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New optimization methods for converging perturbative series with a field cutoff
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We take advantage of the fact that, inlf4 problems, a large field cutofffmax makes a perturbative series
convergetoward values exponentially close to the exact values to make optimal choices offmax. For a
perturbative series terminated at even order, it is in principle possible to adjustfmax in order to obtain the exact
result. For a perturbative series terminated at odd order, the error can only be minimized. It is, however,
possible to introduce a mass shiftm2→m2(11h) in order to obtain the exact result. We discuss weak and
strong coupling methods to determinefmax and h. The numerical calculations in this article are performed
with a simple integral with one variable. We give arguments indicating that the qualitative features observed
should extend to quantum mechanics and quantum field theory. We find that optimization at even order is more
efficient than optimization at odd order. We compare our methods with the lineard expansion~LDE! ~com-
bined with the principle of minimal sensitivity!, which provides an upper envelope for the accuracy curves of
various Pade´ and Pade´-Borel approximants. Our optimization method performs better than the LDE at strong
and intermediate coupling, but not at weak coupling, where it appears less robust and subject to further
improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the
strong coupling expansion, in order to get accuracies comparable to ours.

DOI: 10.1103/PhysRevD.69.045014 PACS number~s!: 11.10.Ef, 11.15.Bt, 12.38.Cy, 31.15.Md
e
c
o

e

e
r
ti
(
ha
in

ti
ac
ra
io
e
a
b

r

e
n
u
m
to

. In
for

that
his
the
r

it
s
tive
uc-
g

lose

me
le

p-
ent
d 3
he
on-
nd
n
ith
in-

us
we
pli-
tant

al

o

I. INTRODUCTION

Perturbative methods in quantum field theory and th
graphical representation in terms of Feynman diagrams
be credited for many important physics accomplishments
the 20th century@1,2#. Despite these successes, it is also w
known that the perturbative series are asymptotic@3,4#. In
concrete terms, this means that, for any fixed coupling, th
exists an orderK in perturbation beyond which higher-orde
terms cease to provide a more accurate answer. In prac
this order can often be identified by the fact that theK
11)th contribution becomes of the same order or larger t
the previous ones. The ‘‘rule of thumb’’ consists then
dropping all contributions of orderK11 and larger, allowing
errors that are usually slightly smaller than theKth contribu-
tion.

For low-energy processes involving only electromagne
interactions, the rule of thumb would probably be satisf
tory. On the other hand, when electroweak or strong inte
tions are turned on, it seems clear that for some calculat
the errors associated with this procedure are getting clos
the experimental error bars of precision tests of the stand
model @5#. In some cases, the situation can be improved
using Pade´ approximants and/or Borel transforms@6#. How-
ever, such methods rarely provide rigorous error bars and
not always work well at large coupling or when nonpertu
bative effects are involved.

In the 21st century, the comparison between precise
periments and precise calculations may become our o
window to physics beyond the standard model. It is th
crucial to develop methods that go beyond this rule of thu
and provide controllable error bars that can be reduced
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level that at least matches the experimental error bars
order to achieve this goal, we need to start with examples
which it is possible to obtain accurate numerical answers
can be compared with improved perturbative methods. T
can be achieved with a reasonable amount of effort in
case of scalar field theory~SFT!, which we consider as ou
first target.

For SFT formulated with the path integral formalism,
has been established@7,5# that the large field configuration
are responsible for the asymptotic nature of the perturba
series. A simple solution to the problem consists of introd
ing a uniform large field cutoff, in other words, restrictin
the field integral at each site toufxu,fmax. This yields
series converging toward values that are exponentially c
to the original ones@5# provided thatfmax is large enough.
Numerical examples for three models@5# show that at fixed
fmax, the accuracy of the modified series peaks at so
special value of the coupling. At fixed coupling, it is possib
to find an optimal value offmax for which the accuracy of
the modified series is optimal. The determination of this o
timal value is the main question discussed in the pres
article. When comparing the three subgraphs of Figs. 2 an
of Ref. @5# that illustrate these features, one is struck with t
similarity in the patterns observed for the three models c
sidered ~a simple integral, the anharmonic oscillator, a
SFT in three dimensions in the hierarchical approximatio!.
It is thus reasonable to develop optimization strategies w
the simplest possible example, namely, the one-variable
tegral, for which the calculation of the coefficients of vario
expansions does not pose serious technical difficulties. As
will see, there exist several ways to proceed and the com
cated dependence of the accuracy on the coupling cons
certainly justifies this initial simplification.

