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Hidden symmetries of the AdSX S® superstring
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Attempts to solve Yang-Mills theory must eventually face the problem of analyzing the theory at interme-
diate values of the coupling constant. In this regime neither perturbation theory nor the gravity dual are
adequate, and one must consider the full string theory in the appropriate background. We suggest that in some
nontrivial cases the world sheet theory may be exactly solvable. For the Green-Schwarz superstring on
AdS;x S we find an infinite set of nonlocal classically conserved charges of the type that exist in integrable
field theories.
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I. INTRODUCTION gauge theory.However, for 't Hooft coupling of order one
there are no quantitative methods, since in either dual form

The discovery of AdS/conformal field theof@FT) dual-  the coupling is of order one. Understanding this theory
ity [1] was a major step towards the long standing gahbf ~ should be strictly easier than solving the QCD string, as in
recasting largeN QCD as a string theory. The original dual- the. Ia}tter'case as well neither the gauge nor the string de-
ity was for highly supersymmetric conformally invariant scription is weakly coupled, and there is much less symme-

gauge theories, but these can be deformed in various ways 16" ing theori ith d back
produce string duals to confining gauge theories with less or For string theories without Ramond-RamofRR) back-

no supersymmetry. Thus far the duality provides solution@iic;::;?"s ' tcr)‘r?rehc?lroemfgrmlr:liir igﬁgﬂ;gou_?ggg VT;;Z?;jmt;gz?d
only for gauge theories where the 't Hooft coupling is Stmng\FI)Vitten r¥1odel is the arcFr)letype of tH]é].' the spacetime sym-
at all scales, because it is only for these that the world-she%etry is elevated to an affine Lie algébra. However with RR
of the dual string is weakly coupled. However, it implies an backgrounds the bosonic Wess-Zumino term is a'bsent and
existence proofin the physicists’ sense of the teyfor a  here s no affine Lie algebra. Also, the RR backgrounds
string dual to QCD, by continuous deformation to weak cou-ake it impossible to use the standard Ramond-Neveu-
pling in the UV and so to a strongly coupled world-sheetgchwarz conformal field theory, within which holomorphic
theory. Thus the program of solving lareQCD is reduced  cyrrents can be shown to exist under broad conditions.
to two steps:(1) identify the strongly coupled world-sheet  However, the Green-Schwarz superstring on &dS° is
field theory of the QCD string(2) solve it. The hope is that  similar to field theories for which other forms of higher sym-
the reduction from a strongly coupled field theory is-3 metry algebra are known to exist. That is, the field space can
dimensions to one int 1 dimensions will allow the various be regarded as a cod&—7],
special techniques of ({1)-dimensional field theory to be
brought to bear. PSU2,24)

In this paper we will look ahead to the second step, and SO(4,)xXSQ5)°

report at least one modest positive result. Our focus here i . . . N
D P Eor certain coset theories there are two kinds of infinite sym-

the conformally invariant\=4 theory, where the world- .

: . metry algebras. One is based on nonlocal currédtsl(]
sheet theory is known due to the high symmetry of the prObWhich ive rise to charges satisfying a Yangian algd?
lem, but where existing methods of calculation have limited 9 g g g g

range. That is, at large 't Hooft coupling we can calculate
using perturbation theory on the string world-sheet. At small 1t js an interesting exercise to ask what this implies about the
't Hooft coupling we can calculate in the weakly coupled strongly coupled world-sheet in this limit. This will be discussed in
a separate pap¢8].
Transformations satisfying a familiar affine Lie algebra can also
be constructed from the nonlocal currefi]. These are invari-

(1.2)

*Email address: iosif@physics.ucla.edu ances of the classical equations of motion but not of the Poisson
"Email address: joep@kitp.ucsb.edu brackets(they are not symplectically generajeénd so unfortu-
*Email address: radu@vulcan2.physics.ucsb.edu nately they probably have no quantum analogs.
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for reviews see Refd.13,14]. The other is based on local Il. REVIEW: NONLOCAL CHARGES IN BOSONIC
right- or left-moving current§15] which satisfy an-algebra; MODELS
for a nice recent discussion see Rdf6].

