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Recently, a number of intriguing results have been obtained for strongly coltedl supersymmetric
Yang-Mills theory in vacuum and matter, using the AdS-CFT correspondence. In this work, we provide a
physical picture supporting and explaining most of these results within the gauge theory. The modified Cou-
lomb’s law at strong coupling forces static charges to communicate via the high frequency modes of the gauge
or scalar fields. Therefore, the interaction between even relativistically moving charges can be approximated by
a potential. At strong coupling, WKB arguments yield a series of deeply bound states, whereby the large
Coulomb attraction is balanced by centrifugation. The result is a constant density of light bound shaies at
value of the strong coupling, explaining why the thermodynamics and kinetics are coupling constant indepen-
dent. In essence, at strong coupling the matter is not made of the original quasiparticles but of much lighter
(binary) composites. A transition from weak to strong coupling is reminiscent of a transition from high to low
temperature in QCD. We establish novel results for screening in vacuum and matter through a dominant set of
diagrams some of which are in qualitative agreement with known strong coupling results.
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[. INTRODUCTION potential is totally screened for a Debye radius of ordar 1/
N=4 super-Yang-Mill{SYM) theory is the most famous [3]. This is to be contrasted with AT expected in the

example of a conformal field theofCFT) in 4 dimensions. weak coupling limit for the electric modes, and\1T for the
This theory has a zero beta function and a nonrunning counagnetic modes.
pling constant, which can be continuously changed from The AdS-CFT correspondence was also used to generate a
weak to strong. Unlike QED or QCD, where for a critical number of finite temperature results at strong coupling, in-
coupling a~1 there is vacuum rearrangement, CFT is be-cluding the free energyg], the electric Debye screeniid],
lieved to remain in the same Coulorfjiasmalike phase for ~and the viscosity9]. Also a number of real-time correlators
all couplings, even strong ones=g?N.>1. Thus, it pro- Were recently investigated, Iea(.jlng_altower qf equidistant but
vides an interesting theoretical laboratory for understandin%’vns't""bIe resonanc¢s0,11. Their origin remains a mystery
properties of a strongly coupled quark-gluon plasi@&P hich we will attempt to explain.

in QCD, which occurs in and around the critical temperaturetheTf?Zemea::grpuztzrllgei/ail;ec((j)gtlth(?rlIt:]heerS(Ss[)ens;rlfeV\l‘TeetBgalctitlass is
T., as discussed in our recent papg}. 9y Y, q

. : their independence on the coupliRgn strong coupling. We
A I_<ey bre_akthro_ug_h in making the results of the SUONG o041l that the interaction between tfeuas) particles such
coupling regime within reach was the AdS—CFT correspon-, . Eq.(1) is proportional toyx, and the strong-couping De-
dence sug.gested. by Maldacef@. .Th's conjecture hf"‘S bye distance is 1~ T, so the relevant quasipatrticle energy
tlljmed tr|1e m'gllcaues of strong}bcoupllng %auge theon(las |3to dcale must be/\T. In a naive picture of matter being essen-
classical problem in gravity, albeit in 10 dimensions, leading;: ' N :
0 the static heavy-quark potentigl—4], small angle scat- gt|aIIy a plasma of quasiparticldsveak coupling one would

. i h expect the interaction terms of such order to show up in the
tering [5,6] and large angle scatteri@]. For instance, the frez energy. P

static pot_er)tial between a hgavy qgark and antiquark follows The main objectivef this paper is to explain this puzzle,
from a minimal surfacéclassical stringbetween the quarks iy the process of which novel results will also be derived.

streched by gravitymetric of the AdS spageas depicted in  Thjs is achieved in two major steps as we now detail.
Fig. 1(a). The result is a modified Coulomb laj2,3]:

brane
VL= Fae T @ s

for A>1. The numerical coefficient in the first bracket is "~~~ 77""7"°- horizon --%-------F-

0.228. The latter will be compared to the result from a dia- £, 1. Two types of solutions describing the potential between

grammatic resummation below. _ _ two static chargedarge dot3 in the ordinary 4 space(on the D3
The case of nonzero temperature is represented in the Ad§ang. The string originating from them can either connect tam

space by the occurence of a black hole in the 5th dimensioryy not (b). In both cases the string is deflected by a background
whereby its Schwarchild radius is identified with the inversemetric (the gravity force indicated by the arrow markeddpwn-

temperature. When the string between charges extends all th@rd, along the 5th coordinate. After the string touches the black
way to the black hole as shown in Figh], the heavy quark hole horizon(b) a Debye screening of the interaction takes place.
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(i) First, we attempt to understand the dynamical pictureric susceptibility follows from a simple Drude-Lorentz
behind the modified Coulomb law, and its Debye-screenednodel where the dipole response follows from a high fre-
form at finite T and strong coupling. For that, we identify in quency harmonic oscillator
the gauge theory a set of diagrams whose resummation can
reproduce the parametric features of the above-mentioned L m°g? ~ N
strong coupling results. As a result, we learn an important Xe™ mw? m(m2y\) TV
lesson: in the strong coupling regime even the static charges
communicate with each other via high frequency gluons angvhere all the scales are set by the condensate valpe
scalars, propagating with an effective superluminal velocitywhich is seen to drop in E¢2). The dipole size bh is small.
v A1 Thus e~+y\ and the vacuum Coulomb’s law is \/e L

(if) Second, we argue that even for relativistically moving ~ — \/\/L, the result obtained in largl, and strong cou-
quasiparticles the interaction can be described by a potenti@”ng_

with a near-instantaneousnd quasi-Abelianinteraction, a

@

screened version of a modified Coulomb law given above. || pERIVING THE MODIFIED COULOMB'S LAW
Solving the Klein-Gordortor Dirac or Yang-Mill§ equations _ _ o
for scalars(or spinors or gluonsin a WKB approximation We start our discussion by reminding the reader of the

yields towers of deeply bound statesxtending from large (Euclidean derivation of the standard Coulomb’s law be-
quasiparticle masses/T~\ all the way to small ones tween two attractive and abelian static charges. In the first
E/T~\° that are independent of the coupling constant. Theifluantized form in Feynman gauge one simply gets it from a
existence in a strongly coupled plasma at any value of th&0-component of the photalgluon) propagator

strong cx)[upling, explains the main puzzle mentioned above. N (ie dt

So, theAN/=4 SYM theory at finite temperature and strong =_ J

coupling isnot a gas of quasiparticles, but a gas(ofuch Vi a7 ) . L @
lighter) compositesWe have found a “precursor” of such

phenomenon in a near-critical quark-gluon plasma in QCDNheret is the'relative 'time separation' between the two
[1] charges on their world lines. In the Abelian case whether at

