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New optimization methods for converging perturbative series with a field cutoff
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We take advantage of the fact that,Nip* problems, a large field cutofh,,,, makes a perturbative series
convergetoward values exponentially close to the exact values to make optimal choicés,Qf For a
perturbative series terminated at even order, it is in principle possible to @gjystn order to obtain the exact
result. For a perturbative series terminated at odd order, the error can only be minimized. It is, however,
possible to introduce a mass shiff—m?(1+ ) in order to obtain the exact result. We discuss weak and
strong coupling methods to determigg, ., and ». The numerical calculations in this article are performed
with a simple integral with one variable. We give arguments indicating that the qualitative features observed
should extend to quantum mechanics and quantum field theory. We find that optimization at even order is more
efficient than optimization at odd order. We compare our methods with the liheapansion(LDE) (com-
bined with the principle of minimal sensitivitywhich provides an upper envelope for the accuracy curves of
various Padend PadeBorel approximants. Our optimization method performs better than the LDE at strong
and intermediate coupling, but not at weak coupling, where it appears less robust and subject to further
improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the
strong coupling expansion, in order to get accuracies comparable to ours.
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I. INTRODUCTION level that at least matches the experimental error bars. In
.order to achieve this goal, we need to start with examples for

Perturbative methods in quantum field theory and theit,hich it is possible to obtain accurate numerical answers that

graphical representation in terms of Feynman diagrams cafan be compared with improved perturbative methods. This
be credited for many important physics accomplishments ogan be achieved with a reasonable amount of effort in the
the 20th century1,2]. Despite these successes, it is also wellcase of scalar field theoBFT), which we consider as our
known that the perturbative series are asymptfi@]. In  first target.

concrete terms, this means that, for any fixed coupling, there For SFT formulated with the path integral formalism, it
exists an ordeK in perturbation beyond which higher-order has been establish¢d,5] that the large field configurations
terms cease to provide a more accurate answer. In practic8/€ responsible for the asymptotic nature of the perturbative
this order can often be identified by the fact that the ( series. A simple solution to the problem consists of introduc-

I a uniform large field cutoff, in other words, restricting
+1)th contribution becomes of the same order or larger tha ga : o LS
. . . < .
the previous ones. The “rule of thumb” consists then mt e field integral at each site {p| < $max. This yields

. o ) series converging toward values that are exponentially close
dropping all contributions of ordé€ + 1 and larger, allowing 5 the original one$5] provided thate,., is large enough.

errors that are usually slightly smaller than tith contribu-  Nymerical examples for three modéB| show that at fixed
tion. ) ) _¢max, the accuracy of the modified series peaks at some
For low-energy processes involving only electromagneticspecial value of the coupling. At fixed coupling, it is possible
interactions, the rule of thumb would probably be satisfacto find an optimal value ofp,., for which the accuracy of
tory. On the other hand, when electroweak or strong interacthe modified series is optimal. The determination of this op-
tions are turned on, it seems clear that for some calculationgmal value is the main question discussed in the present
the errors associated with this procedure are getting close farticle. When comparing the three subgraphs of Figs. 2 and 3
the experimental error bars of precision tests of the standaraf Ref.[5] that illustrate these features, one is struck with the
model[5]. In some cases, the situation can be improved bysimilarity in the patterns observed for the three models con-
using Padeapproximants and/or Borel transfori®j. How- sidered (a simple integral, the anharmonic oscillator, and
ever, such methods rarely provide rigorous error bars and d8FT in three dimensions in the hierarchical approximation
not a|WayS work well at |arge Coup”ng or when nonpertur-lt IS thus reasonable to deVeIOp Opt|m|zat|0n Strateg!es W|th
bative effects are involved. the simplest possible example, namely, the one-variable in-
In the 21st century, the comparison between precise exegral, f_orwh|ch the calculatlo_n of the co_efﬂue_n_ts of various
periments and precise calculations may become our onl xpansions does_not pose serious technical difficulties. As we
window to physics beyond the standard model. It is thusa'” see, there exist several ways to proceed and the compli-

crucial to develop methods that go beyond this rule of thumbcateoI dependence of the accuracy on the coupling constant

. ertainly justifies this initial simplification.
and provide controllable error bars that can be reduced to & In this article we address the question of the optimal

choice of the field cutofip, ., With the simple integral

do o~ (M?2)¢?~rg* (1)

—o0
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This integral can be seen as a zero-dimensional field theory. INTEGRAL

It has been often used to develop new perturbative methods 120 y T T T
[4], in particular the LDE[8]. The coefficient of the qua-
dratic termm? is set to 1 in all the numerical calculations
discussed hereafter; however, it will sometimes be used as an
expansion parameter.

