
PHYSICAL REVIEW D 69, 046002 ~2004!
Hidden symmetries of the AdS5ÃS5 superstring
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Attempts to solve Yang-Mills theory must eventually face the problem of analyzing the theory at interme-
diate values of the coupling constant. In this regime neither perturbation theory nor the gravity dual are
adequate, and one must consider the full string theory in the appropriate background. We suggest that in some
nontrivial cases the world sheet theory may be exactly solvable. For the Green-Schwarz superstring on
AdS53S5 we find an infinite set of nonlocal classically conserved charges of the type that exist in integrable
field theories.
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I. INTRODUCTION

The discovery of AdS/conformal field theory~CFT! dual-
ity @1# was a major step towards the long standing goal@2# of
recasting large-N QCD as a string theory. The original dua
ity was for highly supersymmetric conformally invaria
gauge theories, but these can be deformed in various wa
produce string duals to confining gauge theories with les
no supersymmetry. Thus far the duality provides solutio
only for gauge theories where the ’t Hooft coupling is stro
at all scales, because it is only for these that the world-sh
of the dual string is weakly coupled. However, it implies
existence proof~in the physicists’ sense of the term! for a
string dual to QCD, by continuous deformation to weak co
pling in the UV and so to a strongly coupled world-she
theory. Thus the program of solving large-N QCD is reduced
to two steps:~1! identify the strongly coupled world-shee
field theory of the QCD string;~2! solve it. The hope is tha
the reduction from a strongly coupled field theory in 311
dimensions to one in 111 dimensions will allow the various
special techniques of (111)-dimensional field theory to be
brought to bear.

In this paper we will look ahead to the second step, a
report at least one modest positive result. Our focus her
the conformally invariantN54 theory, where the world-
sheet theory is known due to the high symmetry of the pr
lem, but where existing methods of calculation have limit
range. That is, at large ’t Hooft coupling we can calcula
using perturbation theory on the string world-sheet. At sm
’t Hooft coupling we can calculate in the weakly couple
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gauge theory.1 However, for ’t Hooft coupling of order one
there are no quantitative methods, since in either dual fo
the coupling is of order one. Understanding this theo
should be strictly easier than solving the QCD string, as
the latter case as well neither the gauge nor the string
scription is weakly coupled, and there is much less symm
try.

For string theories without Ramond-Ramond~RR! back-
grounds, there are familiar strong-coupling methods ba
primarily on holomorphic currents. The Wess-Zumin
Witten model is the archetype of this@4#: the spacetime sym
metry is elevated to an affine Lie algebra. However, with R
backgrounds the bosonic Wess-Zumino term is absent
there is no affine Lie algebra. Also, the RR backgroun
make it impossible to use the standard Ramond-Nev
Schwarz conformal field theory, within which holomorph
currents can be shown to exist under broad conditions.

However, the Green-Schwarz superstring on AdS53S5 is
similar to field theories for which other forms of higher sym
metry algebra are known to exist. That is, the field space
be regarded as a coset@5–7#,

PSU~2,2u4!

SO~4,1!3SO~5!
. ~1.1!

For certain coset theories there are two kinds of infinite sy
metry algebras. One is based on nonlocal currents@8–10#
which give rise to charges satisfying a Yangian algebra@11#;2

1It is an interesting exercise to ask what this implies about
strongly coupled world-sheet in this limit. This will be discussed
a separate paper@3#.

2Transformations satisfying a familiar affine Lie algebra can a
be constructed from the nonlocal currents@12#. These are invari-
ances of the classical equations of motion but not of the Pois
brackets~they are not symplectically generated!, and so unfortu-
nately they probably have no quantum analogs.
©2004 The American Physical Society02-1
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for reviews see Refs.@13,14#. The other is based on loca
right- or left-moving currents@15# which satisfy aW-algebra;
for a nice recent discussion see Ref.@16#.

