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QCD form factors and hadron helicity nonconservation
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Recent data for the rati®(Q)=QF,(Q?)/F,(Q?) surprised the community by disobeying expectations
held for 50 years. It was widely thought tHR(Q) ~ 1/Q was also a rigorous prediction of PQCD. We examine
the status of perturbative QCD predictions for helicity-flip form factors. Contrary to common belief, we find
there is no rule of hadron helicity conservation for form factors. Numerical calculations support asymptotic
analysis and extend it to the regime of laboratory momentum tra@&feQuark orbital angular momentum, an
important feature of the helicity flip processes, may play a role in all form factors at @fgdepending on
the quark wave functions.
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I. THE NATURE OF HIGH ENERGY REACTIONS nonrelativistic quark model in the rest frame. Yet the quark
model does not require separate conservation of spin and

There is an asymmetry in high energy reactions due to therbital angular momentum, and any naive expectation of
Lorentz transformation. The spatial coordinate parallel to ésmall OAM based on atomic physics seems rather weak. Just

boost direction is Lorentz contracted. The momentum fracas importantly, very little of high energy physics and PQCD
tion x of partons inside hadrons is thereby distributed ovestarts in the rest frame. The perturbative quark wave func-
the entire possible range<x<1. This phenomenon is dy- tions are unrestricted in angular momentum content, except

namical, because a boost of interacting fields is dynamicafOr Lorentz symmetry. Observation of nonzero quark OAM

and thex dependence of wave functions cannot reliably be!S & lading candidate to resolve the proton “spin crisis,”

calculated in perturbative QCD. Instead, theependence of which is the fact that the sum of the perturbative quark spins

wave functions is extracted from experimental data. does not ?qual the spin of the proton. (_:on_sequently the Jef-
) ) 2 ferson lab’s data has even broader implications than the mys-
Meanwhile the spatial coordinaketransverse to the boost tery of largeQ? form factors.

direction is Lorentz invariant. The transverse coordinate has Here we address WhethQFz(Qz)/Fl(Qz)~const is a

a certain calculability via perturbative QCD. There is a greakransient feature of comparatively low energy experiments,
deal of interest and controversy associated with the transyr a fact destined to persist at high@?. If the flatness of
verse coordinate in exclusive reactions. The transverse spghis ratio is due to quark OAM, will the ratio stay flat with
tial coordinate can be probed in reactions sensitive to théncreasingQ?? The question leads us to reexamine the roots
angular momentum flow. In some reactions, the sum of thef the “hadron helicity conservation” rul§7]. We find that
helicities going into a hadronic reaction is automatically con-PQCD itself is rather neutral, because the calculations de-
served. This is the case of the proton’s Dirac form faéegr pend on the wave functions. The wave functions needed can-
in the high energy limit. When the sum of the helicities is notnot be obtained by perturbative arguments enforcing any par-
conserved, angular momentum conservation requires eithdéicular model, because the important correlations are
extra constituents, or quark orbital angular momentum. Thisionperturbative. The simplest analysis givesia@quality
is the case of,, the proton’s Pauli form factor. between the powers governing helicity-flip processes and he-
The Jefferson Laboratory has observedlicity conserving ones. However even the inequality is not
QF,(Q?)/F1(Q?) ~const up to the highest values >  general, and it is possible to find helicity flip dominating
~5.8 Ge\ yet measuredl,2]. The data was initially very helicity conservation at largeQ. As a result QF,/F;
surprising, and the field may have reached a pivotal point in-const may extend to arbitrarily large values@#, without
comparison with the quark model. For a long time it wasviolating anything sacred.
held sacred tha®?F,/F,~const at largeQ?. This rule ap-
pears to predate QCD. It has ancient origins in renormaliza-
tion questions involving protons as elementary fundamental
fields[3]. Proton form factors The proton form factor§; andF,
Meanwhile a perturbative QCD model assuming nonzergyre defined by the standard relation,
quark orbital angular momentum(OAM) predicted
QF,(Q?)/F,(Q?) ~const[4,5]. A relativistic quark model

II. DEFINITIONS AND DISCUSSION

prediction[6] fits the flatness oRF,(Q?)/F,(Q?) equally (P,s"[34]P.s)
well. These papers countered the ancient wisdom, because o F,(Q3?)
they shared the common feature of quark orbital angular mo- =N(P’,s")| y*F1(Q?) +io*"q, oM N(P,s),
mentum in the wave functions.
The hypothesis of zero OAM sometimes appeals to the @
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whereq=P’'—P, Q?=—q?, J“ is the electromagnetic cur- them. Instead the framework is developed by assuming the
rent of the proton and ands’ refer to the spins of the initial framework and classifying terms within the assumptions.
and final proton.F, and F, are the Dirac and Pauli form The ASD approach is characterized by taking the zero-
factors respectively. distance limit in the first step., and replacing the rest of the
Orbital angular momentunBy quark orbital angular mo-  calculation by integrals over Feynmairfractions using “dis-
mentum(OAM), we refer to an expansion I8Q(2) repre-  tribution amplitudes,” or similar quantities with no trans-
sentationgcommonly known at, state, with quantization  verse information. In comparison the Feynman rules instruct
axis aligned along the particle 3-momentlin The eigen- us to leave the longitudinal and transverse integrals coupled.
states ofl, are invariant under boosts along thexis. We  Perform the integrals, and afterwards take the limit of large
do not use spherical harmonics, and we treat the longitudinad (if wanted. If the two limits are not the sanfand they are
coordinates as scaling variables. Let the transverse spatigbt in generg| then the ASD assumptions can fail.
coordinate beb= b(cosg¢,sing). We expand operators or The transverse coordinates are gone in the ASD approach,
wave functions as being evaluated within @ of zero. HHC follows instantly
as a test of the framework, independent of the wave func-
lﬂ:E My (x.b) tions used. By omitting OAMmM+0, the prediction forF,
- mi =0, and one cannot recover any prediction for firfitein
the formalism. As far as we know, previous ASD predictions