Before explaining these resuilts in a technical way, let u$7Ong or weak coupling, the interaction takes place at all
first explain our motivations and some intuitive ideas whichtime virtualities resulting in the standard instantaneous Cou-

were important to us in deriving them. Let us first mention [0Mb interaction withV(L)~ —A/L. The non-Abelian modi-
that Semenofét al.[12] made a crucial observation: the sum fied Coulomb's law(1) is seen to follow from the Abelian
of ladder-type diagrams in Feynman gauge reproduces thgoulomb’s law (3) whereby the relative time interval is

strong coupling results. For the circular Wilson loop theMuch shorter and of the QrdEV\/XHO- _ _
matching is exact, and is also qualitatively correct for the The effe'cts of retardation are best captured in covariant
rectangular one, leading to the parametrically correct modigauges as illustrated here. At=0 Feynman gauge treats the
fied Coulomb law at strong couplingero temperatuje gluons and scalars on equal footlng,. which makes the super-

Intuitively, the reason for a potential-like regime stemsSymmetric structure of the underlying=4 SYM theory
from the fact that for\>1 the time between subsequent MOre transparent in diagrams. However, the observation it-
exchange of quanta is very short. The cost of the repulsivée” should of course be gauge independent. For instance, in
Coulomb energy becomes prohibitively large at strong couCoulomb’s gauge the same result should follow from some-
pling, forcing both charges to almost simultaneously changdhing like
their colors, keeping them oriented in mutually the most at- o N
tractive positions. These interactions are naturally ordered in V(L)%J dt — S(VAD), (4)
time, justifying the use of ladder-type approximations. L

We extend these observations in two important ways. . . .

(i) First, we identify higher order diagrams which contrib- Where the instantaneous time is rescaled\hy to account
ute equally to the potential, and those which are subleadind®’ the delay. We have not worked out how this regime is
Although we will not attempt to sum them all, we argue thateXPlained in other gauges.
the distribution of gluons or scalars accompanying a pair of )
static charges look like a “quasistring,” with a small trans- A. Summing ladders
verse size of ordet/\**in comparison to the length. We start by recalling some results established 1] at

(i) Second, we show how Wilson loops in matter get theirzero temperature. At larghl, (number of colors the dia-
strong coupling Coulomb’s law from an Abelianized Cou- grams can be viewed as 't Hooft diagrams. An example of a
lomb’s law over time scales of the order bf\™* using  ladder diagram is shown in Fig(&, where the rungs can be
ladder diagrams. The short time scale in matter is condieither gluons and scalars, as both are in the adjoint represen-
tioned by the high frequency modes which yield a quasistatigation. The first lesson is that each rung contributes a factor
potential over times of orde;fL/wp with w,~ JAT the typi-  N., which however only comes from planar diagrams. It

— oo

cal plasmon frequency. means, that in contrast to the Abelian theory, the time order-
The bulk screening in the ground state can also be chaing should be strictly enforceds;>s,>s;... andt;>t,
acterized by the dielectric constas:=1+ 47 y.. The elec- >t; ..., which will be important below.
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with the corresponding boundary conditidn(x,|x|)=1.
The dependence of the kernélon the relative times fol-
lows from the differential equation

51 b

2

d?>  M4x? o
Ym0 == 2" Y(x). (10

dx® x?+1

For large\ the dominant part of the potential in EC.0) is

(a) ) from small relative timesx resulting into a harmonic equa-
tion [12]

FIG. 2. (a) The color structure of ladder diagrams in the large-

N, limit: each square is a different color trace, bringing the factor dz 1 1

N.. The time goes vertically, and the planarity condition enforces ( -t 5(7\/47T2)X2> V(X)=— Z(wﬁq—)\/wz) Ym(X).

strict time orderings;>s,>s; ..., t;>t,>t5 ... . (b) Schematic dx

representation of the Bethe-Salpeter equat®rsumming ladders. (11

In Fig. 2(b) we schematically depict the Bethe-SalpeterThis shows that the sum of the ladders grow exponentially.
equation. The oval connected with the two Wilson lines byAt large timesZ, the kernel is dominated by the lowest har-
multiple gluon or scalar lines is the resummed Bethe-monic mode of Eq(11). For large timesS~T that is smalix
Salpeter kernel'(s,t), describing the evolution from time and largey
zero to timess,t at two lines. It satisfies the following inte-

gral equation: T'(x,y)~C, €~ X X%l o\ yl2m (12)

N (S T 1
I'S,7)=1+ —f dsf dt(st)—2+L2F(s,t), (5) From Eq.(6) it follows that in the strong coupling limit the
0 0 -

47° o
ladder generated potential is

which provides the resummation of all the ladder diagrams.

L is the distance between two charges, and the first factor \/X/ ™
under the integral is théEuclidean propagator for one extra Viad L) == L (13
gluon or scalar added to the ladder. The kernel obviously

satisfies the boundary conditidi(S,0)=1'(0,7)=1. If the

O . which has the same parametric form as the one derived from
equation is solved, the ladder-generated potential follow:

the AdS-CFT correspondencg) except for the overall co-

from efficient. Note that the difference is not so large, since 1/
1 =0.318 is larger than the exact value 0.228 by about 1/3. So
Viad(L)=— lim ?F (7,7). (6) additional screening, left out to higher order diagrams, is
T—+o needed to get it right.

In weak couplingl’~1 and the integral on the right-hand

side (RHS) is easily taken, resulting in B. Higher order diagrams and a “quasistring” regime
The results of Refs[12] discussed above indicate that
NOSHT . ) .
NST)~1+-— —, (7) ~ summing ladders get some vacuum physicsrinitall since
8w L the overall coefficient is not reproduced exactly. The same

. . , ._conclusion follows from the fact that the expectation values
which results into the standard Coulomb’s law. Note that inj¢ \riison lines are gauge invariant, while the ladder dia-

this case the typ_ical relative time difference between em'si:;rams are not. Therefore, some non-ladder diagrams must be
sion and absorption of a quantyt-s|~L, so one can say equally important and should be included.
that thual_quanta travel at a Sp??d‘l- . . Before we discuss any higher order diagrams, let us sum-
Fo_r solvm_g it at any coupling, itis convenient to switch to marize what we have learned about the ladder resummation
the differential equation which are worth stressing. For that it is convenient to return
5 5 to the integral form of the BS equatidb) and note that the
JT Ndar . . ; .
= (S,T) (8)  inclusion of the kernel effectively forces the consecutive
S IT (§—T)2+L? time steps between emission or absorption moments to be of
the following duration®

and change variables ta=(S—T)/L and y=(S+T)/L
through

The time ordering of interaction points along each line, reflecting
T'(x y)zz Cmym(x)e‘”mylz (9) on the non-Abelian character of the charges at large number of
m colors is important here.
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FIG. 3. Examples of higher-order diagrams with an extra scalar

or gluon connecting the ladder rungs.