Of course the Green-Schwarz superstring on AdS53S5 is
not precisely a coset sigma model, because of the fermi
Wess-Zumino term and thek symmetry. However, we will
show that it possesses an infinite symmetry algebra of
nonlocal form. These nonlocal charges are conserved in
k gauge. Our considerations are purely classical, but in
lated models these charges have been argued to su
quantization@17#, with modified algebras.

Our results extend immediately to the superstring
AdS33S33T4 with RR flux, for which the action has th
same structure@18#. Of course the theory with NS-NS flux i
S-dual to this, but in studying the world-sheet theory we a
implicitly expanding ingstring so this duality is not visible. In
fact the NS-NS background is a case where the string sid
exactly solvable, and so an example of what we might h
to do for QCD. Some of the methods used in this case, s
as those of Ref.@19#, may be applicable to gauge theorie
but in some ways this example is rather different. The spa
time CFT is less well understood and has no adjustable c
pling constant—thus there is no limit in which it has a cla
sical Lagrangian description.

In Sec. II we briefly review the construction of the no
local charges for bosonic nonlinear sigma models. This
based on the identification of a one-parameter family of
connections, constructed from the symmetry currents
their duals. In Sec. III we extend this to the type IIB Gree
Schwarz superstring on AdS53S5, and show that a one
parameter family of flat connections exists. In Sec. IV
search for local chiral charges. We find no charges of hig
spin, but we find that in conformal gauge the world-sh
CFT separates~at the classical level! into two factors, one
associated with AdS5 and one associated with S5. In Sec. V
we discuss further directions.

Beyond the application to QCD, the possibility of findin
an exact solution on one side of the gauge/gravity dualit
an exciting prospect. Thus far these higher symmetries
related methods have appeared in gauge/gravity in ce
special contexts. On the string side, Maldacena and M
@20# have pointed out that one can engineer nonlinear pl
wave solutions to produce an integrable world-sheet the
~see also Ref.@21#!; Mandal, Suryanarayana, and Wadia@22#
have noted that the bosonic part of the AdS53S5 string
theory is classically integrable; and, Bershadsky, Zhuk
and Vaintrob@23# have discussed theW symmetry of the
pure supergroup sigma model. On the gauge side, Mina
and Zarembo@24# have shown that the calculation o
one-loop anomalous dimensions for general scalar opera
can be recast in terms of an integrable field theory~see fur-
ther work @25#!. Belitsky, Gorsky, and Korchemsky@26#
have related the computation of anomalous dimension
certain higher spin operators to theSL(2,R) spin chain.
Also, Lipatov @27# has argued that in certain QCD process
the summation of Feynman graphs leads to an integr
model.
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II. REVIEW: NONLOCAL CHARGES IN BOSONIC
MODELS

A. Principal chiral models

Consider first the nonlinear sigma model where the fi
g(x) takes values in the groupG, and the Lagrangian isL
}Tr(] ig

21] ig). The global symmetry isG3G, left and
right multiplication. We will focus on the conserved curre
corresponding to left multiplication,

j i52~] ig!g21. ~2.1!

Note that the current takes values in the Lie algebraG. Writ-
ing the current as a one-form, so thatd* j 50, one sees tha

d j1 j ` j 50. ~2.2!

Thus the current can be regarded as a flat gauge conne
in G. Moreover, by taking general linear combinations

a5a j 1b* j , ~2.3!

one finds that

da1a`a5~a22a2b2! j ` j . ~2.4!

We have used the identities** 511, and * k` l 1k`* l
50 for general one-formsk,l . Thus there are two one
parameter families of flat connections,

al6: a5
1

2
~16coshl!,

b5
1

2
sinhl, 2`,l,`. ~2.5!

Equivalently, this can be written as

a5
y2

2y21
, b5

y22y

2y21
, 2`,y,`. ~2.6!