Of course the Green-Schwarz superstring on £dS° is ) ] ) ) ]
not precisely a coset sigma model, because of the fermionic Consider first the nonlinear sigma model where the field
Wess-Zumino term and the symmetry. However, we will 9(X) takes values in the group, and the Lagrangian ik

_1 H .
show that it possesses an infinite symmetry algebra of th%Tr(é’ig d'g). The global symmetry i<GXG, left and

nonlocal form. These nonlocal charges are conserved in arly ht multipl_ication. We Wi!l fpcu_s on the conserved current
. : . . orresponding to left multiplication,

x gauge. Our considerations are purely classical, but in re-

lated models these charges have been argued to survive ji=—(a,9)g" L. (2.1

quantization 17], with modified algebras.

Our results extend immediately to the superstring onNote that the current takes values in the Lie algefralVrit-
AdS;x S®x T4 with RR flux, for which the action has the ing the current as a one-form, so tiitj =0, one sees that
same structurgl8]. Of course the theory with NS-NS flux is S
S-dual to this, but in studying the world-sheet theory we are dj+j/Aj=0. 22
implicitly expanding ingsying SO this duality is not visible. In - Thys the current can be regarded as a flat gauge connection
faCt the NS-NS baCkground iS a case Where the String Side iﬁ g Moreover’ by tak|ng genera' |inear Combinations
exactly solvable, and so an example of what we might hope
to do for QCD. Some of the methods used in this case, such a=aj+p*j, (2.3
as those of Ref{19], may be applicable to gauge theories, .
but in some ways this example is rather different. The spacec-)ne finds that

A. Principal chiral models

time CFT is less well understood and has no adjustable cou- da+aNa=(a2—a—B2)j/]. (2.4)
pling constant—thus there is no limit in which it has a clas-
sical Lagrangian description. We have used the identitiess =+ 1, and *k/\l+k/\*|

In Sec. Il we briefly review the construction of the non- =0 for general one-form«k,|. Thus there are two one-
local charges for bosonic nonlinear sigma models. This igarameter families of flat connections,
based on the identification of a one-parameter family of flat
connections, constructed from the symmetry currents and al*: aZE(liCOSh)\),
their duals. In Sec. lll we extend this to the type 1IB Green- 2
Schwarz superstring on A¢8S°®, and show that a one-
parameter family of flat connections exists. In Sec. IV we B= Esinh)\ <, (2.5
search for local chiral charges. We find no charges of higher 2 '
spin, but we find that in conformal gauge the world-shee
CFT separatesgat the classical levglinto two factors, one
associated with AdSand one associated witt? SIn Sec. V y2 y2—y
we discuss further directions. =TT B= 2y—1’ —o<y<ew. (2.6

Beyond the application to QCD, the possibility of finding
an exact solution on one side of the gauge/gravity duality is Gjven any flat connection, the equation
an exciting prospect. Thus far these higher symmetries and
related methods have appeared in gauge/gravity in certain dUu=-au 2.7
special contexts. On the string side, Maldacena and Maoz . . ) o
[20] have pointed out that one can engineer nonlinear plan® integrable: action on both sides withgives 0=0. On a
wave solutions to produce an integrable world-sheet theory! MPIY connected space, given an initial valugxo,xo)
(see also Ref.21]); Mandal, Suryanarayana, and Wa{22] :.1' th'? deflne.s.a group eIemeUI(x,xo)_. This is just the
have noted that the bosonic part of the AdS string Wilson line, defining parallel transport with the connect&n
theory is classically integrable; and, Bershadsky, Zhukov,
and Vaintrob[23] have discussed th&/ symmetry of the U(x,xo)zPex;{ - f a
pure supergroup sigma model. On the gauge side, Minahan ¢

and Zarembo[24] have shown that the calculation of \yherec is any contour running fromg to x, andP denotes
one-loop anomalous dimensions for general scalar operatofih ordering of the Lie algebra generators. The flatness of
can be recast in terms of an integrable field the@ge fur-  the connection implies that this is invariant under the con-
ther work [25]). Belitsky, Gorsky, and Korchemsk{26]  tinuous deformations of.