wherex is the Feynman light-cone fraction af(or “+”)  Of Fo are indirect and deduced by elimination: sinEg
. . 4 2
momentum. Perturbative wave functions are theory con=-1/Q", andQF; could not be calculated, thef,~F;/Q
structs, and fields at finite separation are technically nofnust lie in the detritus not calculated. Within the framework
gauge invariant, in general. Some basic rules for classifyin@f a generalized ASD model a recent calculatjad] finds
nonzero OAM wave functions and “dressing” for gauge in- contributions toF,~1/Q°. It is also possible to modify the
variance are developed in R¢B]. A 1993 development of model by including quark mass effe¢tss]. Our goal here is
generalized parton distributions was partly motivated in orto understand the limit of arbitrarily light quarks and neglect-
der for OAM to be expressed in a manifestly gauge-invarianing effects of ordemg/Q.
formalism[9,10]. Observables are also gauge invariant when e separated quark counting from ASD because the two
all the legs of diagrams are contracted properly. are not the same theory. Should one believe either? There are
Chirality versus helicity.The proton’s Pauli form factor good indications from the scaling laws that quark counting
F, contains information on the orbital angular momentum ofn35 some truth. We have no religious commitment here, and
the quarks, but it is indirect. Strictly speaking, the amplitudehe possibility that a fraction of the amplitude is due to “soft
iN(p’,s")F,(Q? o*q,N(p,s) represents the amplitude for physics” must be given credjiL6,17. But amplitudes cannot
chirality of the proton to flip under momentum transf@®r  all be soft, because the form factors are not seen to fall
The chirality (eigenvalue ofys) of quarks does not change exponentially with Q. Indeed the quark-counting scaling
under a vector gluon interaction to all orders of laws generally work well. Meanwhile the inapplicability of
approximatiort. Chirality is nearly an exact symmetry of HHC to F, or any other helicity flip reaction< 8] shows we
PQCD, with changes in quark propagation oradgP, where  cannot use ASD.
m is the quark mass an@d its momentum. The chirality also Regarding generalized parton distributionGeneralized
equals the helicity to orden/P. The massn to be used in parton distribution§GPD) appear to be an ideal way to pro-
PQCD is the so called current quark mass of a few MeVceed. Lorentz covariance can be used to set up matrix ele-
Adding another constituent to the scattering is also down bynents and expressions for the form factor in an apparently
O(1/Q?). Then by this reasoning, at largg?>Ge\?, itis  model-independent way. As far as we know, form factors
not possible to flip either the chirality or helicity of the pro- were the first instance of GPD, used in the paper of Soper
ton with a virtual photon, unless there is internal quark or-{19] in 1977, which also contains a transformation to a par-
bital angular momentum present to satisfy the selection ruledicular transverse spatial coordinate. We will have occasion
What is quark countingWe separate the quark-counting to revisit the conclusions of that paper in Sec. Il F.
model of Brodsky, Farrar, and independently Matveev et al. Despite our GPD-based predictiof%4,5| for ratios and
[11] from the asymptotic short distand®&SD) model of the welcome rediscovery of GPD in the field, we chose not
Brodsky and Lepag¢l2,13. The earlier theory is one of to make them the vehicle for this analysis. The reason is that
counting propagators and the number of scattered constitsPD are so general they do not immediately contain the
ents. The latter ASD theory is much more detailed, imposingnformation there are three quarks in the proton. To incorpo-
a certain factorization of the hard reaction into componentsate the information one can start with wave functions and
made from theswave,m=0 Bethe-Salpeter wave functions. integrate out all but two quark legs. Since our concern is
The factorization, and selection of priviledged wave func-precisely these integrations, we would have nothing to gain.
tions, does not come by listing all diagrams and evaluatingVe caution the reader, in any event, that the method of ap-
proximating integrals by ASD methods will have similar
limit-interchange problems when clothed in GPD language.
The perturbative chiral anomaly can change chirality, but withDiehl et al.[20] discuss general relations, and their formulas
magnitude too small to be relevant to our discussion. codify a relation ofF, to quark OAM.
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proton state. The argumeﬁ}i of the initial wave function
refers to the momenta of the three quatks,, Kr, andkrs.

! Similarly the argumenk; refers to the longitudinal momen-

K, K tym fractionsxy,X,,X5 of the initial proton. The arguments
: ; kr; X of the final state wave function are similarly defined.

- ks L k2 . We use the “brick-wall” frame for our calculations.

P ks ! k5 P’ The integration measures are given by, dkf)
= 0%Ky10%Krp0%Kr3 8% (Kry + Krat+Kra),  (dX)=dx;dx,dxg
FIG. 1. Definitions of momenta for elastic scattering of a proton x 5(x, +x,+x,). Note that Eq.(3) postpones any assump-

from a virtual photon. Her® andP’ are the momenta of the initial  {jons about the dominance of any particular integration re-
and final proton, respectively,is the momentum of the photon and . - . o
gion of ky or x. If care is not taken, limit interchange errors

ki andk’ the momenta of the initial and final state quarks, respec- .
ti{/ely ! q P leading to the ASD results can result.

To extract the contribution due to quark OAM, it is con-
Some familiar, but inexact assertiorSuppose we have Venientto work directly with the coordinatés conjugate to
nonzero OAM in the wave functions and we try to use thethe transverse quark momeita . We choose coordinates so

assertion of the ASD approach, that the third quarkdown) lies at the origin[24], i.e. b;

=0. The wave functiorY 4., can be decomposed as a sum
of terms[24]:

AbAQ:>1. (2) aBy
Here Ab is the resolved transverse quark separation, in a

frame where the momentum transfer- AQy is transverse. f

We have written the relation like the uncertainty principle, to ?aﬂy(Piﬁi X;,8)= N L, AYP,b; x)

give it a chance to be seductive. We observe next that, 82N, “py

merely from continuity, a wave functio#,, carryingm units . .

of angular momentum scales lik#" asb—0. Then under +C25,A%(P,b; xi)+C 5 A%(P.by )
these assumptions each unit of orbital angular momentum of 4 adie

the quarks will lead to amplitudes suppressed by a corre- +Cap A (P )- (4)

sponding power of 1 at largeQ. This familiar assertion has

been repeated endlessly in the literature, yet we will show i ) .
that this type of counting does not represent QCD. It is seYVe aré concerned with terms which lead by power counting
ductive but it is not right. in large momenta. Under a Lorentz transformation along the

Our approach.To addresd-, properly, one must go be- momentum axes the variablesare invariant. We therefore

yond short-distance to restore the transverse coordinate. TH§EP leading wave functions whether or not a powebof

is called “impact-parameter factorization[21,22. This  ©OCCU'S. Each power dfr—b,*+ib, can be further decom-

well-justified method has dominated recent attention in perP0Sed into combinations of quark OANAt this point, ASD

turbative QCD[23—25,8,26 would reject powers ob and OAM#0.) The first few op-
The elastic scattering of a proton from a virtual photon js€ratorsC are given by

shown schematically in Fig. 1. In impact-parameter factor-

ization, the three-quark contribution to the proton form factor

can be written as Crpy=(PC)p(¥sN),
NTTIEN N Fa(Q?) 5
N(P',s")| »*F1(Q) +io""q, —y—|N(P.s) C25,=(PysC) N,
= | (dkg)(dx)(dk)(dx’
J( T)( X)( T)( X) Ciﬁy:_(aﬂvpyc)aﬁ(’yﬂ’)/SN)'y