Given any flat connection, the equation

dU52aU ~2.7!

is integrable: action on both sides withd gives 050. On a
simply connected space, given an initial valueU(x0 ,x0)
51, this defines a group elementU(x,x0). This is just the
Wilson line, defining parallel transport with the connectiona,

U~x,x0!5P expS 2E
C
aD , ~2.8!

whereC is any contour running fromx0 to x, andP denotes
path ordering of the Lie algebra generators. The flatnes
the connection implies that this is invariant under the co
tinuous deformations ofC.

This immediately allows the construction of an infini
number of conserved charges@8,9#, by taking the unbounded
spatial Wilson line at fixed time,

Ql6~ t !5Ul6~`,t;2`,t !. ~2.9!
2-2
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This takes values inG. The contourC here is thet5const
spatial slice, so conservation ofQl6 is simply the statemen
that this is invariant under continuous shift of the conto
forward in time. Of course this moves the end points, wh
is not in general an invariance of the Wilson line, so
appropriate falloff of the fields at infinity is assume
Explicitly,

] tU~y,t;z,t !52E
y

z

dxU~y,t;x,t !ȧ1~x,t !U~x,t;z,t !

52E
y

z

dxU~y,t;x,t !@a082a0a1

1a1a0# (x,t)U~x,t;z,t !

5a0~y,t !U~y,t;z,t !2U~y,t;z,t !a0~z,t !,

~2.10!

so we needa0(6`,t) to go to zero in order for the charge
to be conserved. For closed string theory, where the sp
direction is periodic, one takes the trace to form the Wils
loop; for the supercoset case of the next section one wo
take the supertrace.

These charges can also be presented in other forms
example by Taylor expanding inl,

Ql2511 (
n51

`

lnQn . ~2.11!

For al2, which vanishes atl50, we have

al25
1

2
l* j 2

1

4
l2 j 1O~l3!. ~2.12!

Then

2Q15E
2`

`

dx j0~x! ~2.13!

is just the global left-multiplication charge. Note that w
could similarly have started the whole construction with t
right-multiplication current, and gotten a second set
charges. The next charge is bilocal,

Q252
1

4E2`

`

dx j1~x!

1
1

2E2`

`

dxE
2`

x

dx8 j 0~x! j 0~x8! ~2.14!

and so on. Through its Poisson brackets,Q2 generates all of
the higherQn , so for many purposes one can focus on t
simplest nonlocal~more precisely, multilocal! charge.

B. Coset models

Now let us considerG/H coset models, where we identif
g(x)>g(x)h(x). Left multiplication by G is still a global
symmetry. To construct the action, define
04600
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J5g21 jg52g21]g. ~2.15!

This is invariant under left multiplication. Further separateJ
according to the decomposition of the Lie algebra,G5H
% K,

J5H1K. ~2.16!

ThenH transforms as a connection underH-gauge transfor-
mations, whereasK transforms covariantly. It follows that

k5gKg21 ~2.17!

is H-gauge invariant. The Lagrangian is thenL}Tr(kik
i)

5Tr(KiK
i).

We will use capital lettersX to denote currents that ar
conjugated by right multiplication, generally correspondi
to some decomposition under representations ofH. Thenx
5gXg21 is conjugated by left multiplication. We will focus
on the H-gauge invariants, which are thex other thanh.
Notice however that thex do not have simple decompos
tions under the Lie algebra; to use such decompositions
must refer back to theX. Note also that

dx5g~dX!g212 j `x2x` j . ~2.18!

The construction of the flat connections can be exten
provided the coset is a symmetric space@28,14#. That is, in
addition to @H,H##H and @H,K##K which follow from
the subgroup structure, we must have@K,K##H as well. To
see this, note thatdJ5J`J, and decompose both sides u
der G5H% K:

dH5H`H1K`K,

dK5H`K1K`H. ~2.19!

If the coset were not a symmetric space, thenK`K would
be a sum of two pieces, one of which is inH and the other in
K.3 Transforming to thex forms, we have

dh52k`h2h`k,

dk522k`k. ~2.20!

The gauge invariantk is also the Noether current for th
global symmetry,d* k50. The current 2k is both flat and
conserved, and so can be used to construct two familie
flat connections precisely as above.