have related the computation of anomalous dimensions of Thjs immediately allows the construction of an infinite
certain higher spin operators to tf®L(2,R) spin chain. number of conserved chargd9], by taking the unbounded
Also, Lipatov[27] has argued that in certain QCD processesspatial Wilson line at fixed time,

the summation of Feynman graphs leads to an integrable

model. QM (t)=UM(o0,t; —0,t). (2.9

tEquivalently, this can be written as

: (2.9
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This takes values iis. The contourC here is thet=const J=g ljg=—g lag. (2.15
spatial slice, so conservation @~ is simply the statement

that this is invariant under continuous shift of the contourThis is invariant under left multiplication. Further separate
forward in time. Of course this moves the end points, whichaccording to the decomposition of the Lie algeb@ss H
is not in general an invariance of the Wilson line, so an® K,

appropriate falloff of the fields at infinity is assumed.
Explicitly, J=H+K. (2.19

z _ ThenH transforms as a connection undgrgauge transfor-
au(ytizt)= —J dxU(y,t;x,thay(x,HhH)U(x,t;z,t) mations, whereak transforms covariantly. It follows that
y

. k=gKg™* (217
:_J dXU(ylt;th)[aC’J_aOal . . . . . i
y is ‘H-gauge invariant. The Lagrangian is themrTr(kik')

=Tr(K;K").
We will use capital lettersX to denote currents that are
=ay(y,H)U(y,t;z,t) —U(y,t;z,t)ay(zt), conjugated by right multiplication, generally corresponding
to some decomposition under representation${ofThenx
(2.10 =gXg ! is conjugated by left multiplication. We will focus

S0 we neediy(*x,t) to go to zero in order for the charges ©" the H-gauge invariants, which are theother thanh.

to be conserved. For closed string theory, where the spatid}oticé however that tha do not have simple decomposi-
direction is periodic, one takes the trace to form the Wilsort!onS under the Lie algebra; to use such decompositions we

loop; for the supercoset case of the next section one woul1Ust refer back to th&. Note also that
take the supertrace.

+a;80](x,nU(X,t;2,t)

_ ,1_ . _ .
These charges can also be presented in other forms, for dx=g(dX)g JAXZXA]. (218
example by Taylor expanding iR, The construction of the flat connections can be extended
o provided the coset is a symmetric spg28,14]. That is, in
QM =1+ A\"Q,. (2.10) addition to[H,H]CH and [H,K]CK which follow from
n=1 " the subgroup structure, we must hdve K]CH as well. To
- ) ) see this, note thatJ=J/\J, and decompose both sides un-
Fora"~, which vanishes ax =0, we have derG=HaK:
1 1 =
a)\—zz)\*J_Z)\ZJ+O()\3) (212 dH H/\H+K/\K,
dK=HAK+K/AH. (2.19
Then

If the coset were not a symmetric space, theh K would

I be a sum of two pieces, one of which iskfand the other in
2Q:= f_deJO(X) (213 k.2 Transforming to thex forms, we have
is just the global left-multiplication charge. Note that we dh=—k/Ah—hAk,
could similarly have started the whole construction with the
right-multiplication current, and gotten a second set of dk=—2k/\Kk. (2.20

charges. The next charge is bilocal, ) ) )
The gauge invariank is also the Noether current for the