The effects of a field cut on this integral and the reason
why it makes the perturbative series converge are reviewed
in Sec. Il. Some useful features of the strong coupling ex-
pansion to be used later are discussed in Sec. lll. Our treat-
ment will be different for even and odd orders. For series
truncated at even orders, the overshooting of the last positive : !
contribution can be used to cancel the undershooting effect -2.5 -2.0 -1.5 -1.0 -0.5 0.0
of the field cut. In other words, the errors due to the trunca- log,
tion of the series and the field cutoff compensate exactly for
a special value of the field cuto® (). This value is

[
o

SIGNIF. DIGITS

O N b O ©

FIG. 1. Number of significant digits versus at order

calculated approximatelv using the weak and strond cou Iinl’z’ ...,15. In all graphs, all the logarithms are in base 10. As the
PP y 9 9 P %rder increases, the curve rotates clockwise and moves left. The

eXp?]nsmn InﬁSeC. IV. Forhse”es trudr.lcat?d at ogdhor(ms. thick line is the envelope, E@4). The large blank area in the upper
V), the two effects go in the same direction and the error Carf’ight corner is the region not accessible in regular perturbation

only be minimized. However, an exact cancellation can bqheory_
obtained by using a mass shift>—m?(1+ 7). We then

need_to ﬁ_nc_in(d)m.ax,)\) such that the cancellation occurs. In Tpe ratiosay . ; /a,=— 16k grow linearly whenk—, and
practice, it is desirable to hawgas small as possible and we j, order to get a good accuracy at oréiewe need to require
v_v|Il in addition impose thap?nlﬁfpmaX:O. This condition  \ <1/1&K.
fixes the otherwise unspecifiebhax. o An alternate way of seeing this is that the integrand
The methods pre§ented here have qualltatlvg feature th%L(m2/2)¢2¢4k/k| is maximum at ¢=2K. On the other
can be compared with the LDEB], where the arbitrary pa- T o o }
rameter can be seen as providing a smooth cut in field spacBand tt:e truncation & at orderK is accurate provided
or with variational methodf9], where weak and strong cou- thatA¢"<K. The truncated expansion of the exponential is
pling expansions are combined. This is discussed in Sec. VR 900d approximation up to the region where the integrand is
The main conclusion is that the method that consists of demaximum, provided that(2yK)*<K, which implies A
termining the value ot ., that is optimal for even series in <1/1&K.
the weak coupling, using the strong coupling expansion, pro- It is useful to represent the above discussion graphically.
vides excellent results at moderate and strong coupling. Wéhe number of significant digits as a function of the coupling
also show that it is possible to fix the arbitrary parameterS given in Fig. 1. Itis important for the reader to get familiar
appearing in the LDE using the strong coupling expansion invith this kind of graph, because we will use this form in
order to get accuracies comparable to ours. In the conclusiofjultiple occasions later in the paper. The number of signifi-
we discuss a possib|e improvement at weak Coup"ng and th%ant d|g|tS isminusthe IOgarithm to base 10 of the relative

extension of the model in more general situations. error. At sufficiently small coupling, the behavior becomes
linear with a slope that is minus the order. Remembering the
Il. EEFECTS OF A FIELD CUTOFF minus sign above, the intercept diminishes with the order. It

is possible to construct an envelope for the curves at various
In this section, we discuss the effects of a field cutoff fororders, in other words, a curve that lays above all the curves
the integral defined by Ed1). We first study the problems and is tangent at the point of contact. In Fig. 1, we have used
associated with the usual perturbation theory. The basia semiempirical formula to draw an approximate envelope:
question in ordinary perturbation theory is to decide forwe have used ordek as the(continuoug parameter of a
which values of the coupling is the truncated series at ordeparametric curve
K a good approximation, which in our example means