XY g1 gryr (P Ke X[ ,S")

o
XTargry apy

> ) - 4, =i(PysC),z(B.N), . 5
(A, K7i K7i 2 Xi X)) Y gy (P Kri X ,S). apy= 1 (PYsC)ap(BiN)y ©)
()

Here C is the charge-conjugation matrix. Note the operator
We have factored the amplitude into products of a hard scag# which depends ob,. Hereb; are four vectors with trans-
tering kernell'* and soft initial and final state wave func- yerse components equalboand all other components zero.
tions Y and Y’ respectively. The wave function gimilar operators exist for other transverse coordinates.
Y o5/(P.Kri,X,8) is the Fourier transform of the matrix ele-  The Dirac and Pauli form factors can now be obtained
ment<O|eabcui(yl)uZ(yz)d§(0)|P,s), where |P,s) is the  from Eq.(3):
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B N ) Ko(vX1X;Qby,), whereb,,=|b;—b,|. Taking the deriva-
F1’2<Q)_J' (dkr)(dky)(dx)(dx’) tive of this kernel with respect tb,; gives factors of the
form

X2 Y iy (P KE X8 THA(P,s,P’,s")

s,s’ (bl b2 |
© c / I : — = QXX Ko( Xlleriz)
Xra’ﬁ')”aﬁy(q'kTivai’Xi’Xi) b12

XY apy(P Kri Xi,8) Besides this transverse separation dependence, an additional

power ofb arises from the operatat* in the wave function.
L ~ Hence the scaling of,(Q?), and the form factor ratio,
=f (db)(db")(dx)(dx") ¢ (b, xi)Hy, 2 hinges on scaling of the effective transverse separdtian
large Q. Counting powers of), including one for the pref-
X (b;,b! %, x!,Q) (b ,x!). (6)  actor g*g,,, we find that if b~1/Q at large Q, then
F,/F,~1/Q? in this limit. This result has recently been con-
1,2 . firmed in Ref.[14] which adopts the ASD formalism from
Here T( ) are tensors that project OUF; , and the start. Alternatively ib~ const thenQF,/F,~ const and
Hy, ob; ,b. Xi,X{ ,Q) are the projected Fourier transforms g_—1/Q5 in the same limit. Such scaling was predicted in
of the hard scattering kerneH (x;,x{ ,kT, ,k}l ;Q). Each Ref.[4] and is also seen in a relativistic quark model calcu-
projection selects linear combinations of the wave functiondation[6]. In the rest of this paper we study in detail how the
Al defined in Eq.(4), which from the context is obvious, so dominant region ob scales withQ in perturbative QCD.

that subscriptg1,2) in H can be suppressed. The impulse
approximation has been used to set the light-cone “time” to Il ILLUSTRATIVE CALCULATIONS
zero. There are n@ priori assumptions in Eq(6) about '
short-distance. If Sudakov effects are used consistently, then With little being known about nonperturbative quark
wave functions in Eq(6) concentrate important integration wave functions, there is great latitude for exploring the ef-
regions into one which is perturbatively calculablgthout  fects of OAM. We impose general principles and assume that
assuming zero-distance as a starting poine do not go to the largeb components of wave functions are strongly
the further extreme of Ref23] towards asserting that the damped, and the short distance components are smooth, un-
ultimate output including Sudakov effects is the ASD model.less otherwise specified. Models which can falsify common
We find this unjustified, especially since the absence oprejudices are particularly instructive. Such models can illus-
Sudakov corrections is one of the characteristic shortcomingsate analytically some general limit-interchange difficulties
of the ASD modef. To bring the two methods into concor- upsetting Eq(2). Numerical calculations with more detailed
dance, special assumptions about the wave functions woulshodels are presented in Sec. IV.
need to be made. A detailed calculation F©f at leading
order in perturbation series is given in REZ4].

The form factorFZ gets contributions from the wave
functions, such as’,; X, which scale ad in the smallb Return to the general expression ). To leading order
limit. Furthermore the transverse momenta in the quarkand neglecting transverse momentum in Fermion denomina-

propagators also contributes to the kerFel at leading or-  tors the hard scattering depends on differerigesk; before
der. In this paper we are interested in obtaining the scalingnd after the hard collision. The neglect of Fermion denomi-
behavior ofF, and not in the detailed leading order calcula- hators, which is the model of Li and Stermg2s], suffices
tion. We focus on thé integrations in the limit of zero quark for our purposes of establishing the general absence of HHC
masses. The scaling behavior can be determined by consitPr largeQ. Restoring such terms can give subleading depen-
ering the leading order hard scattering kernel whose detailedence onQ which might be important for numerical com-
form is given in Ref.[24]. Since we are working in the parisons with data.

impact parameter space, we need to take the Fourier trans- The importance of the variablér—lﬂ seems rather gen-
form of this kernel. In this case the transverse momentungral, because theumof the transverse momenta are conju-
factors such aky;, which occur in the Dirac propagators, gate to the overall spatial location of the hard scattering,
turn into derivatives 9/db,; . The remaining Fourier trans- which by translational invariance drops duln a process
form has a form similar to what is obtained for the form with a single hard exchang& pion or meson form factpr
factor F;. The dependence on the impact parameter in thishe transverse integrals take the form of convolution:

kernel arises through the bessel functions of the form

A. Role of the transverse coordinate

SFrom translational invariance, the hard kernel must depend on
2While Sudakov corrections are mentioned in R&f, they do not  the difference of space coordinates. The transverse sepabation
come from the operator-product approach of the model itself, bubnly one such difference, and the one of interest here. Other differ-
are invoked from outside the model. ences such as the longitudinal ones also occur.
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Clearly Eq.(10) is more accurate than E¢R), because the
partons entering the reaction camiy, rather tharP and can

only be scattered throughx’Q? momentum transfer-
squared. This has been recognized for a long time, and com-
mon wisdom ascribes an average value-ef1/3 for valence
quarks. It is commonly accepted that consistent appearance
of xx’'Q? postpones any onset of short-distance dominance
to higher values 0€? compared to the naive implications of

FIG. 2. Definitions of momenta cited for the one gluon ex- Eq. (2).
change kernel, converted to impact parameter coordinates in the A physics questioM/e pause to question how the “uncer-

text.
F(Q)zf d2krdxdx (ks x ) (ke x,x"),

f(kT,x,x'>=f d2kiH (kr—Kp X, Q) (K %)

de ik b ’ >
:f (277)2-8 TPH (b,x,x";Q) ¥(b,X).
(7)

Consequently the expressions are diagondd, iwith

d%b

F(Q):f dxdx * (b,x )H(b;x,x",Q)#(b,x)

(2m)?