In this article we address the question of the optim
choice of the field cutofffmax with the simple integral

Z~l!5E
2`

1`

df e2(m2/2)f22lf4
. ~1!

f

©2004 The American Physical Society14-1



o
o

-
s
s

o
we
ex
ea
ie
iti
fe
ca
fo

lin

ca
b

In
e

th
-
a
-

. V
d

n
ro
W
te
i

io
t

fo

s
fo
d

nd

is
d is

lly.
ng
ar
in
ifi-
e
es
the
r. It
ious
ves
sed
pe:

acy
en-

ac-

n-
a-

the
The
r

tion

B. KESSLER, L. LI, AND Y. MEURICE PHYSICAL REVIEW D69, 045014 ~2004!
This integral can be seen as a zero-dimensional field the
It has been often used to develop new perturbative meth
@4#, in particular the LDE@8#. The coefficient of the qua
dratic termm2 is set to 1 in all the numerical calculation
discussed hereafter; however, it will sometimes be used a
expansion parameter.

The effects of a field cut on this integral and the reas
why it makes the perturbative series converge are revie
in Sec. II. Some useful features of the strong coupling
pansion to be used later are discussed in Sec. III. Our tr
ment will be different for even and odd orders. For ser
truncated at even orders, the overshooting of the last pos
contribution can be used to cancel the undershooting ef
of the field cut. In other words, the errors due to the trun
tion of the series and the field cutoff compensate exactly
a special value of the field cutofffmax

opt (l). This value is
calculated approximately using the weak and strong coup
expansion in Sec. IV. For series truncated at odd orders~Sec.
V!, the two effects go in the same direction and the error
only be minimized. However, an exact cancellation can
obtained by using a mass shiftm2→m2(11h). We then
need to findh(fmax,l) such that the cancellation occurs.
practice, it is desirable to haveh as small as possible and w
will in addition impose that]h/]fmax50. This condition
fixes the otherwise unspecifiedfmax.

The methods presented here have qualitative feature
can be compared with the LDE@8#, where the arbitrary pa
rameter can be seen as providing a smooth cut in field sp
or with variational methods@9#, where weak and strong cou
pling expansions are combined. This is discussed in Sec
The main conclusion is that the method that consists of
termining the value offmax that is optimal for even series i
the weak coupling, using the strong coupling expansion, p
vides excellent results at moderate and strong coupling.
also show that it is possible to fix the arbitrary parame
appearing in the LDE using the strong coupling expansion
order to get accuracies comparable to ours. In the conclus
we discuss a possible improvement at weak coupling and
extension of the model in more general situations.

II. EFFECTS OF A FIELD CUTOFF

In this section, we discuss the effects of a field cutoff
the integral defined by Eq.~1!. We first study the problems
associated with the usual perturbation theory. The ba
question in ordinary perturbation theory is to decide
which values of the coupling is the truncated series at or
K a good approximation, which in our example means

Z~l!. (
k50

K

akl
k, ~2!

with perturbative coefficients

ak5
~21!k

k! E
2`

1`

dfe2(m2/2)f2
~f4!k

5
~21!k

k!
G~2k11/2!~2/m2!2k11/2. ~3!
04501
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The ratiosak11 /ak.216k grow linearly whenk→`, and
in order to get a good accuracy at orderK, we need to require
l!1/16K.

An alternate way of seeing this is that the integra
e2(m2/2)f2

f4k/k! is maximum at f52Ak. On the other
hand, the truncation ofe2lf4

at orderK is accurate provided
that lf4!K. The truncated expansion of the exponential
a good approximation up to the region where the integran
maximum, provided thatl(2AK)4!K, which implies l
!1/16K.