K x=—logo(16k),
zZ(V)=2 ank, ) e .
= y=—logif[16k+ 1)1 Hagalm 3. @
with perturbative coefficients A careful examination of the figure at low coupling.g.,
(—1)K [+ near 102) shows that as the order increases, the accuracy
=, f dpe (M128%( p4)k increases up to an order where it starts decreasing. The en-

velope is the boundary to a range of accuracy that is inac-
(— 1)k cessible using ordinary perturbation theory.
_\= " 2)2k+1/2 A.S|mple way to convert the asymptotic series into a con-
k! [(2k+172)(2/m") @ verging on€5,7] consists of restricting the range of integra-
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tion 10 |$|< dmax. ON the restricted domairg **" con- ST. COUPL. INT.

verges uniformly and one can then interchange legally the
sum and the integral. We are then considering a modified
problem, namely, the perturbative evaluation of

+ Pmax 2N 2\ 4
Z00bna= | dge mRES (g
~ Pmax

SIGNIF. DIGITS

As the order increases, the peak of the integrand,disee
Eq. (3)] moves acrosgh,.x and the large-order coefficients
are suppressed by an inverse factorjal] <27 $r< Jk!. -60 . . , .
At the same time, we have an exponential control of the -3.5 -3.0 -2.5 -2.0 -1.5 -1.0
error: log, 2

4 % B FIG. 2. Number of significant digits versus at order
|Z()\)—Z(A,¢max)|<2e_"¢maxf dgpe (M4 (6)  1,11,21...,141 in the strong coupling expansion. As the order
Pmax increases, the curve rotates counterclockwise and moves left.

Everything works in a very similar way for other numeri- )
point. However, as many more orders are displayed, the ap-

cally solvablex ¢* problems inD=1 (anharmonic oscilla- . _
tor) andD =3 (scalar field theory in the hierarchical approxi- Parent focus moves left and a “caustitnvelopg appears.
This is shown in Fig. 2. The only difference with Fig. 1 is

mation. The only difference being that in these two cases, a X e ; X
more demanding computational effort is required. Thisthat the_ region thqt is |nacceSS|bIe. is now below. In other
should be kept in mind while discussing the general strateg}’/"ords’ it is impossible to reach arbitrarily low accuracy us-
to be followed. If we could calculate as many perturbativeind the strong coupling expansion. . o
coefficients as needed, an obvious strategy would be to pick " lattice field theory, the strong coupling expansion is
a field cute,,., large enough to satisfy some accuracy re-similar to the hlgh—temperature ex_pansmn.andmjpz we
quirement. Then, given that the modified series is converEXP€ct that the expansion has a finite radius of convergence
gent, we could calculate enough coefficients to get an answé&!@ 10 the existence of a low-temperature phase. This differ-

with the required accuracy. Unfortunately for any problemence is not fundamental for the discussion that follows be-
other than the integral, it is difficult to calculate the coeffi- C2US€ we never use the large-order contributions of the

cients. A more realistic approach is to assume that we caitfond coupling expansion. Consequently, for any practical
only reach a fixed order and pick the field cutoff in such aPUrPOse, the situation will be similar to the case where we
way that at this order, we reach an optimal accuracy. Beford@Ve & finite radius of convergence.
doing this with a different procedure for even and odd orders
as explameq in the Int_roductlon, we will first discuss the IV. EVEN ORDERS
strong coupling expansion of EL).

If ¢max IS the only adjustable parameter, the perfect

Ill. STRONG COUPLING EXPANSION choice is a solution of
In the following, we will often use the strong coupling K
expansion of the integrall) and a few points should be J’+°° —(m22) g2 ngpt K
clarified. Our original integralZ(\) vanishes in the limit . dpe go 2 Pmad ", 9

where\— . Howevera¥“Z(\) has a finite nonzero limit

and can be expanded in powerg/\ 2 .
with

1/4 — 27y 1/2\1

A zo\)_;o(m/x )by, 7 (= 1)% [+ dma et

Al dma) = | "dge A (10
with e

by=(—1)"(1/2) "N (1/2+1/4). (8)  Below, we prove that this equation has no solution wkes
odd, andK is assumed to be even in this section. This equa-

This expansion is converging over the entire complex planetion can be solved numerically with good accuracy using
However, if we look at the first few orders displayed later in Newton’s method or a binary search. Our goal is to find
Fig. 6, one might be tempted to conclude that the series hagpproximate methodévhich can be used in more compli-
a finite radius of convergence because the curves represemiated situationsto solve this equation and compare them
ing the significant digits seem to have a “focus” near with the accurate numerical solutions. In the rest of this sec-
=10 1% To be completely specific, we mean that in Fig. 6,tion, we consider the cases of strong and weak coupling es-
the four curves labeled SO to S4 seem to intersect at a givetmates of the optimal value ab,.{(\).
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FIG. 3. SolutionC{?’, Dy, andEy , defined by Eqgs(11), (12)
and, later in the text, by Eq18).

