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Understanding the strong coupling limit of theNÄ4 supersymmetric
Yang-Mills theory at finite temperature
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Recently, a number of intriguing results have been obtained for strongly coupledN54 supersymmetric
Yang-Mills theory in vacuum and matter, using the AdS-CFT correspondence. In this work, we provide a
physical picture supporting and explaining most of these results within the gauge theory. The modified Cou-
lomb’s law at strong coupling forces static charges to communicate via the high frequency modes of the gauge
or scalar fields. Therefore, the interaction between even relativistically moving charges can be approximated by
a potential. At strong coupling, WKB arguments yield a series of deeply bound states, whereby the large
Coulomb attraction is balanced by centrifugation. The result is a constant density of light bound states atany
value of the strong coupling, explaining why the thermodynamics and kinetics are coupling constant indepen-
dent. In essence, at strong coupling the matter is not made of the original quasiparticles but of much lighter
~binary! composites. A transition from weak to strong coupling is reminiscent of a transition from high to low
temperature in QCD. We establish novel results for screening in vacuum and matter through a dominant set of
diagrams some of which are in qualitative agreement with known strong coupling results.
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I. INTRODUCTION
N54 super-Yang-Mills~SYM! theory is the most famou

example of a conformal field theory~CFT! in 4 dimensions.
This theory has a zero beta function and a nonrunning c
pling constant, which can be continuously changed fr
weak to strong. Unlike QED or QCD, where for a critic
coupling a'1 there is vacuum rearrangement, CFT is b
lieved to remain in the same Coulomb~plasmalike! phase for
all couplings, even strong onesl5g2Nc@1. Thus, it pro-
vides an interesting theoretical laboratory for understand
properties of a strongly coupled quark-gluon plasma~QGP!
in QCD, which occurs in and around the critical temperat
Tc , as discussed in our recent paper@1#.

A key breakthrough in making the results of the stro
coupling regime within reach was the AdS-CFT corresp
dence suggested by Maldacena@2#. This conjecture has
turned the intricacies of strong coupling gauge theories in
classical problem in gravity, albeit in 10 dimensions, lead
to the static heavy-quark potential@2–4#, small angle scat-
tering @5,6# and large angle scattering@7#. For instance, the
static potential between a heavy quark and antiquark follo
from a minimal surface~classical string! between the quarks
streched by gravity~metric of the AdS space! as depicted in
Fig. 1~a!. The result is a modified Coulomb law@2,3#:

V~L !52
4p2

G~1/4!4

Al

L
~1!

for l@1. The numerical coefficient in the first bracket
0.228. The latter will be compared to the result from a d
grammatic resummation below.

The case of nonzero temperature is represented in the
space by the occurence of a black hole in the 5th dimens
whereby its Schwarchild radius is identified with the inver
temperature. When the string between charges extends a
way to the black hole as shown in Fig. 1~b!, the heavy quark
0556-2821/2004/69~4!/046005~13!/$22.50 69 0460
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potential is totally screened for a Debye radius of order 1T
@3#. This is to be contrasted with 1/AlT expected in the
weak coupling limit for the electric modes, and 1/l T for the
magnetic modes.

The AdS-CFT correspondence was also used to gener
number of finite temperature results at strong coupling,
cluding the free energy@8#, the electric Debye screening@4#,
and the viscosity@9#. Also a number of real-time correlator
were recently investigated, leading a tower of equidistant
unstable resonances@10,11#. Their origin remains a mystery
which we will attempt to explain.

The main puzzlerelated with all these results whether it
the free energy, the viscosity, or the resonance frequenci
their independence on the couplingl in strong coupling. We
recall that the interaction between the~quasi! particles such
as Eq.~1! is proportional toAl, and the strong-couping De
bye distance is 1/r;T, so the relevant quasiparticle energ
scale must beAlT. In a naive picture of matter being esse
tially a plasma of quasiparticles~weak coupling! one would
expect the interaction terms of such order to show up in
free energy.

The main objectiveof this paper is to explain this puzzle
in the process of which novel results will also be derive
This is achieved in two major steps as we now detail.

FIG. 1. Two types of solutions describing the potential betwe
two static charges~large dots! in the ordinary 4d space~on the D3
brane!. The string originating from them can either connect them~a!
or not ~b!. In both cases the string is deflected by a backgrou
metric ~the gravity force indicated by the arrow marked g! down-
ward, along the 5th coordinate. After the string touches the bl
hole horizon~b! a Debye screening of the interaction takes plac
©2004 The American Physical Society05-1
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~i! First, we attempt to understand the dynamical pict
behind the modified Coulomb law, and its Debye-scree
form at finiteT and strong coupling. For that, we identify i
the gauge theory a set of diagrams whose resummation
reproduce the parametric features of the above-mentio
strong coupling results. As a result, we learn an import
lesson: in the strong coupling regime even the static cha
communicate with each other via high frequency gluons
scalars, propagating with an effective superluminal veloc
v'l1/4@1.

~ii ! Second, we argue that even for relativistically movi
quasiparticles the interaction can be described by a pote
with a near-instantaneousand quasi-Abelianinteraction, a
screened version of a modified Coulomb law given abo
Solving the Klein-Gordon~or Dirac or Yang-Mills! equations
for scalars~or spinors or gluons! in a WKB approximation
yields towers of deeply bound states, extending from large
quasiparticle massesm/T'Al all the way to small ones
E/T'l0 that are independent of the coupling constant. Th
existence in a strongly coupled plasma at any value of
strong coupling, explains the main puzzle mentioned abo
So, theN54 SYM theory at finite temperature and stron
coupling isnot a gas of quasiparticles, but a gas of~much
lighter! composites. We have found a ‘‘precursor’’ of such
phenomenon in a near-critical quark-gluon plasma in Q
@1#.

Before explaining these results in a technical way, let
first explain our motivations and some intuitive ideas wh
were important to us in deriving them. Let us first menti
that Semenoffet al. @12# made a crucial observation: the su
of ladder-type diagrams in Feynman gauge reproduces
strong coupling results. For the circular Wilson loop t
matching is exact, and is also qualitatively correct for t
rectangular one, leading to the parametrically correct mo
fied Coulomb law at strong coupling~zero temperature!.

Intuitively, the reason for a potential-like regime stem
from the fact that forl@1 the time between subseque
exchange of quanta is very short. The cost of the repuls
Coulomb energy becomes prohibitively large at strong c
pling, forcing both charges to almost simultaneously cha
their colors, keeping them oriented in mutually the most
tractive positions. These interactions are naturally ordere
time, justifying the use of ladder-type approximations.