Ss~ St~L/I\Y4, (14)

The overall number of time steps is huge and of the order o}

N~\Y T/L as can be seen by the change of variable
(s,t)—(x,y) in the Bethe-Salpeter equation.

virtual quanta is forced to be parametricalyger than the
speed of light with v~\Y4>1. Thus it is the limitation on
these two times which provides the reducti@n screeningy
factor 1A/\ in Coulomb’s law for non-Abelian gauge theo-
ries at strong coupling.

Let us now look at higher order diagrams, e.g., Fig.
containing extra scalar or gluon line connecting the ladde
rungs. Such diagrams can be resummed by a modified Beth
Salpeter equation, for the functidn(s,t,x) where the last

new argument is the 4D position of the new quantum on the

rung. The RHS of the new Bethe-Salpeter equation has
modified kernel, so the last term in E¢) now reads

xzf dsdtdyA(s—y)A(y—t)A(x—y)['(s;t,y), (15

with s=(s,0) andt=(t,L). As before, the integral equation
can be transformed into a Schlinger-like diffusion equa-
tion with a potential defined by this kernel. Furthermore, in

strong coupling one can expand the denominators putting th

small displacements in the numerator. This result in now
Coulomb plus oscillator potential of the type

|

where the 4D Coulombcorresponds to the vertical propaga-
tor, from the old ) to the new &) position of the extra

C
e

C..
2 Yo

VA~ + (16)

(y=x)2

2Since no information is carried over, there is no problem with
causality.
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FIG. 4. Distribution of the interaction vertices in space. The
black circles are static charges.

zig-zag quantum in Fig. 3. Again, the resulting Salinger-
like equation can be solved and the lower level identified.
Because of the large coefficient>1 the transverse steps
would be as small as the time steps, namely,

Sxe~LINYA, (17)
Thus the d*x integration yields a suppression factor of
(IA\Y4H4=1/\. Since thedsdt integrations bring about a
suppression (3M42~1/\x, it follows that Eq.(15) is of

he ordery\. This is preciseljthe same ordeas the modi-

ied potential discussed in the previous subsection. So, such

Ehigher order diagrams are neither larger nor smaller than the

_ _ _ In the strong|aqder ones we discussed earlier.
coupling regime the time steps are much shorter than in Needless to say.

weak coupling. This implies that the speed of propagation of

that one can also consider more elaborate
adder-type sequences containing more than one extra quan-
tum, with extra power of the coupling again compensated by
restrictions from extrady integrations. Furthermore, since
the number of quanta is not conserved — they can be ab-
sorbed by Wilson lines — one should consider the extended
set of coupledBS equations for any number of quanta. We

3will not attempt to write them down explicitly here. How-

Bver, what we retain from this discussion, is that all extra
uanta prefer to be in an ellipsoidal region of space as shown
in Fig. 4. The transverse sizag~ st~L/\Y4

In QCD and other confining theories we known that glu-
8ns make a string between two charges with a constant width
and tension: attempts to derive it from resummed diagrams
continue. In CFT under consideration the width in transverse
direction must be proportional fosince the conformal sym-
metry prohibits any other dimensional scale to be developed.
Still, in strong coupling the ellipsoid is very elongategd
~L/\Y4<L: this is what we meant by a “quasistring” re-
gime in the title of this subsection.

In principle, the calculation based on the AdS-CFT corre-
ondence not only yields the potent{d) but also the local
istribution of the energy density in space as well. It would

be interesting to investigate whether one can elevate the
whole discussion from the global potential to the differential
distributions, in the form of resummed diagrams with extra
guanta.

Ill. DEEPLY BOUND STATES AT FINITE T

A. Bound states in the quark-gluon plasma phase of QCD

Before we discuss the occurence of bound states in the
Coulomb phase of CFT, we recall a similar occurence in
nonsupersymmetric theories such as QCD in the deconfined

3In 4D the quadratic potential does not create solutions falling toor Coulomb phase. At high temperature the color charge in

the center.

non-Abelian gauge theories is deconfined tadreened
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(rather than antiscreened as in the perturbative vag{iLgh correlator of a quark(antiquark field with a time-like
The resulting phase is called a quark gluon plag@&P. (heavy Wilson line[23] in Euclidean space,
Analytical and numericaflattice) calculations concur on the N N
fact that at very high temperature, the fundamental fields CM=(Tr¥ " (T,OW(T,0¥(00W™(T,0))), (18
(quarks and gluons for QODIn the QGP behave as free
propagating quasiparticlés.
Although the perturbative series of the bulk thermody-
namics, such as the free energy, the pressure, the entropy, are (T
found to be badly divergent a comparable toT, it is W(T,0)=exr( _'QJO dt X(t)’A(t’O)) (19)
somehow hoped that some sort of resummation will make
the weak-coupling quasiparticle picture work, as the electrighe infinitely heavy adjoint quark. In the string-theory con-
screening would keep the effective coupling weak Tor text this correlator would correspond to an open string. It is
>T,.. The very first suggestions for the QGP signal were gpossible to evaluate E¢18) using the AdS-CFT correspon-
disappearance of familiar hadronic peaks such,as¢ me-  dence at finite temperature, i.e., in the presence of a black
sons in the dilepton spectfd8]. Even small-size deeply- hole. On the other hand, the correlator can be directly calcu-
boundce states such ag.,J/y, were expected to melt in lated by soIving the Green function equation with a modified
the QGP aff>T, [19,20. (strong couplmg and screem)e@oulomb potentlgl. .If the
This picture has been challenged in our preceding worliv;l]o r_netlhc(j)ds y_|el_d th; sa:jne result, th.'s would vindicate ou_rl
[1], where we argued that in the window of temperatiFes physical description based on a near-instantaneous potential.