o global symmetryd*k=0. The current R is both flat and
Q=—7 deh(X) conserved, and so can be used to construct two families of
B flat connections precisely as above.
1 (= X . _ The construction of the flat connections and nonlocal
+ Ef deJ de'Jo(X)Jo(X') (2.14  charges can be extended to certain sigma models with fermi-
ons, including world-sheet supersymmetric sigma models
and so on. Through its Poisson brackeds,generates all of [10,14. The strategy is slightly different: one separates the
the higherQ, , so for many purposes one can focus on thisglobal symmetry current into its bosonic and fermion parts,

simplest nonloca(more precisely, multilocalcharge. which are noF separately conserved, and t_akes a general lin-
ear combination of these currents and their duals. Under ap-

propriate conditions there exist infinite families of flat con-
B. Coset models

Now let us conside6/H coset models, where we identify

g(xX)=g(x)h(x). Left multiplication by G is still a global SWhenK is a subalgebra /\K contributes only talK, and it is
symmetry. To construct the action, define again possible to construct flat connections.
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nections. We will not review this here, but the construction in 1
the next section has a similar structure. dP=HAP+P/AH+(QAQ+Q'AQ"),
IIl. THE GREEN-SCHWARZ SUPERSTRING ON AdS 5><35 dQ= H/\Q+Q/\H + P/\Q+Q/\P

In order to make the construction as transparent as pos-
sible, we will in the present subsection use a condensed no- dQ'=HAQ'+Q'AH—-PAQ'—Q'/\P. 3.7
tation which is parallel to that of the earlier discussion. The
Green-Schwarz superstring in Ag8S° can be regarded as The curls of the lower-case forms are then
a nonlinear sigma model where the field takes values in the
coset superspadé—7] dh=—h/Ah+p/Ap—h/Ap—p/Ah—h/\q

1
PSU(2,24) . 3.1 —g/\h+ z(qu—q’Aq’),
SO(4,1)xSQ(5)

The bosonic part of this space,

SQ(4,2) SA6) s
SO(4,1)XSO(5)_Ad&"XS' (3.2 da=—2q/\q,

is a symmetric space and so the above construction gives an b f et A P
infinite symmetry algebra. This has recently been remarked dg’=-2p/Aq’=2q"/Ap=a/Aq’=q"/\q. 3.8
in Ref.[22], in the context of finding extended string solu-
tions in Ad$;x S°. The full space(3.1) is not a symmetric
space, as the denominator group is too small. The theory also 1
differs from the simple nonlinear sigma model by the pres- H= - (L2, + L2 3 p0),
ence of a Wess-Zumino term, and by thgauge symmetry. 2
Thus the construction of the flat connection is slightly more
involved. P=L%P,+L%P,,

The Lie algebra oPSU(2,24) can be decompos¢d-7]

1
dp=-2p/\p—p/Ad—a/\p+5(a/\a+a'/Ad’),

In the notation of Ref[5],

—1 aa’l ,
G=H+P+Q;+Q,, 3.3 Qi=L* Qaqri- (3.9
Translating Egs. 3.18, 3.19 and 3.20 of that paper, the equa-

whereH is the denominator algebr®, contains the remain- . :
tions of motion aré

ing bosonic generators, arg@, and Q, are two copies of the
(4,4) representation df{. The algebra respects/a grading,

under which the charges are d* p=p/A*q+*q/\p+ %(q/\q’+q’/\q),
H:0, Qq:1, P:2, Q,:3. (3.9

0=p/A(*q—q")+(*q—q")/\p,
Form the current

J=—g - lag=H+P+0Q,+0,. 3.5 0=p/\(d—*q')+(q=*q")/\p. (3.10
The grading of the Lie algebra implies that the cdd=J Notice that
/A\J decomposes as 1
dH=H/AH+PAP+Q;AQ,+Q,\Qy, d*| p+5*q ):0- (3.11

“These equations, as well as E¢&.8 can be obtained from Ref.