We extend these observations in two important ways.
~i! First, we identify higher order diagrams which contri

ute equally to the potential, and those which are sublead
Although we will not attempt to sum them all, we argue th
the distribution of gluons or scalars accompanying a pai
static charges look like a ‘‘quasistring,’’ with a small tran
verse size of orderL/l1/4 in comparison to the lengthL.

~ii ! Second, we show how Wilson loops in matter get th
strong coupling Coulomb’s law from an Abelianized Co
lomb’s law over time scales of the order ofL/l1/4, using
ladder diagrams. The short time scale in matter is con
tioned by the high frequency modes which yield a quasist
potential over times of orderAL/vp with vp'AlT the typi-
cal plasmon frequency.

The bulk screening in the ground state can also be c
acterized by the dielectric constante5114p xe . The elec-
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tric susceptibility follows from a simple Drude-Lorent
model where the dipole response follows from a high f
quency harmonic oscillator

xe'
nl

mv2
'

m3g2

m~m2Al!
'Al, ~2!

where all the scales are set by the condensate valuem(l)
which is seen to drop in Eq.~2!. The dipole size 1/m is small.
Thus e'Al and the vacuum Coulomb’s law is2l/e L
'2Al/L, the result obtained in largeNc and strong cou-
pling.

II. DERIVING THE MODIFIED COULOMB’S LAW

We start our discussion by reminding the reader of
~Euclidean! derivation of the standard Coulomb’s law b
tween two attractive and abelian static charges. In the
quantized form in Feynman gauge one simply gets it from
00-component of the photon~gluon! propagator

V~L !52
l

4p2E
2`

1` dt

t21L2 , ~3!

where t is the relative time separation between the tw
charges on their world lines. In the Abelian case whethe
strong or weak coupling, the interaction takes place at
time virtualities resulting in the standard instantaneous C
lomb interaction withV(L)'2l/L. The non-Abelian modi-
fied Coulomb’s law~1! is seen to follow from the Abelian
Coulomb’s law ~3! whereby the relative time interval i
much shorter and of the orderL/Al→0.

The effects of retardation are best captured in covar
gauges as illustrated here. AtT50 Feynman gauge treats th
gluons and scalars on equal footing, which makes the su
symmetric structure of the underlyingN54 SYM theory
more transparent in diagrams. However, the observation
self should of course be gauge independent. For instanc
Coulomb’s gauge the same result should follow from som
thing like

V~L !'E
2`

1`

dt
2l

L
d~Alt !, ~4!

where the instantaneous time is rescaled byAl to account
for the delay. We have not worked out how this regime
explained in other gauges.

A. Summing ladders

We start by recalling some results established in@12# at
zero temperature. At largeNc ~number of colors!, the dia-
grams can be viewed as ’t Hooft diagrams. An example o
ladder diagram is shown in Fig. 2~a!, where the rungs can b
either gluons and scalars, as both are in the adjoint repre
tation. The first lesson is that each rung contributes a fa
Nc , which however only comes from planar diagrams.
means, that in contrast to the Abelian theory, the time ord
ing should be strictly enforced,s1.s2.s3 . . . and t1.t2
.t3 . . . , which will be important below.
5-2



te
b
e

-

ct

s

w

d

i
is

to

-

lly.
r-

rom

/
So
is

at

me
es
ia-
st be

um-
tion
rn

ve
e of

ing
r of

e
to
e

UNDERSTANDING THE STRONG COUPLING LIMIT OF . . . PHYSICAL REVIEW D 69, 046005 ~2004!
In Fig. 2~b! we schematically depict the Bethe-Salpe
equation. The oval connected with the two Wilson lines
multiple gluon or scalar lines is the resummed Beth
Salpeter kernelG(s,t), describing the evolution from time
zero to timess,t at two lines. It satisfies the following inte
gral equation:

G~S,T !511
l

4p2E
0

S
dsE

0

T
dt

1

~s2t !21L2 G~s,t !, ~5!

which provides the resummation of all the ladder diagram
L is the distance between two charges, and the first fa
under the integral is the~Euclidean! propagator for one extra
gluon or scalar added to the ladder. The kernel obviou
satisfies the boundary conditionG(S,0)5G(0,T )51. If the
equation is solved, the ladder-generated potential follo
from

Vlad~L !52 lim
T→1`

1

T G ~T,T !. ~6!

In weak couplingG'1 and the integral on the right-han
side ~RHS! is easily taken, resulting in

G~S,T !'11
l

8p

S1T

L
, ~7!

which results into the standard Coulomb’s law. Note that
this case the typical relative time difference between em
sion and absorption of a quantumut2su'L, so one can say
that virtual quanta travel at a speedv'1.

For solving it at any coupling, it is convenient to switch
the differential equation

]2G

]S ]T 5
l/4p2

~S2T!21L2
G~S,T! ~8!

and change variables tox5(S2T)/L and y5(S1T)/L
through

G~x,y!5(
m

Cmgm~x!evmy/2 ~9!

FIG. 2. ~a! The color structure of ladder diagrams in the larg
Nc limit: each square is a different color trace, bringing the fac
Nc . The time goes vertically, and the planarity condition enforc
strict time ordering,s1.s2.s3 . . . , t1.t2.t3 . . . . ~b! Schematic
representation of the Bethe-Salpeter equation~5! summing ladders.
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with the corresponding boundary conditionG(x,uxu)51.
The dependence of the kernelG on the relative timesx fol-
lows from the differential equation

S 2
d2

dx2
2

l/4p2

x211
D gm~x!52

vm
2

4
gm~x!. ~10!

For largel the dominant part of the potential in Eq.~10! is
from small relative timesx resulting into a harmonic equa
tion @12#

S 2
d2

dx2
1

1

2
~l/4p2!x2D gm~x!52

1

4
~vm

2 2l/p2! gm~x!.

~11!

This shows that the sum of the ladders grow exponentia
At large timesT, the kernel is dominated by the lowest ha
monic mode of Eq.~11!. For large timesS'T that is smallx
and largey

G~x,y!'C0 e2Al x2/4p eAl y/2p. ~12!

From Eq.~6! it follows that in the strong coupling limit the
ladder generated potential is

Vlad~L !52
Al/p

L
~13!

which has the same parametric form as the one derived f
the AdS-CFT correspondence~1! except for the overall co-
efficient. Note that the difference is not so large, since 1p
50.318 is larger than the exact value 0.228 by about 1/3.
additional screening, left out to higher order diagrams,
needed to get it right.

B. Higher order diagrams and a ‘‘quasistring’’ regime

The results of Refs.@12# discussed above indicate th
summing ladders get some vacuum physics butnot all since
the overall coefficient is not reproduced exactly. The sa
conclusion follows from the fact that the expectation valu
of Wilson lines are gauge invariant, while the ladder d
grams are not. Therefore, some non-ladder diagrams mu
equally important and should be included.