A. Strong coupling estimates

Multiplying both sides of Eq(9) by A** and expanding in
powers of m?/\*2 we obtain at zeroth order thatemy
=C©, with C{?) a solution of

PHYSICAL REVIEW D69, 045014 (2004

INT.ORDER 6
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FIG. 5. Estimates of the optimal,,,{(\) at the first four orders
in the strong coupling expansion

we also compare with the accuracy at fixed cuts. For a fixed
value of p,ax, EQ-(9) has one solution for a givenand the
accuracy becomes infinite at this value. In this figure we see
only peaks of finite height, but we see that the approximation
goes quite high in the peak; in other words, we localize the
optimal value quite well.

K
4> (- 1)k(C&O))k+l/4:r(1/4) 1) We can now proceed to higher ordersid/\ ¥ using the
K=0 k!(4k+1) ' expansion
The solutions of this transcendental equation are displayed in Mﬁﬁ]ax: 2 CE)(mzn\l/z)l, (13)

Fig. 3 for various ordersk. Asymptotically, C{"’=0.75

I=0

+0.2&. These solutions can be compared with the solu-

tions Dy of the equation
e Px=(Dy)"/K!, (12)

which can be used as a rough estimatexgf’. . Asymp-
totically, Dy=AK+ - - -, whereA=0.278465- - is a solu-
tion the transcendental equatien® 1=A.

This lowest-ordekin the strong couplingestimate of the

and set it in the expansion in the same parameter of §q.
The new coefficients obey linear equations that can be solved
order by order. The optimap,,.(\) calculated at the four
lowest orders irm?/\ %2 are shown in Fig. 5. As explained in
Sec. lll, below a certain value of a few orders in the strong
coupling expansion will not help, and one needs much higher
order to improve the estimate in this region. After a short
reflection, one can conclude that the “focus” observed in

optimal value oféay is quite good. In Fig. 4, we see that for Fig. 6 is compatible with Fig. 5. _
K =6 it provides a significant improvement compared to the A few words should be said about the notations we use for

regular perturbative series at order 6 for 10 2. In Fig. 4,

INT.ORDER 6
20

15}

10}

SIGNIF. DIGITS

log, A

FIG. 4. Significant digits obtained with the optimal ebif,,,(\)

the curves in the figures. When we write W6S1, this means
that we use the weak coupling expansion up to okdet6 in

Eq. (9) (this is the W6 paijtand a strong coupling expansion
at order 1 inm?/\2 (this is the S1 paytin the calculation of
the optimal ¢,.x. In addition, PT8 means the 8th order in
regular perturbation theory. In some figures, some of the in-
dices appear directly near the corresponding curve.

The accuracy of the truncated seriesdat,, calculated
with the higher-order corrections im?/\*2 in Fig. 6. For
comparison, the accuracy obtained by using only the strong
coupling expansion Ed7) is also shown. The figure makes
clear that the method proposed here represents a significant
improvement compared to the separate use of the conven-
tional weak and strong coupling expansions.

B. Weak coupling
As we learned in the previous subsection)\adecreases,

estimated using a strong coupling expansion at lowest ordethe optimal Va|U_e Ofpmax ihcreases. In the limit of a weak
(W6S0, compared to results at three fixed cuts and regular perturcoupling, the “tails” of the integral that we removed become

bation theory(PT6) at order 6.

a small quantity. It is thus advantageous to split the left-hand
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W6s:0,1,2,3 INT. INT.ORDER 6

log,, (6, ()

SIGNIF. DIGITS

-1.5 - :
-5 -3 -1 1 3 5

log, A

log1 0?»

o . ) ) ) FIG. 7. Estimates of the optimab,,,,(\) obtained with the
FIG. 6. Significant digits obtained with the optimal i, ,,(\) approximations A1, A2, and A3 defined in the text o6, com-

