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QCD form factors and hadron helicity nonconservation
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Recent data for the ratioR(Q)5QF2(Q2)/F1(Q2) surprised the community by disobeying expectations
held for 50 years. It was widely thought thatR(Q);1/Q was also a rigorous prediction of PQCD. We examine
the status of perturbative QCD predictions for helicity-flip form factors. Contrary to common belief, we find
there is no rule of hadron helicity conservation for form factors. Numerical calculations support asymptotic
analysis and extend it to the regime of laboratory momentum transferQ2. Quark orbital angular momentum, an
important feature of the helicity flip processes, may play a role in all form factors at largeQ2, depending on
the quark wave functions.
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I. THE NATURE OF HIGH ENERGY REACTIONS

There is an asymmetry in high energy reactions due to
Lorentz transformation. The spatial coordinate parallel t
boost direction is Lorentz contracted. The momentum fr
tion x of partons inside hadrons is thereby distributed o
the entire possible range 0,x,1. This phenomenon is dy
namical, because a boost of interacting fields is dynami
and thex dependence of wave functions cannot reliably
calculated in perturbative QCD. Instead, thex dependence o
wave functions is extracted from experimental data.

Meanwhile the spatial coordinatebW transverse to the boos
direction is Lorentz invariant. The transverse coordinate
a certain calculability via perturbative QCD. There is a gr
deal of interest and controversy associated with the tra
verse coordinate in exclusive reactions. The transverse
tial coordinate can be probed in reactions sensitive to
angular momentum flow. In some reactions, the sum of
helicities going into a hadronic reaction is automatically co
served. This is the case of the proton’s Dirac form factorF1

in the high energy limit. When the sum of the helicities is n
conserved, angular momentum conservation requires e
extra constituents, or quark orbital angular momentum. T
is the case ofF2, the proton’s Pauli form factor.

The Jefferson Laboratory has observ
QF2(Q2)/F1(Q2);const up to the highest values ofQ2

;5.8 GeV2 yet measured@1,2#. The data was initially very
surprising, and the field may have reached a pivotal poin
comparison with the quark model. For a long time it w
held sacred thatQ2F2 /F1;const at largeQ2. This rule ap-
pears to predate QCD. It has ancient origins in renormal
tion questions involving protons as elementary fundame
fields @3#.

Meanwhile a perturbative QCD model assuming nonz
quark orbital angular momentum~OAM! predicted
QF2(Q2)/F1(Q2);const @4,5#. A relativistic quark model
prediction @6# fits the flatness ofQF2(Q2)/F1(Q2) equally
well. These papers countered the ancient wisdom, bec
they shared the common feature of quark orbital angular
mentum in the wave functions.

The hypothesis of zero OAM sometimes appeals to
0556-2821/2004/69~5!/053008~13!/$22.50 69 0530
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nonrelativistic quark model in the rest frame. Yet the qua
model does not require separate conservation of spin
orbital angular momentum, and any naive expectation
small OAM based on atomic physics seems rather weak.
as importantly, very little of high energy physics and PQC
starts in the rest frame. The perturbative quark wave fu
tions are unrestricted in angular momentum content, exc
for Lorentz symmetry. Observation of nonzero quark OA
is a leading candidate to resolve the proton ‘‘spin crisi
which is the fact that the sum of the perturbative quark sp
does not equal the spin of the proton. Consequently the
ferson lab’s data has even broader implications than the m
tery of largeQ2 form factors.

Here we address whetherQF2(Q2)/F1(Q2);const is a
transient feature of comparatively low energy experimen
or a fact destined to persist at higherQ2. If the flatness of
this ratio is due to quark OAM, will the ratio stay flat wit
increasingQ2? The question leads us to reexamine the ro
of the ‘‘hadron helicity conservation’’ rule@7#. We find that
PQCD itself is rather neutral, because the calculations
pend on the wave functions. The wave functions needed c
not be obtained by perturbative arguments enforcing any
ticular model, because the important correlations
nonperturbative. The simplest analysis gives aninequality
between the powers governing helicity-flip processes and
licity conserving ones. However even the inequality is n
general, and it is possible to find helicity flip dominatin
helicity conservation at largeQ. As a result QF2 /F1
;const may extend to arbitrarily large values ofQ2, without
violating anything sacred.

II. DEFINITIONS AND DISCUSSION

Proton form factors. The proton form factorsF1 and F2
are defined by the standard relation,

^P8,s8uJmuP,s&

5N̄~P8,s8!S gmF1~Q2!1 ismnqn

F2~Q2!

2M DN~P,s!,

~1!
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whereq5P82P, Q252q2, Jm is the electromagnetic cur
rent of the proton ands ands8 refer to the spins of the initia
and final proton.F1 and F2 are the Dirac and Pauli form
factors respectively.

Orbital angular momentum.By quark orbital angular mo-
mentum~OAM!, we refer to an expansion inSO(2) repre-
sentations~commonly known asLz states!, with quantization
axis aligned along the particle 3-momentumPW . The eigen-
states ofLz are invariant under boosts along thez axis. We
do not use spherical harmonics, and we treat the longitud
coordinates as scaling variables. Let the transverse sp
coordinate bebW 5b(cosf,sinf). We expand operators o
wave functions as

c5(
m

eimfcm~x,b!

where x is the Feynman light-cone fraction ofz ~or ‘‘ 1’’ !
momentum. Perturbative wave functions are theory c
structs, and fields at finite separation are technically
gauge invariant, in general. Some basic rules for classify
nonzero OAM wave functions and ‘‘dressing’’ for gauge i
variance are developed in Ref.@8#. A 1993 development of
generalized parton distributions was partly motivated in
der for OAM to be expressed in a manifestly gauge-invari
formalism@9,10#. Observables are also gauge invariant wh
all the legs of diagrams are contracted properly.