dQ;=HAQ;+Q;AH+PAQ,+Q,/\P, [7] with the identifications
dQ=HAQ,+Q,AH+PAQ;+Q,AP. (3.6 P =2 a2+ Zy iy 2™
It is useful to define als®=Q;+Q, andQ'=Q;—Q,, in A" =Zay a2+ Zy a2 ™

rms of which p Py
te SO c qIMN:ZMbJa—bzaN_'_ZMangsz

1 o — -
dH=HAH+PAP+ =(QAQ-Q'AQ’), whereM andN are PSL(4|4) indices,a anda are Sp(4) indices
2 (QAQ-Q'AQY and() denotes the antisymmetric and traceless part.
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The conserved currept+ 3*q’ is the Noether current of the term byo then both thec invariance and the higher symme-
global left multiplication symmetry. The conservation equa-tries are brokeriexcept fore= — 1, which is just the world-
tion (3.11) is actually the complete equation of motion. By sheet parity transforimn
converting to an equation fatx (P+ 3* Q') and decompos- Notice that if we ignore fermions, the bosonic termgin
ing the Lie algebra one obtains all of E48.10. and= p reproduce the currents for the bosonic cqsiebugh

We now construct candidate connections. We do not havenly with the lower sign for the latter This shows that the
equations ford~q and dxq’'. This is because the loca currents for differenk are independent—they are not related
symmetry is not yet fixed, so the equations of motion do noto one another by transformations. Incidentally, the charges
determine the full time evolution. In specific gauges one ob-cannot be strictlyx invariant, because the generator wof
tains equations fod*q anddxq’, but it turns out that we transformations does not even commute with the global sym-
can construct the connection without them. Thus define  metries. It is plausible to conjecture that all the commutators

vanish weakly—that is, they are themselvegransforma-
a=ap+p*p+yq+oq’. (3.12  tions.

Then, noting again the identities =+1 and *k/A\l+k
A*1=0. one finds IV. LOCAL CURRENTS
Consider again the bosonic examples, the group manifold
da+a/a=c;p/A\p+cy(p/\q+a/\p) or the coset, where in each case there is a cufgstiterj or
+ea(p/AG'+q'/Ap)+C,a/\q+Csq’ NG’ 2k) which is both flat and conserved. In world-sheet light-

cone components,

+c6(q/\q"+q'/A\a), (3.13 L
where I-j+=—5li-0+] (4.)
c1=—2a+a’-p? It follows immediately tha{15,16]
Co=—a+ay— 4, a_Tr(j%)=0. 4.2
C3=B—25+ad— By, Thus, even though th&XG currents themselves are not

chiral, there are higher spin chiral currents. The traces are not
independent, so the number of higher spin currents is finite.
Ca=5a— 2y+9%, Similarly there is a set of left-moving currents.
In the bosonic models, the classical scale invariance is
1 broken by quantum effects. Similarly these chiral currents
Cg= §a+ 52, are anomalous, but under appropriate conditions there will be
a conserved though nonchiral higher spin curfdsi. In the
L conformally invariant supergroup models it has been argued
_ T that the chiral currents are nonanomal$2s].
Coe= B0t 7o (3.19 In the AdS;x S° case there is no current that is flat and

o . ] ) conserved, but the chiral currents can be constructed under
The vanishing of the; gives six equations for four un- \eaker conditions. It suffices that

knowns, but there is a large degree of redundancy, and re-
markably there are again two one-parameter families of flat

connections. One can use the vanishingpéndcg to solve d-j4= Z [a'b'], [j..a]=0, 4.3
for a and B, and the remaining; then all vanish if 5>
=y?—2+y. Thus the connectioa is flat for so that

a=—2sinlt\,

g-St(jl)=n> st(j} '[a',b'])
|
B=F2 sinh\ cosh\, (3.195
=nY, st([j *,a'],b")=0. 4.4
=1+ cosh, 2% sw([jfa'ph (4.4
S8=sinh\. (3.16 Let us try to proceed without fixing the gauge. Since we

