color-singlet part_of the fragmen- P.b 1 zbf W
tation function for a gluon fragmenting intoQQ pair in full ep= 02 2 (2E)%w 5 (25b)
QCD. The Feynman diagram for this process at leading order
in ag is shown in Fig. 2. We assign the momenta and polar- 2 2
ization indices for the particles in this process as follows: _ ﬂz 1 wa, n &—Za b cosq&)
1L M1 .
_ P2 2(2E)2\ Y w
g*(k,a)—>QQ(P,0')+g(a,,ua)+g(b,,ub), (23) (25C)
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Note that only the invariant variabbedepends on the angle Collins-Soper form of the fragmentation functi¢®) to carry
¢. In terms of the variables, ande,, the phase space is out the calculation in the Feynman gauge. We obtain the
Swave contributions of leading order im and of relative
M(2E)* f orderv? in Eq. (29b) by applying Eqs(13) and (14) to the
[}

2 (263 spin-triplet amputated amplitud@9¢).

T 422k (2m)3
zk™(2m) Substituting Nc=3, using Eq.(16) to factor out the
where NRQCD matrix element©®$?)=6N,, and retaining terms
through relative ordev? in E-A and in the phase-space
o0 © 1-z .
J EJ deaf debf dy factor M = 2E, we obtain
o Jo 0 0
— 1 —
2nd w 3 Fo(O9)+| SFo+F )(PQQ>
XJ %g( ea_% 0( ep— Z) (26b) DQa(Z _ Sagm f oY1 27072 1
0 ! 259277 ) ¢ (1+2e,+ 26+ 2X)2
and we have integrated over the azimuthal angle afid the +0(v?)
variablew. The 6 functions in Eq.(26b) impose the require- B B
ment of the positivity of the variables” andb? . We defer = dy (202 +d}(2) (PR +0(v?), (30)
the discussion of the change of variables fr@gnto x to
Appendix B. whered,(z) andd;(z) are the short-distance coefficients,
The color-singlet contribution can be extracted by tracingand
over the projection operatax; [Eg. (11a] on both sides of
the final state cut. Using charge-conjugation symmetry to Fo=E-(Mq® Mg)|q-o0. (314
relate diagrams involving permutations of the gluon connec-
tions to the heavy-quark lind&ig. 2), we find that the color , 0| o
factor is Fo,=m &_qz =R M0+2EM2 QMG :
q—0
( dabe )2 (N2—4)(N2-1) - (31b
4N, 16N . [Note that, although\1, and M, are independent df, the

o o ] factors  in Eq. (31) introduce a dependence a@f.] We
The spin-triplet contribution can be extracted by tracing ovelpptain the contribution to the fragmentation function for a

the projection operatok * [Eq. (12)] on the left-hand side of gluon fragmenting into a quarkoniubh by replacing the@Q

the cut and the projection operatdf on the right-hand side . ; d
of the cut. Multiplying by the prefactor in Eq3) and the operator matrix elements in EG30) by H operator matrix

phase-space eleme(#6a, we obtain elements:
o (NE=#)aiM E A Fot| SFotFy|o?
D?Q(Z): - 5 dSZ j — 27 DH( ) 5a§m<(’)'f> 0 2 ° 2)7 O( 4)
- Z)= v),
32wz°" Ng Jo (1+2e,+ 2e,+2x) 1 250272 Ja (14 2,+ 260+ 2)?
(28)
(32
where the scalar product B- .4 denotes the sum over all the h 2. . b
repeated vector indices appearing in the product of the tenY '€f€v1 IS given by
sorsE and.A. These tensors are defined as U%U’T)/(@T% 33
E=—0,,90 .90 1ol Gpa— KiNa _ kung rather than by Eq(22).
A LI MR ) The evaluations of, andF, in Egs.(31) are straightfor-

(298  ward, but quite involved. We compute, andF, using RE-

DUCE [24]. As a check, we carry out independent calculations
A= M M* =M a7 M *S’jvgavgb’, (29 using theFEYNCALC packagg25] in MATHEMATICA [26]. By
making the replacementS— —g,,_, d,,,,dapl »r and k?