Before we discuss any higher order diagrams, let us s
marize what we have learned about the ladder resumma
which are worth stressing. For that it is convenient to retu
to the integral form of the BS equation~5! and note that the
inclusion of the kernel effectively forces the consecuti
time steps between emission or absorption moments to b
the following duration:1

1The time ordering of interaction points along each line, reflect
on the non-Abelian character of the charges at large numbe
colors is important here.
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E. SHURYAK AND I. ZAHED PHYSICAL REVIEW D 69, 046005 ~2004!
ds'dt'L/l1/4. ~14!

The overall number of time steps is huge and of the orde
N'l1/4 T /L as can be seen by the change of variab
(s,t)→(x,y) in the Bethe-Salpeter equation. In the stro
coupling regime the time steps are much shorter than
weak coupling. This implies that the speed of propagation
virtual quanta is forced to be parametricallylarger than the
speed of light,2 with v'l1/4@1. Thus it is the limitation on
these two times which provides the reduction~or screening!
factor 1/Al in Coulomb’s law for non-Abelian gauge theo
ries at strong coupling.

Let us now look at higher order diagrams, e.g., Fig
containing extra scalar or gluon line connecting the lad
rungs. Such diagrams can be resummed by a modified Be
Salpeter equation, for the functionG(s,t,x) where the last
new argument is the 4D position of the new quantum on
rung. The RHS of the new Bethe-Salpeter equation ha
modified kernel, so the last term in Eq.~5! now reads

l2E dsdtdyD~s2y!D~y2t!D~x2y!G~s,t,y!, ~15!

with s5(s,0) and t5(t,L ). As before, the integral equatio
can be transformed into a Schro¨dinger-like diffusion equa-
tion with a potential defined by this kernel. Furthermore,
strong coupling one can expand the denominators putting
small displacements in the numerator. This result in now
Coulomb plus oscillator potential of the type

V'lS 1

~y2x!2
1

C

L2
1

Cmn

L4
ymynD , ~16!

where the 4D Coulomb3 corresponds to the vertical propag
tor, from the old (y) to the new (x) position of the extra

2Since no information is carried over, there is no problem w
causality.

3In 4D the quadratic potential does not create solutions falling
the center.

FIG. 3. Examples of higher-order diagrams with an extra sc
or gluon connecting the ladder rungs.
04600
f
s

in
f

r
e-

e
a

he
a

zig-zag quantum in Fig. 3. Again, the resulting Schro¨dinger-
like equation can be solved and the lower level identifie
Because of the large coefficientl@1 the transverse step
would be as small as the time steps, namely,

dxt;L/l1/4. ~17!

Thus the d4x integration yields a suppression factor
(1/l1/4)4'1/l. Since thedsdt integrations bring about a
suppression (1/l1/4)2'1/Al, it follows that Eq.~15! is of
the orderAl. This is preciselythe same orderas the modi-
fied potential discussed in the previous subsection. So, s
higher order diagrams are neither larger nor smaller than
ladder ones we discussed earlier.

Needless to say, that one can also consider more elabo
ladder-type sequences containing more than one extra q
tum, with extra power of the coupling again compensated
restrictions from extrady integrations. Furthermore, sinc
the number of quanta is not conserved — they can be
sorbed by Wilson lines — one should consider the exten
set of coupledBS equations for any number of quanta. W
will not attempt to write them down explicitly here. How
ever, what we retain from this discussion, is that all ex
quanta prefer to be in an ellipsoidal region of space as sh
in Fig. 4. The transverse sizesxt'dt'L/l1/4.

In QCD and other confining theories we known that g
ons make a string between two charges with a constant w
and tension: attempts to derive it from resummed diagra
continue. In CFT under consideration the width in transve
direction must be proportional toL since the conformal sym
metry prohibits any other dimensional scale to be develop
Still, in strong coupling the ellipsoid is very elongatedxt
'L/l1/4!L: this is what we meant by a ‘‘quasistring’’ re
gime in the title of this subsection.

In principle, the calculation based on the AdS-CFT cor
pondence not only yields the potential~1! but also the local
distribution of the energy density in space as well. It wou
be interesting to investigate whether one can elevate
whole discussion from the global potential to the different
distributions, in the form of resummed diagrams with ex
quanta.

III. DEEPLY BOUND STATES AT FINITE T

A. Bound states in the quark-gluon plasma phase of QCD

Before we discuss the occurence of bound states in
Coulomb phase of CFT, we recall a similar occurence
nonsupersymmetric theories such as QCD in the deconfi
or Coulomb phase. At high temperature the color charge
non-Abelian gauge theories is deconfined butscreened

o

r

FIG. 4. Distribution of the interaction vertices in space. T
black circles are static charges.
5-4
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UNDERSTANDING THE STRONG COUPLING LIMIT OF . . . PHYSICAL REVIEW D 69, 046005 ~2004!
~rather than antiscreened as in the perturbative vacuum! @13#.
The resulting phase is called a quark gluon plasma~QGP!.
Analytical and numerical~lattice! calculations concur on the
fact that at very high temperature, the fundamental fie
~quarks and gluons for QCD! in the QGP behave as fre
propagating quasiparticles.4

Although the perturbative series of the bulk thermod
namics, such as the free energy, the pressure, the entrop
found to be badly divergent atT comparable toTc , it is
somehow hoped that some sort of resummation will m
the weak-coupling quasiparticle picture work, as the elec
screening would keep the effective coupling weak forT
.Tc . The very first suggestions for the QGP signal wer
disappearance of familiar hadronic peaks such asr,v,f me-
sons in the dilepton spectra@18#. Even small-size deeply

bound c̄c states such ashc ,J/c, were expected to melt in
the QGP atT.Tc @19,20#.

This picture has been challenged in our preceding w
@1#, where we argued that in the window of temperatureT
'~1-3!Tc the effective coupling can run up to large value
For as'1 we havel5g2Nc'40, before it is cut off by
screening. We had shown that this leads to~loosely! bound

states ofc̄c,q̄q,gg,qg,q̄g s-wave states, explaining recen
lattice observations@21,22#.

This window of temperatures is very important, as it is t
only one which is experimentally accessible, e.g., by RH
experiments in Brookhaven National Laboratory. We argu
in our recent work@1# that the existence of such weak
bound states leads to large scattering lengths and cross
tions of quasiparticle rescattering, radically changing the
netic properties of the QGP. This observation is crucial
understanding why in experiments, such as those at the R
tivistic Heavy Ion Collider, the QGP behaves like a ne
perfect liquid and displays prompt collective hydrodynam
cal behavior.