= > f db dxdx d
_m1m2m3 (277')2 X ¢
Xe*i(mrmz*ms)ﬁ{/}:ql(blxr)

X Fim, (:%,X",Q) i, (b, ). ®)

tainty principle” of Eq. (2), b~1/Q, could have misled the
field. First, it was not the uncertainty principle, but an asser-
tion of dominant regions. Somehaxy from the longitudinal
coordinate, appeared in a relation between transverse things.
We seek a physical explanation.

Suppose we stand at impact paramdiebeside a fast
moving quark with mase, energyEy= ym. Relativity pre-
dicts a pulse of fields with a time scale~b/y.* The Fou-
rier modes of the fields coming with the quark must be dis-
tributed over time scalét. Their individual energie€,
=XE, are measured in units of Af, meaning that the fields
are functions of

EqAt=XEgh/y=xbm

If there is no longitudinal momentum transfer, the case
=X, the fields depend ox?b?, just as in Eq(9). While this
way of thinking is used in electrodynamics, for “equivalent
photons,” it is naturally the same result in PQCD, because
the gluon propagator coincides with the electromagnetic
propagator to leading order.

The longitudinal fraction is coupled to the transverse
structure because the time scale depends @he time-scale
(x) dependence is of course set by ttmmperturbativepart of

All contributions to OAM are explicit at this stage. Expan- the problem, thex dependence of wave functions. Since we
sion of the hard scatteringl,, was introduced because the cannot in principle determine thedependence in perturba-
kernel can also carry angular momentum and be anisotropi¢ion theory, then no general rules can be made to predict

via the direction of the hard momentu@. The selection
rules conserving angular momentum will come from the
integrals.

B. Gluon exchange kernel

everything about thé dependence, either.

Time scale smearing: Interplay of x and b

Exploring the integrals, thé!™~1/Q/™ counting will
still occur, from dimensional analysis, after doing thante-

Consider the simplest one-gluon approximation to thedrations in each,x" integration bin. It looks like Ec(2) and

pion kernel (Fig. 2, H=4nwCra./q'?, whereq’ is the
gluon momentum. This is written out as

1
xx' Q2+ (ky— k)2’

~

H(k—k::x,x",Q)=4mCras

H(b;x,x',Q)=872CraKo( VXX Q%b?). 9)

When integrated with nonsingular functions lmfand x, the
dominant region is not determined by E#), but instead the
Bessel function restricts to

Jxx'Qb<1.

(10

its conclusions may win after all. Surprisingly, there is no
simple ruleafter the x,x" integrations are done. The scaling
indicated by dimensional analysis is “erased” by thinte-
grals under broad conditions. The physical origin is that the
final scale depends on tliynamical time scale distribution

in the wave functions irx that we arenot priviledged to
predict. Thex distribution is set by the proton itself in the
quiet of vacuum over infinite time. The “time-scale smear-
ing” destroys naive use of the uncertainty principle, and cor-

“This time scale is also a Lorentz-contracted pancake longitudinal
distance scale. Our use of “time scale” is consistent with the im-
pulse approximation.
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responding counting of powers. However time-scale smear-
ing does not destroy the use of PQCD, which always

N

contains integration ovet.

C. Model definitions
It suffices to use the kernel EQ) to show the effects.

Since our focus is the orbital angular momentum, we con-

sider the integrals with factors @™ explicit. The selection
rules from the angular integraés '(M~M2~Ma¢ are obvious.
We exploreAnsaze for

D (b,x,x")=bAxx")1((1—x)(1—x"))2¥(b,x,x").

The factor ofb” is the phase-space to find an assumed num-

ber of quarks close together from naive quark-counting. The

remaining factof? (b,x,x’) = & (b,x) &(b,x’) represents the

remaining product of the wave functions. Although wave
functions symmetric inxk—1—x are commonly assumed,

there is no motivation for this witlm+#0. Exponents q,r,
will be called the “dominant power ok” when they rule
singularities.

In model 1we use a factored Gaussian function to repre-

sent the wave functions cutting off lardpe
E=exp(—b?/(2a?)) model 1.
In model 2we use a Gaussian in logarithms,
é=exp(—log?[b?x(1—x)/a?]) model 2,

to retain some coupling betweerandb. In model 3we use
a Gaussian coupling andb:

b2\x(1—x)/a? model 3,

g=e”

whereé represents the initial or the final soft wave function.
These model are chosen for their analytic simplicity to serve

as examples.

D. Mellin method
We study the larg&) asymptotics by calculating a Mellin
transformF(N) conjugate toQ":

- =dQ
F(N)=f0 EQNF(Q)

=fxdbb‘m‘+A+lfldxf dx’
0 0

J EQN o(VxXX'b2Q)®(b,x,x'), (11)

FIG. 3. Inverting the Mellin transform. A contogdashedin an
analytic strip of the compleX plane is deformed past an isolated
singularity (dotg to give the residue plus the contribution of the
new contour.

d N\ 12
f EQQNKO( /XX/bQ):2—2+N(erb2)—N/2|:F<E)} .
(12)

Note thatb™N emerges just as expected from dimensional
analysis. If we stopped here, thbfi would be suppressed by
Q™™

The other integrals remain as

r(g)rbm),

F(N)=2"2N (13

and depend on the model.

Some background on Mellin transformations

To keep our presentation complete, we review some back-
ground on Mellin transformation27].

Suppose that a functiof{ Q) falls like QA. The integral
of QN"1f(Q) will converge asQ—x for N<A. As N is
increased from below, a singularity appearaNat A. This
singularity is a sign that the function falls lik@ = A.