—(1-3T. the effecti i 0 | I Here instead, we note that the large Euclidean time behav-
~(1-3T, the effective COZUD Ing can run up 1o 1arge values.,. ¢ e correlation functionil8) is controlled by the lowest
For ag~1 we haveN=g“N.~40, before it is cut off by

_ _ heavy-light fermion bound state, i.eG(T)~e ET. The
screening. We had shown that this leadglomsely bound 1, hq states are solution to the relativistic Dirddein-
states ofcc,qq,99,99,q9 swave states, explaining recent Gordon, Yang-Mill3 equation for gluinogscalars, gluons
lattice observation§21,22. with a screened Coulomb potential to be derived bdlsee

This window of temperatures is very important, as it is theEq. (29) below]. It is important to note that at finite tempera-
only one which is experimentally accessible, e.g., by RHICture all quasiparticles develop a mass well as a width
experiments in Brookhaven National Laboratory. We arguedhrough collisional broadeningvhich sets the scale for the
in our recent work[1] that the existence of such weakly bound state problem even for the unscreened Coulomb po-
bound states leads to large scattering lengths and cross séential. In CFT the thermal masses are generically of the
tions of quasiparticle rescattering, radically changing the kiform
netic properties of the QGP. This observation is crucial for
understanding why in experiments, such as those at the Rela-
tivistic Heavy lon Collider, the QGP behaves like a near-
perfect liquid and displays prompt collective hydrodynami-
cal behavior.

with W the massless adjoint antiquark of the SYM theory
and

m(T,\)~TA® (20)

with some powera. Below we assumer=1/2 in strong
coupling, based on the modified Coulomb law and Debye
length 1. (The mass scale then happens to be exactly like
in weak coupling.
B. Heavy-light composites and related correlators
In view of this recent development in QCD, we are led to C. Relativistic (WKB) spectrum for the Coulomb potential
ask whether strongly coupled CFT in its Coulomb phase for

; " ) The simplest bound state problem in our case is that of a
all couplings(no phase transitiorallow for hadronic bound b P

gluino in the presence of an infinitly heavy source with com-
a[:')ensating color charge. The latter acts as an overall attractive
'Coulomb potentiaV (the effects of screening will be dis-
cussed beloyv In strong couplingV acts on the accompany-
ing relativistic gluino quasi-instantaneously. For a spheri-
cally symmetric potential, the Schiimger-like equation is
radial and reads

ture. To keep the presentation simple, we will exemplify ou
method by analyzing the simplest “heavy-light meson”
formed of a pair of ar(auxiliary) static and light fermions.
As noted by one of u$§23], such states are the “hydrogen
atoms” of hadronic physics, allowing us to start with a
single-body problem instead of a many-body one.

We focus on a stati¢infinitely heavy particle accompa- d2 72
nied by a light one with opposit@adjoind color. In CFT the ——x1=|(E=V)2—m?— —|x (21)
light particle can be either a scalar, a gluino or a gltidn. dr r

general, one can address the problem by considering the, . . .
with the gluino wave functiorb=Y,,,x;(r)/r and the orbital

quantum numbef 2=1(I+1). For a semiclassical analysis,
“Modulo color-magnetic effects that are known to be nonperturWe Wil use the Langer prescriptioh(|+1)— (I +1/2)?,

bative at all temperaturgd4]. which is known to yield semiclassically statfestates. For a
5The spin of the infinitely heavy charge is of course of no rel- Coulomb-like potential, Eq21) is exactly solvable in terms
evance and can be arbitrary. of hypergeometric functions, much like the nonrelativistic
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problem for a hydrogen atom. It is however physically more m Y
transparent to use a semiclassical treatment in the manner of En~l(n+1/2+ (1+1/2%-Cc?7, (26)
Bohr.

Identifying the LHS of Eq.(21) with the radial momen- i i .
tum squared, one can readily construct the necessary ingréince the mass s related to the thermal loop itk WA,
dients of WKB. Those are the turning points, roots of thethe ratiom/C~T\™ is proportional to temperature bintde-

RHS of Eq.(21), which for the generic Coulomb potential Pendentof the coupling constant. o
V=—C/r are More details on the WKB spectrum are shown in Fig. 5

for different values of the orbital quantum numbeia) and
1 _ radial quantum numben (b). All lines end when the Cou-
r2=gr—7 (EC* Vm2C2+T2(E2—m?)). (220  lomb attraction is able to overcome the centrifugal repulsion.
In summary we have put forward an explanation for the
o ) i i occurence of a tower of light composite states with energies
It is important thatr is a radial variable, so that both solu- (massesthat are independent of the strong couplingThe
tions in Eq.(22) are positive for otherwise we are dealing comnposites are strongly bound Coulomb states which occur
with either a scattering state returning to larger an inward g |5tivistically due to a balance between the strong Coulomb
falling state with a wave towards smallFor small coupling  5traction and the repulsive centrifugation inlastate. Only
C the positivity condition is always satisfied, while for large the states withI(+ 1/2)= N 7 bind resulting into an equi-
C the positivity condition is only satisfied for orbital motion distant WKB spectrum. The critica] coupling for S states is
with T~ (YN +1/N).
Using the Bohr-Sommerfeld quantization one introduces
the radial quantum number and dets

v

%

Note that the orbital states with= A are either boun¢real)
or unboundicomplex. The complex states correspond to the

or A= (27)

r2
f p,dr=m(n+1/2)
rl

E c case were the light relativistic particle collapses onto the
=l 1— n! (23 heavy source due to the large Coulomb attraction overcom-
\/Eﬁl— m? \/T2_ c2 ing centrifugation. AT =0 these states may pair condense in
the form of neutral dipoles at the origin of the large dielectric
from which the quantized levels are constante~ X,

2 D. Effects of screening

Eq=*m (24)

In so far we have ignored in the WKB spectrum the ef-
fects of screening on the Coulomb potential. To assess that,
we will show below that in strong coupling the screened
Coulomb potential between scalars is mostly mediated by the
electric gluons, leading to

C 2
n+1/2+ V12— C2

In weak couplingC=g?N=\ is small and the bound states
energies are close tam. Specifically

E e CM - _C
nl=m= 2(n+|+1)21 ( ) V(X)__|7| FE(TX) (28)
which is the known Balmer formula. In tHepposite strong  ith
coupling limit the coefficient is Iargé?=(4a-r2/I‘(1/4)4)\/X
>1. Unless the square root gets balanced by a sufficiently (7 TIX))
large angular momentum, the quantized energies are imagi- Fe(Tx)= TSR] (29

nary. This does not happen far,\1?—C2~\° and C

~/\, which are also the conditions for which both roots in ) ) ) ]
Eq. (22) are positive. In this regime, one may ignore the 1 in!n Strong coupling the effective screening length isIV
Eq. (24) and obtain theequidistantspectrum independent of the coupling constant. This result is remark-

ably in agreement with lattice QCD simulations in ttie-3
T. window. The derivation of Eq(29) using screened lad-