(corresponding to a truncated expansion at order 6 in the we%bared to numerical valugempty circles.

coupling estimated using the strong coupling expansion at orders 0,

1, 2, and 3(solid lineg, compared to significant digits using only One can see that approximation Al provides good esti-

the strong coupling expansion of the integral at the same orders iﬂwates of optimally only at very smalk. On the other
the strong couplingdashed linesand regular perturbation theory at o1 appTg;(imations A2 and A3 both provide good esti-

order 6(PT6). mates even at large coupling. Not surprisingly, the accuracy
of approximation A2(A3) merges with order 79) in regular

side (I.h.s) of Eq. (9) into its bulk and tails and expand perturbation theory.

e %" in the bulk where it is justified. The resultingxac)

equation for¢,ay is then V. ODD ORDERS

©

te 2o 42y As explained in Sec. IV, for series truncated at ¢ddhe
Zf dge (MR :_k=;+1 A Pmad " r.h.s. of Eq.(9) is negative. The best that we can do is to
e (149  minimize the erroxi.e., the difference between the r.h.s. and
the l.h.s). The minimization condition implies that ¢,
In the limit of very small\, Eq. (14) becomes =Ey, the unique(see Appendix A, wherd is defined

) (m22)? i1 solution of
[2(M“Pmax 1€ max=— gy 1 1\ . (15

K
(—Ep)*
The I.h.s. has a functional form similar to semiclassical esti- > k,K =f(Ex)=0. (18)
mates of the energy shifts in quantum mechap&40]. A k=0 '

more refined version of this equation is In the following, we refer to this condition as the principle of

4o oy, minimal sensitivity(PMS) condition. This terminology has
Zf dgpe (MM "~ _a ., (dmad)N<TL. (16)  been used8] in the LDE where the variational parameter is

max fixed by requiring that the final estimate depend as little as
It is clear that the two above equations have solutions only INT.ORDER 6
whenK is even because in this caag,1<<0. In Appendix 20 . . .
A, it is shown that this property extends to the exact (@g.
More precisely the r.h.s. of E9) is positive forK even and 0 PT
negative fork odd. B 15 * A1 1
Equation (16) can be further improved by including o ° A2
higher-order truncations at odd orders: A 10} = A3
. K+3 ]
2 2 4 Bogg
Zf dpe (MRFI= — B a(dmad\s, g S
Pmax = 1 0 000000000
(17) ol ]
and so on. In the following, we refer to the successive ap- -2 _'3 ~2 1 0
proximations defined by Egél5), (16), and(17) as approxi- log, A
10

mations Al, A2, and A3, respectively. The estimates of the

optimal ¢y obtained with these approximations and the  FIG. 8. Significant digits obtained with the approximations AL,
corresponding accuracies as a function of the coupling ar@2, and A3 forK =6, compared to order 6 to 9 in regular pertur-
shown in Figs. 7 and 8. bation theory(solid lines rotating clockwise as the order increases
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8 INT. ORDER 7 n INT. ORDER 6
‘ T L) L) L] L] Al T
kY

SIGNIF, DIGITS

FIG. 9. Significant digits obtained with the PMS condition com-
pared to the same quantity at fixed cuts.

possible on this parameter. The solutidfsare displayed in
Fig. 3, which shows that they are asymptotically close to the
solutionsC{) ; obtained at the lowest order in the strong
coupling expansion. The accuracy obtained using the PMS
condition is by construction the envelope of the accuracy
obtained for all possible,,.x. This is illustrated in Fig. 9.

Nevertheless, an exact match between the original integral
and the truncated perturbative expansion with a field cut ca
be obtained by using a mass shiff—m?(1+ 7). Using
obvious notations, we denote the cut integral defined in Eq.
(5) with this mass shifZ(\, ¢nax, 7). The level curves of _
the perturbative expansion @{\, ¢.,ax, 7) at fixed\ follow m?y\ 1/2:240 B(m?/A 1), (21)
different patterns at odd and even orders as illustrated in Fig.

