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O„10… kinks: Clash of symmetries on the brane and the gauge hierarchy problem
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We study kink or domain wall solutions inO(10) Higgs models in the context of the ‘‘clash of symmetries’’
mechanism developed by Davidson, Toner, Volkas and Wali and, independently, by Pogosian and Vachaspati.
We show that kink configurations employing Higgs fields in the45 ~the adjoint representation! of O(10) break
up into three classes: those that at finite distances from the wall respect aU(5) subgroup ofSO(10), and two
others that respect the smaller subgroupsU(3)^ U(2) andU(4)^ U(1). These smaller subgroups arise from
the clash of symmetries mechanism: they are the intersections of two differently embeddedU(5) subgroups of
SO(10), the latter being the symmetries respected in asymptotia on opposite sides of the domain wall. The
existence of theSO(10)→U(3)^ U(2)5SU(3)^ SU(2)^ U(1)^ U(1)8[GSM^ U(1)8 class advances the
search for a realistic brane world model wherein some of the required symmetry breaking is achieved via the
clash of symmetries rather than the conventional mechanism. At the centers of the walls, the unbroken sym-
metries are enhanced. In theU(3)^ U(2) case, the symmetry isO(6)^ U(2), which is closely related to the
Pati-Salam-likeSU(4)^ SU(2)^ U(1) group. If our universe is a brane located at the center of such a wall,
then we see theO(10) symmetry as being strongly broken toSU(4)^ SU(2)^ U(1). Interestingly, if the
brane-world degrees of freedom enjoy a slight leakage off the wall, then an additional symmetry breakdown to
U(3)^ U(2)5GSM^ U(1)8 is effectively induced on the brane. This provides a possible framework within
which to address at least part of a gauge hierarchy problem:O(10) is strongly broken toSU(4)^ SU(2)
^ U(1), then more weakly toGSM^ U(1)8 depending on the amount of leakage off the brane. We also
comment on kinks employing the10 and54 of O(10).

DOI: 10.1103/PhysRevD.69.045010 PACS number~s!: 11.27.1d
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I. INTRODUCTION

Soliton solutions of field theories relevant to partic
physics, cosmology and condensed matter physics cont
to fascinate@1#. We shall study kinks or domain walls i
certainO(10) Higgs models in this paper. One motivation
the symmetry breaking mechanism called the ‘‘clash of sy
metries’’ proposed for brane-world models by Davidso
Toner, Volkas and Wali@2#, and independently studied b
Pogosian, Vachaspati and collaborators for different reas
@3,4#. The symmetryO(10) is considered simply becaus
SO(10) is a possible grand unification group. Much of th
work is based on Ref.@5#.

We show that a certain kink arising in anO(10)-adjoint
Higgs model respects aU(3)^ U(2) subgroup ofO(10) at
all finite distances from the wall. At the center of the wa
the unbroken symmetry is the larger subgroupO(6)
^ U(2). This symmetry structure is interesting for mod
building, becauseU(3)^ U(2) is isomorphic to GSM
^ U(1)8, whereGSM5SU(3)^ SU(2)^ U(1) is the stan-
dard model gauge group. Furthermore, the connected pa
O(6) is SO(6)5SU(4) which means that a Pati-Salam-lik
group@6# is exact at the center of the wall. If our universe
a brane located at the center of such a wall, the perpendic
coordinate to which is an extra dimension, then we see
O(10) symmetry as being strongly broken toSU(4)
^ SU(2)^ U(1); and, if the brane-world degrees of freedo
enjoy a slight leakage off the wall, then an additional sy

*Electronic address: r.volkas@physics.unimelb.edu.au
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metry breakdown toU(3)^ U(2)5GSM^ U(1)8 is effec-
tively induced on the brane. This provides a possible fram
work within which to address at least part of the gau
hierarchy problem:O(10) is strongly broken toSU(4)
^ SU(2)^ U(1), then more weakly toGSM^ U(1)8 de-
pending on the amount of leakage off the brane.1

These results exemplify our hope for what aid the mo
builder might receive from the clash of symmetries mec
nism. Model builders are regularly frustrated that the bea
ful enhanced symmetries they like to entertain, such
SO(10), apparently must be embedded in often unsigh
models involving several Higgs fields and many free para
eters. If only our Higgs fields could do more work for u
Well, by admitting spatially varying Higgs field configura
tions such as kinks into the game, it is clear that spatia
varying symmetry breaking patterns can be achieved,
perhaps even utilized in realistic models. With no eviden
for domain walls and the like in our Hubble volume, on
must turn to the brane-world hypothesis@7# for help. It re-
mains to be seen if the price of extra dimensions is wo
paying.