Chirality versus helicity.The proton’s Pauli form factor
F2 contains information on the orbital angular momentum
the quarks, but it is indirect. Strictly speaking, the amplitu
iN̄(p8,s8)F2(Q2)smnqnN(p,s) represents the amplitude fo
chirality of the proton to flip under momentum transferQ.
The chirality ~eigenvalue ofg5) of quarks does not chang
under a vector gluon interaction to all orders
approximation.1 Chirality is nearly an exact symmetry o
PQCD, with changes in quark propagation orderm/P, where
m is the quark mass andP its momentum. The chirality also
equals the helicity to orderm/P. The massm to be used in
PQCD is the so called current quark mass of a few M
Adding another constituent to the scattering is also down
O(1/Q2). Then by this reasoning, at largeQ2.GeV2, it is
not possible to flip either the chirality or helicity of the pro
ton with a virtual photon, unless there is internal quark
bital angular momentum present to satisfy the selection ru

What is quark counting?We separate the quark-countin
model of Brodsky, Farrar, and independently Matveev et
@11# from the asymptotic short distance~ASD! model of
Brodsky and Lepage@12,13#. The earlier theory is one o
counting propagators and the number of scattered cons
ents. The latter ASD theory is much more detailed, impos
a certain factorization of the hard reaction into compone
made from thes-wave,m50 Bethe-Salpeter wave function
The factorization, and selection of priviledged wave fun
tions, does not come by listing all diagrams and evaluat

1The perturbative chiral anomaly can change chirality, but w
magnitude too small to be relevant to our discussion.
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them. Instead the framework is developed by assuming
framework and classifying terms within the assumptio
The ASD approach is characterized by taking the ze
distance limit in the first step., and replacing the rest of
calculation by integrals over Feynmanx fractions using ‘‘dis-
tribution amplitudes,’’ or similar quantities with no trans
verse information. In comparison the Feynman rules instr
us to leave the longitudinal and transverse integrals coup
Perform the integrals, and afterwards take the limit of la
Q ~if wanted!. If the two limits are not the same~and they are
not in general!, then the ASD assumptions can fail.

The transverse coordinates are gone in the ASD appro
being evaluated within 1/Q of zero. HHC follows instantly
as a test of the framework, independent of the wave fu
tions used. By omitting OAMmÞ0, the prediction forF2

50, and one cannot recover any prediction for finiteF2 in
the formalism. As far as we know, previous ASD predictio
of F2 are indirect and deduced by elimination: sinceF1

;1/Q4, andQF2 could not be calculated, thenF2;F1 /Q2

must lie in the detritus not calculated. Within the framewo
of a generalized ASD model a recent calculation@14# finds
contributions toF2;1/Q6. It is also possible to modify the
model by including quark mass effects@15#. Our goal here is
to understand the limit of arbitrarily light quarks and negle
ing effects of ordermq /Q.

We separated quark counting from ASD because the
are not the same theory. Should one believe either? There
good indications from the scaling laws that quark count
has some truth. We have no religious commitment here,
the possibility that a fraction of the amplitude is due to ‘‘so
physics’’ must be given credit@16,17#. But amplitudes canno
all be soft, because the form factors are not seen to
exponentially with Q. Indeed the quark-counting scalin
laws generally work well. Meanwhile the inapplicability o
HHC to F2 or any other helicity flip reactions@18# shows we
cannot use ASD.

Regarding generalized parton distributions.Generalized
parton distributions~GPD! appear to be an ideal way to pro
ceed. Lorentz covariance can be used to set up matrix
ments and expressions for the form factor in an appare
model-independent way. As far as we know, form facto
were the first instance of GPD, used in the paper of So
@19# in 1977, which also contains a transformation to a p
ticular transverse spatial coordinate. We will have occas
to revisit the conclusions of that paper in Sec. III F.

Despite our GPD-based predictions@9,4,5# for ratios and
the welcome rediscovery of GPD in the field, we chose
to make them the vehicle for this analysis. The reason is
GPD are so general they do not immediately contain
information there are three quarks in the proton. To incor
rate the information one can start with wave functions a
integrate out all but two quark legs. Since our concern
precisely these integrations, we would have nothing to g
We caution the reader, in any event, that the method of
proximating integrals by ASD methods will have simila
limit-interchange problems when clothed in GPD langua
Diehl et al. @20# discuss general relations, and their formul
codify a relation ofF2 to quark OAM.
8-2
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Some familiar, but inexact assertions.Suppose we have
nonzero OAM in the wave functions and we try to use t
assertion of the ASD approach,

DbDQT.1. ~2!

Here Db is the resolved transverse quark separation, i
frame where the momentum transferQ;DQT is transverse.
We have written the relation like the uncertainty principle,
give it a chance to be seductive. We observe next t
merely from continuity, a wave functioncm carryingm units
of angular momentum scales likebm as b→0. Then under
these assumptions each unit of orbital angular momentum
the quarks will lead to amplitudes suppressed by a co
sponding power of 1/Q at largeQ. This familiar assertion has
been repeated endlessly in the literature, yet we will sh
that this type of counting does not represent QCD. It is
ductive but it is not right.

Our approach.To addressF2 properly, one must go be
yond short-distance to restore the transverse coordinate.
is called ‘‘impact-parameter factorization’’@21,22#. This
well-justified method has dominated recent attention in p
turbative QCD@23–25,8,26#.

The elastic scattering of a proton from a virtual photon
shown schematically in Fig. 1. In impact-parameter fact
ization, the three-quark contribution to the proton form fac
can be written as

N̄~P8,s8!S gmF1~Q2!1 ismnqn

F2~Q2!

2M DN~P,s!

5E ~dkWT!~dx!~dkWT8 !~dx8!

3Ȳa8b8g8~P8,kWTi8 ,xi8 ,s8!

3Ga8b8g8abg
m

~q,kWTi ,kWTi8 ,xi ,xi8!Yabg~P,kWTi ,xi ,s!.

~3!

We have factored the amplitude into products of a hard s
tering kernelGm and soft initial and final state wave func
tions Y and Y8 respectively. The wave function
Yabg(P,kWTi ,x,s) is the Fourier transform of the matrix ele
ment ^0ueabcua

a(y1)ub
b(y2)dg

c(0)uP,s&, where uP,s& is the

FIG. 1. Definitions of momenta for elastic scattering of a prot
from a virtual photon. HereP andP8 are the momenta of the initia
and final proton, respectively,q is the momentum of the photon an
ki andki8 the momenta of the initial and final state quarks, resp
tively.
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proton state. The argumentkWTi of the initial wave function
refers to the momenta of the three quarks,kWT1 , kWT2 andkWT3.
Similarly the argumentxi refers to the longitudinal momen
tum fractionsx1 ,x2 ,x3 of the initial proton. The argument
kWTi8 ,xi8 of the final state wave function are similarly define
We use the ‘‘brick-wall’’ frame for our calculations
The integration measures are given by, (dkWT)
5d2kT1d2kT2d2kT3d2(kWT11kWT21kWT3), (dx)5dx1dx2dx3
3d(x11x21x3). Note that Eq.~3! postpones any assump
tions about the dominance of any particular integration
gion of kWT or x. If care is not taken, limit interchange erro
leading to the ASD results can result.

To extract the contribution due to quark OAM, it is con
venient to work directly with the coordinatesbW i conjugate to
the transverse quark momentakWTi . We choose coordinates s
that the third quark~down! lies at the origin@24#, i.e. bW 3

50. The wave functionỸabg can be decomposed as a su
of terms@24#:

Ỹabg~P,bW i ,xi ,s!5
f N

8A2Nc

„C abg
1 A1~P,bW i ,xi !