do not have equations falx q andd+*q’, the only candidate
We do not have any deep understanding of why these fldor j, is p, . Noting that ¢ w). = * w. for any one-form,
connections exist. We have foundgauges in which there we find that
are two fewer equations, but this still requires one redun- L
dancy. There is some connection between himvariance . =
and the nonlocal charges: if we rescale the Wess-Zumino d-p+=Lp+,p-+a-] 4[q1_ Gr+ ], (4.5
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while the fermionic equations of motion become Smatrices, allowing the fullSmatrix to be deducedRef.
[29] and references therginThese same constraints can be
[p+.01-1=[p-.92:]1=0. (4.6)  derived from the nonlocal chargé&7]. The argument ap-

pears to be less straightforward, but in at least some circum-
stances the local charges can be regarded as limits of the
nonlocal chargefl3], so the latter are sufficient.

Together these imply that_p, is of the form(4.3), with
a'=p, anda?=q,_ . Unfortunately these currents are ac-

tually trivial. Since Strp’)=Str(P), we only need traces 1056 nonlocal charges also form the starting point for the
of the broken bosonic generators. W4'1)qu§) IN- " classical and quantum inverse scattering methods, which are
variance, these can only involve products REP% and  related in tumn to the Bethe ansa®ef. [30] lists some re-

P& P2 , wherea is an SO(4,1) vector index and’ is an  views). We note that the existence of these charges is a non-

SQ(5) vector index. In fact one finds that trivial fact: they do not exist in all casege.g. the
o nonsymmetric-space cosgtand in such cases when there is
Str(P2K)oc(— P2 P2 )k— (P2 Pk, (4.7  a mass gap there is presumably particle production in scat-

tering. It is less clear how conformal theories with the

The first minus sign is from the Minkowski signature of charges are distinguished.
AdS;, and the second is from the supertrace. Iceil this is We are interested in conformally invariant theories, on a
the world-sheeT , , , which vanishes by the metric equation bounded spacéhe open or closed stringin this case the
of motion, while for allk>1 it is a multiple of T, . . Thus  simplest and most obvious observable is the partition func-
these would-be chiral currents vanish. Notice however that ifion. This encodes the set of operator dimensiGnspace-
we go to conformal gauge, where the vanishingTof, is  time conformal theories such ag=4 Yang-Mills) or the
not imposed as an equation of motion, then the fact that theneson and glueball masséa confining theories In fact,
current (4.7) is chiral for all k implies that 9_(P%P%) this has been found for certain conformally invariant models
=g_(P¥P¥)=0 separately. based on supergroup81]. This was done not by direct use

Of course, it could well be that there are currents that ar®f nonlocal charges, but by related methods involving inte-

chiral only in certain gauges. In the flat-spacetime case, foprable lattice mpdels. Thus,sour result on the existence of
example, only after fixing the gauge are the world-sheethese charges in the Ag8S> theory should be taken as

fields X and 6 chiral. A natural gauge for us is motivation to apply the full set of methods of integrable field
theory to this system.
d:-=0,,=0. (4.9 For the nonlocal charges, the next step is to determine

their classical Poisson bracket algebra, and to extend this to
It should be possible to reach such a gauge, at least at thge quantum theory. This requires us to deal withitgauge
level of the classical solutions: the equations of moti6) invariance(which we were largely able to sidesjeperhaps
already imply half of this, and there is enough gauge freezjong the lines of Ref[32]. The conformally invariant su-
dom to impose the rest. In the flat-spacetime theory, theergroup and supermanifold modg®s,23,34 provide inter-
analogous gauge makes the world-sheet fermions free. URssting warmup problems, without the complication wof
fortunately, while the field and Maurer-Cartan equations Sim‘symmetry. It is also interesting to ask what is dual on the
plify substantially in this gauge, there are no additional cur-gayge side to the symmetries that we have found. Finally, the
rents having the propert4.3). extension to less symmetric and more QCD-like theories is

challenging.

V. DISCUSSION
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