We should also like to remark that apart from any spec

1Since we are not considering gravity yet, we will not address
Planck or electroweak hierarchy issue. Note also that the spe
kink we shall study in this paper leaves the electroweak symm
unbroken. The point we want to emphasize is that kinks of t
nature have something to say about ratios of symmetry brea
scales; they provide a newframework for thinking about gauge
hierarchies. It is then a model-building challenge to find a fu
realistic embodiment of the general idea.
©2004 The American Physical Society10-1
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applications, the symmetries of kinks are also of interest
their own sake, the deeper appreciation of the variety of s
ton solutions to nontrivial nonlinear classical field theor
being a worthy goal.

Topologically stable domains walls arise when a discr
symmetry is spontaneously broken. The vacuum manif
consists of disconnected pieces, and the kink configurat
are classical solutions to the Euler-Lagrange equations
interpolate between two states from these disconne
pieces. We shall consider theories with elementary sc
~synonymously Higgs! fields only in this paper. On one sid
of the wall, the scalar fields asymptote to one of the poss
vacua, while on the other side they approach a differ
vacuum state, not continuously connected to the former
any continuous symmetry transformation. In the simpl
model scalar field theories having topologically stable k
solutions, the vacuum ‘‘manifold’’ is simply a collection o
disconnected points related to each other by the spont
ously broken discrete transformations.

Models of this class have been well-studied. But, m
recently, interest has been growing in a richer class of m
els that contain spontaneously broken continuous symme
in addition to the discrete symmetry@2–4#. The global
minima of the Higgs potential generally break both the co
tinuous and the discrete symmetries spontaneously, and
disconnected pieces of the vacuum manifold are no lon
simply points but are actually manifolds formed from co
tinua of degenerate vacua. Consider kink configurations
interpolate between disconnected vacua in such a mode
each topological class there is a continuum of solutions c
responding to different choices for asymptotic vacua, and
general they have different energies. Toplogical argume
guarantee that there is a stable kink within each class, the
with lowest energy, but one has to do more analysis to a
ally identify which kink that is.

Kinks within a class can have importantly different sym
metry properties through the ‘‘clash of symmetries’’ pheno
enon. Suppose that the continuous symmetryG spontane-
ously breaks to the subgroupH ~accompanied by the
simultaneous breaking of a discrete symmetry!. Each con-
nected piece from the vacuum manifold is given by the co
spaceG/H, replicated a discrete number of times depend
on the discrete symmetry breaking pattern. The clash of s
metries corresponds todifferently embedded, though isomor-
phic, subgroupsH(2`) and H(1`) being respected as
ymptotically on opposite sides of the wall. At nonasympto
points, the unbroken symmetry is generally smaller thanH.
We shall restrict our analysis to kinks respecting precis
the intersection group,H(2`)ùH(1`), at all locations a
finite distance from the wall. These kinks are spatial
dependent linear combinations of the asymptotic vacua.

While we shall focus on the adjoint representation,
shall also briefly comment onO(10) kinks using the vecto
and symmetric rank-2 tensor representations, the10 and 54
respectively, purely out of general interest.

Only topological kinks will be examined in this pape
Nontopological kink configurations are also of general int
est, but because their stability is nota priori guaranteed they
are of limited use for brane-world models. One should no
04501
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however, that a rich collection of nontopological kink sol
tions are expected to exist for the models we consider.

The rest of this paper is structured as follows. In Sec
we discuss kink configurations generated by the45 of
O(10). The symmetry structure is explained and analytica
exact kink configurations are found for a particular sli
through Higgs potential parameter space. Section III brie
discusses the group theory of kinks constructed from the10
and54 of O(10), while Sec. IV is a conclusion.

II. KINKS FROM THE 45 OF O„10…

A. Symmetry breaking patterns and kink boundary conditions

The representation space of the45 ~adjoint representation!
of O(10) can be taken to consist of real antisymmetric
310 matrices. Consider a multiplet of Higgs bosons,F, in
this representation:

F5~f i j !, f i j 52f j i P R, i , j 51, . . .,10. ~2.1!