1C abg
2 A2~P,bW i ,xi !1C abg

3 A3~P,bW i ,xi !

1C abg
4 A4~P,bW i !1•••…. ~4!

We are concerned with terms which lead by power count
in large momenta. Under a Lorentz transformation along
momentum axes the variablesb are invariant. We therefore
keep leading wave functions whether or not a power ob
occurs. Each power ofbT→bx6 iby can be further decom
posed into combinations of quark OAM.~At this point, ASD
would reject powers ofb and OAMÞ0.! The first few op-
eratorsC are given by

C abg
1 5~P” C!ab~g5N!g

C abg
2 5~P” g5C!abNg

C abg
3 52~smnPnC!ab~gmg5N!g

C abg
4 5 i ~P” g5C!ab~b” 1N!g . ~5!

Here C is the charge-conjugation matrix. Note the opera
C 4 which depends onb1. Herebi are four vectors with trans
verse components equal tobW i and all other components zero
Similar operators exist for other transverse coordinates.

The Dirac and Pauli form factors can now be obtain
from Eq. ~3!:

-

8-3
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J. P. RALSTON AND P. JAIN PHYSICAL REVIEW D69, 053008 ~2004!
F1,2~Q!5E ~dkWT!~dkWT8 !~dx!~dx8!

3(
s,s8

Ȳa8b8g8~P8,kWTi8 ,xi8 ,s8!Tm
(1,2)~P,s,P8,s8!

3Ga8b8g8abg
m

~q,kWTi ,kWTi8 ,xi ,xi8!

3Yabg~P,kWTi ,xi ,s!

5E ~dbW !~dbW 8!~dx!~dx8!c* ~bi ,xi !H̃1, 2

3~bW i ,bW i8xi ,xi8 ,Q!c~bi ,xi8!. ~6!

Here Tm
(1, 2) are tensors that project outF1, 2, and

H̃1, 2(bW i ,bW i8 ,xi ,xi8 ,Q) are the projected Fourier transform

of the hard scattering kernel,H(xi ,xi8 ,kWTi ,kWTi8 ;Q). Each
projection selects linear combinations of the wave functio
Ai defined in Eq.~4!, which from the context is obvious, s
that subscripts~1,2! in H̃ can be suppressed. The impul
approximation has been used to set the light-cone ‘‘time’
zero. There are noa priori assumptions in Eq.~6! about
short-distance. If Sudakov effects are used consistently,
wave functions in Eq.~6! concentrate important integratio
regions into one which is perturbatively calculable,without
assuming zero-distance as a starting point.We do not go to
the further extreme of Ref.@23# towards asserting that th
ultimate output including Sudakov effects is the ASD mod
We find this unjustified, especially since the absence
Sudakov corrections is one of the characteristic shortcom
of the ASD model.2 To bring the two methods into conco
dance, special assumptions about the wave functions w
need to be made. A detailed calculation ofF1 at leading
order in perturbation series is given in Ref.@24#.

The form factor F2 gets contributions from the wav
functions, such asC abg

4 X, which scale asb in the smallb
limit. Furthermore the transverse momenta in the qu
propagators also contributes to the kernelH̃2 at leading or-
der. In this paper we are interested in obtaining the sca
behavior ofF2 and not in the detailed leading order calcu
tion. We focus on theb integrations in the limit of zero quark
masses. The scaling behavior can be determined by con
ering the leading order hard scattering kernel whose deta
form is given in Ref.@24#. Since we are working in the
impact parameter space, we need to take the Fourier tr
form of this kernel. In this case the transverse moment
factors such askT1,i , which occur in the Dirac propagator
turn into derivativesi ]/]b1,i . The remaining Fourier trans
form has a form similar to what is obtained for the for
factor F1. The dependence on the impact parameter in
kernel arises through the bessel functions of the fo

2While Sudakov corrections are mentioned in Ref.@7#, they do not
come from the operator-product approach of the model itself,
are invoked from outside the model.
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K0(Ax1x18Qb̃12), where b̃125ubW 12bW 2u. Taking the deriva-
tive of this kernel with respect tob1,i gives factors of the
form

~b1,i2b2,i !

b̃12

QAx1x18K08~Ax1x18Q
2b̃12

2 !.

Besides this transverse separation dependence, an addi
power ofbW arises from the operatorC 4 in the wave function.
Hence the scaling ofF2(Q2), and the form factor ratio,
hinges on scaling of the effective transverse separationb at
large Q. Counting powers ofQ, including one for the pref-
actor qmsmn , we find that if b;1/Q at large Q, then
F2 /F1;1/Q2 in this limit. This result has recently been con
firmed in Ref.@14# which adopts the ASD formalism from
the start. Alternatively ifb;const thenQF2 /F1;const and
F2;1/Q5 in the same limit. Such scaling was predicted
Ref. @4# and is also seen in a relativistic quark model calc
lation @6#. In the rest of this paper we study in detail how th
dominant region ofb scales withQ in perturbative QCD.

III. ILLUSTRATIVE CALCULATIONS

With little being known about nonperturbative qua
wave functions, there is great latitude for exploring the
fects of OAM. We impose general principles and assume
the large b components of wave functions are strong
damped, and the short distance components are smooth
less otherwise specified. Models which can falsify comm
prejudices are particularly instructive. Such models can ill
trate analytically some general limit-interchange difficulti
upsetting Eq.~2!. Numerical calculations with more detaile
models are presented in Sec. IV.

A. Role of the transverse coordinate

Return to the general expression Eq.~6!. To leading order
and neglecting transverse momentum in Fermion denom
tors the hard scattering depends on differenceskWT2kWT8 before
and after the hard collision. The neglect of Fermion deno
nators, which is the model of Li and Sterman@23#, suffices
for our purposes of establishing the general absence of H
for largeQ. Restoring such terms can give subleading dep
dence onQ which might be important for numerical com
parisons with data.

The importance of the variablekWT2kWT8 seems rather gen
eral, because thesumof the transverse momenta are conj
gate to the overall spatial location of the hard scatteri
which by translational invariance drops out.3 In a process
with a single hard exchange~a pion or meson form factor!
the transverse integrals take the form of convolution:

t

3From translational invariance, the hard kernel must depend
the difference of space coordinates. The transverse separationb is
only one such difference, and the one of interest here. Other di
ences such as the longitudinal ones also occur.
8-4
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F~Q!5E d2kTdxdx8c̄~kWT8 ,x8! f ~kT ,x,x8!,

f ~kT ,x,x8!5E d2kT8H~kT2kWT8 ,x,x8;Q!c~kWT ,x!