B. Heavy-light composites and related correlators

In view of this recent development in QCD, we are led
ask whether strongly coupled CFT in its Coulomb phase
all couplings~no phase transition! allow for hadronic bound
states, and what role if any those may play at finite tempe
ture. To keep the presentation simple, we will exemplify o
method by analyzing the simplest ‘‘heavy-light meso
formed of a pair of an~auxiliary! static and light fermions.
As noted by one of us@23#, such states are the ‘‘hydroge
atoms’’ of hadronic physics, allowing us to start with
single-body problem instead of a many-body one.

We focus on a static~infinitely heavy! particle accompa-
nied by a light one with opposite~adjoint! color. In CFT the
light particle can be either a scalar, a gluino or a gluon.5 In
general, one can address the problem by considering

4Modulo color-magnetic effects that are known to be nonper
bative at all temperatures@14#.

5The spin of the infinitely heavy charge is of course of no r
evance and can be arbitrary.
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correlator of a quark~antiquark! field with a time-like
~heavy! Wilson line @23# in Euclidean space,

C~T!5^Tr„C1~T,0!W~T,0!C~0,0!W1~T,0!…&, ~18!

with C the massless adjoint antiquark of the SYM theo
and

W~T,0!5expS 2 igE
0

T

dt ẋ~ t !•A~ t,0! D ~19!

the infinitely heavy adjoint quark. In the string-theory co
text this correlator would correspond to an open string. I
possible to evaluate Eq.~18! using the AdS-CFT correspon
dence at finite temperature, i.e., in the presence of a b
hole. On the other hand, the correlator can be directly ca
lated by solving the Green function equation with a modifi
~strong coupling and screemed! Coulomb potential. If the
two methods yield the same result, this would vindicate o
physical description based on a near-instantaneous pote

Here instead, we note that the large Euclidean time beh
ior of the correlation function~18! is controlled by the lowest
heavy-light fermion bound state, i.e.,C(T)'e2ET. The
bound states are solution to the relativistic Dirac~Klein-
Gordon, Yang-Mills! equation for gluinos~scalars, gluons!
with a screened Coulomb potential to be derived below@see
Eq. ~29! below#. It is important to note that at finite tempera
ture all quasiparticles develop a mass~as well as a width
through collisional broadening! which sets the scale for th
bound state problem even for the unscreened Coulomb
tential. In CFT the thermal masses are generically of
form

m~T,l!'Tla ~20!

with some powera. Below we assumea51/2 in strong
coupling, based on the modified Coulomb law and Deb
length 1/T. ~The mass scale then happens to be exactly
in weak coupling.!

C. Relativistic „WKB … spectrum for the Coulomb potential

The simplest bound state problem in our case is that o
gluino in the presence of an infinitly heavy source with co
pensating color charge. The latter acts as an overall attrac
Coulomb potentialV ~the effects of screening will be dis
cussed below!. In strong couplingV acts on the accompany
ing relativistic gluino quasi-instantaneously. For a sphe
cally symmetric potential, the Schro¨dinger-like equation is
radial and reads

2
d2

dr2 x l5F ~E2V!22m22
l̃ 2

r 2Gx l ~21!

with the gluino wave functionf5Ylmx l(r )/r and the orbital
quantum numberl̃ 25 l ( l 11). For a semiclassical analysi
we will use the Langer prescriptionl ( l 11)→( l 11/2)2,
which is known to yield semiclassically stableSstates. For a
Coulomb-like potential, Eq.~21! is exactly solvable in terms
of hypergeometric functions, much like the nonrelativis

-

-
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E. SHURYAK AND I. ZAHED PHYSICAL REVIEW D 69, 046005 ~2004!
problem for a hydrogen atom. It is however physically mo
transparent to use a semiclassical treatment in the mann
Bohr.

Identifying the LHS of Eq.~21! with the radial momen-
tum squared, one can readily construct the necessary in
dients of WKB. Those are the turning points, roots of t
RHS of Eq.~21!, which for the generic Coulomb potentia
V52C/r are

r 1,25
1

E22m2 „EC6Am2C21 l̃ 2~E22m2!…. ~22!

It is important thatr is a radial variable, so that both solu
tions in Eq.~22! are positive, for otherwise we are dealing
with either a scattering state returning to larger, or an inward
falling state with a wave towards smallr. For small coupling
C the positivity condition is always satisfied, while for larg
C the positivity condition is only satisfied for orbital motio
with l̂ '(Al11/Al).

Using the Bohr-Sommerfeld quantization one introduc
the radial quantum number and gets6

E
r1

r2

prdr5p~n11/2!

5pS 12
Enl

AEnl
2 2m2

C

A l̃ 22C2
D ~23!

from which the quantized levels are

Enl56mF 11S C

n11/21A l̃ 22C2
D 2G21/2

. ~24!

In weak couplingC5g2N5l is small and the bound state
energies are close to6m. Specifically7

Enl6m'2
C2m

2~n1 l 11!2 , ~25!

which is the known Balmer formula. In the~opposite! strong
coupling limit the coefficient is largeC5(4p2/G(1/4)4)Al
@1. Unless the square root gets balanced by a sufficie
large angular momentum, the quantized energies are im

nary. This does not happen forn,A l̃ 22C2'l0 and C
'Al, which are also the conditions for which both roots
Eq. ~22! are positive. In this regime, one may ignore the 1
Eq. ~24! and obtain theequidistantspectrum

6In order to avoid confusion: what we calln is not the principal
quantum number but just a radial one. So there are no relatio
limits on it for any l.

7The fact that only the combinationn1 l appears, i.e., principle
quantum number, is a consequence of the known Coulomb de
eracy. This is no longer the case in the relativistic case.
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C
@~n11/2!1„~ l 11/2!22C2

…

1/2#. ~26!

Since the mass is related to the thermal loop withm'Al,
the ratiom/C'Tl0 is proportional to temperature butinde-
pendentof the coupling constant.

More details on the WKB spectrum are shown in Fig.
for different values of the orbital quantum numberl ~a! and
radial quantum numbern ~b!. All lines end when the Cou-
lomb attraction is able to overcome the centrifugal repulsi

In summary we have put forward an explanation for t
occurence of a tower of light composite states with energ
~masses! that are independent of the strong couplingl. The
composites are strongly bound Coulomb states which oc
relativistically due to a balance between the strong Coulo
attraction and the repulsive centrifugation in anl state. Only
the states with (l 11/2)>Al/p bind, resulting into an equi-
distant WKB spectrum. The critical coupling for S states

gc5
p

ANc

or lc5p2. ~27!