Its transformation law is

F→AFAT ~2.2!

whereA is a real 10310 orthogonal matrix. The connecte
part of O(10) is theSO(10) subgroup formed from all de
terminant one~special!, orthogonal, real 10310 matrices.
The det(A)521 ~antispecial! subset ofO(10) is discon-
nected from theSO(10) submanifold. The two subspaces a
related by a discreteZ2 transformation induced by some sui
ably chosen antispecial element ofO(10). For instance, the
O(10) matrices

110 and Z[diag~s1 ,s1 ,s1 ,s1 ,s1!, ~2.3!

wheres1 is the first of the Pauli matricess1,2,3 and1N is the
N3N identity, form aZ2 subgroup that can be used for th
purpose. It suffices to note that any antispecialO(10) matrix
can be multiplied byZ to produce anSO(10) matrix, and
vice versa. These remarks will be relevant later for the to
logical stability question.

We shall use quartic Higgs potentials in this paper b
cause of their familiarity, though we are well aware that th
restriction may not be necessary for brane-world models
other contexts. Lacking, as yet, criteria for choosing o
nonquartic potential over another, we feel it is sensible
study the quartic case first.

The most generalO(10) invariant quartic potential forF
is

V5
1

2
m2Tr~F2!1

1

4
l1Tr~F2!21

1

4
l2Tr~F4!, ~2.4!

where we take m2.0, having noted that Tr(F2)
52((f i j )

2. The conventionally normalized kinetic energ
term is

T52
1

4
Tr~]mF ]mF!, ~2.5!
0-2
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O~10! KINKS: CLASH OF SYMMETRIES ON THE . . . PHYSICAL REVIEW D 69, 045010 ~2004!
with Minkowski signature (1,2,2,2). The prefactor is
1/4 rather than 1/2 because each independent compone
F occurs twice in the summation Tr(F2).

Notice thatV and T are invariant under the discreteZ2
symmetry defined by

F→2F. ~2.6!

This accidental discrete symmetry arises because theO(10)
invariant cubic term Tr(F3) vanishes identically. This sym
metry is also outsideO(10), being distinct from theZ2 re-
lating the special and antispecial subsets ofO(10). This is
easily established. Consider anO(10) invariant theory with
three independent45’s, denoted byF1,2,3. The cubic term
Tr(F1F2F3) is nonzero and respectsO(10) but not
F1,2,3→2F1,2,3.

The symmetry breaking patterns induced by Eq.~2.4!
were deduced by Li in his classic study of spontaneous s
metry breaking@8#. The first step is to use the theorem fro
linear algebra establishing that any antisymmetric 2n32n
real matrix can be transformed as per Eq.~2.2! to the ‘‘stan-
dard form’’

F5diag~a1e,a2e, . . . ,ane!, ~2.7!

where theai are real numbers and

e[ is25S 0 1

21 0D . ~2.8!

In this basis,

V52m2 (
i 51

5

ai
21l1 S (

i 51

5

ai
2D 2

1
1

2
l2 (

i 51

5

ai
4 , ~2.9!

where we restrict our attention to constant fields only,
course. The potential is bounded from below in thel1,2 re-
gion defined by

10l11l2.0 for l2.0, 2l11l2.0 otherwise.
~2.10!

Straightforward algebra establishes that forl2.0, the glo-
bal minima ofV are at

ai
25

m2

10l11l2
; i , ~2.11!

while for l2,0 they are at

a1
25

m2

2l11l2
, a25a35a45a550, ~2.12!

and permutations of this pattern.
Using MeMT5(detM )e ~whereM is any 232 matrix! it

is obvious by inspection that Eq.~2.12! corresponds to the
breakdown

O~10!→O~8! ^ SO~2!. ~2.13!
04501
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For the specific global minimum displayed in Eq.~2.12!, the
unbrokenSO(2) acts on the subspace defined by the upp
left 232 block of F. The permutations correspond to mo
ing the SO(2) invariant subspace along the diagonal. T
O(8) invariant subspace moves in concert. These possi
ties define what we shall call ‘‘different embeddings of t
O(8)^ SO(2) subgroup inO(10).’’ Clearly, if we depart
from the standard formF of Eq. ~2.7! we discover a con-
tinuum of different embeddings. However, as we shall sh
later on, the kink solutions of the Euler-Lagrange equatio
for our SO(10) adjoint-Higgs modelmustassume the stan
dard form, at allz, with respect to some basis. Thus no ge
erality is lost, in the kink case at least, by working with th
finite number of discretely-different embeddings consist
with the standard form, and this is what we shall mean by
term ‘‘different embeddings.’’ The embeddings are phy
cally equivalent for global homogeneous vacua, but not
inhomogeneous configurations such as kinks.