5E d2b

~2p!2
eikWT•bWH̃~b,x,x8;Q!c̃~b,x!.

~7!

Consequently the expressions are diagonal inb, with

F~Q!5E d2b

~2p!2
dxdx8c̃* ~b,x8!H̃~b;x,x8,Q!c̃~b,x!

5 (
m1m2m3

E d2b

~2p!2 dxdx8df

3e2 i (m12m22m3)fc̃m1
* ~b,x8!

3H̃m2
~b;x,x8,Q!c̃m3

~b,x!. ~8!

All contributions to OAM are explicit at this stage. Expa
sion of the hard scatteringHm was introduced because th
kernel can also carry angular momentum and be anisotro
via the direction of the hard momentumQW . The selection
rules conserving angular momentum will come from thef
integrals.

B. Gluon exchange kernel

Consider the simplest one-gluon approximation to
pion kernel ~Fig. 2!, H54pCFas /q82, where q8 is the
gluon momentum. This is written out as

H~kW2kWT8 ;x,x8,Q!54pCFas

1

xx8Q21~kWT2kWT8 !2
,

H̃~b;x,x8,Q!58p2CFasK0~Axx8Q2b2!. ~9!

When integrated with nonsingular functions ofb and x, the
dominant region is not determined by Eq.~2!, but instead the
Bessel function restricts to

Axx8Qb,1. ~10!

FIG. 2. Definitions of momenta cited for the one gluon e
change kernel, converted to impact parameter coordinates in
text.
05300
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Clearly Eq.~10! is more accurate than Eq.~2!, because the
partons entering the reaction carryxP, rather thanP and can
only be scattered throughxx8Q2 momentum transfer-
squared. This has been recognized for a long time, and c
mon wisdom ascribes an average value ofx;1/3 for valence
quarks. It is commonly accepted that consistent appeara
of xx8Q2 postpones any onset of short-distance domina
to higher values ofQ2 compared to the naive implications o
Eq. ~2!.

A physics question.We pause to question how the ‘‘unce
tainty principle’’ of Eq. ~2!, b;1/Q, could have misled the
field. First, it was not the uncertainty principle, but an ass
tion of dominant regions. Somehowx, from the longitudinal
coordinate, appeared in a relation between transverse th
We seek a physical explanation.

Suppose we stand at impact parameterb beside a fast
moving quark with massm, energyE05gm. Relativity pre-
dicts a pulse of fields with a time scaleDt;b/g.4 The Fou-
rier modes of the fields coming with the quark must be d
tributed over time scaleDt. Their individual energiesEq
5xE0 are measured in units of 1/Dt, meaning that the fields
are functions of

EqDt5xE0b/g5xbm.

If there is no longitudinal momentum transfer, the casex8
5x, the fields depend onx2b2, just as in Eq.~9!. While this
way of thinking is used in electrodynamics, for ‘‘equivale
photons,’’ it is naturally the same result in PQCD, becau
the gluon propagator coincides with the electromagne
propagator to leading order.

The longitudinal fraction is coupled to the transver
structure because the time scale depends onx. The time-scale
~x! dependence is of course set by thenonperturbativepart of
the problem, thex dependence of wave functions. Since w
cannot in principle determine thex dependence in perturba
tion theory, then no general rules can be made to pre
everything about theb dependence, either.

Time scale smearing: Interplay of x and b

Exploring the integrals, thebumu;1/Qumu counting will
still occur, from dimensional analysis, after doing theb inte-
grations in eachx,x8 integration bin. It looks like Eq.~2! and
its conclusions may win after all. Surprisingly, there is
simple ruleafter the x,x8 integrations are done. The scalin
indicated by dimensional analysis is ‘‘erased’’ by thex inte-
grals under broad conditions. The physical origin is that
final scale depends on thedynamical time scale distribution
in the wave functions inx that we arenot priviledged to
predict. Thex distribution is set by the proton itself in th
quiet of vacuum over infinite time. The ‘‘time-scale smea
ing’’ destroys naive use of the uncertainty principle, and c

4This time scale is also a Lorentz-contracted pancake longitud
distance scale. Our use of ‘‘time scale’’ is consistent with the i
pulse approximation.

he
8-5
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responding counting of powers. However time-scale sm
ing does not destroy the use of PQCD, which alwa
contains integration overx.

C. Model definitions

It suffices to use the kernel Eq.~9! to show the effects.
Since our focus is the orbital angular momentum, we c
sider the integrals with factors ofbumu explicit. The selection
rules from the angular integralse2 i (m12m22m3)f are obvious.

We exploreAnsätze for

F̃~b,x,x8!5bA~xx8!r 1
„~12x!~12x8!…r 2C̃~b,x,x8!.

The factor ofbA is the phase-space to find an assumed nu
ber of quarks close together from naive quark-counting. T
remaining factorC̃(b,x,x8)5j i(b,x)j f(b,x8) represents the
remaining product of the wave functions. Although wa
functions symmetric inx→12x are commonly assumed
there is no motivation for this withmÞ0. Exponentsr 1 ,r 2
will be called the ‘‘dominant power ofx’’ when they rule
singularities.

In model 1we use a factored Gaussian function to rep
sent the wave functions cutting off largeb,

j5exp„2b2/~2a2!… model 1.

In model 2we use a Gaussian in logarithms,

j5exp„2 log2@b2x~12x!/a2#… model 2,

to retain some coupling betweenx andb. In model 3we use
a Gaussian couplingx andb:

j5e2b2Ax(12x)/a2
model 3,

wherej represents the initial or the final soft wave functio
These model are chosen for their analytic simplicity to se
as examples.

D. Mellin method

We study the large-Q asymptotics by calculating a Mellin
transformF̃(N) conjugate toQN:

F̃~N!5E
0

`dQ

Q
QNF~Q!

5E
0

`

dbbumu1A11E
0

1

dxE dx8

3E
0

`dQ

Q
QNK0~Axx8b2Q!F̃~b,x,x8!, ~11!

where, since the kernelH̃ has been assumed to carry ze
orbital angular momentum,m5um1u1um3u. The Q integral
is carried out easily,
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E dQ

Q
QNK0~Axx8bQ!52221N~xx8b2!2N/2FGS N

2
D G2

.

~12!

Note thatb2N emerges just as expected from dimensio
analysis. If we stopped here, thenbm would be suppressed b
Q2m.

The other integrals remain as

F̃~N!52221NFGS N

2 D G2

G̃~N!, ~13!

and depend on the model.

Some background on Mellin transformations

To keep our presentation complete, we review some ba
ground on Mellin transformations@27#.

Suppose that a functionf (Q) falls like Q2A. The integral
of QN21f (Q) will converge asQ→` for N,A. As N is
increased from below, a singularity appears atN5A. This
singularity is a sign that the function falls likeQ2A.