The construction of the flat connections and nonlo
charges can be extended to certain sigma models with fe
ons, including world-sheet supersymmetric sigma mod
@10,14#. The strategy is slightly different: one separates
global symmetry current into its bosonic and fermion par
which are not separately conserved, and takes a genera
ear combination of these currents and their duals. Under
propriate conditions there exist infinite families of flat co

3WhenK is a subalgebra,K`K contributes only todK, and it is
again possible to construct flat connections.
2-3
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nections. We will not review this here, but the construction
the next section has a similar structure.

III. THE GREEN-SCHWARZ SUPERSTRING ON AdS 5ÃS5

In order to make the construction as transparent as
sible, we will in the present subsection use a condensed
tation which is parallel to that of the earlier discussion. T
Green-Schwarz superstring in AdS53S5 can be regarded a
a nonlinear sigma model where the field takes values in
coset superspace@5–7#

PSU~2,2u4!

SO~4,1!3SO~5!
. ~3.1!

The bosonic part of this space,

SO~4,2!

SO~4,1!
3

SO~6!

SO~5!
5AdS53S5, ~3.2!

is a symmetric space and so the above construction give
infinite symmetry algebra. This has recently been remar
in Ref. @22#, in the context of finding extended string sol
tions in AdS53S5. The full space~3.1! is not a symmetric
space, as the denominator group is too small. The theory
differs from the simple nonlinear sigma model by the pr
ence of a Wess-Zumino term, and by thek gauge symmetry.
Thus the construction of the flat connection is slightly mo
involved.

The Lie algebra ofPSU(2,2u4) can be decomposed@5–7#

G5H1P1Q11Q2 , ~3.3!

whereH is the denominator algebra,P contains the remain
ing bosonic generators, andQ1 andQ2 are two copies of the
(4,4) representation ofH. The algebra respects aZ4 grading,
under which the charges are

H:0, Q1 :1, P:2, Q2 :3. ~3.4!

Form the current

J52g21]g5H1P1Q11Q2 . ~3.5!

The grading of the Lie algebra implies that the curldJ5J
`J decomposes as

dH5H`H1P`P1Q1`Q21Q2`Q1 ,

dP5H`P1P`H1Q1`Q11Q2`Q2 ,

dQ15H`Q11Q1`H1P`Q21Q2`P,

dQ15H`Q21Q2`H1P`Q11Q1`P. ~3.6!

It is useful to define alsoQ5Q11Q2 andQ85Q12Q2, in
terms of which

dH5H`H1P`P1
1

2
~Q`Q2Q8`Q8!,
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1

2
~Q`Q1Q8`Q8!,

dQ5H`Q1Q`H1P`Q1Q`P,

dQ85H`Q81Q8`H2P`Q82Q8`P. ~3.7!

The curls of the lower-case forms are then

dh52h`h1p`p2h`p2p`h2h`q

2q`h1
1

2
~q`q2q8`q8!,

dp522p`p2p`q2q`p1
1

2
~q`q1q8`q8!,

dq522q`q,

dq8522p`q822q8`p2q`q82q8`q. ~3.8!

In the notation of Ref.@5#,

H5
1

2
~LabJab1La8b8Ja8b8!,

P5LaPa1La8Pa ,

QI5Laa8IQaa8I . ~3.9!

Translating Eqs. 3.18, 3.19 and 3.20 of that paper, the eq
tions of motion are4

d* p5p`* q1* q`p1
1

2
~q`q81q8`q!,

05p`~* q2q8!1~* q2q8!`p,

05p`~q2* q8!1~q2* q8!`p. ~3.10!

Notice that

d* S p1
1

2* q8D50. ~3.11!