It is useful to represent the above discussion graphica
The number of significant digits as a function of the coupli
is given in Fig. 1. It is important for the reader to get famili
with this kind of graph, because we will use this form
multiple occasions later in the paper. The number of sign
cant digits isminusthe logarithm to base 10 of the relativ
error. At sufficiently small coupling, the behavior becom
linear with a slope that is minus the order. Remembering
minus sign above, the intercept diminishes with the orde
is possible to construct an envelope for the curves at var
orders, in other words, a curve that lays above all the cur
and is tangent at the point of contact. In Fig. 1, we have u
a semiempirical formula to draw an approximate envelo
we have used orderk as the~continuous! parameter of a
parametric curve

x52 log10~16k!,

y52 log10$@16~k11!#2k21uak11up21/2%. ~4!

A careful examination of the figure at low coupling~e.g.,
near 1022) shows that as the order increases, the accur
increases up to an order where it starts decreasing. The
velope is the boundary to a range of accuracy that is in
cessible using ordinary perturbation theory.

A simple way to convert the asymptotic series into a co
verging one@5,7# consists of restricting the range of integr

FIG. 1. Number of significant digits versusl at order
1,2, . . .,15. In all graphs, all the logarithms are in base 10. As
order increases, the curve rotates clockwise and moves left.
thick line is the envelope, Eq.~4!. The large blank area in the uppe
right corner is the region not accessible in regular perturba
theory.
4-2
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NEW OPTIMIZATION METHODS FOR CONVERGING . . . PHYSICAL REVIEW D69, 045014 ~2004!
tion to ufu,fmax. On the restricted domain,e2lf4
con-

verges uniformly and one can then interchange legally
sum and the integral. We are then considering a modi
problem, namely, the perturbative evaluation of

Z~l,fmax!5E
2fmax

1fmax
df e2(m2/2)f22lf4

. ~5!

As the order increases, the peak of the integrand ofak @see
Eq. ~3!# moves acrossfmax and the large-order coefficient
are suppressed by an inverse factorial:uaku,A2pfmax

4k /k!.
At the same time, we have an exponential control of
error:

uZ~l!2Z~l,fmax!u,2e2lfmax
4 E

fmax

`

df e2(m2/2)f2
. ~6!

Everything works in a very similar way for other numer
cally solvablelf4 problems inD51 ~anharmonic oscilla-
tor! andD53 ~scalar field theory in the hierarchical approx
mation!. The only difference being that in these two cases
more demanding computational effort is required. T
should be kept in mind while discussing the general strat
to be followed. If we could calculate as many perturbat
coefficients as needed, an obvious strategy would be to
a field cutfmax large enough to satisfy some accuracy
quirement. Then, given that the modified series is conv
gent, we could calculate enough coefficients to get an ans
with the required accuracy. Unfortunately for any proble
other than the integral, it is difficult to calculate the coef
cients. A more realistic approach is to assume that we
only reach a fixed order and pick the field cutoff in such
way that at this order, we reach an optimal accuracy. Be
doing this with a different procedure for even and odd ord
as explained in the Introduction, we will first discuss t
strong coupling expansion of Eq.~1!.

III. STRONG COUPLING EXPANSION

In the following, we will often use the strong couplin
expansion of the integral~1! and a few points should b
clarified. Our original integralZ(l) vanishes in the limit
wherel→`. Howeverl1/4Z(l) has a finite nonzero limit
and can be expanded in powersm2/l1/2:

l1/4Z~l!5(
l 50

`

~m2/l1/2! lbl , ~7!

with

bl5~21! l~1/2! l 11~1/l ! !G~ l /211/4!. ~8!

This expansion is converging over the entire complex pla
However, if we look at the first few orders displayed later
Fig. 6, one might be tempted to conclude that the series
a finite radius of convergence because the curves repre
ing the significant digits seem to have a ‘‘focus’’ nearl
51021.5. To be completely specific, we mean that in Fig.
the four curves labeled S0 to S4 seem to intersect at a g
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point. However, as many more orders are displayed, the
parent focus moves left and a ‘‘caustic’’~envelope! appears.
This is shown in Fig. 2. The only difference with Fig. 1
that the region that is inaccessible is now below. In oth
words, it is impossible to reach arbitrarily low accuracy u
ing the strong coupling expansion.

In lattice field theory, the strong coupling expansion
similar to the high-temperature expansion and forD.2 we
expect that the expansion has a finite radius of converge
due to the existence of a low-temperature phase. This dif
ence is not fundamental for the discussion that follows
cause we never use the large-order contributions of
strong coupling expansion. Consequently, for any pract
purpose, the situation will be similar to the case where
have a finite radius of convergence.