SinceQN is an analytic function ofN, the Mellin trans-
form is then analytic in complexN5Nx1 iNy for a strip of
real Nx,A. Its analytic continuation is

f̃ ~N!5E dQ

Q
QNx1 iNyf ~Q!,

5E dQ

Q
eiNylog(Q)QNxf ~Q!. ~14!

We keepNx fixed in the strip of convergence, and recogni
this as the Fourier transform ofQNxf (Q) with Ny conjugate
to log(Q). The Fourier transform is inverted b

FIG. 3. Inverting the Mellin transform. A contour~dashed! in an
analytic strip of the complexN plane is deformed past an isolate
singularity ~dots! to give the residue plus the contribution of th
new contour.
8-6
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QNxf ~Q!5
1

2pE dNye
2 iNylog(Q) f̃ ~N!,

f ~Q!5
1

2p i E dNQ2Nf̃ ~N!. ~15!

This is the inverse Mellin transform. The contour in the co
plex N plane runs in the purely imaginary direction in th
strip of real-N where f̃ (N) converges~Fig. 3!.

The N integral can be done by deforming the conto
about singularities one-by-one. At each singularityQ2N is
analytic, and is evaluated by the residue theorem. The re
generates an asymptotic series inQ. If one pulls the contour
to theleft, then a series inQ2N for increasingly negativeN is
obtained: a series such as 1,Q,Q2 . . . . Such an expansion i
appropriate for smallQ. For example, Eq.~12! has double
poles atN50,21,22 . . . . Thedouble pole atN50 needs
the N1 term of QN;12N log(Q)2N2log2/2, and will gener-
ate a residue going like log(Q). Keeping the first 2 singulari-
ties, the series is
th

e

w
m

-
-
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K0~xbQ!;
1

2 F22gE2 logS b2Q2x2

4 D G
1b2Q2x2S 1

4
2

gE

4
1

log~2!

4
1

log~b2Q2x2!

8 D
1O„~bxQ!3log~bxQ!… ~16!

where gE;0.5772 is the Euler gamma number. The fi
term is well known, and the method can be extended to
an unlimited number of terms.

E. HHC and non-HHC cases

We use notationf (Q)<Q2P to indicate dependence fall
ing at least as fast as Q2P. Returning to Eq.~13!, depen-
dence atlarge Q now comes from singularities ofF̃(N) to
the right of the convergence strip~Fig. 3!.
Model 1.We need

E
0

`

dbE
0

1

dx~b2x!2N/2bumu1A11xr 1~12x!r 2e2b2/(2ã2)

5

2(A1umu2N)/2ãA1umu2N12GS 21A1umu2N

2 DGS 2
N

2
1r 111DG~11r 2!

GS 22
N

2
1r 11r 2D . ~17!
e

ult

not

of
ing
of

in
ld
omi-
SD
The initial and final state wave functions combine to give
factoreb2/2ã2

. An x8 integration remains to be done to getG̃.
The integrand is products of powers and analytic. It th
suffices to examine the singularities already visible.

The singularities ofG„(21umu1A2N)/2… are simple
poles at

N521umu1A12K, K50,1,2. . . .

These are exactly the singularities creating the naive po
counting of HHC. The existence of these singularities i
plies

F~Q!<Q2umu2A22 ~HHC region only!, ~18!

from these singularities alone, and barring a zero factor can
celing the poles. As expectedbumu→Q2umu: these are the con
tributions for which the HHC results are reproduced.

The singularities ofG(22N1r 1) are simple poles at

N521r 11K8, K850,1,2. . . ,
e

n

er
-

yielding a power behavior

F~Q!<Q222r 1 ~dominant power region! ~19!

regardless of the value ofumu. If such poles dominate, ther
is no power suppression of OAMumuÞ0.

If the singularities ofN521umu1A12K and N521r
1K8 coincide, there is a double pole, modifying the res
above by a power of log(Q). If the zero of 1/G(42N/21r 1
1r 2) meets a pole, then that pole has no residue.

There is considerable structure in these calculations
anticipated in naive power counting.

Model 2. It is inconvenient to combine the exponents
two wave functions, and we can make a point by integrat
just one. Although this is not general it indicates the kind
behavior we might expect from a nonfactorizableAnsatz.
Alternatively we can expand one of the wave functions
powers ofb, keeping only the lowest order term. This wou
be reasonable as long as small transverse separations d
nate and hence our results can test the validity of the A
model in all generality. We need
8-7
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E
0

`

dbE
0

1

dx~b2x!2N/2bumu1A11xr 1~12x!r 2

3e 2k log2
„ b2x(12x)/a2

…

5
Ap

D
a21A1umu2Ne(21A1umu2N)2/16k

3GS 2A

2
2

umu

2
1r 1DGS 2A2umu1N12r 2

2
D ,

D52AkGS 2A2umu1
N

2
1r 11r 212D . ~20!

There are no singularities forN.0, and this model is expo
nentially damped asQ→`. In the argument of the gamm
function the effects ofumu and 2r 2 are equal and opposite
we can have as many powers ofbumu wanted, and produce n
effects on the powerN providedumu22r 25const.

Let us explore this phenomenon qualitatively. Model
hasF̃(b) falling faster than any power ofb asb→`. How-
ever asb→0 the model is also smaller than any power ofb.
There is no phase space for the quarks to find each o
hence the exponentially damped behavior. While this is n
realistic model feature, it is interesting nonetheless.

The cancellation ofumu and r 2 powers appears to origi
nate in thatb2x(12x)x8(12x8)/a2,1 sets the scale ofb.
Largeb and unsuppressed OAM would be possible at smax
or small 12x, except there is no largeb allowed anyway.
The possibility of largeb dominance may be a realistic fea
ture, and deserves further study in model 3.

Model 3.This is the most interesting model. We separ
the product of two wave functions by expanding one in po
ers ofb. Integrating the first term, we find

G̃5E
0

`

dbE
0

1

dx~b2x!2N/2bumu1A11xr 1~12x!r 2

3e 2b2Ax(12x)/a2

5
1

D
a21A2N1umuGS 11

A

2
1

umu

2
2

N

2
D

3GS 1

2
2

A

4
2

umu

4
2

N

4
1r 1DGS 1

2
2

A

4
2

umu

4
1

N

4
1r2D,

D52GS 12
A

2
2

umu
2

1r 11r 2D . ~21!

This function has its singularities atN521A12K1umu,
K.0 integer which again are reminiscent of the HHC pol
It also has singularities at

N522A14K2umu14r 1 , K50,1,2. . . .