1 1 —0 and multiplying by the appropriate factor, we also ob-
M EHET=Tr| y* "y yra————y*A%(P,q) tain the decay rate of the proce¥s—ggg, including the
b m p m relativistic correction. Our results agree with those in Refs.
+5 perm., (290  [16,18. The rather lengthy expressions fbp and F, are
given in aMATHEMATICA notebook file[27].
wherel ., is given in Eq.(15), and the terms labeled “perm.” In order to evaluate the integrals in E§2), we use Eq.

in Eq. (290 are generated by permuting the gluon momenta25¢) to replaceg with x, as we have already mentioned, and
and polarization indices <k,@),(a,u,),(b,up). In Egq.  we carry out they integration analytically. This procedure is
(29, we have made use of the gauge invariance of thelescribed in detail in Appendix B. The integration methods
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AR LR ALY E2RRY L2RRd RECRE RAZES REES Rasad Rt TABLE I. Numerical values of the color-singlet short-distance
o coefficientsd,(z) andd;(z), which are defined in Eq30). The
12F  d,(2)/c, scaling factors in this table are,=10 *x a3/m® and ¢;=10"°
- : X adlmd,
8 { z di(2)/cy di(z)/c;
- . 0 0 0
4 H R 0.05 7.25 —0.746
di(z)/¢] . 0.10 9.27 -0.842
. 0.15 10.2 —0.808
ok 0.20 10.7 —0.709
P ] 0.25 10.9 ~0.564
- 0.35 10.9 —0.162
0.40 10.7 0.0974
FIG. 3. The color-singlet short-distance coefficiedi§z) and 0.45 10.5 0.400
o_Ii(z), which are defirsled in Eq(30). The sc3aling factors in this 0.50 10.2 0.752
figure arec; =10 *X a3/m® andc;=10"3X a3/m®. 0.55 9.80 116
0.60 9.33 1.63
that we use are similar to those in RE3]. However, in Ref. g'sg Z'Z; 2';2
[5], the short-distance coefficiemt;(z) is expressed as a 0'75 7'33 3'57
two-dimensional integral, which is then evaluated numeri- ' : :
cally. In the present calculation, we carry out the integrations 0.80 6.43 441
over the three variables, , e,, andx numerically. This pro- 0.85 540 5.58
cedure allows one to extract information about the energy 0.90 4.20 7.01
spectrum of the radiated gluons. The results of this numerical ~ 9-99 2.75 9.10
integration are presented in Fig. 3 and in Table I. 1 0 14.7

We note that the short-distance coefficiditz) becomes
negative for some values af The complete fragmentation
function, to all orders irv, is an integral of the square of a
quantity and is, therefore, positive. However, the individual
contributions in they expansion need not be positive. 2 o M—2myye

We estimate the fragmentation probability by integrating V1T Us™ '
the fragmentation functio?(z) over the longitudinal frac-

tion z where m,. is the pole mass anthgcp is the mass that
5 appears in the NRQCD action. The Gremm-Kapustin relation
1 H 4 s, 2 follows from the equations of motion of NRQCD and is
fo dzDi/(2)=8.29<10"* %<Ol>[1+ 2.4%7+0(v%)]. accurate up to corrections of relative or@ér In the original
(34) work of Gremm and Kapustif28], a relation was given only
for v4. In Eq. (35, we have included the Gremm-Kapustin
Our result for the term of leading order inin Eq.(34) isin  relation forvg, which can be derived in exactly the same

the Gremm-Kapustin relatiof28]

35
Moo (35

agreement with the result of RdB]. manner as the Gremm-Kapustin relation#qr Dimensional
regularization of the matrix element®!') and(P%) is im-
VII. DISCUSSION plicit in the Gremm-Kapustin relatiofi29]. Taking mgcp