8n order to avoid confusion: what we cailis not the principal ~ ders graph withC= VA/2m is given below. Note that af .
quantum number but just a radial one. So there are no relation or 0 Ed. (28) reduces to the unscreened Coulomb potential.
limits on it for anyl. How would the screened potentieg?8) affect our WKB

"The fact that only the combination+| appears, i.e., principle Spectrum? The answer is only marginal. Indeed, if we insert
quantum number, is a consequence of the known Coulomb degef=g. (24) back to the expressions for the radial turning points
eracy. This is no longer the case in the relativistic case. (22), we find that the largest turning point occurs for
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35 E. More details on the bound states

The semiclassical arguments developed above were cur-
tailed to scalars. How would they work for gluons and glui-
nos? To answer qualitatively this question, we recall that in a
weakly coupled plasma, the number and nature of the gluons
and gluinos is different from free massless waves of the free
257 / theory. For instance the gluons carry 2 polarizations in free
space, while in the plasma a third one appears, the plasmon
J [13]. Also the fermions develop different excitation modes
201 f depending whether chirality and helicity are the same or
’ opposite® see e.g[15] for a general discussion and weak
J coupling results. In the latter case the mode is called a plas-
154 | mino.

If the dispersion laws for gluons and gluinos were known,

‘ the effective equation of motion suitable for the discussion of
104 the bound state problem can be obtained by standard substi-
tution of the covariant derivatives in the place of momentum
and energy. The electric effective potential would then go
together with the energy. For two gluinos, it is

30

C
Vgo(X)=— M YaFe(TX). (30

1000 2000 3000 4000 5000
@ lambda Unfortunately, we daot know the pertinent dispersion Iavys
for strongly coupled CFT. We only know from lattice studies
[16] that in the windowT=(1—3)T, for which the QCD
30 plasma is likely in a moderatly strong Coulomb phase, the
dispersion law for both quarks and gluons is of the canonical
type w?=k?+m2. For fermionsmg is not the usualchiral
violating) mass term, but rather a thermal chiral mass. This
dispersion relation can be incorporated in a linear Dirac
equation through a chiral mass of the fosm mﬁ/E, result-
ing in the following equation:

251

2
((E—%)-I—ia'V‘F\/X)/(ZW Fe(xT) [q(x)=0. (31)

'° The above WKB analysis can be carried out for B2]l) as

well, with similar conclusions as the ones reached for the

relativistic scalars.

10

IV. THERMODYNAMICS AND KINETICS AT STRONG
COUPLING

51 A. AdS-CFT results

The CFT thermodynamics at strong coupling has been
studied by a number of authdi8]. It was found that the free

500 1000 1500 2000 energy in this limit is

(b) lambda F(TINCl)\):((3/4)+O(1/)\3/2))F(T1NC10)1 (32)

FIG. 5. The WKB spectrum versus 't Hooft coupling constant where F(T,NC,O)~N§T is the free(zero coupling result,

. (a) Levels with fixedn=0 andl=1...15;(b) levels with fixed  analogous to the Stephan-Boltzmann result for blackbody ra-

I=10 andn=0...5. diation. The kinetics of the finitd- CFT at strong coupling
was recently investigated also using the AdS-CFT correspon-

r,~1/T which is comparable to the screening radius follow-

ing from Eq.(28). We note in passing, that the size of the ———

Coulomb bound state in strong coupling is very small and of 8we ignore the 1) axial anomaly and instantons, and consider

order 1/(\/XT). the L,R chiralities to be absolutely conserved quantum numbers.
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dence[9]. In particular, the viscosity of strongly coupled  The astute reader may raise the question that by now our
matter was found to be unusually small, leading to a rathearguments are totally circular: we have started Wfhmass-
good liquid with hydrodynamical behavior even at small spa-ess relativistic states and we have returnedifdight com-
tial scales. In particular, the sound attenuation lerigtialo-  posites. So what is the big deal? Well, the big deal is that we
gous to the mean free pattvas found to bg9] are in strong coupling, and in fact the degrees of freedom
completly reorganized themselves in composites, for other-
LS 471 33 wise they become infinitly heavy thermally and decouple.
sound” 3 g T 34T’ This is how Coulomb’s law negotiates its deeds in a system
with very large charges.

where 7,s are the viscosity coefficient and entropy density, ~The composites carry large angular momentum in strong
respectively. This length is mucshorter than in the weak coupling, i.e.l~\. Their weight contribution to the parti-
coupling tion function is of the order of

const

w oot 1
Tglin(1/g T

LSOUI’]d:

|ma><
_|2 2
_ . . which is independent af, since the WKB orbits are stable
As we have mentioned in the Introduction, such resultsynjy for |~ (\/\ + 1/yX). The ensuing thermodynamical sum
are rather puzzling dynamically from the gauge-theory standgyer the radial quantum numbers independent ok, lead-
point. Normally all kinetic quantities are related with scatter-ing to a free energf=— (Cw2/6)N2 T in agreement with
Cc

ing cross sections, and the absenceamy coupling isa pri- Eq. (32). For weak couplindC=1 while for strong couplin
ori implausible physically. In general, thermodynamicalciém?' pling> g ping

quantities' count degrees of freedoms and one may think that The overall coefficient in thai2 part of the free energy in
the coupling constant may indeed be absent. However, th& c

effective masses of the quasiparticles and all pairwise inter: rong coupling is harder to obtain from the gauge theory
. : a P . P : side although the WKB spectrum could be used to assess it.
actions are still proportional tgA and in generah® with

20 If h inarticl buti h - IA simple example on how this arises in strong coupling and
a=>0. I so, the quasiparticle contributions to the statistical,; 596 number of colors was shown[it7]. Alternatively, if

sum should be exponentially small at strong coupling, of tthe refer to the coupling-valued coefficient B\) and as-
order ofe " <1, and one will have to conclude that some syme it to be an analytic function in the complexplane

other degrees of freedom are at play. modulo singularities, then\(>0)
Indeed there are new degrees of freedom at play in the

strong coupling regime of the thermal Coulomb phase. As N [ Im C(—\")

we have shown above, for large there are light(deeply C(N)=C(0)+ —J dN' ——. (36)
bound binary composites, with masses of ordeirrespec- mJ+0 N (N +N)

tive of how strong is\. The composites are almost pointlike ] ] ) o

with thermal sizes of the order of L/ which readily explains !f the imaginary part along the negative real axis is bounded,
the liquid-like kinetic behavior. The thermal Coulomb phaseth® RHS is\ independent in strong coupling. To proceed
is a liquid of such composites. The composites are light andurther requires a better understanding of the singularity

should dominate the long-distance behavior of all the finiteStructure of the free energy in the complex plane, e.g,
temperature Euclidean correlators. the Dyson singularity in weak coupling which suggests