SinceQN is an analytic function oN, the Mellin trans-
form is then analytic in compleXl=N,+iN, for a strip of
real N,<A. Its analytic continuation is

~ d .
f(N)=f6QQNx+'NYf(Q),

_ f %QeiNy'OmQ)QNxf(Q). (14)

where, since the kerndil has been assumed to carry zeroWe keepN, fixed in the strip of convergence, and recognize

orbital angular momenturm=|m;|+|ms|. The Q integral
is carried out easily,

this as the Fourier transform @i"xf(Q) with N, conjugate
to log(@Q. The Fourier transform is inverted by
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1 N - 1 b2Q2x?
QNXf(Q)=§deye MATE(N), Ko(XbQ)NE[_ZYE_l(Jg( i )
1 9 log(2) log(b*Q?x?)
1 2~22( = _ YE
f(Q)=2—7TJ ANQ MF(N). (15) b7 (4 4774 T s
This is the inverse Mellin transform. The contour in the com- +0((bxQ)3log(bxQ)) (16)

plex N plane runs in the purely imaginary direction in the
strip of realN wheref(N) convergegFig. 3.

The N integral can be done by deforming the contourwhere ye~0.5772 is the Euler gamma number. The first
about singularities one-by-one. At each singu|amyN is term is well known, and the method can be extended to get
analytic, and is evaluated by the residue theorem. The resudtn unlimited number of terms.
generates an asymptotic seriesQnlf one pulls the contour
to theleft, then a series i@ N for increasingly negatival is

obtained: a series such a®Q1Q? . ... Such an expansion is E. HHC and non-HHC cases
appropriate for smalQ. For example, Eq(12) has double _ o
poles atN=0,—1,—2 .. .. Thedouble pole aN=0 needs We use notatiorf(Q)<Q ™" to indicate dependence fall-

the N term of QN~1— N log(Q)—N24og?/2, and will gener- Ing at least as fast as Q. Returning to Eq.(lS)L depen-
ate a residue going like lo@). Keeping the first 2 singulari- dence atarge Q now comes from singularities eb(N) to
ties, the series is theright of the convergence strifFig. 3).

Model 1.We need

fmd bfldx(bzx) - N/2b|m|+A+ 1Xr1(1_ X)'2e” b2/(232)
0 0

2(A+|mIN)/25A+mIN+2r( 5 r —;+r1+1 I'(1+ry)

= N : (17

2+A+|m|—N) (

The initial and final state wave functions combine to give theyielding a power behavior

factore®’?”, An x’ integration remains to be done to @kt
The integrand is products of powers and analytic. It then F(Q)=Q 2"
suffices to examine the singularities already visible.

The singularities of['((2+[m|+A—N)/2) are simple regardless of the value dfn|. If such poles dominate, there
poles at is no power suppression of OAMN|#0.
If the singularities ofN=2+|m|+A+2K andN=2+r
_ _ +K' coincide, there is a double pole, modifying the result
N=2+|m[+A+2K, K=01.2.... above by a power of logl). If the zero of 1I'(4—N/2+r,

These are exactly the singularities creating the naive powef [2) Meets a pole, then that pole has no residue.

counting of HHC. The existence of these singularities im- There is _cons.iderable structure in these calculations not
plies anticipated in naive power counting.

Model 2.1t is inconvenient to combine the exponents of
F(Q)nglmI*A*Z (HHC region only, (18) two wave functions, and we can make a point by integrating
just one. Although this is not general it indicates the kind of
from these singularities alopand barring a zero factor can- behavior we might expect from a nonfactorizal#l@satz
celing the poles. As expectdd” —Q~IM: these are the con- Alternatively we can expand one of the wave functions in

(dominant power region  (19)

tributions for which the HHC results are reproduced. powers ofb, keeping only the lowest order term. This would
The singularities of'(2—N+r,) are simple poles at be reasonable as long as small transverse separations domi-
nate and hence our results can test the validity of the ASD
N=2+r,+K’, K’'=0,1,2..., model in all generality. We need
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@ 1
f de dX(bZX)—N/2b\m|+A+erl(1_X)r2
0 0
X e —klog?( b2x(1-x)/a?)

Jr

=-—a
D
—A |m|
I|———+r,|T
2 2
N

D=2\/EF( —A—|m|—l—E+r1+r2+2

2+A+|m|—Ne(2+A+|m|—N)2/1ek

—A—|m[+N+2r,
2

. (20

There are no singularities fd&¢>0, and this model is expo-
nentially damped a®—«. In the argument of the gamma
function the effects ofm| and 2, are equal and opposite:
we can have as many powerstﬂ’ﬁ wanted, and produce no
effects on the poweN provided|m|—2r,=const.

Let us explore this phenomenon qualitatively. Model 2

has®(b) falling faster than any power df asb— . How- Let us understand this qualitatively. The appearance of

ever ash— 0 the model is also smaller than any powembof |/x(x—1) in the exponent allowb to take its greatest range
There is no phase space for the quarks to find each othegt smallx or small 1—x. We have argued this is generic due
hence the exponentially damped behavior. While this is not g time-scale smearing. Instead of the wave function blowing
realistic model feature, it is interesting nonetheless. up, however, the range dfis finite, because the prefactors
The cancellation ofm| andr, powers appears to origi- of x"'1(1—x)"2 regulate the phase space. The resulting wave

nate in thatb?x(1—x)x'(1-x’)/a’<1 sets the scale df.  function is quite conventional in appearance, as illustrated in
Largeb and unsuppressed OAM would be possible at small Fig. 4.

FIG. 4. The wave function of model 3, cited in the text. Despite

the width in theb variable going like 1{x(1—x), the wave func-
tion is very moderate and conventional in appearance.

or small 1-x, except there is no large allowed anyway. Breakdown of series expansionEhere appears to be a
The possibility of largeb dominance may be a realistic fea- paradox. If we made a Taylor series for the wave function in
ture, and deserves further study in model 3. powers ofb, then term by term powers d§?’x’(1—x)’

Model 3.This is the most interesting model. We separateyould be Suppressed fdr>0. However when we examine
the product of two wave functions by expanding one in pow-the exponential in model 3, an OAM factor bf is nearly

ers ofb. Integrating the first term, we find equivalent to a factor of 4x(1—x), so that powers ob!™
are not necessarily suppressed. This is whycan cancel

0 1
G= J de dx(b?x) ~N2plmi+Atiyrag —x)rz bl . The paradox is that the sum acts much different than the
0 0 separate terms. A simple resolution is that most of the inte-
x @ ~b?\x(1-x)/a? gral is coming from the region where the exponent is of
order 1: and a series expansion is not valid. The assumptions
1 2+ A-N+Imip| 14 A+ [m| N) of HHC, in contrast, require that a series expansion about
~p@ 2 2 9 b~0 be the dominant contribution. Model 3 serves as a
counterexample to that expectation.
<T E_ é_ m B E ; E_ ﬁ _ m + ﬂ ne Rule of thumbWe have extracted an improved HHC-rule
2 4 4 4 Y \2 a a a4 2 of thumb: the asymptotic ® dependence is determined by
the minimum of powers min the integrandsThe rule has
[m| been deliberately simplified to powers, suppressing logarith-
DIZT( 1= =5 frnitr (2D mic factors readily calculated, by further evaluating the Mel-
lin inversion. These logarithms are obtained from the Mellin
This function has its singularities &1=2+A+2K+|m|,  Series and are a separate phenomenon from the asymptotic-
K>0 integer which again are reminiscent of the HHC polesréedom logarithms of PQCD. The origin of the variety of
It also has singularities at predictions is tlme-scale_ smearing: d_ue to it, the suppression
of OAM expected by naive counting is transferred to smear-
N=2—A+4K—|m|+4r,, K=0,1,2.... ing inside the longitudinal wave functions, and helicity flips

can readily compete with helicity nonflip. There is no power
Model 3 is another example where a positive powetrof  suppression of OAM fom#0 in general.