=M= 1.4 GeV and M,,,=3.097 GeV, we obtainv?
S . . ? =vg=0.21. One should regard this as only a rough estimate
and the relativistic corrections of relative ordef to the of the sizes ofv; and vg. In fact, for myye in the range

fragmentation function for a gluon to fragment into®8, 1.2 Ge\my,e<1.6 GeV, which corresponds to the latest
heavy-quarkonium state. We have computed both the ot ricle Data Group compilatiof80], the values ofy2 and
bution in which the produce®Q pair is in a color-octet vﬁ given by Eq.(35) can even become negativeOn the

state and the contribution in which tigQ pair is in a color-  other hand, the estimate for; that we obtain is in accor-
singlet state. Our results of leading orderunagree with

those of Refs[22,23 for the color-octet contribution and

with those of Ref[5] for the color-singlet contribution. Our  2Note that negative values of are allowed since, owing to the

results fOF_ the corrections of r9|athe ordet are new. subtractions of power divergences that are implicit in dimensional
We estimate the relative sizes of the relativistic correcregularization, the corresponding matrix element is not positive

tions for fragmentation intd/« by takingv? andv3 from  definite.

We have computed the contributions of leading ordar in
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dance with expectations from the NRQCD velocity-scaling ACKNOWLEDGMENTS

rules[1], and it lies in the central part of the range 0.03 : .
<v§< 0.6, which follows from a lattice calculatidi31] un- Comvriet;]gnl;ninc Brgaten for makm_g a numbgr of US?M
] e , particularly, for providing us with detailed
der the assumption thai, lies in the range 1.2 Ge¥m.  information on the phase-space-integration method of Ref.
<1.6 GeV. Insertingf=v3=0.21 into Eqs(21) and(34),  [5]. We also thank Andrea Petrelli for the use of some of his
we find that the relativistic corrections change the shortwvatHEMATICA code. Work in the High Energy Physics Divi-
distance coefficients for the color-octet contribution and thesion at Argonne National Laboratory is supported by the U.
color-singlet contribution by about 40% and 50%, respec- S. Department of Energy, Division of High Energy Physics,

tively. under Contract No. W-31-109-ENG-38.

We see that, in the case of tiéy, the estimated relativ-
istic corrections are quite large in comparison with the con- APPENDIX A: LORENTZ TRANSFORMATION
tributions of leading order in2. This is not unexpected, FOR THE FRAGMENTATION FUNCTION

given that such large relativistic corrections also appear in

charmonium decay’.Nevertheless, these large relativistic VW& Wwish to construct a Lorentz transformati,on that
corrections cast some doubt on the validity of thexpan- changes the transverse components of the hadron’s momen-

sion for charmonium. One can hope that, as is the case ifyim while Ieaviqg the+ components of all four—vectqrs un-
charmonium decayid6], the corrections of relative ordef changed. We will construct a particular transformation from

will turn out to be significantly smaller than the corrections & frame in which the fragmentlpg glgon has vanlshln'g trans-
of relative order2. verse momentum to a frame in which the quarkonium has

. : Hy vanishing transverse momentum. Such a transformation was
The value of the color-singlet matrix elemef®?) is

] , already discussed in Refl7]. Here, we give an explicit
fixed by quarkonium decay rates. Therefore, the large relasgnstruction.

tivistic correction to the short-distance coefficient of the Gjven a basis set of four linearly independent four-vectors
CO|0r—Sing|et contribution to the fragmentation function will that span the four-dimensional Space_time, a transformation
directly affect the theoretical predictions for quarkoniumis a Lorentz transformation if and only if it leaves all scalar
production rates. However, in the caseJéfy production at  products of the basis four-vectors invariant. Using the nota-
the Tevatron, the color-singlet fragmentation contribution istion V=(V*,V~,V1,V?), we choose for our basis set in the
less than 5% of the total theoretical prediction over a wideoriginal Lorentz frame
range ofp [32—34. Therefore, the relativistic correction to
the color-singlet short-distance coefficient will have little ef- 2
fect on the predictions for either th¥y production rate or k= ( k™, k+,0,0), (Ala)
polarization at the Tevatron. 2