Im C(—\)~e ™" with typically a=1. This point will be

B. Gauge theory: Quantitatively pursued elsewhere.

We start by explaining the leading contributi32) from
the gauge theory point as a liquid of composites. The factor
of Ng in front of the free energy and the viscosity for in-
stance, follows from the fact thatl our composites are in At finite temperature and in Euclidean space, the Wilson
the adjoint representation. Indeed, for fundamental chargdsops can be divided into electrice] and magnetic ¥)
the composites are mesonlikeolor neutral with all color  ones. The electric Wilson loop is sensitive to Coulomb’s law
factors absorbed in the coupling constant. For adjoinbetween static charges, while the magnetic Wilson loop is
charges, there is in additionvo spectator chargéshat do  sensitive to Lenz’s law between two running currents. In the
not participate into the binding. The Coulomb phase is noEuclidean vacuun©(4) symmetry rotates one to the other,
confining. Thus the number of light and Coulomb boundand we expect the same modified Coulomb’s I688) in
composites i§\|§. CFT. In non-CFT theories such as QCD they are both con-
fining.
The usual definition of the “screened potential” implies
%For example, a composite can be initially made of blue-red andhat atr —o the potential vanishes. However, there is a re-
red-green colors, with red rapidly changing inside the ladder. On@idualnegativeconstant mass renormalization at finltedue
can view it as two extra vertical lines added to Figa)2 to the self-interaction of a static charge with its thermal

V. SCREENING AT FINITE TEMPERATURE:
PRELIMINARIES
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cloud. In weak coupling it is of the order af?T [13] using 2T, o N
Debye’s argument, and in strong coupling it is of the order of = I'u(S,T). (40
JAT [4]. This negativecorrection to the mass of a static 98 IT %= (nB)*+(S—T)*+L?

charge should not be confused with thesitive effective

mass of quasiparticles which is of ord¢x T as well. ] N
Both kernels are subject to the boundary conditions

A. Magnetic screening and AdS-CFT

At nonzero temperatur€ Euclidean space is a cylinder of e m(S,00=Tgn(07)=1. (41)
radius 3= 1/T, and theO(4) symmetry is reduced t®(3) ' '
symmetry with no a priori relationship between the electric

and magnetic Wilson loops. In non-CFT theories such a\s in the zero temperature calge?] the equations are sepa-
QCD and in \_/veak couplmg,.the electric charges are Debygype inx=(S—T)/L andy=(S+ T)/L with the appropriate
screened while the magnetic charges are [1&. Weak- o ndary conditions. The temporal and spatial kernels
coupling nonperturbative effects related to spatial confine-

ment in high temperature 3D YM theory, are believed toseparate

generate a magnetic mass of ordér [14]. Several lattice

calculations support this idea, leading a nonzero spatial

string tension of ordex?T2. Tem(Xy)=2>, cmng(x)ewEsWZ, (42)
What happens at strong coupling? Our first new observa- m '

tion in CFT theories, is that at strong coupling the AdS-CFT

correspondence yields magnetic screening which isdmee

as the electric screening observed4i. Thus for large spa- with the C’s fixed by the boundary conditions, and ths

tial separation obeying the one-dimensional ScHinger equation in a peri-

odic potential, which is

NN
Vu(B,L)=Ve(B,L)=—T(BIL), (37

d? - N2 " op 2 "
wheref(B/L) was evaluated ifé] for electric Wilson loops. Tl o= m YEX) =~ 7e(X)
The simple way to see this is to recall that the modified 43)
Coulomb’s law for the electric Wilson loop follows from the
pendingstring in the 5th direction as shown in Fig. 2. This
phenomenon is unmodified for spatial Wilson Ioops,for the temporal kernel and
whereby the minimal surface is still of the same nature. Note
that the temperature in this case is given by a suitable choice
of the radius of the black hole. At strong coupling the electric " o
and magnetic scales are the same, since there is no apparent d B N4m? moy_ OM
spatial confinement in high temperature CFT. B nZe (NBIL)2+x2+1 0=~ 7= 7m(X)

(44)
B. Naive (unscreened ladders at finite T

Naively, the first step toward the calculation of the poten-
tial between charges at finite temperature is the same resUrs sonentially:T (0,y) ~ e“0Y2= e“oT' From Eq.(38) it fol-

mation of the ladder diagrams via Bethe-Salpeter equatlor]OWS that the screening at finite temperature is given by the
but with thermal propagators for gluons or scalars. Let us

; _ 0
see, for pedagogical reasons, what this procedure will progrc:unt?] statte e'genvat%'i‘ﬂ_.:"'ih'\"()"fll‘t).' i kedkat
duce. We can apparently have either electric or magnetic h the strong coupiing imit, th€ potentialls peakedxa
ladders, thus the expression becomes =0 modulo. Although the solutions to the periodic prob-

lem yields in general a band structure, for1 the ground

for the spatial kernel. The sum of the ladder diagrams grows

1 state is just a particle trapped at=0. The ground state
Vem(L)=—lim — Inl'g w(Z.7). (38  energy follows from the harmonic approximation much like
Tt at zero temperature. The result for the electric screening is

The electric kernel is generated through

NN

pIP
T - NAm? ap=—V21— 23 +0
— = Te(S,T), (39 ™ 1
98 IT n==w (§—T+nBIL)2+L2

(45

gl

and the magnetic kernel through with
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s, = > m:(ﬂ' L/B)coth wL/B),
- 1-(nBIL)?
=2 (nBIL)?+1)?

1
=— E(wL/,B)%oti‘(wL/,B)(l— cott?(wL/B))

1 1
+ 7 coth(mL/B) Z(WL//B)Z(l—COch(wL//B)).