Our main interest in this paper rests with the glob
minima of Eq. ~2.11!. They are invariant underU(5) sub-
groups ofO(10), the derivation of which we now review. T
understand how aU(5) sits insideO(10), one needs to gen
eralize the well-knownU(1)↔SO(2) mapping ~isomor-
phism actually!, given simply by

eiu↔S cosu 2sinu

sinu cosu D . ~2.14!

Let h be the mapping of any complex numberreiu to the
correspondingSO(2) matrix multiplied by the positive~or
zero! real number r. The image of h, Im(h), equals
@0,1`) ^ SO(2). Observe thath preserves additive as we
as multiplicative structure.

An obvious generalization ofh is to mapn3n matrices of
complex numbers to 2n32n matrices of real numbers wher
the latter may be thought of asn3n matrices with 232
matrix entries, with the 232 blocks just being theh images
of the original complex number entries. We shall avoid pe
antry by also calling this mappingh.

Observe that

h~M†!5h~M !T ~2.15!

for any matrixM. Let UPU(5). Then

h~U†U !5h~15!5110. ~2.16!

But, becauseh acting on complex numbers preservesboth
additive and multiplicative structure, it follows that

h~U†U !5h~U†!h~U !5h~U !Th~U !, ~2.17!

where the last equality uses Eq.~2.15!. Similarly,

h~U1U2!5h~U1!h~U2! ~2.18!

for any U1,2PU(5). Combining Eqs.~2.16!–~2.18!, we see
that h maps U(5) into O(10). Actually, sinceU(5) is a
connected manifold,h mapsU(5) into SO(10).
0-3
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Return now to the global minima of Eq.~2.11! and con-
sider the specific one given by

^F&1[amin diag~e,e,e,e,e!, ~2.19!

where amin[Am2/(10l11l2). Observing thate5h(2 i ),
we see that

^F&15aminh~2 i15!

5aminh„U~2 i15!U†
…

5aminh~U !h~2 i15!h~U†!

5h~U !^F&1h~U !T. ~2.20!

That is,^F&1 is invariant under theU(5) subgroup defined
through the mappingh. SinceU(5) is a maximal subgroup
of SO(10), it exhausts the invariances of^F&1.

The other global minima defined by Eq.~2.11! are ob-
tained from Eq.~2.19! by writing down all possible combi-
nations of1e and 2e down the diagonal. They partition
into two classes, with the members of a given class rela
by SO(10) transformations. The two classes are related
each other through an overall change of sign, as per
discrete transformation of Eq.~2.6!. To prove these asse
tions, we make use of theSO(10) matrix

diag~12 ,12 ,12 ,s1 ,s1! ~2.21!

and permutations thereof~type 1!, together with theSO(10)
matrix

diag~12 ,s1 ,s1 ,s1 ,s1! ~2.22!

plus its permutations~type 2!. Noting thats1es1
T52e, we

see that the type 1 matrices reverse the signs of two of thee ’s
placed along the diagonals of the various^F& ’s, while type 2
matrices reverse the signs of foure ’s. Matrices with an odd
number ofs1’s along the diagonal, thus capable of reversi
the signs of an odd number ofe ’s, are antispecial.

Denoting each global vacuum using the obvious notat
amindiag(e,e,e,e,e)→(1,1,1,1,1) and so on, it is clear
that the two classes of vacua are

~1,1,1,1,1 !, ~1,1,1,2,2 ! & perms,

~1,2,2,2,2 ! & perms, ~class 1! ~2.23!

and

~2,2,2,2,2 !, ~2,2,2,1,1 ! perms,

~2,1,1,1,1 ! & perms ~class 2!. ~2.24!

Stated another way, the situation is the following: The se
SO(10) transforms of (1,1,1,1,1) ~or any other class 1
vacuum!, generates a connected piece of the vacuum m
fold in which there are particular points corresponding to
class 1 configurations. They are precisely those that also
sume the standard form of Eq.~2.7!. There is a second con
nected piece consisting of theSO(10) transforms of
04501
d
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(2,2,2,2,2), within which appear the class 2 minima
The two pieces are related by the spontaneously broken
crete symmetryF→2F.2

Topologically stable kink configurations interpolate b
tween a class 1 global minimum and a class 2 global m
mum. Let z be the spatial coordinate perpendicular to t
domain wall. Without loss of generality, we may take t
boundary condition atz52` to be a particular class 2
vacuum, say

F~2`!52amin diag~e,e,e,e,e!. ~2.25!