>0 may be cancelled by a positive power;4-0. In this Effects of the large b region3he singularities to théeft
model there is0 a priori suppressiomf OAM and in some of the convergence strip determine a series gorall Q
cases OAM could dominate —0. These singularities are traced to the Gaussian model,
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Sudakowb cutoff, or the largeb cutoff. We are not concerned To summarize the logic so far, for broad classex of-
with these singularities, showing that the latgeutoff drops  pendence of the wave functions, the nonrule of HHC is trans-
out of the power laws stated above. However the numericeformed to a rule of HHNC, hadron helicity nonconservation.
normalization of integrals depends on the cutoff method. It isThis s a new asymptotic prediction, and proves that
a separate question needing separate analysis to find the fdF2(Q“)/F1(Q)~const can be an outcome of the theory
merical fit of models to data. Our numerical work is pre- Up to the highesD. To be equally fair, different broad classes
sented momentarily. of wave functions giveQ?F,(Q?)/F(Q?) ~const. Our pri-

On this reasoning there is always a part of the calculatiof"ay accomplishment enlarges the sphere of allowed possi-
which is “strictly perturbative.” Calculations of the large bilities. Measurements are still needed to determine what
regions may apply to data only with limited reliability. Re- Protons are.
gardless of this fact, the smdilregions known to be calcu-
lable behave as we claim, and are the only regions under
conceptual dispute. The scaling ruleQF,(Q?)/F;(Q? ~const describes ex-

periments at laborator®) values very far from asymptotic.
We explored this region numerically.

IV. NUMERICAL STUDIES, SUBASYMPTOTIC

F. Discussion

To our knowledge HHC has never previously been ob- A. Studies with the pion
served to fail for largeQ? form factors. Yet previous work
has made related observations that the powers @n de- . nt integration regions by inserting factors o in the

. 2 3,
termine theQ® dependence. Feynman's mechanj@®l con-  jegrands, corresponding to-units of OAM. The moment
centrated entirely on the region—~1 and ignored. Feyn- gb(Q» is defined by

man’s work predated PQCD, and there are certainly region

The pion provides a simple test system. We test the domi-

in the b integrals of that mechanism that would not be cal- )

culable, so the model is moot. Soper's 1977 pdfiét has a f dxdx d*bbF.(Q,x,x’,b)

clear statement that thminimumpower ofx or k; rules the (b(Q)) = 5 . (22)
results. The context was the Drell-Yan-Wgg&8] relation, F-(Q%)

which connects thex—1 behavior of inelastic structure
functions with theQ? dependence of the form factor. Soper
shows that one cannot prove the Drell-Yan-West relation de-
ductively, but one can get an inequality and force the relation F,.(Q%)= f dxdx d?bF,(Q,x,x’,b) (23
by choosing wave functions.

The literature is clouded here by treatmeassuminghat |1 the kernel.(Q,x,x’,b) defined by
the two regions ok— 1 andb—0 must give the same scal- e
ing, and forcing a result by circular logic. As we have just ,
shown, the regions are different and no general rule can be fw(Q,X,X',b)=f dxdx dbbe(x') ag(u)e ™ S* Q)
made. Underlying this is the fact of perturbative calculability
of short-transverse distance not being on the same footing as X Ko WbQ)q&(x)‘T’(b). (24)
perturbativemodelsof the x—1 dependence. For instance
Brodsky and LepagEl2,13 discuss the end poimt—1 con-  HereS(x,x’,b,Q) is the Sudakov form factor. A model soft
tribution of the proton form factof ;. The authors argue that \yave function¥ (b) = exp(—b%2a?) is also included, where
for the limit x;—1, PQCD implies am=0 wave function  the parametea=1/A ocp. Frankfurt, Miller and Strikman in
of ordera? perturbatively calculated to go like (1x;)*. On  an earlier study30] found that theb? moment falls faster
this basis they find that a contributionfq scaling like 1Q*  than 1Q2 Their calculation differs in some respects, for
independent of the powers ofiliside the integrals. Th®  example in emphasis on the CZ form and not including a soft
dependence of this contribution is same as that obtained frofyave function. The soft wave function of course appears in
the b— 1/Q region. Although perturbative analysis is not a the Li-Sterman formalisni23,24], but is replaced by a dis-

valid approach to calculating wave functions, the result isribution amplitude when emphasis on Sudakov effects is
consistent with ours. sought.

Our results are due to time-scale smearing and should not |n Fig. 5 we plot the momentb(Q)), using a wave
be attributed to “end-point singularities” as the term is com- function of the form
monly used. Inside the hard scattering kernels in PQCD are
combinations of inverse powers afor 1—x. We are not d(X)~[x(1—x)]°.
exploiting these inverse powersthe evaluation of the Mel-
lin moments. Rather, it is the generic couplingfindb  This ansatz is deliberately arbitrary, and for our purposes
integrations which makes impossible any general statementsany example wave functions will serve. We study values of
of HHC. We reiterate that the— 1 limits of them#0 wave  6=0.2,1, with and without the Sudakov form factor. In the
functions are unknown. End point singularitiéany) can  latter case the momentum scale= Q/4 of the strong cou-
only increase the variety of outcomes. pling is imposed, and thé integrals are cut off at

The pion form factoF_(Q?) is given by
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FIG. 5. The momen¢b(q)),, of the pion form factor kernel, as FIG. 6. The proton form factoF, for moderateQ?, extracted

defined in the text, using tHex(1—x)]? form of wave function for ~ using the Jlab data foBg /Gy and the SLAC data foGy . The
5=0.2,1. The moment decreases w@tmuch slower thanthe @  ratio Gg/Gy is obtained from the parametrizatiori2]
behavior expected in the ASD HHC model. Results are shown withep(Ge/Gy) =1—0.13(Q*~0.04). The solid line represents;
and without including the Sudakov effects. The solidg3#3 and ~ ~1/Q%.

the dashed (Q°? line represent a simple power law fit at small

Q? for §=1 and$=0.2, respectively.