PHYSICAL REVIEW D 69, 046005 (2004

A. Screened scalar ladders

The scalar polarization is simpler. In the lowest order it is
given by a well known bubble diagram, leading to a
momentum-independent polarization operamﬁ~)\T2. Its
insertions induce a potential between two charges, in Euclid-
ean space after analytical continuation with Matsubara peri-
odicity:

dk efio)nt+ik~x

(2m)3 K2+1y |

A(t,x)=iT; f

(50

whereK2=w?2+k?. The zero moden=0 contribution is a

(46) standard screened potential
For the magnetic screening, the result is iT o Mpx
\/_ 49X
N > 1
am =?\/2_1— §+ (9( —) , (47 and is therefore exponentially suppressed in strong coupling.
1 W In strong coupling, even static charges communicate via
ith high-frequency quantéshort time$ so we now consider the
wit nonzero mode contributions in EG9). Performing the mo-
1 mentum integral yields
3= n ((nB/IL)%+1)? i wp 2 JuZimd
R COS{wnt)—e_‘”nX/ oy tmpy
1 27X =1 w2+M?2
=— = (7wL/B)*(1—coth?(wL/B))
2 For large\ the Debye masep> w,, and the screened sca-
1 lar propagator can be further simplified
+ E(WL/,B)cotr( 7LIB). (49 . )
|T _ wn 2 /
A(t,x)~4— e mDX+22 cogwpt)— € “n XMp | |
In the strong coupling and to leading order, the planar X n=1 Mp
resummations yield the same screening for the electric and (51)
magnetic Wilson loops, - . -
ghetic WIis ps Substituting the sum ovar by the integral, combining the
o cosine with the exponent and completing the square in the
ag~ay~ — (49)  exponent, one finally finds that the nonstatic part of the in-
aa

2 - - 1
A=1 (nB/L)%+1

where we have explicitly separated the thermal effects.

The result{49) appears to show that in strong coupling the
potential isstronger at nonzeroT than in vacuum. This

duced scalar potential vanishes in the strong coupling as
1/\mp=~ 1\ Y4,

B. Screened electric ladders

agrees with strong coupling Debye screening calculations We now consider exchanges of electric gluons. In covari-

[4]. It may appear that it contradicts the fact that the screene
potential should vanish at large The paradox is explained
by the presence of a negative mass renormalization constant
(static-charge interacting with its Debye clous mentioned

at the beginning of this section.

VI. SCREENED LADDERS AT FINITE T

gnt gauges, the electric propagator in Euclidean momentum
space reads in general

+(1—a) w?], (52)

1( 4
Agg(w, k)= —
oo k)= % K2—TIqp

where « is the gauge parameter and, as befdté= w?
+ k2. In configuration space the propagator is then

The static charges wich interactions we study are not part

of the N'=4 YM theory, so we are free to give them any L dk ik
interactions we want. So far we have followed the standard Aoo(tix):'Tn;_m 2m3 S Ago @n ,K).
notations, in which the scalar and gluon exchanges are equal (53)

for gg and cancel fogq pairs. In this case the linear diver-

gences cancel as well. However in-matter screening at finitth weak coupling we need only the static limit with,=0.

T is different for scalars and gluons, so it is pertinent toTherefore the gauge-sensitive term disappears and the first
discuss the screening sequentially. term yields the familiar Debye form withl oo(0.k) ~m3 .
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In strong coupling we need the opposite limit, in which 7TX

the frequency is high withw~\Y4L>k~1/L. Now the Fe(bT,@)=V1l-a ST (59)

(gauge dependentlongitudinal part contributesA oo~ (1

—a)/w?. The 00 part depends on the polarization operator,

which at high frequency has the generic form which is seen to reduce to tie=0 result in Feynman gauge.

As noted above, the resu9) yields a screening length of
K2 order 1/ T) in strong coupling, which idarger than the
Hoo(w,k)~)\T2—2. (54 1/(J\T) expected from weak coupling. Again, the strong

w

coupling result is even consistent with current QCD lattice
simulations which suggest that the Debye screened potential
This result is the same as the one derived from hard thermalcreens at about a distance of orde# T/
loops although in the opposite linit>w. Below we explain Finally, the result(59) is gauge sensitive, and one may
why this similarity is not fortuitous. Inserting E454) into  question the interpretation of our results. Of course the same
Eg. (52) one finds that one power & can be canceled, and criticism for summing the ordered ladders holdTat 0 as
the first term becomes of ordek¥ w?)/(w?+ wﬁ). with the  well. However, we expect our main observations in covariant
denominator capable of producing the plasmon pole. Howgauge to hold for the reason that the results agree overall
ever, this term is clearly subleading as compared to the lonwith results from the ADS-CFT correspondence bothTat
gitudinal one. This happens because it lacks the enhancemeat) and finite T for the electric sector. Retardation is best
throughw? in the numerator. captured in covariant gauges, and that was seen as key in
Inserting the electric paf60) in Eq. (53) and performing  describing the screening at work in the ground state.
the momentum integration yields

C. Hard thermal loops at short times

iT e MX - )
Ago(t,X)=— + 22 cog wyt)e” “nt ) L 5 The effects of matter is more than the Bose enhancement.
4\ wX nZ0 0t w . ; ;
n' %p It is usually due to a genuine screening of the Coulomb
1 interaction. How would this work at strong coupling? The
w| — & (1- a)(w?+0?)—d) | |, answer would be in general hopeless, except for yet another
mX 27w, P important observation: The induced interaction occurs in our

case over venshort times. This means that we probe the
thermalized but strongly coupled Coulomb phase over short

where the first and screened contribution arises from the ze eriods of time, in which case the thermal distributions are

mode and the second contribution arises from the nonzer§g:e2222a2?§36§5 caodeﬁﬁltyirtlh:xggr ILequgrr:]cgv\rlr;odaess tﬁ;e
modes in the high frequendighort time regime w>k. In 9 ping y y y

2 . are inweakcoupling at high temperature.
the strong coupling limitop /T~ \X>1, Eq.(55) reduces to This is best seen using a first quantized analysis of screen-

(59

T ing in terms of transport arguments, whereby the only as-
—(1— D —wpX sumption needed to derive the hard thermal loops is that the
BodtX)=(1~a) 72 = coswpt)@ne " (56) o mal distribution be expandable infe=f0+ f1~f° for

f1/f9<1 at short times. In Euclidean spa@datsubara fre-
which is controlled by the first Matsubara frequency at largequencies the hard thermal loops reduce to
distance. It is readily checked that for 0

" = 2[4 a)l w+k
T2 ool ,K) = —wp KMokl |’
A0 X)=(1—a) —, 5
0o(0X) = ( )85k?1-rTx (57) 2
wp [ w |o+k
which reduces to the free electric part of the covariant propa- ii(w,k) = 5| 1dn|——¢ (60)

gator atT=0. This part is the chief contribution to the

screened electric ladders in the strong coupling. Indeed, . .
rerun of the previous Bethe-Salpeter resummation using Ec?.?tﬁ ;Iero Matzsugﬁaa;f;:;?;ﬁ; f?(rei s\llﬁﬁt]”calgy §rchr§ened
00~ ~ @Wp i=Y.