Note that the orbital states withl'Al are either bound~real!
or unbound~complex!. The complex states correspond to t
case were the light relativistic particle collapses onto
heavy source due to the large Coulomb attraction overc
ing centrifugation. AtT50 these states may pair condense
the form of neutral dipoles at the origin of the large dielect
constante'Al.

D. Effects of screening

In so far we have ignored in the WKB spectrum the e
fects of screening on the Coulomb potential. To assess
we will show below that in strong coupling the screen
Coulomb potential between scalars is mostly mediated by
electric gluons, leading to

V~x!52
C

uxu
FE~Tx! ~28!

with

FE~Tx!5
~pTuxu!

ush~pTuxu!u
. ~29!

In strong coupling the effective screening length is 1/(pT)
independent of the coupling constant. This result is rema
ably in agreement with lattice QCD simulations in the~1–3!
Tc window. The derivation of Eq.~29! using screened lad
ders graph withC5Al/2p is given below. Note that atT
50 Eq. ~28! reduces to the unscreened Coulomb potenti

How would the screened potential~28! affect our WKB
spectrum? The answer is only marginal. Indeed, if we ins
Eq. ~24! back to the expressions for the radial turning poin
~22!, we find that the largest turning point occurs f

or

n-
5-6
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UNDERSTANDING THE STRONG COUPLING LIMIT OF . . . PHYSICAL REVIEW D 69, 046005 ~2004!
r 2'1/T which is comparable to the screening radius follo
ing from Eq. ~28!. We note in passing, that the size of th
Coulomb bound state in strong coupling is very small and
order 1/(AlT).

FIG. 5. The WKB spectrum versus ’t Hooft coupling consta
l. ~a! Levels with fixedn50 andl 51 . . . 15; ~b! levels with fixed
l 510 andn50 . . . 5.
04600
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E. More details on the bound states

The semiclassical arguments developed above were
tailed to scalars. How would they work for gluons and glu
nos? To answer qualitatively this question, we recall that i
weakly coupled plasma, the number and nature of the glu
and gluinos is different from free massless waves of the f
theory. For instance the gluons carry 2 polarizations in f
space, while in the plasma a third one appears, the plas
@13#. Also the fermions develop different excitation mod
depending whether chirality and helicity are the same
opposite,8 see e.g.@15# for a general discussion and wea
coupling results. In the latter case the mode is called a p
mino.

If the dispersion laws for gluons and gluinos were know
the effective equation of motion suitable for the discussion
the bound state problem can be obtained by standard su
tution of the covariant derivatives in the place of momentu
and energy. The electric effective potential would then
together with the energy. For two gluinos, it is

VqQ~x!52
C

uxu
g4FE~Tx!. ~30!

Unfortunately, we donot know the pertinent dispersion law
for strongly coupled CFT. We only know from lattice studie
@16# that in the windowT5(123)Tc for which the QCD
plasma is likely in a moderatly strong Coulomb phase,
dispersion law for both quarks and gluons is of the canon
type v25k21mF

2 . For fermions,mF is not the usual~chiral
violating! mass term, but rather a thermal chiral mass. T
dispersion relation can be incorporated in a linear Di
equation through a chiral mass of the formg4 mF

2/E, result-
ing in the following equation:

S S E2
mF

2

E D 1 ia•¹1
Al/2p

x
FE~xT! D q~x!50. ~31!

The above WKB analysis can be carried out for Eq.~31! as
well, with similar conclusions as the ones reached for
relativistic scalars.

IV. THERMODYNAMICS AND KINETICS AT STRONG
COUPLING

A. AdS-CFT results

The CFT thermodynamics at strong coupling has be
studied by a number of authors@8#. It was found that the free
energy in this limit is

F~T,Nc ,l!5„~3/4!1O~1/l3/2!…F~T,Nc ,0!, ~32!

where F(T,Nc,0)'Nc
2T is the free~zero coupling! result,

analogous to the Stephan-Boltzmann result for blackbody
diation. The kinetics of the finite-T CFT at strong coupling
was recently investigated also using the AdS-CFT corresp

8We ignore the U~1! axial anomaly and instantons, and consid
the L,R chiralities to be absolutely conserved quantum number

t

5-7
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E. SHURYAK AND I. ZAHED PHYSICAL REVIEW D 69, 046005 ~2004!
dence@9#. In particular, the viscosity of strongly couple
matter was found to be unusually small, leading to a rat
good liquid with hydrodynamical behavior even at small sp
tial scales. In particular, the sound attenuation length~analo-
gous to the mean free path! was found to be@9#

Lsound
S 5

4

3

h

sT
5

1

3pT
, ~33!

whereh,s are the viscosity coefficient and entropy densi
respectively. This length is muchshorter than in the weak
coupling

Lsound
W 5

const

Tg4ln ~1/g!
@

1

T
. ~34!

As we have mentioned in the Introduction, such resu
are rather puzzling dynamically from the gauge-theory sta
point. Normally all kinetic quantities are related with scatt
ing cross sections, and the absence ofany coupling isa pri-
ori implausible physically. In general, thermodynamic
quantities count degrees of freedoms and one may think
the coupling constant may indeed be absent. However,
effective masses of the quasiparticles and all pairwise in
actions are still proportional toAl and in generalla with
a.0. If so, the quasiparticle contributions to the statisti
sum should be exponentially small at strong coupling, of
order ofe2la

!1, and one will have to conclude that som
other degrees of freedom are at play.

Indeed there are new degrees of freedom at play in
strong coupling regime of the thermal Coulomb phase.
we have shown above, for largel there are light~deeply
bound! binary composites, with masses of orderT irrespec-
tive of how strong isl. The composites are almost pointlik
with thermal sizes of the order of 1/T, which readily explains
the liquid-like kinetic behavior. The thermal Coulomb pha
is a liquid of such composites. The composites are light
should dominate the long-distance behavior of all the fin
temperature Euclidean correlators.

B. Gauge theory: Quantitatively

We start by explaining the leading contribution~32! from
the gauge theory point as a liquid of composites. The fac
of Nc

2 in front of the free energy and the viscosity for in
stance, follows from the fact thatall our composites are in
the adjoint representation. Indeed, for fundamental cha
the composites are mesonlike~color neutral! with all color
factors absorbed in the coupling constant. For adjo
charges, there is in additiontwo spectator charges9 that do
not participate into the binding. The Coulomb phase is
confining. Thus the number of light and Coulomb bou
composites isNc

2 .

9For example, a composite can be initially made of blue-red
red-green colors, with red rapidly changing inside the ladder. O
can view it as two extra vertical lines added to Fig. 2~a!.
04600
r
-

,

s
-

-

l
at

he
r-

l
e

e
s

d
e

r

es

t

t

The astute reader may raise the question that by now
arguments are totally circular: we have started withNc

2 mass-
less relativistic states and we have returned toNc

2 light com-
posites. So what is the big deal? Well, the big deal is that
are in strong coupling, and in fact the degrees of freed
completly reorganized themselves in composites, for oth
wise they become infinitly heavy thermally and decoup
This is how Coulomb’s law negotiates its deeds in a syst
with very large charges.