All other choices for the class 2 vacuum can be obtained
suitably transforming the whole kink, andz→2z trivially
interchanges the roles of class 1 and 2 minima. But differ
choices of class 1 vacua for the boundary condition az
51` correspond to physically distinct kinks, though all l
within the same topological class. The three nontrivially d
ferent choices are

F~1`!5H Fmin
(5) [amindiag~e, e, e, e, e!

Fmin
(3,2)[amindiag~e, e, e,2e,2e!

Fmin
(4,1)[amindiag~e,2e,2e,2e,2e!.

~2.26!

Permutations of the minus signs in the last two of the
vacua correspond to kink configurations that are easily
rived from those obeying the above, so we need not cons
them explicitly. The superscripts(5), (3,2) and (4,1) label
the symmetry unbroken by the kink at finite distances fro
the wall, respectively

U~5!, U~3! ^ U~2! and U~4! ^ U~1!, ~2.27!

as we now explain.
A natural ansatz for kink configurations that interpola

between the stated boundary conditions is

Fk~z!5a~z!F~2`!1b~z!F~1`!, ~2.28!

where

a~2`!51, a~1`!50, b~2`!50, b~1`!51.
~2.29!

Such kinks are a subset of configurations that maintain s
dard form@as defined by Eq.~2.7!# over all space. We shal
see in the next section that although a general standard-

2There is a nicety worth mentioning here to forestall possi
confusion. TheZ2 transformation of Eq.~2.6! is outside ofO(10).
However,whenF ’s of standard form onlyare considered, the anti
special O(10) matrix diag(s1 ,s1 ,s1 ,s1 ,s1) also inducesF
→2F. Technically, it appears that it is the diagonal subgroup
these twoZ2’s that is spontaneously broken. The important fa
though, is that the class 1 and class 2 vacua are disconnected
each other, whatever discrete symmetry you blame it on, so to
logical stability for some kink is assured. We have checked num
cally that there is nospecial orthogonal matrix that also induce
F→2F for standard formF ’s.
0-4
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O~10! KINKS: CLASH OF SYMMETRIES ON THE . . . PHYSICAL REVIEW D 69, 045010 ~2004!
F has five independent functionsai , the kinks have only
two ~called a and b above!. The maintenance of standar
form for all z will be justified in the next subsection.

When F(1`)5Fmin
(5) , the configuration is proportiona

to diag(e,e,e,e,e) for all z, so the unbroken symmetry re
mains theU(5) subgroup defined by theh map@denote this
U(5) by U(5)h]. As we discuss later, the configuration h
vanishing fields whenz50, so theO(10) symmetry is com-
pletely restored at the center of the wall. We shall cal
configuration obeying these boundary conditions a ‘‘symm
ric kink,’’ as there is no clash of symmetries.

When F(1`)5Fmin
(3,2) , the configuration isnot propor-

tional to diag(e,e,e,e,e) for any uzu,`. At z52`, the
unbroken symmetry isU(5)h , while atz51` it is a differ-
ently embeddedU(5), related to the former via conjugatio
using a type 1SO(10) transformation defined in Eq.~2.21!.
Symbolically,

U~5!15Q1U~5!hQ1
T ~2.30!

whereQ15diag(12 ,12 ,12 ,s1,s1). At finite values ofz, the
unbroken symmetry is the intersection

U~5!hùU~5!15U~3! ^ U~2!, ~2.31!

as established in the Appendix. TheU(3)^ U(2) invariance
group arises from the clash of symmetries mechanism. T
is isomorphic to the standard model gauge group with
additional Abelian factor, and offers hope that the clash
symmetries mechanism could be employed within a reali
brane-world model. As we show in the next section, az
50 the unbroken symmetry is the larger groupO(6)
^ U(2). The application to the gauge hierarchy proble
foreshadowed in the Introduction will be discussed m
fully later on. We dub such a configuration an ‘‘asymmet
kink.’’

Finally, whenF(1`)5Fmin
(4,1) , the unbroken symmetry

at finite z is

U~5!hùU~5!25U~4! ^ U~1!, ~2.32!

where

U~5!25Q2U~5!hQ2
T , ~2.33!

with Q25diag(12 ,s1 ,s1 ,s1,s1) being a type 2SO(10)
matrix as per Eq.~2.22!. At z50 it increases toU(4)
^ O(2). These are ‘‘super-asymmetric kinks.’’