IV. EVEN ORDERS

If fmax is the only adjustable parameter, the perfe
choice is a solution of

E
2`

1`

df e2(m2/2)f22lf4
5 (

k50

K

ak~fmax!l
k, ~9!

with

ak~fmax!5
~21!k

k! E
2fmax

1fmax
df e2(m2/2)f2

~f4!k. ~10!

Below, we prove that this equation has no solution whenK is
odd, andK is assumed to be even in this section. This eq
tion can be solved numerically with good accuracy us
Newton’s method or a binary search. Our goal is to fi
approximate methods~which can be used in more compl
cated situations! to solve this equation and compare the
with the accurate numerical solutions. In the rest of this s
tion, we consider the cases of strong and weak coupling
timates of the optimal value offmax(l).

FIG. 2. Number of significant digits versusl at order
1,11,21, . . . ,141 in the strong coupling expansion. As the ord
increases, the curve rotates counterclockwise and moves left.
4-3
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B. KESSLER, L. LI, AND Y. MEURICE PHYSICAL REVIEW D69, 045014 ~2004!
A. Strong coupling estimates

Multiplying both sides of Eq.~9! by l1/4 and expanding in
powers of m2/l1/2 we obtain at zeroth order thatlfmax

4

.CK
(0) , with CK

(0) a solution of

4(
k50

K

~21!k
~CK

(0)!k11/4

k! ~4k11!
5G~1/4!. ~11!

The solutions of this transcendental equation are displaye
Fig. 3 for various ordersK. Asymptotically, CK

(0).0.75
10.28K. These solutions can be compared with the so
tions DK of the equation

e2DK5~DK!K/K!, ~12!

which can be used as a rough estimate oflfmax
4 . Asymp-

totically, DK.AK1•••, whereA50.278465••• is a solu-
tion the transcendental equatione2A215A.

This lowest-order~in the strong coupling! estimate of the
optimal value offmax is quite good. In Fig. 4, we see that fo
K56 it provides a significant improvement compared to
regular perturbative series at order 6 forl.1022. In Fig. 4,

FIG. 3. SolutionsCK
(0) , DK , andEK , defined by Eqs.~11!, ~12!

and, later in the text, by Eq.~18!.

FIG. 4. Significant digits obtained with the optimal cutfmax(l)
estimated using a strong coupling expansion at lowest o
~W6S0!, compared to results at three fixed cuts and regular pe
bation theory~PT6! at order 6.
04501
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we also compare with the accuracy at fixed cuts. For a fi
value offmax, Eq.~9! has one solution for a givenl and the
accuracy becomes infinite at this value. In this figure we
only peaks of finite height, but we see that the approximat
goes quite high in the peak; in other words, we localize
optimal value quite well.

We can now proceed to higher orders inm2/l1/2 using the
expansion

lfmax
4 5(

l 50
CK

( l )~m2/l1/2! l , ~13!

and set it in the expansion in the same parameter of Eq.~9!.
The new coefficients obey linear equations that can be so
order by order. The optimalfmax(l) calculated at the four
lowest orders inm2/l1/2 are shown in Fig. 5. As explained i
Sec. III, below a certain value ofl a few orders in the strong
coupling expansion will not help, and one needs much hig
order to improve the estimate in this region. After a sh
reflection, one can conclude that the ‘‘focus’’ observed
Fig. 6 is compatible with Fig. 5.

A few words should be said about the notations we use
the curves in the figures. When we write W6S1, this me
that we use the weak coupling expansion up to orderK56 in
Eq. ~9! ~this is the W6 part! and a strong coupling expansio
at order 1 inm2/l1/2 ~this is the S1 part! in the calculation of
the optimalfmax. In addition, PT8 means the 8th order
regular perturbation theory. In some figures, some of the
dices appear directly near the corresponding curve.

The accuracy of the truncated series atfmax calculated
with the higher-order corrections inm2/l1/2 in Fig. 6. For
comparison, the accuracy obtained by using only the str
coupling expansion Eq.~7! is also shown. The figure make
clear that the method proposed here represents a signifi
improvement compared to the separate use of the con
tional weak and strong coupling expansions.