The composites carry large angular momentum in stro
coupling, i.e.,l'Al. Their weight contribution to the parti
tion function is of the order of

E
l min

l max
dl25 l max

2 2 l min
2 'l0, ~35!

which is independent ofl, since the WKB orbits are stabl
only for l'(Al11/Al). The ensuing thermodynamical su
over the radial quantum numbern is independent ofl, lead-
ing to a free energyF52(Cp2/6)Nc

2 T in agreement with
Eq. ~32!. For weak couplingC51 while for strong coupling
C53/4.

The overall coefficient in theNc
2 part of the free energy in

strong coupling is harder to obtain from the gauge the
side although the WKB spectrum could be used to asses
A simple example on how this arises in strong coupling a
at large number of colors was shown in@17#. Alternatively, if
we refer to the coupling-valued coefficient byC(l) and as-
sume it to be an analytic function in the complexl-plane
modulo singularities, then (l.0)

C~l!5C~0!1
l

pE10

`

dl8
Im C~2l8!

l8~l81l!
. ~36!

If the imaginary part along the negative real axis is bound
the RHS isl independent in strong coupling. To procee
further requires a better understanding of the singula
structure of the free energy in the complex plane, e
the Dyson singularity in weak coupling which sugges
Im C(2l)'e21/la

with typically a51. This point will be
pursued elsewhere.

V. SCREENING AT FINITE TEMPERATURE:
PRELIMINARIES

At finite temperature and in Euclidean space, the Wils
loops can be divided into electric (E) and magnetic (M )
ones. The electric Wilson loop is sensitive to Coulomb’s la
between static charges, while the magnetic Wilson loop
sensitive to Lenz’s law between two running currents. In
Euclidean vacuumO(4) symmetry rotates one to the othe
and we expect the same modified Coulomb’s law~38! in
CFT. In non-CFT theories such as QCD they are both c
fining.

The usual definition of the ‘‘screened potential’’ implie
that atr→` the potential vanishes. However, there is a
sidualnegativeconstant mass renormalization at finiteT, due
to the self-interaction of a static charge with its therm

d
e
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UNDERSTANDING THE STRONG COUPLING LIMIT OF . . . PHYSICAL REVIEW D 69, 046005 ~2004!
cloud. In weak coupling it is of the order ofl3/2T @13# using
Debye’s argument, and in strong coupling it is of the order
AlT @4#. This negativecorrection to the mass of a stat
charge should not be confused with thepositive effective
mass of quasiparticles which is of orderAlT as well.

A. Magnetic screening and AdS-CFT

At nonzero temperatureT Euclidean space is a cylinder o
radiusb51/T, and theO(4) symmetry is reduced toO(3)
symmetry with no a priori relationship between the elect
and magnetic Wilson loops. In non-CFT theories such
QCD and in weak coupling, the electric charges are De
screened while the magnetic charges are not@13#. Weak-
coupling nonperturbative effects related to spatial confi
ment in high temperature 3D YM theory, are believed
generate a magnetic mass of orderlT @14#. Several lattice
calculations support this idea, leading a nonzero spa
string tension of orderl2T2.

What happens at strong coupling? Our first new obse
tion in CFT theories, is that at strong coupling the AdS-C
correspondence yields magnetic screening which is thesame
as the electric screening observed in@4#. Thus for large spa-
tial separation

VM~b,L !5VE~b,L !5
Al

L
f ~b/L !, ~37!

wheref (b/L) was evaluated in@4# for electric Wilson loops.
The simple way to see this is to recall that the modifi
Coulomb’s law for the electric Wilson loop follows from th
pendingstring in the 5th direction as shown in Fig. 2. Th
phenomenon is unmodified for spatial Wilson loop
whereby the minimal surface is still of the same nature. N
that the temperature in this case is given by a suitable ch
of the radius of the black hole. At strong coupling the elect
and magnetic scales are the same, since there is no app
spatial confinement in high temperature CFT.

B. Naive „unscreened… ladders at finite T

Naively, the first step toward the calculation of the pote
tial between charges at finite temperature is the same res
mation of the ladder diagrams via Bethe-Salpeter equat
but with thermal propagators for gluons or scalars. Let
see, for pedagogical reasons, what this procedure will p
duce. We can apparently have either electric or magn
ladders, thus the expression becomes

VE,M~L !52 lim
T→1`

1

T lnGE,M~T,T !. ~38!

The electric kernel is generated through

]2GE

]S ]T 5 (
n52`

`
l/4p2

~S2T1nb/L !21L2
GE~S,T!, ~39!

and the magnetic kernel through
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]2GM

]S ]T 5 (
n52`

`
l/4p2

~nb!21~S2T!21L2
GM~S,T!. ~40!

Both kernels are subject to the boundary conditions

GE,M~S,0!5GE,M~0,T !51. ~41!

As in the zero temperature case@12# the equations are sepa
rable inx5(S2T)/L andy5(S1T)/L with the appropriate
boundary conditions. The temporal and spatial kern
separate

GE,M~x,y!5(
m

CmgE,M
m ~x!evE,S

m y/2, ~42!

with the C’s fixed by the boundary conditions, and theg ’s
obeying the one-dimensional Schro¨dinger equation in a peri-
odic potential, which is

S 2
d2

dx2
2 (

n52`

`
l/4p2

~x1nb/L !211
D gE

m~x!52
vE

m 2

4
gE

m~x!

~43!

for the temporal kernel and

S 2
d2

dx2
2 (

n52`

`
l/4p2

~nb/L !21x211
D gM

m~x!52
vM

m2

4
gM

m~x!

~44!

for the spatial kernel. The sum of the ladder diagrams gro
exponentially:G(0,y)'ev0y/25ev0T/L. From Eq.~38! it fol-
lows that the screening at finite temperature is given by
ground state eigenvalueaE,M5vE,M

0 (l,b/L).
In the strong coupling limit, the potential is peaked atx

50 modulob. Although the solutions to the periodic prob
lem yields in general a band structure, forl@1 the ground
state is just a particle trapped atx50. The ground state
energy follows from the harmonic approximation much li
at zero temperature. The result for the electric screening

aE5
Al

p
AS12A S2

2S1
1OS 1

Al
D , ~45!

with
5-9
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E. SHURYAK AND I. ZAHED PHYSICAL REVIEW D 69, 046005 ~2004!
S15(
n

1

~nb/L !211
5~p L/b!coth~pL/b!,

S25(
n

12~nb/L !2

„~nb/L !211…3

52
1

2
~pL/b!3coth~pL/b!„12coth2~pL/b!…

1
1

4
coth~pL/b!2

1

4
~pL/b!2

„12coth2~pL/b!….