10. o ] ) ]

At even order, all the level curves cross the -0 line and ~ The two approximations work well in their respective ranges
there is no need for a mass shift. This case was discussed @ validity as shown in Fig. 11. The significant digits ob-
Sec. IV. At odd order, the level curve corresponding to thef@ined with the various procedures are displayed in Fig. 12.
exact valueZ(\) defines a curvey( ). In Appendix B, One sees that the mass shift prov_lt_jes a significant improve-
we show that this curve stays in the half-plape 0. We are ~ Ment compared to the PMS condition s&=0. If we com-
now free to pick an arbitrary value ap,,, and adjusty pare the two methods_ in their respective region of valldlty,
= 7(bmar). 1N the following we will pick ¢, in such a the improvement provided by the strong coupling method is
way that# is as small as possible. This can be accomplished
by solving the equation INT. ORDER 7

FIG. 10. Level curves of the perturbative expansion of
E()\,¢max,n) at order 6 and 7 inn evaluated ah =0.1.

o

1l I Ppmax=0 (19 or 2--__ w"”wmwwo

for ¢max- IN Appendix B, we show that this condition is
indeed equivalent to the PMS conditidd8) and conse-
quently we have simplys,,a.= (Ex /\) Y4 With this choice,

log,, (-n)
N
(=]

the introduction ofy is a natural continuation of the optimi- ° 370134
zation atp=0. Estimations ofy for this choice of¢,,, can T WIS

be obtained approximately at strong and weak coupling.
In the limit of arbitrarily small coupling, we can tregtas
a quantity of ordeA®*? and use it to make up for the “miss- ) —2 0 > 2
ing” even contribution that would allow a solution of E®).
This reasoning implies the weak coupling estimate

log A

Kot " FIG. 11. Optimaly as a function oh. Numerical valuegempty
7=—N"""ak 4 1( Pmay M(2/m) =~ (200 circles compared to approximate values obtained with the weak
coupling expansioiiW7W8) corresponding to Eq20) with K=7
On the other hand, at strong coupling,varies as\*? and  and the orders 0, 1, and 2 in the strong coupling expan&\érs)
we need to expand from Eq. (21).
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INT. ORDER 7 15 T T
16 8l T T T T T ] \ — 87
" -——-- S o 10 E} ----- Pade
& - o—- WIWS e A N\ —+— Pade-Borel
0] 12 o PT N (U] kN
b 7 - a
[= I PMS 2 a
. 8} -7 )
= s, -1 &
8 al % Lozl §
a I = T :........_............g_....g- “u
or --X " PT envelope]
-3 -2 -1 0 1 2 3
logm?L

FIG. 14. Comparison of the delta expansion at orde$7)(with
FIG. 12. Significant digits for the same approximations as inPadeapproximants and the Paé®rel method. In both cases the

Fig. 11 compared to the regular perturbative series at orders 7 and@PProximant§4/3], [3,4] and[2,5] have been used.
(thin solid ling), the PMS result withy=0 at order 7(small dot$
and the envelope of regular perturbation theg@hjck solid line). [8]. These methods are compared in Fig. 14.

One can see that at weak coupling, the LDE provides an
more substantial. Not surprisingly, the expansion W7W8ypper envelope for the accuracy, while at strong coupling it
merges with order PT8 at weak coupling. prevails more significantly. Consequently, we only need to

We can now compare the accuracy of various estimategompare our results to the LDE. This is done in Fig. 15
based on strong coupling expansions at the same order {ghere we see that at strong and moderate coupling, our
m?/\*2. Examples are shown in Fig. 13 where the accuracynethods provide a significant improvement compared to the
obtained with three methods relying on estimates at orderDE. On the other hand, at weak coupling, the improve-
one inm?\"2 are displayed. One can see that as the couments that we propose do not perform as well as the LDE.
pling becomes large, the accuracy increases at the same rateThe results of Fig. 15 have been obtained by making the
in the three cases. As we already know in the even case, o@éplacementd8] m?— Q2%+ §(m?>—Q?) and A— S\. We
method significantly improves the basic strong coupling eXthen expanded the perturbative series at okdier \ to order
pansion from Eq(7). However, the improvement based on K in §. The arbitrary paramete2? was determined by re-
even ordeiK=2q in A performs significantly better than the quiring that the derivative of the estimate with respec
improvement based on the odd ordér2q+1. Conse- vanishes. This was called the PMS condition in R8f.and
quently, in the next section when we compare with othelit has a solution at odd orders only.
existing methods, we will restrict ourselves to the even case. At even orders, it is, however, possib|e to proceed in a

way similar to what we have done in Sec. IV A, namely,
VI. COMPARISON WITH OTHER METHODS matching the strong coupling expansion of the estimate with
the usual strong coupling of the integral in order to deter-