The color-octet matrix elemer®!) in Eq. (21) is, at )
present, obtained by fitting the Tevatron dataJbp produc- i p=+p; 0
tion to the complete theoretical expression, which is domi- P=|{ 2% o7kt TE)
nated at the largest values pf by the color-octet fragmen-
te}tion contribut!qn. Therefore, the large decreasg in.the sh.ort— n=(0,1,0,0, (Alc)
distance coefficient for the color-octet contribution will
result in a corresponding large increase in the fitted value of
the matrix elementO%). The net result is that the phenom-
enology ofJ/¢ production at the Tevatron, for either tpe o
distribution or the polarization, will be largely unaffected by Where we have taken the 1 direction to be algng We
the relativistic correction to the color-octet short-distance co@SSume that is invariant under the Lorentz transformation,
efficient. Since, in leading order iag, the matrix element Which implies that thet components of all four-vectors are
(O typically appears only in the fragmentation contribu- alsc_) invariant. We also assume, fo_r simplicity, tleatis in-
tion to a process, we expect the phenomenology of otheyariant. Then, the transformed basis vectors are
processes to be similarly unaffected. We note that, even with

(Alb)

62:(0,0,0,:‘), (Ald)

the increase in the fitted value ¢©}) that would result [, K+l —p,
from the relativistic correction, the value of that matrix ele- k'=| k", okt oz ) (A2a)
ment would still be somewhat smaller than is expected from
the velocity scaling rule$.However, the relativistic correc- 5
tion may be important in comparing phenomenological val- ,_( . P )
Hy ) . p'=| zk", ,0,0/, (A2b)
ues of(Og) with future lattice calculations. Kt
3See, for example, Ref16]. n'=(0,100, (A20)
4See, for example, Ref32] for fitted values of the matrix ele-
ments. e,=(0,0,0,1. (A2d)
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The transformed vectors are completely fixed by the requireThe inverse transformation from the primed coordinates to
ment that all of the scalar products be invariant under theéhe unprimed coordinates is given by *=L(p, ——p,).
transformation and the requirements thgt=0,, n'=n,
ande,=e,. APPENDIX B: PHASE SPACE FOR THE COLOR-OCTET

Using Egs.(Al) and (A2), we can construct an explicit CONTRIBUTION
transformation matrix L in the light-cone basisn
=(1,0,0,0),n=(0,1,0,0),e,=(0,0,1,0), and=,=(0,0,0,1).
L is defined byV'=LV, whereV is any four-vector, ex-
pressed as a column vector. It follows thas given in terms
of the untransformed and transformed light-cone basis ve

In this appendix we describe the manipulations that we
carry out on the phase space for the color-singlet contribu-
tion to the fragmentation functidieq. (26)] in order to put it
into a form that is suitable for numerical integration. We
Sivrite the phase-space integration as

tors by
Y / / °° * 1-z 2rd¢p
n'-n n-n e -n e-n fzf deaf debf dyf -0, (B1)
_ _ _ _ » Jo 0 0 0o 2m
n’-n n’-n e;-n e n
= — , , where® = 0l e,— (y/22) ] 0] e,— (W/22) ].
L=l e, -n-e —ej-er —ebe (A3) [ea—(y/22)]6[ &y~ (W/2Z) ]

Since the integrand depends gnonly through the vari-
—n'-e, —n'-e, —ep-e —e5e ablex [Eq: (250)], it is an even function o. Therefore,. we
may restrict the range ap to 0 to = and double the inte-
) ) grand:f%”dq&/(qu)Hfgd(j)/w. In the range &<, ¢ is
From Eq.(A1), we see that the light-cone basis vectors car, gjngle-valued function af. Consequently, we can make a
be written in terms ok, p, n, ande, as change of integration variables in which we replacwith x.

1 2 Using Eq.(25), we rewritex as
_:k_*< —n2k+), (Ada) 1
X= §(a2+ B?—2ap cose), (B2a)
n=n, (A4b)
where
K= p?—p?
e.==—|2(p—zk+n——|, Adc 2w y
gp, | HPTENINTTG (49 =\ e ) (B2b)

82: e2 . (A4d) - 2y ( W) Bz
Then, the transformed light-cone basis vectors are p= z € 2z)° (B29)