B. Solving the Euler-Lagrange equations

We are now almost ready to solve the Euler-Lagran
equations using the ansatz of Eqs.~2.28! and ~2.29! subject
to the boundary conditions of Eqs.~2.25! and ~2.26!.

But first, we need to discuss the justification for cons
ering kink configurations that keep to the standard form
Eq. ~2.7! at all z. In Sec. III of Ref.@3#, Pogosian and Va-
chaspati prove a powerful analogous theorem
SU(N)-adjoint kinks: writing the adjoint as a tracelessN
3N matrix, they show that it suffices to consider ansa
04501
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where this matrix remains diagonal for allz. The analogue of
diagonal form forSO(10) adjoints is the standard form. Th
Pogosian-Vachaspati argument is easily adapted to this
as we now show.

Consider a putative kink configuration of the form

F~z!5S~z!1N~z!, ~2.34!

whereS(z) is of standard form, andN(z) is a perturbation
taking ‘‘completely nonstandard form.’’ Completely non
standard is the analogue here of completely nondiagona
the SU(N) case: we define them to be matrices with 232
blocks of zero matrices along the diagonal.@In addition,
N(z) must be antisymmetric of course.# We substitute for
F(z) in the energy density and look for terms that are line
in N. If these are absent@3#, then we know that solutions
cannot simultaneously haveSandN contributions. By taking
an asymptotic vacuum of standard form, we then know t
standard form is maintained for allz.3

Examine the quadratic term inV first:

Tr~F2!5Tr~S2!12 Tr~SN!1Tr~N2!. ~2.35!

But it is easily verified by direct matrix multiplication tha
the product of a standard matrix and a completely nonsta
ard matrix is another completely nonstandard matrix, a
hence the trace of it is zero: no term linear inN ~or S for that
matter! is generated. This takes care of the kinetic ene
term as well as the Tr(F2)2 term in V. The potentially dan-
gerous term in Tr(F4) is

Tr@S2~SN1NS!1~SN1NS!S2#, ~2.36!

which also vanishes identically for allS and N. To see this
note thatS2 is a diagonal matrix~recall thate25212), so
each term in this trace is the product of a diagonal an
completely nonstandard matrix, and hence is a comple
nonstandard matrix itself. We thus conclude that if we ad
the basis where one of the boundary conditions assu
standard form, then the whole configuration is required
also have the standard form. This powerful result grea
simplifies our analysis. In particular, if we are able to find
standard-form kink solutions, then we are guaranteed tha
one with lowest energy will be topologically stable.

Specializing to static configurations that depend just o
single spatial coordinatez, the Euler-Lagrange equation
yield

ai952F2m212l1(
j 51

5

aj
2Gai12l2ai

3 , ~2.37!

using Eqs.~2.5!, ~2.7! and~2.9!. Observe that theai ’s appear
symmetrically in these differential equations, so only t
boundary conditions distinguish them. Furthermore,
equations are symmetric under the parity inversion

3Configurations of completely nonstandard form are presuma
SO(10) transforms of standard form configurations.
0-5
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z→2z, ~2.38!

and the boundary conditions for eachai are parity transforms
of each other:ai(2`)56ai(1`). This means that we ca
take the solutions to be partitioned into odd and even pa
classes.4 Furthermore, they must take the form of Eq.~2.28!,
and, as discussed in the Appendix, this leads to the unbro
symmetries at 0,uzu,` being the intersections of the in
variance groups of the asymptotic vacua.

Whenl1Þ0, Eqs.~2.37! are coupled nonlinear differen
tial equations that can probably only be solved numerica
For the purposes of this paper, we shall consider the spe
point

l150, ~2.39!

so that the equations decouple to

ai952~2m21l2ai
2!ai , ~2.40!

and analytical solutions are easily obtained.
The symmetric kink obeys

a15a25a35a45a5[ f

with

f ~2`!52amin52
m

Al2

, f ~1`!51amin , ~2.41!

where we definem to be positive. The functionf satisfies
f 952 f (2m21l2f 2), and the solution obeying the bounda
conditions in Eq.~2.41! is simply

f ~z!5amintanh~mz!, ~2.42!

the ‘‘archetypal’’ kinklike function furnished by a quarti
potential. Notice that it is an odd function, so it vanishes
z50, the center of the wall.