Model 3 is another example where a positive power ofumu
.0 may be cancelled by a positive power 4r 1.0. In this
model there isno a priori suppressionof OAM and in some
cases OAM could dominate
05300
er:
a

e
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Let us understand this qualitatively. The appearance
Ax(x21) in the exponent allowsb to take its greatest rang
at smallx or small 12x. We have argued this is generic du
to time-scale smearing. Instead of the wave function blow
up, however, the range ofb is finite, because the prefactor
of xr 1(12x) r 2 regulate the phase space. The resulting wa
function is quite conventional in appearance, as illustrated
Fig. 4.

Breakdown of series expansions.There appears to be
paradox. If we made a Taylor series for the wave function
powers of b, then term by term powers ofb2JxJ(12x)J

would be suppressed forJ.0. However when we examine
the exponential in model 3, an OAM factor ofb2 is nearly

equivalent to a factor of 1/Ax(12x), so that powers ofbumu

are not necessarily suppressed. This is whyxr 1 can cancel
bumu. The paradox is that the sum acts much different than
separate terms. A simple resolution is that most of the in
gral is coming from the region where the exponent is
order 1: and a series expansion is not valid. The assumpt
of HHC, in contrast, require that a series expansion ab
b;0 be the dominant contribution. Model 3 serves as
counterexample to that expectation.

Rule of thumb.We have extracted an improved HHC-ru
of thumb: the asymptotic Q2 dependence is determined b
the minimum of powers m,r in the integrands.The rule has
been deliberately simplified to powers, suppressing logar
mic factors readily calculated, by further evaluating the M
lin inversion. These logarithms are obtained from the Mel
series and are a separate phenomenon from the asymp
freedom logarithms of PQCD. The origin of the variety
predictions is time-scale smearing: due to it, the suppres
of OAM expected by naive counting is transferred to sme
ing inside the longitudinal wave functions, and helicity flip
can readily compete with helicity nonflip. There is no pow
suppression of OAM formÞ0 in general.

Effects of the large b regions.The singularities to theleft
of the convergence strip determine a series forsmall Q
→0. These singularities are traced to the Gaussian mo

FIG. 4. The wave function of model 3, cited in the text. Desp

the width in theb variable going like 1/Ax(12x), the wave func-
tion is very moderate and conventional in appearance.
8-8
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Sudakovb cutoff, or the largeb cutoff. We are not concerne
with these singularities, showing that the largeb cutoff drops
out of the power laws stated above. However the numer
normalization of integrals depends on the cutoff method. I
a separate question needing separate analysis to find th
merical fit of models to data. Our numerical work is pr
sented momentarily.

On this reasoning there is always a part of the calcula
which is ‘‘strictly perturbative.’’ Calculations of the largeb
regions may apply to data only with limited reliability. Re
gardless of this fact, the smallb regions known to be calcu
lable behave as we claim, and are the only regions un
conceptual dispute.

F. Discussion

To our knowledge HHC has never previously been o
served to fail for largeQ2 form factors. Yet previous work
has made related observations that the powers ofx can de-
termine theQ2 dependence. Feynman’s mechanism@28# con-
centrated entirely on the regionx→1 and ignoredb. Feyn-
man’s work predated PQCD, and there are certainly regi
in the b integrals of that mechanism that would not be c
culable, so the model is moot. Soper’s 1977 paper@19# has a
clear statement that theminimumpower ofx or kT rules the
results. The context was the Drell-Yan-West@29# relation,
which connects thex→1 behavior of inelastic structur
functions with theQ2 dependence of the form factor. Sop
shows that one cannot prove the Drell-Yan-West relation
ductively, but one can get an inequality and force the relat
by choosing wave functions.

The literature is clouded here by treatmentsassumingthat
the two regions ofx→1 andb→0 must give the same sca
ing, and forcing a result by circular logic. As we have ju
shown, the regions are different and no general rule can
made. Underlying this is the fact of perturbative calculabil
of short-transverse distance not being on the same footin
perturbativemodelsof the x→1 dependence. For instanc
Brodsky and Lepage@12,13# discuss the end pointx→1 con-
tribution of the proton form factorF1. The authors argue tha
for the limit x1→1, PQCD implies anm50 wave function
of orderas

2 perturbatively calculated to go like (12x1)1. On
this basis they find that a contribution toF1 scaling like 1/Q4

independent of the powers of binside the integrals. TheQ
dependence of this contribution is same as that obtained f
the b→1/Q region. Although perturbative analysis is not
valid approach to calculating wave functions, the result
consistent with ours.

Our results are due to time-scale smearing and should
be attributed to ‘‘end-point singularities’’ as the term is com
monly used. Inside the hard scattering kernels in PQCD
combinations of inverse powers ofx or 12x. We are not
exploiting these inverse powersin the evaluation of the Mel-
lin moments. Rather, it is the generic coupling ofx and b
integrations which makes impossible any general statem
of HHC. We reiterate that thex→1 limits of themÞ0 wave
functions are unknown. End point singularities~if any! can
only increase the variety of outcomes.
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To summarize the logic so far, for broad classes ofx de-
pendence of the wave functions, the nonrule of HHC is tra
formed to a rule of HHNC, hadron helicity nonconservatio
This is a new asymptotic prediction, and proves th
QF2(Q2)/F1(Q2);const can be an outcome of the theo
up to the highestQ. To be equally fair, different broad classe
of wave functions giveQ2F2(Q2)/F1(Q2);const. Our pri-
mary accomplishment enlarges the sphere of allowed po
bilities. Measurements are still needed to determine w
protons are.

IV. NUMERICAL STUDIES, SUBASYMPTOTIC

The scaling ruleQF2(Q2)/F1(Q2);const describes ex
periments at laboratoryQ values very far from asymptotic
We explored this region numerically.

A. Studies with the pion

The pion provides a simple test system. We test the do
nant integration regions by inserting factors ofbm in the
integrands, corresponding tom-units of OAM. The moment
^b(Q)&p is defined by

^b~Q!&p5

E dxdx8d2bbFp~Q,x,x8,b!

Fp~Q2!
. ~22!

The pion form factorFp(Q2) is given by

Fp~Q2!5E dxdx8d2bFp~Q,x,x8,b! ~23!

with the kernelFp(Q,x,x8,b) defined by

Fp~Q,x,x8,b!5E dxdx8dbbf~x8!as~m!e2S(x,x8,b,Q)

3K0~Axx8bQ!f~x!C̃~b!. ~24!

HereS(x,x8,b,Q) is the Sudakov form factor. A model so
wave functionC̃(b)5exp(2b2/2a2) is also included, where
the parametera51/LQCD . Frankfurt, Miller and Strikman in
an earlier study@30# found that theb2 moment falls faster
than 1/Q2. Their calculation differs in some respects, f
example in emphasis on the CZ form and not including a s
wave function. The soft wave function of course appears
the Li-Sterman formalism@23,24#, but is replaced by a dis
tribution amplitude when emphasis on Sudakov effects
sought.