~46!

For the magnetic screening, the result is

aM5
Al

p
AS12A S3

2S1
1OS 1

Al
D , ~47!

with

S35(
n

1

„~nb/L !211…2

52
1

2
~pL/b!2

„12coth2~pL/b!…

1
1

2
~pL/b!coth~pL/b!. ~48!

In the strong coupling and to leading order, the plan
resummations yield the same screening for the electric
magnetic Wilson loops,

aE'aM'
Al

p S 112(
n51

`
1

~nb/L !211
D , ~49!

where we have explicitly separated the thermal effects.
The result~49! appears to show that in strong coupling t

potential isstronger at nonzeroT than in vacuum. This
agrees with strong coupling Debye screening calculati
@4#. It may appear that it contradicts the fact that the scree
potential should vanish at larger. The paradox is explained
by the presence of a negative mass renormalization con
~static-charge interacting with its Debye cloud! as mentioned
at the beginning of this section.

VI. SCREENED LADDERS AT FINITE T

The static charges wich interactions we study are not
of the N54 YM theory, so we are free to give them an
interactions we want. So far we have followed the stand
notations, in which the scalar and gluon exchanges are e
for q̄q and cancel forqq pairs. In this case the linear dive
gences cancel as well. However in-matter screening at fi
T is different for scalars and gluons, so it is pertinent
discuss the screening sequentially.
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A. Screened scalar ladders

The scalar polarization is simpler. In the lowest order it
given by a well known bubble diagram, leading to
momentum-independent polarization operatormD

2 'lT2. Its
insertions induce a potential between two charges, in Euc
ean space after analytical continuation with Matsubara p
odicity:

D~ t,x!5 iT(
n
E dk

~2p!3

e2 ivnt1 ik•x

K21P00

, ~50!

whereK25vn
21k2. The zero moden50 contribution is a

standard screened potential

iT

4px
e2mDx

and is therefore exponentially suppressed in strong coupl
In strong coupling, even static charges communicate

high-frequency quanta~short times! so we now consider the
nonzero mode contributions in Eq.~59!. Performing the mo-
mentum integral yields

iT

2px (
n51

cos~vnt !
vn

2

vn
21MD

2
e2vn

2x/Avn
2
1mD

2
.

For largel the Debye massmD@vn , and the screened sca
lar propagator can be further simplified

D~ t,x!'
iT

4px S e2mDx12(
n51

`

cos~vnt !
vn

2

mD
2

e2vn
2 x/mDD .

~51!

Substituting the sum overn by the integral, combining the
cosine with the exponent and completing the square in
exponent, one finally finds that the nonstatic part of the
duced scalar potential vanishes in the strong coupling
1/AmD'1/l1/4.

B. Screened electric ladders

We now consider exchanges of electric gluons. In cova
ant gauges, the electric propagator in Euclidean momen
space reads in general

D00~v,k!5
1

K4 S k4

k22P00

1~12a! v2D , ~52!

where a is the gauge parameter and, as before,K25v2

1k2. In configuration space the propagator is then

D00~ t,x!5 iT (
n52`

` E dk

~2p!3
e2 ivnt1 ik•x D00~vn ,k!.

~53!

In weak coupling we need only the static limit withvn50.
Therefore the gauge-sensitive term disappears and the
term yields the familiar Debye form withP00(0,k)'mD

2 .
5-10
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UNDERSTANDING THE STRONG COUPLING LIMIT OF . . . PHYSICAL REVIEW D 69, 046005 ~2004!
In strong coupling we need the opposite limit, in whic
the frequency is high withv'l1/4/L@k'1/L. Now the
~gauge dependent! longitudinal part contributesD00'(1
2a)/v2. The 00 part depends on the polarization opera
which at high frequency has the generic form

P00~v,k!'lT2
k2

v2
. ~54!

This result is the same as the one derived from hard ther
loops although in the opposite limitT@v. Below we explain
why this similarity is not fortuitous. Inserting Eq.~54! into
Eq. ~52! one finds that one power ofk2 can be canceled, an
the first term becomes of order (k2/v2)/(v21vp

2), with the
denominator capable of producing the plasmon pole. Ho
ever, this term is clearly subleading as compared to the
gitudinal one. This happens because it lacks the enhance
throughv2 in the numerator.

Inserting the electric part~60! in Eq. ~53! and performing
the momentum integration yields

D00~ t,x!5
iT

4 S e2mDx

px
12(

nÞ0

`

cos~vnt !e2vnt
vn

2

vn
21vp

2

3S 1

px
1

1

2pvn
„~12a!~vn

21vp
2!2vn

2
…D D ,

~55!

where the first and screened contribution arises from the
mode and the second contribution arises from the nonz
modes in the high frequency~short time! regimev@k. In
the strong coupling limitvD /T'Al@1, Eq.~55! reduces to

D00~ t,x!5~12a!
iT

4p (
n51

`

cos~vnt !vne2vnx, ~56!

which is controlled by the first Matsubara frequency at la
distance. It is readily checked that fort50

D00~0,x!5~12a!
ixT2

8sh2pTx
, ~57!

which reduces to the free electric part of the covariant pro
gator at T50. This part is the chief contribution to th
screened electric ladders in the strong coupling. Indee
rerun of the previous Bethe-Salpeter resummation using
~56! as the screened ladder shows that only the short t
limit of Eq. ~57! contributes asl@1. In particular, the elec-
tric potential between two Wilson lines with only adjointA
fields is

VE~Tb,a!52
Al/p

b
FE~bT,a!, ~58!

with
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FE~bT,a!5A12a
pTx

ush~pTx!u
, ~59!

which is seen to reduce to theT50 result in Feynman gauge
As noted above, the result~59! yields a screening length o
order 1/(p T) in strong coupling, which islarger than the
1/(AlT) expected from weak coupling. Again, the stron
coupling result is even consistent with current QCD latt
simulations which suggest that the Debye screened pote
screens at about a distance of order 1/pT.

Finally, the result~59! is gauge sensitive, and one ma
question the interpretation of our results. Of course the sa
criticism for summing the ordered ladders hold atT50 as
well. However, we expect our main observations in covari
gauge to hold for the reason that the results agree ove
with results from the ADS-CFT correspondence both atT
50 and finiteT for the electric sector. Retardation is be
captured in covariant gauges, and that was seen as ke
describing the screening at work in the ground state.