4These equations, as well as Eqs.~3.8! can be obtained from Ref
@7# with the identifications

pM
N5ZM

aJ^ab&Z
bN1ZM

āJ^āb̄&Z
b̄N

qM
N5ZM

āJābZ
bN1ZM

aJab̄Z
b̄N

q8M
N5ZM

bJābZ
āN1ZM

āJbāZ
bN

whereM andN are PSL(4u4) indices,a and ā areSp(4) indices
and ^& denotes the antisymmetric and traceless part.
2-4
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The conserved currentp1 1
2 * q8 is the Noether current of the

global left multiplication symmetry. The conservation equ
tion ~3.11! is actually the complete equation of motion. B
converting to an equation ford* (P1 1

2 * Q8) and decompos-
ing the Lie algebra one obtains all of Eqs.~3.10!.

We now construct candidate connections. We do not h
equations ford* q and d* q8. This is because the localk
symmetry is not yet fixed, so the equations of motion do
determine the full time evolution. In specific gauges one
tains equations ford* q and d* q8, but it turns out that we
can construct the connection without them. Thus define

a5ap1b* p1gq1dq8. ~3.12!

Then, noting again the identities** 511 and * k` l 1k
`* l 50, one finds

da1a`a5c1p`p1c2~p`q1q`p!

1c3~p`q81q8`p!1c4q`q1c5q8`q8

1c6~q`q81q8`q!, ~3.13!

where

c1522a1a22b2,

c252a1ag2bd,

c35b22d1ad2bg,

c45
1

2
a22g1g2,

c55
1

2
a1d2,

c65
1

2
b2d1gd. ~3.14!

The vanishing of theci gives six equations for four un
knowns, but there is a large degree of redundancy, and
markably there are again two one-parameter families of
connections. One can use the vanishing ofc5 andc6 to solve
for a and b, and the remainingci then all vanish ifd2

5g222g. Thus the connectiona is flat for

a522 sinh2l,

b572 sinhl coshl, ~3.15!

g516coshl,

d5sinhl. ~3.16!

We do not have any deep understanding of why these
connections exist. We have foundk gauges in which there
are two fewer equations, but this still requires one red
dancy. There is some connection between thek invariance
and the nonlocal charges: if we rescale the Wess-Zum
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tries are broken~except fors521, which is just the world-
sheet parity transform!.

Notice that if we ignore fermions, the bosonic terms inp
and* p reproduce the currents for the bosonic coset~though
only with the lower sign for the latter!. This shows that the
currents for differentl are independent—they are not relat
to one another byk transformations. Incidentally, the charge
cannot be strictlyk invariant, because the generator ofk
transformations does not even commute with the global s
metries. It is plausible to conjecture that all the commutat
vanish weakly—that is, they are themselvesk transforma-
tions.

IV. LOCAL CURRENTS

Consider again the bosonic examples, the group mani
or the coset, where in each case there is a current~either j or
2k) which is both flat and conserved. In world-sheet ligh
cone components,

]2 j 152
1

2
@ j 2 , j 1#. ~4.1!

It follows immediately that@15,16#

]2Tr~ j 1
n !50. ~4.2!

Thus, even though theG3G currents themselves are no
chiral, there are higher spin chiral currents. The traces are
independent, so the number of higher spin currents is fin
Similarly there is a set of left-moving currents.

In the bosonic models, the classical scale invariance
broken by quantum effects. Similarly these chiral curre
are anomalous, but under appropriate conditions there wil
a conserved though nonchiral higher spin current@15#. In the
conformally invariant supergroup models it has been arg
that the chiral currents are nonanomalous@23#.

In the AdS53S5 case there is no current that is flat an
conserved, but the chiral currents can be constructed u
weaker conditions. It suffices that

]2 j 15(
I

@aI ,bI #, @ j 1 ,aI #50, ~4.3!

so that

]2Str~ j 1
n !5n(

I
Str~ j 1

n21@aI ,bI # !

5n(
I

Str~@ j 1
n21 ,aI #,bI !50. ~4.4!

Let us try to proceed without fixing thek gauge. Since we
do not have equations ford* q andd* q8, the only candidate
for j 1 is p1 . Noting that (* v)656v6 for any one-form,
we find that

]2p15@p1 ,p21q2#2
1

4
@q12 ,q11#, ~4.5!
2-5
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while the fermionic equations of motion become

@p1 ,q12#5@p2 ,q21#50. ~4.6!