Asymmetric kinks obey

a15a25a3[ f , a45a5[g, ~2.43!

with

f ~2`!52amin , f ~1`!51amin

and

g~2`!5g~1`!52amin , ~2.44!

which obey f 952 f (2m21l2f 2) and g952g(2m2

1l2g2). The solutions are

f ~z!5amintanh~mz!, g~z!52amin , ~2.45!

4Translational invariance allows the center of the domain wal
lie at any finite value ofz. Without loss of generality, we sha
define this point to bez50.
04501
ty

en

.
ial

t

where f is an odd function andg is an even function. The
‘‘ f -block’’ in the matrixF vanishes at the center of the wa

Finally, super-asymmetric kinks conform to the ansatz

a15 f , a25a35a45a55g, ~2.46!

with the boundary conditions as per Eq.~2.44! and the same
differential equations as before satisfied. The solutions ff
andg are as given in Eq.~2.45!.

For l1Þ0, the functionsf and g will depart form the
forms deduced above, but they must remain odd and e
functions of z, respectively. This implies that symmetr
kinks always vanish atz50, asymmetric kinks have a van
ishing 636 block there, while super-asymmetric kinks ha
a vanishing 232 block. This immediately implies that th
unbroken symmetry atz50 is the full O(10) for symmetric
kinks, O(6)^ U(2) for asymmetric kinks, andU(4)
^ O(2) for super-asymmetric kinks.

As explained in the previous subsection, the three diff
ent kink configurations have distinct symmetry properties.
addition, they have different energy densities. The Ham
tonian density for at,x,y-independentF is

H52
1

4
Tr~F8F8!1

1

2
m2Tr~F2!1

1

4
l1Tr~F2!2

1
1

4
l2Tr~F4!2V0 , ~2.47!

where

V052
5

2

m4

10l11l2
~2.48!

is a constant chosen so that the potential energy minimum
at zero. The surface energy densityr of a domain wall is
then

r5E
2`

1`

Hdz. ~2.49!

For standard-form configurations

H5
1

2 (
i 51

5

~ai8!22m2 (
i 51

5

ai
21l1S (

i 51

5

ai
2D 2

1
1

2
l2(

i 51

5

ai
42V0 . ~2.50!

Each kink configuration hasn copies off and 52n copies of
g, where n55,3,1 for symmetry, asymmetric and supe
asymmetric kinks, respectively. Withl150, Eqs. ~2.42!,
~2.49! and ~2.50! together withg25amin

2 5m2/l2 yield

r~n!5
4

3
n

m3

l2
. ~2.51!

We therefore see that for thel150 case the super
asymmetric kink has the lowest energy and is therefore
pologically stable. The asymmetric kink has the next low

o

0-6
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TABLE I. A summary of kinks arising in theO~10! adjoint-Higgs model. See the main text for definition
of terms. The boundary conditions atz56` can be swapped.

Name of kink Unbroken subgroups at specified locations Energy density forl150
z52` z51` 0,uzu,` z50

Symmetric U(5)h U(5)h U(5)h O(10) 20m3/3l2

Asymmetric U(5)h U(5)1 U(3)^ U(2) O(6)^ U(2) 4m3/l2

Superasymmetric U(5)h U(5)2 U(4)^ U(1) U(4)^ O(2) 4m3/3l2
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energy density, while the symmetric kink is the most en
getic. This pattern arises because there is an energy
equally contributed to by kinetic and potential energy, as
ciated with the spatially varying functionf. It is interesting to
note that thel1 term could conceivably reorder the ener
hierarchy of the kinks. Negative values ofl1 are allowed,
because anyl1.2l2/10 leads to a potential bounded fro
below. Because this term is a trace squared, it has a quad
rather than a linear dependence onn, so it might be able to
effect a reordering.

The important observation here is thata kink configura-
tion displaying the clash of symmetries is energetically
vored in this case. If one did not carefully consider the dif
ferent ways thatU(5) can be embedded inSO(10), then one
might be prone to finding only the symmetric kink an
falsely concluding that it was stable for topological reaso
Note that from the point of view of our brane-world motiv
tion, quartic potentials withl150 appear to be unsuitable
because the asymmetric kink is unstable. A full analysis
what potential or potentials would be suitable is well beyo
the scope of this paper.

Table I summarizes the results forO(10) adjoint kinks.