In Fig. 5 we plot the moment̂b(Q)&p using a wave
function of the form

f~x!;@x~12x!#d.

This ansatz is deliberately arbitrary, and for our purpo
many example wave functions will serve. We study values
d50.2,1, with and without the Sudakov form factor. In th
latter case the momentum scalem5Q/4 of the strong cou-
pling is imposed, and theb integrals are cut off atb
8-9
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51/LQCD . From Fig. 5 it is clear that forQ2,100 GeV2 the
moment falls much slower than the ASD prediction of 1/Q,
regardless of thex dependence of the wave function us
@31#.

B. Studies with the proton

We turn to the proton form factors. We note that the JLA
data forQF2 /F1 is flat even below theQ-range whereF1
;1/Q4 begins to fit. In Fig. 6 we show a plot ofQ4F1. The
solid line in the plot corresponds to the behaviorF1
;1/Q3. It is clear from the plot that the scalingF1;1/Q4 is
seen only forQ2>6 GeV2, which is larger than the momen
tum regime explored at JLAB so far. This is cause for co
cern.

With 3 parameters and a large logarithm it is possible
fit @32# F2 /F1 to a form going like 1/Q2 asymptotically. The
particular fit used in Ref.@32# is

F2

F1
5

mA

11S Q2

A D logC~11Q2/B!

. ~25!

Yet it is certainly possible that the scaling observedin the
ratio is not overly sensitive toQ2, and will continue to larger
Q2. We investigate this in greater detail numerically.

To probe the dominant integration regions, we turn to c
culatingb moments of the proton form factor kernel. The
are multidimensional integrals of which our analysis in t
previous section determines but a low-dimensional strip.
spare the reader a listing of dozens of Feynman diagrams
substantially complicated kernels listed in the literature@24#.
The form factorF1 in impact parameter coordinates can
written symbolically as@24#

FIG. 5. The moment̂b(q)&p of the pion form factor kernel, as
defined in the text, using the@x(12x)#d form of wave function for
d50.2,1. The moment decreases withQ much slower than the 1/Q
behavior expected in the ASD HHC model. Results are shown w
and without including the Sudakov effects. The solid (1/Q0.42) and
the dashed (1/Q0.2) line represent a simple power law fit at sma
Q2 for d51 andd50.2, respectively.
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F1~Q2!5(
j 51

2
4p

27E0

1

~dx!~dx8!E
0

`

b1db1b2db2

3E
0

2p

du@ f N~w!#2H̃ j~xi ,xi8 ,bi ,Q,t j 1 ,t j 2!

3C j~xi ,xi8 ,w!exp@2S~xi ,xi8 ,w,Q,t j 1 ,t j 2!#,

~26!

with (dx)5dx1dx2dx3d(12x12x22x3). The variableu is
the angle betweenbW 1 andbW 2 andxi andxi8 refer to the initial
and finalx variables. The expressions for the hard scatter
H̃ j , the Sudakov form factorS, and functionC i are given in
Ref. @24#. Now defining

F1~Q2!5E b1db1b2db2FP , ~27!

where FP can be extracted from Eq.~26!, we define mo-
ments^bj (Q)&p as follows:

^bj~Q!&p5

E b1db1b2db2FPbj

F1~Q2!
. ~28!

The functionC i is where the linear combinations of th
products of initial and finalx wave functions are found. The
most singular part of the kernel in the limitx1→1 andx18

→1 is obtained from theH̃1C1 term, which is of the form

FIG. 6. The proton form factorF1 for moderateQ2, extracted
using the Jlab data forGE /GM and the SLAC data forGM . The
ratio GE /GM is obtained from the parametrization@2#
mp(GE /GM)5120.13(Q220.04). The solid line representsF1

;1/Q3.
h
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H̃1C1;
K0„A~12x1!~12x18!Qb1…K0~Ax2x28Qb2!f~xi !f~xi8!

~12x1!~12x18!
. ~29!
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HereK0 is the modified Bessel function of order zero.
For the test we explore a wave functionf(xi) given by

f~xi !;~x1x2x3!d.

The numerator in C1 is then proportional to
(x1x2x3x18x28x38)

d. The Bessel functions imply that in th
limit of large Q, (12x1)(12x18)b1

2→1/Q2 and x2x28b2
2

→1/Q2. As long asd<0.5 the time-scale smearing wi
dominate. Ford50.5 we getF1→1/Q4 even though a domi-
nant region inb1 andb2 is independent ofQ. For d<0.5 the
moments ofb1 andb2 should also have a region independe
of Q.

We check these predictions by performing the calculat
using d50.5. We ignore the Sudakov form factor for th
test, because it is a side issue. We evaluate the strong
pling atQ/4. In Fig. 7 we plot the moment of the transver
separationsb1(Q) and b2(Q) as a function ofQ. We find
that for Q2.100, the momentŝb2&p and^b1&p fall asymp-
totically as 1/Q0.2 and 1/Q0.14 respectively, in agreement wit
our analytic expectations. If we include the Sudakov fo
factor the moment̂b2&p falls as 1/Q0.4, asymptotically. This
is only a slightly stronger decay compared to the earlier ca
In contrast to earlier expectations, the Sudakov form fac
does not much suppress the importance of the end-poin
gion.

The results with end point dominated COZ@33,34# x de-
pendence are similar. In this case, as shown in Fig. 8, we
that the^b2&p decays very slowly withQ for a wide range of
Q. This is quite interesting, because, as shown in Fig. 9,
form factorF1 itself does not show good 1/Q4 scaling in this
momentum regime, if the Sudakov form factor is not i

FIG. 7. The moment of the transverse separationb1 andb2 for
proton using the wave function of the form (x1x2x3)0.5. The ^b2&p

moment is shown both with and without including the Sudak
form factor. The small dashed (1/Q0.14), medium dashed (1/Q0.2)
and the large dashed (1/Q0.4) lines represent simple power law fit
at largeQ2.
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cluded. The calculation indicates that the scaling seen in
moment, and hence the ratioQF2 /F1, is more general than
that seen inF1. This is not totally unexpected in a ratio. A
very largeQ it starts to fall faster, but only as 1/Q0.6: well
below the supposed 1/Q rule of ASD assumptions.