2 2 Aqr (1 ) 0
F1(Q%)=2 5= | (dx)(dx’) | bsdb;b,db,
=1/Agcp- From Fig. 5 it is clear that foR?< 100 GeVf the =1 0 0
moment falls much slower than the ASD prediction o1/

. 27
regardless of th dependence of the wave function used 27 /
[3%. P X . dof fn(w) 17Hj(xi % ,b;i,Q,tj1,t2)
B. Studies with the proton XW (i x7 w)exd = S(Xi . xi W, Qutj1,t2) ],
We turn to the proton form factors. We note that the JLAB (26)

data forQF,/F; is flat even below thé&-range where-,
~1/Q* begins to fit. In Fig. 6 we show a plot 6*F;. The
solid line in the plot corresponds to the behaviby  with (dx)=dx;dx,dX36(1—X;—X,—X3). The variabled is
~1/Q%. Itis clear from the plot that the scalifgy~1/Q*is  the angle betweeb, andb, andx; andx/ refer to the initial

seen only foQ?=6 Ge\?, which is larger than the momen- and finalx variables. The expressions for the hard scattering

tum regime explored at JLAB so far. This is cause for con-ﬁj . the Sudakov form factd® and functior¥; are given in

cern. .
i . . _ Ref. [24]. Now def
With 3 parameters and a large logarithm it is possible to ef. [24]. Now defining

fit [32] F,/F, to a form going like 1Q? asymptotically. The
particular fit used in Ref[32] is

FA(Q%) = [ bydbibdb, 7, 27
Fo _ MA

- 2

& %) log®(1+Q?/B)

(29

It where Fp can be extracted from Ed26), we define mo-

ments(b;(Q)), as follows:

Yet it is certainly possible that the scaling obseniedhe

ratio is not overly sensitive t@?, and will continue to larger
Q2. We investigate this in greater detail numerically. f bidbyb,db, Fpb;

To probe the dominant integration regions, we turn to cal- (bj(Q))p= 5 (28
culatingb moments of the proton form factor kernel. These F1(Q%)

are multidimensional integrals of which our analysis in the

previous section determines but a low-dimensional strip. We . ) ) o

spare the reader a listing of dozens of Feynman diagrams and 1h€ function¥; is where the linear combinations of the
substantially complicated kernels listed in the literafi@4]. ~ Products of initial and finak wave functions are found. The
The form factorF; in impact parameter coordinates can beMOst singular part of the kernel in the lim—1 andx;
written symbolically ag24] —1 is obtained from théd, W, term, which is of the form
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Ko(V(1—x1)(1—x1)Qby)Ko( VX2x5Qb,) (i) (X )

(1=x1)(1=x3)

H Y, (29

HereK, is the modified Bessel function of order zero. cluded. The calculation indicates that the scaling seen in the
For the test we explore a wave functigi{x;) given by moment, and hence the rat@@F,/F,, is more general than
that seen ir-,. This is not totally unexpected in a ratio. At

D (X))~ (X1XpX3)°. very largeQ it starts to fall faster, but only as @ well
below the supposed @/rule of ASD assumptions.
The numerator in ¥, is then proportional to Let us add a remark about the neglect of transverse mo-

Y ; : ; mentum in Fermion numerators. Formally such neglect is

I(i)rfnli)t(zf)sf)(ll);zrxz) ('3T?i_iej’(sfl_Lg?ggi]i/én;pgn;hitxm bzt he perfectly legitimate and justified at largg where the finite

> g€ % ! 1 2"2¥2 ki integrals cannot add a factamcreasingwith Q. At the
H1/Q - As long as3<0.5 the t|n1e-scale smearing W,'" finite Q of laboratory data the step defines a model that can
dominate. Fow=0.5 we gef;— 1/Q" even though a domi- o o estioned for observables hinging on OAM. For this
nant region irb; andb is independent oQ. For 6<0.5the  yaa50n we have presented separate calculations explicitly in-
n}o(r?nents ob, andb, should also have a region independentc|yding k; effects in order to test the contributions of OAM.
of Q.

We check these predictions by performing the calculation C. The ratio QF,(Q?/F,(Q?)

using 6=0.5. We ignore the Sudakov form factor for this
test, because it is a side issue. We evaluate the strong COM;
pling atQ/4. In Fig. 7 we plot the moment of the transverse
separationd1(Q) andb,(Q) as a function ofQ. We find
that for Q2>100, the momentgb,), and(b,), fall asymp-
totically as 1Q°%2 and 1Q%**respectively, in agreement with
our analytic expectations. If we include the Sudakov form
factor the momenth,),, falls as 1Q%4, asymptotically. This
is only a slightly stronger decay compared to the earlier cas
In contrast to earlier expectations, the Sudakov form factor

Based on these studies we come to a prediction for the
i0 QF,(Q?)/F,(Q?). This prediction is based on power-
counting, and the dominant integration regions probed by the
moments. It is as complete a prediction as now possible,
taking into account that one unkm=1 of orbital angular
momentum is needed fd¥, to proceed forQ?>GeV?. Up

to small and model dependent corrections, of o@&f° the
ower counting gives the scaling behavior but not the nor-
alization of the data, via the relation

does not much suppress the importance of the end-point re- QF,(Q?)
gion. (b2(Q))p~ ————~const. (30)
The results with end point dominated CQZ3,34] x de- F1(Q%)

pendence are similar. In this case, as shown in Fig. 8, we fin
that the(b,), decays very slowly witlQ for a wide range of
Q. This is quite interesting, because, as shown in Fig. 9, th
form factorF, itself does not show good @ scaling in this
momentum regime, if the Sudakov form factor is not in-

g\lhat if this prediction fails? It can fail, according to our
asymptotic studies, if the dominant powes “large.” Large
?}2 studies ofF, not only probe quark OAM, but also they
can tell us details of the dominartpower associated with