B. Weak coupling

As we learned in the previous subsection, asl decreases,
the optimal value offmax increases. In the limit of a weak
coupling, the ‘‘tails’’ of the integral that we removed becom
a small quantity. It is thus advantageous to split the left-ha

er
r-

FIG. 5. Estimates of the optimalfmax(l) at the first four orders
in the strong coupling expansion
4-4
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NEW OPTIMIZATION METHODS FOR CONVERGING . . . PHYSICAL REVIEW D69, 045014 ~2004!
side ~l.h.s.! of Eq. ~9! into its bulk and tails and expan
e2lf4

in the bulk where it is justified. The resulting~exact!
equation forfmax is then

2E
fmax

1`

df e2(m2/2)f22lf4
52 (

k5K11

`

ak~fmax!l
k.

~14!

In the limit of very smalll, Eq. ~14! becomes

@2/~m2fmax!#e
2(m2/2)fmax

2
.2aK11lK11. ~15!

The l.h.s. has a functional form similar to semiclassical e
mates of the energy shifts in quantum mechanics@5,10#. A
more refined version of this equation is

2E
fmax

1`

df e2(m2/2)f22lf4
.2aK11~fmax!l

K11. ~16!

It is clear that the two above equations have solutions o
whenK is even because in this caseaK11,0. In Appendix
A, it is shown that this property extends to the exact Eq.~9!.
More precisely the r.h.s. of Eq.~9! is positive forK even and
negative forK odd.

Equation ~16! can be further improved by includin
higher-order truncations at odd orders:

2E
fmax

1`

df e2(m2/2)f22lf4
52 (

k5K11

K13

ak~fmax!l
k,

~17!

and so on. In the following, we refer to the successive
proximations defined by Eqs.~15!, ~16!, and~17! as approxi-
mations A1, A2, and A3, respectively. The estimates of
optimal fmax obtained with these approximations and t
corresponding accuracies as a function of the coupling
shown in Figs. 7 and 8.

FIG. 6. Significant digits obtained with the optimal cutfmax(l)
~corresponding to a truncated expansion at order 6 in the w
coupling! estimated using the strong coupling expansion at order
1, 2, and 3~solid lines!, compared to significant digits using onl
the strong coupling expansion of the integral at the same orde
the strong coupling~dashed lines! and regular perturbation theory a
order 6~PT6!.
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One can see that approximation A1 provides good e
mates offmax optimally only at very smalll. On the other
hand, approximations A2 and A3 both provide good es
mates even at large coupling. Not surprisingly, the accur
of approximation A2~A3! merges with order 7~9! in regular
perturbation theory.

V. ODD ORDERS

As explained in Sec. IV, for series truncated at oddK, the
r.h.s. of Eq.~9! is negative. The best that we can do is
minimize the error~i.e., the difference between the r.h.s. a
the l.h.s.!. The minimization condition implies thatlfmax

4

5EK , the unique~see Appendix A, wheref K is defined!
solution of

(
k50

K
~2EK!k

k!
5 f K~Ek!50. ~18!

In the following, we refer to this condition as the principle
minimal sensitivity~PMS! condition. This terminology has
been used@8# in the LDE where the variational parameter
fixed by requiring that the final estimate depend as little

ak
0,

in

FIG. 7. Estimates of the optimalfmax(l) obtained with the
approximations A1, A2, and A3 defined in the text forK56, com-
pared to numerical values~empty circles!.

FIG. 8. Significant digits obtained with the approximations A
A2, and A3 forK56, compared to order 6 to 9 in regular pertu
bation theory~solid lines rotating clockwise as the order increase!.
4-5
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B. KESSLER, L. LI, AND Y. MEURICE PHYSICAL REVIEW D69, 045014 ~2004!
possible on this parameter. The solutionsEK are displayed in
Fig. 3, which shows that they are asymptotically close to
solutionsCK21

(0) obtained at the lowest order in the stron
coupling expansion. The accuracy obtained using the P
condition is by construction the envelope of the accura
obtained for all possiblefmax. This is illustrated in Fig. 9.