(56) as the screened ladder shows that only the short tim&/'t" 11oo” . .
limit of Eq. (57) contributes aa>1. In particular, the elec- situation is somehow reversed at high Matsubara frequencies

tric potential between two Wilson lines with only adjoiAt with
fields is
k2
VN Moo~ — wp —,
VE(Tb,a)= - b FE(bT,CY), (58) w
with H(w,k)~ . (61)
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The plasmon frequency is defined ca§= w3/3 with the De-  as we indicated above. The simple AdS-CFT argument pro-
bye frequencywp=mg 4¢ for the gluons, scalars and vided earlier leads to the same electric and magnetic screen-
quarks read respectively ing length. The understanding of this point from the gauge

theory standpoint is worth pursuing.
m2~mZ~m3~\T2. (62)

The electric modes are free at high frequency, while the mag-
netic modes are Debye screened. This is just the opposite of
what happens at low frequency. Sthipththe dielectric con- . .
stant and inverse magnetic permittivity vanish at large fre- Ve have exploited the fact thaf=4 SYM theory is in a

quency. The thermal medium is transparent to high fre.Coulomb phase at all couplings, to argue that in strong cou-

quency electric and magnetic fields as it should. pling (Maldacena regimecolor charges only communicate
over very short periods of time=L/\' for a fixed separa-

tion L. This physical observation is enough to show why

_ ) _ _ ladderlike diagrams in the gauge theory reproduce the modi-
The real insertiong60) induce a new potential between fia4 Coulomb's law obtained by the AdS-CFT correspon-

two moving charges in Euclidean space after analytical congence ysing classical gravity. This class of diagrams is how-

tlnuat|_on. In c;ovarlant gauge, the resummeé:i mazgne;'c ProP%ver not complete since the answer is gauge-sensitive. We

gator in Euclidean momentum space realds< »°+k%) have shown that the insertion of additional quanta along the

ladder brings about extra factors)f d*x~\°, leading to a

VII. SUMMARY AND OUTLOOK

D. Screened magnetic ladders

—iw t+ik-x
Aij(t,X)=(—5ij+ViVj)iT2 J dk 5 © 5 quasistring geometry. IlW=4 SYM theory the quasistring
n (2m)°  Ko+1ly has a transverse to a longitudinal ratio of ordefN*4)/L
dk el trikx <1, butis not confining.
+ViV-iTE f These observations are generic and suggest that in the
S (2m)° K4 gauge theory the modified Coulomb potential applies equally

5 well to relativistic and nonrelativistic charges. Indeed, since
x( @ +(1_a)) 63) the relativistic particles move with velocity~1, the color
k?+ 114 ' reordering encoded in the modified Coulomb potential goes
even faster through a virtual quantum exchange with velocity
Performing the momentum integrations, taking the strong,~)\'4>1. At strong coupling and/or large number of col-
coupling limitA>1 and contracting the answer with the par- ors, the charge is so large that color rerrangement is so pro-
ticle velocitiesv, ; attached to the external Wilson lines yield hibitive unless it is carried instantaneously. This is the only
way Coulomb’s law could budget its energy. The same ob-

ViVa A =2V, v iT servations ext_e_nd to finite temperatl_Jre wher_e we have shqwn

2= Y g X3 that the modified Coulomb potential acquires a screening
length of the order of 17 irrespective of how strong is the

x2 1 1 1 coupling. This observation seems to be consistent with cur-

X _55:0+m_25¢0+;_; » (64 rent lattice simulation of nonconformal gauge theories in
M p 7D their moderatly strong Coulomb phase, e.g., QCD.

where we have inserted a magnetic mags/T~\ on the ~_ \We have analyzed the effects ofsa_Jper_critica)_ Coulomb
transverse magnetic zero mode., is the contribution when ~field on the motion of colored relativistic particles. Bound
the magnetic mass is zeflong range fieldl while 5., isthe ~ States form whenever the squared Coulomb potential bal-
contribution when the magnetic mass is insefhbrt range ~ ances the effects of centrifugation. In strong coupling the
field). Clearly, the magnetic contribution survives the strongresulting bound state spectrum is oscillatorlike, in agreement
coupling limit only in the absence of a magnetic mass. Thewith the tower of resonances observed using the AdS-CFT
contribution to the ladder resummation follows from the ba-correspondencil0,11]. Rather unexpectedly, we have found

sic insertion that even though the trajectory of any particular Coulomb
_ bound state depends critically on the couplingtheir aver-
I A age density remains constant in the strong coupling domain.
7 ViiVajdij - This finally leads to ainiversal gas of composités strongly

coupled CFT, a nice parallell with recent developments in
The screened magnetic ladders yield a magnetic potenti@CD [1].

that is different from the electric one derived above in cou- Clearly our work is only the first attempt in trying to

pling and range if a magnetic mass is present. In the absenemderstand from the gauge theory standpoint the intricate
of an induced magnetic mass, the electric and magnetic p@and surprising results obtained by the AdS-CFT correspon-
tentials exhibit a similar behavior in coupling, but are dis-dence both in vacuum and matter. In particular, our discus-
tinct in range. The magnetic potential still has infinite range,sion of the spectroscopy of composites, Debye screening,
while the electric potential has a finite range of orderT/ thermodynamics and kinetics of matter were rather sketchy,
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with only the qualitative trends emphasized. All of this candow of understanding to a variety of physical problems in
obviously be worked out with more details that go beyonddifferent settings.
the scope of the current presentation.

However, it is clear that the dynamical picture we have ACKNOWLEDGMENTS
put forward from the gauge theory standpoint goes beyond
the confines of supersymmetry or the conformal nature of the We thank S.J. Rey for a stimulating discussion at the be-
strongly coupled gauge theory considered here. Indeed, wginning of this work, explaining to us the details of his pub-
believe that our results extend to all gauge theories in theilished results. This work was supported in parts by the US-
Coulomb phase at strong coupling, thereby opening a winDOE grant DE-FG-88ER40388.
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