m#0.
4 10 ~
T = N '<b > (including Sudakov) @ ~L ' ' o
sk Bmg :\ - P b o ~ e - Without Sudakov ¢
—~ E'E' o+ S~ “r*p S 1/Q08 Including Sudakov ~ +
= af . @ NFTso <by>p + 1 > .
Q o > s 02 ) R
= 2sp ¢t o™ e QT = R
~ ~ *d Z ~ o 1/Q01!
a ~ ~S o ©06¢0060 &3 <
A 2k o~ = a ¢ =
e} ~ A LS
v B~ 04 -e + S0
15¢ B gQ - + \i °
L ° ° e o L RGN
) i %0y . y 0.14 1F wave function: COZ v, A
05| AR S T 660 0 0
0 1 1 1 1 1 1
1 10 100 1000 10000 1 10 100 1000 10000
Q2 (Gev?) Q2 (GeV?)
FIG. 7. The moment of the transverse separatiprandb, for FIG. 8. The moment of the transverse separafios(Q)), for

proton using the wave function of the formiK,x3)%>. The(b,), the proton form factor kernel using the COZ wave functj@3].
moment is shown both with and without including the SudakovThe solid (1Q%Y) and dashed (Q°%9 lines represent simple
form factor. The small dashed @919, medium dashed (Q°?  power law fits at small and larg@?, respectively. The dependence
and the large dashed @7 lines represent simple power law fits on Q is much weaker than predicted by ASD relations, and supports
at largeQ?. a flat prediction forQF,/F; at JLAB momentum transfers.
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built wrongly into dogma. We have shown here that the
scales of asymptopia for form factors are vastly beyond ex-
perimental comparisons. At the same time, the perturbative
regime of QCD may well extend down to laboratory values
of Q2.

In explicit calculations at finiteQ?, we find that the ef-
fects of OAM are suppressday even less than the revised

+ ¥ e gy . . . .
o trpart * T MR asymptotic behaviorThe pyramid of assumptions that the
s-wave distribution amplitudes are meaningful falls into very
grave doubt. To put this more directly, we do not have a
001 | = v o o reason to use a distribution amplitu_de any more. _
Q2 (GeV2) The usual approach to PQCD, in which wave functions

are assumed to be unknown, predicts HHX&dron-helicity
FIG. 9. TheQ? dependence of the calculated proton form factor nonconservation The experimental observation d&(Q)
Fq usipg the .COZ wave functiof83]. Results are shown both yvith =QF,/F, appears to have a dual meaning. The ratio is a
and without including the Sudakov form factor. Details are in thevery robust quantity, which remains flat even in the regime
text. whereF, is not clearly dominated by quark counting. The
same ratio is an important asymptotic quantity, which in-
trend of QF,(Q?)/F4(Q?)~const continues, the value of forms us about the wave functions. The common notion that

Ge will reach zero, and cross to a negative value. One wonProton wave functions are “cubic,” namely going like
ders[35] whether there is a physical significance and a barX1X2Xs, IS ruled out for wave functions calculatirig,. Ap-
rier to this unusual occurence. plications of the CZ wave functions are ruled out oy, if

While usually called the “Sachs” form factor6], the the ratio R_ continues to be_ flat at larg®?. It is important
Appendix of a 195%Reviews of Modern Physiesticle [37] that experimental observations be extended to la@feval-
list two form factors denoted and B, now calledGg and ~ U€s.

Gy, which are linear combinations of Rosenbluth’s: Predictions for protons are mirrored in predictions of the
same type for neutrons. If the fIR(Q) ratio is followed for

Positivity of Gz. It is interesting to observe that if the

Gu=F;+«F,, neutrons, then the hallowed Galster fi&8] to neutron data
will eventually fail[35]. Calculations for the neutron appear
Gg=F,—«7F;, in Ref.[6]. We predict a flaR ratio for neutrons on the basis
of isospin independence of QCD. However we need to em-
Q? phasize that it is possible, in principle, for wave functions of
T= m (31) substantially different shape to be very close in energy, due
P

to the variational stationarity of an energy eigenstate. If there

and« is the anomalous magnetic moment. Yenetial. gave is a place for Nature to hold surprises it is in the comparison
: : of the neutron to the proton.

[37] the alternative linear combinations simply to emphasize L . .
that the definitions of form factors was arbitrary. If there is a . The §tudy of pollanzat|on trgnsfe{BQJ in large nu?'?"
special significance t&g—0 it must be due to a special €(A,e’)p’ should yield further information. If the existing
meaning ofGe. form factors are dominated by ASD, which we do not believe

The meaning ofG is angular momentunAJ,=0 spin-  butis still worth testing, then nuclear filtering will not make
preservation in the Briet frame. [Bz=0 the proton spin the distances shorter, and the raeshould be flat withA
must flip in the scattering. We find nothing special about this>1. The regime of smalA~10 has no advantages and
The amplitudes in the spacelike region cannot be limitedMany complications due to few-body effects, and predictions
further than general principles of analyticity, Lorentz andare more difficult. If the existing form factors are dominated
gauge invariance, and so on. It is perfectly consistent to aPy quark mass effects, then nuclear filtering will not make

range timelike discontinuities so that the sign chang&pf any difference and the rati@ should again be flat. If quark
occurs without violating anything holy. OAM is responsible for the flatness Bfas we believe, then

filtering will kill the large transverse extent of large OAM
[40,41], F, should be depleted relative t6;, and R will
decrease wittA>1. We intend to dedicate a study to quan-
Our calculations show that tHeewly revised asymptotic  tifying these predictions.
behavior of powers ob is achieved only at very larg®?. JLAB has made a pivotal experimental discovery which
Physics has many asymptotic predictions, which by conwill be a permanent subject of discussion. The experimen-
struction have suppressed information needed to know whetally observed flatness @F,/F; is a signal of substantial
they will apply. To repeat: methods inherent in asymptoticquark orbital angular momentum in the proton. Higher mo-
prediction strongly tendhot to tell you where the prediction mentum transfer measurements would be helpful in confirm-
will be valid. In QCD it was early thought the “asymptotic” ing this interpretation. The numerical size Bf cannot be
regime coincided with the perturbative regime. This wasconverted directly to a wave function, because it is only a

V. CONCLUDING REMARKS
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single number. But the value & can rule out models which
omit quark OAM. Further studies at high€&’ may separate
constituent quark models with OAIB], which tend to have
a scalze(the guark magsforcing turnover ofR with increas-

ing Q-.

Note addedAfter submission of this work, we were in-
formed of important new daf&?2] from Jefferson Lab on the
inclusive neutron spin asymmetd/] in the valence region
extending up to Bjorkerxg;=0.6 andQ?>Ge\?. As the

PHYSICAL REVIEW 69, 053008 (2004

paper discusses, both the values and the trend of the data as
xgj—1 are inconsistent with HHC models, and appear to
confirm the presence of quark OAM.
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