Nevertheless, an exact match between the original inte
and the truncated perturbative expansion with a field cut
be obtained by using a mass shiftm2→m2(11h). Using
obvious notations, we denote the cut integral defined in
~5! with this mass shiftZ(l,fmax,h). The level curves of
the perturbative expansion ofZ(l,fmax,h) at fixedl follow
different patterns at odd and even orders as illustrated in
10.

At even order, all the level curves cross theh50 line and
there is no need for a mass shift. This case was discuss
Sec. IV. At odd order, the level curve corresponding to
exact valueZ(l) defines a curveh(fmax). In Appendix B,
we show that this curve stays in the half-planeh,0. We are
now free to pick an arbitrary value offmax and adjusth
5h(fmax). In the following we will pick fmax in such a
way thath is as small as possible. This can be accomplis
by solving the equation

]h/]fmax50 ~19!

for fmax. In Appendix B, we show that this condition i
indeed equivalent to the PMS condition~18! and conse-
quently we have simplyfmax5(EK /l)1/4. With this choice,
the introduction ofh is a natural continuation of the optim
zation ath50. Estimations ofh for this choice offmax can
be obtained approximately at strong and weak coupling.

In the limit of arbitrarily small coupling, we can treath as
a quantity of orderlK11 and use it to make up for the ‘‘miss
ing’’ even contribution that would allow a solution of Eq.~9!.
This reasoning implies the weak coupling estimate

h.2lK11aK11~fmax!m~2/p!1/2. ~20!

On the other hand, at strong coupling,h varies asl1/2 and
we need to expand

FIG. 9. Significant digits obtained with the PMS condition com
pared to the same quantity at fixed cuts.
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m2hl21/25(
l 50

`

Bl~m2/l1/2! l . ~21!

The two approximations work well in their respective rang
of validity as shown in Fig. 11. The significant digits ob
tained with the various procedures are displayed in Fig.
One sees that the mass shift provides a significant impro
ment compared to the PMS condition ath50. If we com-
pare the two methods in their respective region of valid
the improvement provided by the strong coupling method

FIG. 10. Level curves of the perturbative expansion
Z(l,fmax,h) at order 6 and 7 inl evaluated atl50.1.

FIG. 11. Optimalh as a function ofl. Numerical values~empty
circles! compared to approximate values obtained with the we
coupling expansion~W7W8! corresponding to Eq.~20! with K57
and the orders 0, 1, and 2 in the strong coupling expansion~W7S!
from Eq. ~21!.
4-6
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NEW OPTIMIZATION METHODS FOR CONVERGING . . . PHYSICAL REVIEW D69, 045014 ~2004!
more substantial. Not surprisingly, the expansion W7W
merges with order PT8 at weak coupling.

We can now compare the accuracy of various estima
based on strong coupling expansions at the same orde
m2/l1/2. Examples are shown in Fig. 13 where the accur
obtained with three methods relying on estimates at or
one in m2/l1/2 are displayed. One can see that as the c
pling becomes large, the accuracy increases at the same
in the three cases. As we already know in the even case
method significantly improves the basic strong coupling
pansion from Eq.~7!. However, the improvement based o
even orderK52q in l performs significantly better than th
improvement based on the odd orderK52q11. Conse-
quently, in the next section when we compare with oth
existing methods, we will restrict ourselves to the even ca

VI. COMPARISON WITH OTHER METHODS

There exist several methods to improve the accuracy
asymptotic series. These include Pade´’s approximants@6# ap-
plied to the series itself or its Borel transform and the LD

FIG. 12. Significant digits for the same approximations as
Fig. 11 compared to the regular perturbative series at orders 7 a
~thin solid line!, the PMS result withh50 at order 7~small dots!
and the envelope of regular perturbation theory~thick solid line!.

FIG. 13. Significant digits obtained with the strong coupli
expansion at order 1 inm2/l1/2 and the approximations W6S1 an
W7S1 discussed previously.
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@8#. These methods are compared in Fig. 14.
One can see that at weak coupling, the LDE provides

upper envelope for the accuracy, while at strong couplin
prevails more significantly. Consequently, we only need
compare our results to the LDE. This is done in Fig.
where we see that at strong and moderate coupling,
methods provide a significant improvement compared to
LDE. On the other hand, at weak coupling, the improv
ments that we propose do not perform as well as the LD

The results of Fig. 15 have been obtained by making
replacements@8# m2→V21d(m22V2) and l→dl. We
then expanded the perturbative series at orderK in l to order
K in d. The arbitrary parameterV2 was determined by re
quiring that the derivative of the estimate with respect toV2

vanishes. This was called the PMS condition in Ref.@8# and
it has a solution at odd orders only.