Let us add a remark about the neglect of transverse
mentum in Fermion numerators. Formally such neglec
perfectly legitimate and justified at largeQ, where the finite
kT integrals cannot add a factorincreasingwith Q. At the
finite Q of laboratory data the step defines a model that
be questioned for observables hinging on OAM. For t
reason we have presented separate calculations explicitl
cludingkT effects in order to test the contributions of OAM

C. The ratio QF2„Q
2
…ÕF 1„Q

2
…

Based on these studies we come to a prediction for
ratio QF2(Q2)/F1(Q2). This prediction is based on powe
counting, and the dominant integration regions probed by
moments. It is as complete a prediction as now possi
taking into account that one unitDm51 of orbital angular
momentum is needed forF2 to proceed forQ2@GeV2. Up
to small and model dependent corrections, of orderQ0.05, the
power counting gives the scaling behavior but not the n
malization of the data, via the relation

^b2~Q!&p;
QF2~Q2!

F1~Q2!
;const. ~30!

What if this prediction fails? It can fail, according to ou
asymptotic studies, if the dominant powerr is ‘‘large.’’ Large
Q2 studies ofF2 not only probe quark OAM, but also the
can tell us details of the dominantx power associated with
mÞ0.

FIG. 8. The moment of the transverse separation^b2(Q)&p for
the proton form factor kernel using the COZ wave function@33#.
The solid (1/Q0.1) and dashed (1/Q0.58) lines represent simple
power law fits at small and largeQ2, respectively. The dependenc
on Q is much weaker than predicted by ASD relations, and supp
a flat prediction forQF2 /F1 at JLAB momentum transfers.
8-11
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Positivity of GE . It is interesting to observe that if th
trend of QF2(Q2)/F1(Q2);const continues, the value o
GE will reach zero, and cross to a negative value. One w
ders@35# whether there is a physical significance and a b
rier to this unusual occurence.

While usually called the ‘‘Sachs’’ form factors@36#, the
Appendix of a 1959Reviews of Modern Physicsarticle @37#
list two form factors denotedA and B, now calledGE and
GM , which are linear combinations of Rosenbluth’s:

GM5F11kF2 ,

GE5F12ktF2 ,

t5
Q2

4mp
2

~31!

andk is the anomalous magnetic moment. Yennieet al.gave
@37# the alternative linear combinations simply to emphas
that the definitions of form factors was arbitrary. If there is
special significance toGE→0 it must be due to a specia
meaning ofGE .

The meaning ofGE is angular momentumDJz50 spin-
preservation in the Briet frame. IfGE50 the proton spin
must flip in the scattering. We find nothing special about th
The amplitudes in the spacelike region cannot be limi
further than general principles of analyticity, Lorentz a
gauge invariance, and so on. It is perfectly consistent to
range timelike discontinuities so that the sign change ofGE
occurs without violating anything holy.

V. CONCLUDING REMARKS

Our calculations show that the~newly revised! asymptotic
behavior of powers ofb is achieved only at very largeQ2.
Physics has many asymptotic predictions, which by c
struction have suppressed information needed to know w
they will apply. To repeat: methods inherent in asympto
prediction strongly tendnot to tell you where the prediction
will be valid. In QCD it was early thought the ‘‘asymptotic
regime coincided with the perturbative regime. This w

FIG. 9. TheQ2 dependence of the calculated proton form fac
F1 using the COZ wave function@33#. Results are shown both with
and without including the Sudakov form factor. Details are in t
text.
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built wrongly into dogma. We have shown here that t
scales of asymptopia for form factors are vastly beyond
perimental comparisons. At the same time, the perturba
regime of QCD may well extend down to laboratory valu
of Q2.

In explicit calculations at finiteQ2, we find that the ef-
fects of OAM are suppressedby even less than the revise
asymptotic behavior.The pyramid of assumptions that th
s-wave distribution amplitudes are meaningful falls into ve
grave doubt. To put this more directly, we do not have
reason to use a distribution amplitude any more.

The usual approach to PQCD, in which wave functio
are assumed to be unknown, predicts HHNC:hadron-helicity
nonconservation. The experimental observation ofR(Q)
5QF2 /F1 appears to have a dual meaning. The ratio i
very robust quantity, which remains flat even in the regim
whereF1 is not clearly dominated by quark counting. Th
same ratio is an important asymptotic quantity, which
forms us about the wave functions. The common notion t
proton wave functions are ‘‘cubic,’’ namely going lik
x1x2x3, is ruled out for wave functions calculatingF2. Ap-
plications of the CZ wave functions are ruled out forF2, if
the ratioR continues to be flat at largeQ2. It is important
that experimental observations be extended to largerQ2 val-
ues.

Predictions for protons are mirrored in predictions of t
same type for neutrons. If the flatR(Q) ratio is followed for
neutrons, then the hallowed Galster fits@38# to neutron data
will eventually fail @35#. Calculations for the neutron appea
in Ref. @6#. We predict a flatR ratio for neutrons on the basi
of isospin independence of QCD. However we need to e
phasize that it is possible, in principle, for wave functions
substantially different shape to be very close in energy,
to the variational stationarity of an energy eigenstate. If th
is a place for Nature to hold surprises it is in the comparis
of the neutron to the proton.

The study of polarization transfer@39# in large nuclei,
eW (A,e8)pW 8 should yield further information. If the existing
form factors are dominated by ASD, which we do not belie
but is still worth testing, then nuclear filtering will not mak
the distances shorter, and the ratioR should be flat withA
@1. The regime of smallA;10 has no advantages an
many complications due to few-body effects, and predictio
are more difficult. If the existing form factors are dominat
by quark mass effects, then nuclear filtering will not ma
any difference and the ratioR should again be flat. If quark
OAM is responsible for the flatness ofR as we believe, then
filtering will kill the large transverse extent of large OAM
@40,41#, F2 should be depleted relative toF1, and R will
decrease withA@1. We intend to dedicate a study to qua
tifying these predictions.

JLAB has made a pivotal experimental discovery whi
will be a permanent subject of discussion. The experim
tally observed flatness ofQF2 /F1 is a signal of substantia
quark orbital angular momentum in the proton. Higher m
mentum transfer measurements would be helpful in confi
ing this interpretation. The numerical size ofR cannot be
converted directly to a wave function, because it is only

r
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single number. But the value ofR can rule out models which
omit quark OAM. Further studies at higherQ2 may separate
constituent quark models with OAM@6#, which tend to have
a scale~the quark mass! forcing turnover ofR with increas-
ing Q2.

Note added.After submission of this work, we were in
formed of important new data@42# from Jefferson Lab on the
inclusive neutron spin asymmetryA1

n in the valence region
extending up to BjorkenxB j50.6 andQ2.GeV2. As the
ex
c-

ics

0
o

an
o-
bo

t.

05300
paper discusses, both the values and the trend of the da
xB j→1 are inconsistent with HHC models, and appear
confirm the presence of quark OAM.
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