_ k2 Note that, owing to the constraifd, « and g3 are real and
= o - ek (A58)  positive. The Jacobiad for the change of the variables is
given by
n=n, (A5b) _(dx)l_ 1 .
1 22k2— p?— p? “\d¢/ aBsing  [—At2By-Cy
e;=5—|2(p'—zkK)+n ,
2p; zk* Z (B33
A5c = ) B3
(459 ey )
e,=e,. (A5d) where
Substituting Eqs(A4) and(A5) into Eq.(A3) and using Egs. _ 5
(A1) and (A2), we obtain A=[zx=(1=2)&l]%, (B3b)
1-z
12 0 0 0 B=—zx(ea—eb+T +(1-2)e (e, t+eyp),
pi . 1 _ P_i 0 (B3¢
2(p") p
= 0 : (A6) C=(e,+ep)?—2x, (B3d)
1L
-— 0 1 0
p* B+ D
o 0 o0 1 y=="¢c (B39
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D=B%-AC y. For fixedz, the constrain® =1 implies thate,+e,=(1
1 —2)/(2z). This constraint has already been satisfied by vir-
—Z —Z i max im-
= 272x(2e,8,— X) ety B tue c_>f the constraink<x™. However, for purposes of im
z 2z proving numerical-integration efficiency, we can explicitly

(B3f) impose it on the range @, . Taking all of the constraints on
the integration variables into account, we have for the phase-

Using Eq.(B3a), we arrive at the following form for the space integration
phase space:

. o = | de F debfxmaxdx
J‘ :f deaf debfl ZdyJ d_¢® fq) fo a max{O,[(:L—z)/ZZ]—ea} 0
(] 0 0 0 o T

Y+ z
o % Xj dy . (B6)
—[“de.[“de. [ax [ dv 20 - Cly—yO (YY)
€a € y '
o “Jo TNC(Y—y )Y+ —Y) . : .
It turns out that there is ng dependence in the denomi-

(B4)  nator of the integrand and that the numerator of the integrand
is a polynomial iny of degree two. Therefore, theintegra-

where we have interchanged tkandy integrations, and we > <t s
have not yet specified the ranges of integration on the righttion is easily performed:
hand side of Eq(B4). \
Now let us work out the ranges of integration. The de- v =fy+ y
n=
— a

nominator on the right-hand side of E@®4) has zeros ay Jy=yO)(y.—y)

=y, andy=y_. (There is no zero a€=0, sincey, and
1
r+ E

y_ become infinite at that pointAs can be seen from Eq. B"-2(B2— AC)"
(B3a), the denominator of EqB4) is proportional to sirp.

Therefore, its zeros correspond #&=0 and ¢=m, which = A 1 . (B7)
are the end points of thé integration. We conclude that the ' ri(2r)! (n—2r)!F(—)C”

range ofy is restricted toy_<y=<y, . In order fory to have 2
a nonzero range, we must habe>0. This implies thak lies
either below both zeros ob(x) or above both zeros of
D(x). We now argue that the latter range is unphysical.
Clearly, forx large enough, then E¢B2) has solutions only Yo=1 (B8a)
for y lying outside the physical region<Oy<1-2z and o

®(y)=1. Furthermorey is on the boundary of the physical B

region if and only ifx is equal to a zero oD(x). [To see Y, ==, (B8b)
this, note that the zeros d@(x) occur precisely when the C

range ofy vanishes. From EqB2a), we see that the range of

y vanishes if and only itv=0 or 8=0. Buta=0 or 8=0 if 3B?—AC

and only ify=0 ory=1—-z or ®=0, that is, if and only if Yo= ? (B8c)
y is on the boundary of the physical regibithen, by con-
tinuity, we conclude thay lies in the physical region if and
only if x is restricted to be less than either of the zero®of
Therefore, we require that satisfy

r<n2 NIT

Al

The explicit forms that are needed for the integrand in the
present calculation are

In carrying out the integrations overe,, e,, andx numeri-

cally, we made use of the adaptive Monte Carlo routiae

GAS [35]. We also checked our results using the built-in

numerical-integration package MATHEMATICA [26]. Spe-

cial care must be taken in carrying out théntegration nu-

merically. In the limitse,—0 or e,— 0, the range of th&

: (BS) integration vanishes. This can cause a large round-off error
in the Monte Carlo integration. We avoided this problem by

Since, in this range of, y automatically satisfies€y<1  making a further change of variables-2e,e,t. The inte-

—zand®(y)=1, we can drop those explicit constraints on gration interval fort is 0<t<x"®/(2e,ey,).

x=x"¥z,e,,ep,)

1-z

A
=min| 2e,€, T( e,tep— ?)
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