There exist several methods to improve the accuracy ofine the arbitrary parameter. At order zerond/A 2, this
asymptotic series. These include Padgpproximant$6] ap-  results in a transcendental equation that has a solution at
plied to the series itself or its Borel transform and the LDEgyen orders only. Higher-order corrections\tf2* can then

20

15

10

SIGNIF. DIGITS
SIGNIF. DIGITS

1
[N

2
log, 2 log, A
FIG. 13. Significant digits obtained with the strong coupling  FIG. 15. Comparison of the delta expansion at orde$7)(with

expansion at order 1 im?/\*2 and the approximations W6S1 and various methods discussed previously and regular perturbation at
W7S1 discussed previously. order 7(PT7).
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APPENDIX A: NONEXISTENCE OF SOLUTIONS
IN THE ODD CASE

SIGNIF. DIGITS

In this appendix, we show that E¢Y) has no solution
whenK is odd. For this purpose we introduce the truncated
-2 > 2 exponential series:

log, A

K
= —1)kxK/K!
FIG. 16. Significant digits obtained using the strong coupling fk(x) IZO (= 1)™CK, (A1)

expansion at order 1 im*\Y? to determinef) in the & expansion )
at order 6 compared the approximation W6S1 discussed previousignd their complement

be calculated by solving linear equations just as in Sec. IV A. gr(X)= E (—1)*xK/K!. (A2)
The numerical results fd =6 are displayed in Fig. 16. One k=K

can see that this method and the method presented in S
IV A have very similar accuracies at moderate and stron
coupling.

%sing the fact thaf, = —fx_, and a similar relation fog,
%ne can show by induction that fa¢ even, fy is strictly
ositive, andyy is positive with its only zero at zero. Fét

Th_e procedure we have used above is closely r_elated Bdd andx>0, gk is negative and decreases. Given that the
variational method§9] where weak and strong coupling ex- r.h.s. of Eq.(14) is an integral with a positive measure of

pansions were combined for various purposes. The only dn‘—_gl<+1 over positive argument, we see that the r.h.s. is posi-

ference is th‘.”‘t here we §imply imposed the rr_1atching with .th?ive whenK is even and negative whef is odd. Since the

strong coupling expansion rather than resorting to extremiza-, ¢ s always positive, they are no solutions Koodd

tion procedures or large-order scaling arguments. T ' '
APPENDIX B: SPECIAL FEATURES OF #%(¢may

VII. CONCLUSIONS The functionz(¢nay) is the solution of the equation

In conclusion, for even series in the weak coupling, the bmax 2 2
method that consists of determining the optimal value of z()\):f e~ (M2 +n(¢madl ¢°f (N %),  (B1)
dmax Using the strong coupling expansion provides excellent ~ $max
results at moderate to strong coupling. There is room for
improvement at weak coupling. In particular, progress coul
be made by finding accurate approximations to calculate
large number of terms in the r.h.s. of EG4).

The methods used here can be extended to quantum m

chanics and in particular to the anharmonic oscillator wherﬁ: . - .
L . . ndependent o . Taking the derivative of Eq(B1) with
similar calculations have been partially performéd]. We respgct to(bm:fr;?]xd impoging thatdy ., is a golution of

are planning to apply the methods developed here for hlgherﬁn/rwmax:O, we obtain that for this special value 6.,

n this appendixK is assumed to be odd. Fer-0, we have
k(X)<e ™ becauseyk 4 1(x)>0 for K+1 even andx>0
?see Appendix A We can compensate this underestimation
by making the integration measure more positive, in other
ﬁ/'ords, picking the parametey<0. The l.h.s. of Eq(B1) is

dimensional SFT where the LDE seems to converge VY e have

slowly [11] (see also Refd.12,13 for methods for improv-

ing the situation One difficulty is to calculate the perturba- fLONGE e (MPRL+ W bmad] 65 =0 B2
tive coefficients with a field cutoff. Monte Carlo methods KA Pmay) R B2)
have been recently developed for this purpgks. which implies the PMS conditiofil8).
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