At even orders, it is, however, possible to proceed in
way similar to what we have done in Sec. IV A, name
matching the strong coupling expansion of the estimate w
the usual strong coupling of the integral in order to det
mine the arbitrary parameter. At order zero inm2/l1/2, this
results in a transcendental equation that has a solutio
even orders only. Higher-order corrections tol/V4 can then

d 8

FIG. 14. Comparison of the delta expansion at order 7 (d7) with
Padéapproximants and the Pade´-Borel method. In both cases th
approximants@4/3#, @3,4# and @2,5# have been used.

FIG. 15. Comparison of the delta expansion at order 7 (d7) with
various methods discussed previously and regular perturbatio
order 7~PT7!.
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be calculated by solving linear equations just as in Sec. IV
The numerical results forK56 are displayed in Fig. 16. On
can see that this method and the method presented in
IV A have very similar accuracies at moderate and stro
coupling.

The procedure we have used above is closely relate
variational methods@9# where weak and strong coupling e
pansions were combined for various purposes. The only
ference is that here we simply imposed the matching with
strong coupling expansion rather than resorting to extrem
tion procedures or large-order scaling arguments.

VII. CONCLUSIONS

In conclusion, for even series in the weak coupling,
method that consists of determining the optimal value
fmax using the strong coupling expansion provides excell
results at moderate to strong coupling. There is room
improvement at weak coupling. In particular, progress co
be made by finding accurate approximations to calculat
large number of terms in the r.h.s. of Eq.~14!.

The methods used here can be extended to quantum
chanics and in particular to the anharmonic oscillator wh
similar calculations have been partially performed@14#. We
are planning to apply the methods developed here for hig
dimensional SFT where the LDE seems to converge v
slowly @11# ~see also Refs.@12,13# for methods for improv-
ing the situation!. One difficulty is to calculate the perturba
tive coefficients with a field cutoff. Monte Carlo method
have been recently developed for this purpose@15#.

FIG. 16. Significant digits obtained using the strong coupl
expansion at order 1 inm2/l1/2 to determineV in the d expansion
at order 6 compared the approximation W6S1 discussed previo
04501
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APPENDIX A: NONEXISTENCE OF SOLUTIONS
IN THE ODD CASE

In this appendix, we show that Eq.~9! has no solution
whenK is odd. For this purpose we introduce the trunca
exponential series:

f K~x!5 (
k50

K

~21!kxk/k!, ~A1!

and their complement

gK~x!5 (
k5K

`

~21!kxk/k!. ~A2!

Using the fact thatf K8 52 f K21 and a similar relation forg,
one can show by induction that forK even, f K is strictly
positive, andgK is positive with its only zero at zero. ForK
odd andx.0, gK is negative and decreases. Given that
r.h.s. of Eq.~14! is an integral with a positive measure o
2gK11 over positive argument, we see that the r.h.s. is po
tive whenK is even and negative whenK is odd. Since the
l.h.s. is always positive, they are no solutions forK odd.

APPENDIX B: SPECIAL FEATURES OF h„fmax…

The functionh(fmax) is the solution of the equation

Z~l!5E
2fmax

fmax
e2(m2/2)[11h(fmax)]f

2
f K~lf4!. ~B1!

In this appendix,K is assumed to be odd. Forx.0, we have
f K(x),e2x becausegK11(x).0 for K11 even andx.0
~see Appendix A!. We can compensate this underestimati
by making the integration measure more positive, in ot
words, picking the parameterh,0. The l.h.s. of Eq.~B1! is
independent offmax. Taking the derivative of Eq.~B1! with
respect tofmax and imposing thatfmax is a solution of
]h/]fmax50, we obtain that for this special value offmax,
we have

f K~lfmax
4 !e2(m2/2)[11h(fmax)]fmax

2
50, ~B2!

which implies the PMS condition~18!.
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