C. Hard thermal loops at short times

The effects of matter is more than the Bose enhancem
It is usually due to a genuine screening of the Coulo
interaction. How would this work at strong coupling? Th
answer would be in general hopeless, except for yet ano
important observation: The induced interaction occurs in
case over veryshort times. This means that we probe th
thermalized but strongly coupled Coulomb phase over sh
periods of time, in which case the thermal distributions a
left unchanged. As a result, the high frequency modes
screened at strong coupling in exactly the same way as
are inweakcoupling at high temperature.

This is best seen using a first quantized analysis of scre
ing in terms of transport arguments, whereby the only
sumption needed to derive the hard thermal loops is that
thermal distribution be expandable intof 5 f 01 f 1' f 0 for
f 1/ f 0!1 at short times. In Euclidean space~Matsubara fre-
quencies! the hard thermal loops reduce to

P00~v,k!52vD
2 S 12

v

2k
lnUv1k

v2kU D ,

P i i ~v,k!5
vD

2

2 S v

k
lnUv1k

v2kU D . ~60!

The zero Matsubara frequencies are electrically scree
with P0052vD

2 and magnetically free withP i i 50. The
situation is somehow reversed at high Matsubara frequen
with

P00'2vp
2 k2

v2
,

PT~v,k!'vD
2 . ~61!
5-11
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The plasmon frequency is defined asvp
25vD

2 /3 with the De-
bye frequencyvD5mG,f,F for the gluons, scalars an
quarks read respectively

mG
2 'mF

2'mF
2 'lT2. ~62!

The electric modes are free at high frequency, while the m
netic modes are Debye screened. This is just the opposi
what happens at low frequency. Still,both the dielectric con-
stant and inverse magnetic permittivity vanish at large f
quency. The thermal medium is transparent to high f
quency electric and magnetic fields as it should.

D. Screened magnetic ladders

The real insertions~60! induce a new potential betwee
two moving charges in Euclidean space after analytical c
tinuation. In covariant gauge, the resummed magnetic pro
gator in Euclidean momentum space reads (K25v21k2)

D i j ~ t,x!5~2d i j 1¹i¹j !iT(
n
E dk

~2p!3

e2 iv t1 ik•x

K21PT

1¹i¹j iT(
n
E dk

~2p!3

e2 iv t1 ik•x

K4

3S 2
v2

k21P00

1~12a!D . ~63!

Performing the momentum integrations, taking the stro
coupling limit l@1 and contracting the answer with the pa
ticle velocitiesv1,2 attached to the external Wilson lines yie

v1iv2 jD i j 52v1•v2

iT

4p x3

3S 2
x2

2
d501

1

mM
2

dÞ01
1

vp
2

2
1

vD
2 D , ~64!

where we have inserted a magnetic massmM /T'l on the
transverse magnetic zero mode.d50 is the contribution when
the magnetic mass is zero~long range field!, while dÞ0 is the
contribution when the magnetic mass is inserted~short range
field!. Clearly, the magnetic contribution survives the stro
coupling limit only in the absence of a magnetic mass. T
contribution to the ladder resummation follows from the b
sic insertion

il

2
v1iv2 jD i j .

The screened magnetic ladders yield a magnetic pote
that is different from the electric one derived above in co
pling and range if a magnetic mass is present. In the abs
of an induced magnetic mass, the electric and magnetic
tentials exhibit a similar behavior in coupling, but are d
tinct in range. The magnetic potential still has infinite ran
while the electric potential has a finite range of order 1/pT
04600
g-
of

-
-

-
a-

g

e
-

ial
-
ce
o-
-
,

as we indicated above. The simple AdS-CFT argument p
vided earlier leads to the same electric and magnetic scr
ing length. The understanding of this point from the gau
theory standpoint is worth pursuing.

VII. SUMMARY AND OUTLOOK

We have exploited the fact thatN54 SYM theory is in a
Coulomb phase at all couplings, to argue that in strong c
pling ~Maldacena regime! color charges only communicat
over very short periods of timet'L/l1/4 for a fixed separa-
tion L. This physical observation is enough to show w
ladderlike diagrams in the gauge theory reproduce the m
fied Coulomb’s law obtained by the AdS-CFT correspo
dence using classical gravity. This class of diagrams is h
ever not complete since the answer is gauge-sensitive.
have shown that the insertion of additional quanta along
ladder brings about extra factors ofl* d4x'l0, leading to a
quasistring geometry. InN54 SYM theory the quasistring
has a transverse to a longitudinal ratio of order (L/l1/4)/L
!1, but is not confining.

These observations are generic and suggest that in
gauge theory the modified Coulomb potential applies equ
well to relativistic and nonrelativistic charges. Indeed, sin
the relativistic particles move with velocityv'1, the color
reordering encoded in the modified Coulomb potential g
even faster through a virtual quantum exchange with velo
v'l1/4@1. At strong coupling and/or large number of co
ors, the charge is so large that color rerrangement is so p
hibitive unless it is carried instantaneously. This is the o
way Coulomb’s law could budget its energy. The same
servations extend to finite temperature where we have sh
that the modified Coulomb potential acquires a screen
length of the order of 1/T irrespective of how strong is the
coupling. This observation seems to be consistent with c
rent lattice simulation of nonconformal gauge theories
their moderatly strong Coulomb phase, e.g., QCD.

We have analyzed the effects of a~supercritical! Coulomb
field on the motion of colored relativistic particles. Boun
states form whenever the squared Coulomb potential
ances the effects of centrifugation. In strong coupling
resulting bound state spectrum is oscillatorlike, in agreem
with the tower of resonances observed using the AdS-C
correspondence@10,11#. Rather unexpectedly, we have foun
that even though the trajectory of any particular Coulom
bound state depends critically on the couplingl, their aver-
age density remains constant in the strong coupling dom
This finally leads to auniversal gas of compositesin strongly
coupled CFT, a nice parallell with recent developments
QCD @1#.

Clearly our work is only the first attempt in trying t
understand from the gauge theory standpoint the intric
and surprising results obtained by the AdS-CFT corresp
dence both in vacuum and matter. In particular, our disc
sion of the spectroscopy of composites, Debye screen
thermodynamics and kinetics of matter were rather sketc
5-12
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with only the qualitative trends emphasized. All of this c
obviously be worked out with more details that go beyo
the scope of the current presentation.

However, it is clear that the dynamical picture we ha
put forward from the gauge theory standpoint goes bey
the confines of supersymmetry or the conformal nature of
strongly coupled gauge theory considered here. Indeed
believe that our results extend to all gauge theories in t
Coulomb phase at strong coupling, thereby opening a w
S

C

et

04600
d
e
e

ir
-

dow of understanding to a variety of physical problems
different settings.
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