Together these imply that]2p1 is of the form ~4.3!, with
a15p1 and a25q12 . Unfortunately these currents are a
tually trivial. Since Str(p1

n )5Str(P1
n ), we only need traces

of the broken bosonic generators. BySO(4,1)3SO(5) in-
variance, these can only involve products ofP1

a P1
a and

P1
a8P1

a8 , wherea is an SO(4,1) vector index anda8 is an
SO(5) vector index. In fact one finds that

Str~P1
2k!}~2P1

a P1
a !k2~P1

a8P1
a8!k. ~4.7!

The first minus sign is from the Minkowski signature
AdS5, and the second is from the supertrace. Fork51 this is
the world-sheetT11 , which vanishes by the metric equatio
of motion, while for allk.1 it is a multiple ofT11 . Thus
these would-be chiral currents vanish. Notice however tha
we go to conformal gauge, where the vanishing ofT11 is
not imposed as an equation of motion, then the fact that
current ~4.7! is chiral for all k implies that ]2(P1

a P1
a )

5]2(P1
a8P1

a8)50 separately.
Of course, it could well be that there are currents that

chiral only in certain gauges. In the flat-spacetime case,
example, only after fixing the gauge are the world-sh
fields ]X andu chiral. A natural gauge for us is

q125q2150. ~4.8!

It should be possible to reach such a gauge, at least a
level of the classical solutions: the equations of motion~4.6!
already imply half of this, and there is enough gauge fr
dom to impose the rest. In the flat-spacetime theory,
analogous gauge makes the world-sheet fermions free.
fortunately, while the field and Maurer-Cartan equations s
plify substantially in this gauge, there are no additional c
rents having the property~4.3!.

V. DISCUSSION

The obvious next question is the use of these charges.
classic application is in theories with a mass gap, with
spatial coordinate unbounded. The relevant observabl
then theS-matrix. The higher spin local conservation law
@15# imply the absence of particle production and the fact
ization of the n-particle S-matrix in terms of two-particle
ng
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S-matrices, allowing the fullS-matrix to be deduced~Ref.
@29# and references therein!. These same constraints can
derived from the nonlocal charges@17#. The argument ap-
pears to be less straightforward, but in at least some circ
stances the local charges can be regarded as limits of
nonlocal charges@13#, so the latter are sufficient.

These nonlocal charges also form the starting point for
classical and quantum inverse scattering methods, which
related in turn to the Bethe ansatz~Ref. @30# lists some re-
views!. We note that the existence of these charges is a n
trivial fact: they do not exist in all cases~e.g. the
nonsymmetric-space cosets!, and in such cases when there
a mass gap there is presumably particle production in s
tering. It is less clear how conformal theories with th
charges are distinguished.

We are interested in conformally invariant theories, on
bounded space~the open or closed string!. In this case the
simplest and most obvious observable is the partition fu
tion. This encodes the set of operator dimensions~in space-
time conformal theories such asN54 Yang-Mills! or the
meson and glueball masses~in confining theories!. In fact,
this has been found for certain conformally invariant mod
based on supergroups@31#. This was done not by direct us
of nonlocal charges, but by related methods involving in
grable lattice models. Thus, our result on the existence
these charges in the AdS53S5 theory should be taken a
motivation to apply the full set of methods of integrable fie
theory to this system.

For the nonlocal charges, the next step is to determ
their classical Poisson bracket algebra, and to extend th
the quantum theory. This requires us to deal with thek gauge
invariance~which we were largely able to sidestep!, perhaps
along the lines of Ref.@32#. The conformally invariant su-
pergroup and supermanifold models@33,23,34# provide inter-
esting warmup problems, without the complication ofk
symmetry. It is also interesting to ask what is dual on t
gauge side to the symmetries that we have found. Finally,
extension to less symmetric and more QCD-like theories
challenging.
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