C. Application to the gauge hierarchy problem

We now expand on the possible application to the ga
hierarchy problem. Suppose the coordinatez defines an extra
spatial dimension. Suppose further that our universe i
brane located atz50. It has degrees of freedom localized
it, perhaps dynamically, but they interact with the Higgs fie
F which can propagate into the extra dimension. Focus
the effective physics of the brane-confined degrees of f
dom. The symmetry breaking induced by theF kink is com-
municated through these interactions to the brane-w
fields. In the Lagrangian, the brane-world fields lie in m
tiplets of O(10). But the effective theory will feature stron
O(10) breaking. We speculate, we think plausibly, that
effective brane-world will, through leakage off the brane,
sensitive to physical conditions at finite values ofz close to
z50. This means that the effective theory will feature
additional symmetry breakdown toU(3)^ U(2)5GSM
^ U(1)8, with the strength of this breaking given by th
amount of leakage off the brane. If the leakage is small
one would expect it to be, then the effectiveO(6)^ U(2)
→GSM^ U(1)8 symmetry breaking scale should be smal
than the effectiveO(10)→O(6)^ U(2) scale. This relates
the associated gauge hierarchy to both the symmetry s
04501
-
st,
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tic
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f
d

e

a

n
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ld

e

s

r
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ture of the kink and the physics of leakage off the bra
providing a novel framework within which to understand t
origin of such a hierarchy.

Our specific proposal here provides a new schem
framework for addressing a gauge hierarchy problem
clearly requires additional nontrivial features to become
realistic model: cogent reasons for having some degree
freedom confined to the brane while others propagate
the extra dimension, the inclusion of gravity, a we
motivated potential inducing the correct kind of kink
induced symmetry breaking~something like the asymmetri
kink should be topologically stable!, and a way to induce
electroweak symmetry andU(1)8 breakdown.

D. Kinks from O„10…\O„8…‹SO„2…

For completeness, we briefly discuss the clash of sym
try patterns that can be obtained from theO(10)→O(8)
^ SO(2) regime@see Eq.~2.12!#. The global minima consis
of a singlee matrix somewhere along the diagonal, and ze
everywhere else@8#. Let the boundary condition atz52`
be

F~2`!52amindiag~e,02 ,02 ,02 ,02!, ~2.52!

where0n is then3n matrix of zeros. Arguments similar to
that in the Appendix reveal that

for F~1`!5amindiag~01 ,e,01 ,02 ,02 ,02!

clash⇒O~7!,

for F~1`!5amindiag~02 ,e,02 ,02 ,02!

clash⇒SO~2! ^ SO~2! ^ O~6!.
~2.53!

The e in the second of these cases can be moved down
diagonal, leading to differently embeddedSO(2)^ SO(2)
^ O(6) invariance groups.

III. GROUP THEORY OF KINKS
FROM THE 10 AND 54 OF O„10…

We now briefly discuss just the group theoretic aspects
kink configurations based on the10 and54 of O(10).
0-7
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A. Clash of symmetries from the 10

Take a single real scalar fieldf in the 10 of O(10), and
denote it as usual by a 1031 column vector. The globa
minima induce@8#

O~10!→O~9!, ~3.1!

with

fmin}diag~0,0,0,0,0,0,0,0,0,1!, ~3.2!

and permutations thereof. The different permutations co
spond to differently embeddedO(9) subgroups. To have
kink displaying the clash of symmetries, one needs two
moref fields with interchange discrete symmetries betwe
them. If two such fields have their nonzero entry in differe
locations, then a kink configuration can be constructed
induce

O~10!→O~8! ~3.3!

at all finite values ofz. This case is very similar to theSU(3)
model studied by Davidson et al.@2#.

B. Clash of symmetries from the 54

The54 is the symmetric rank-2 tensor representation. T
potential has a similar form to the45, with the possible ad-
dition of the cubic term Tr(F3) since this is nonzero for a
symmetricF. From a kink point of view, though, it is inter
esting to omit this term to allow the additional discrete sy
metry F→2F.

According to Ref.@8#, the global minima are

Fmin}diag~09 ,1! when l1.0, l2,0, ~3.4!

and

Fmin}diag~15 ,215! when l1.0, l2.0, ~3.5!

inducing

O~10!→O~9! and O~10!→O~5! ^ O~5!, ~3.6!

respectively. As usual, the obvious permutations of these
terns lead to differently embedded subgroups.

For the O(10)→O(9) case, the clash of symmetrie
would further reduce the symmetry toO(8).

The O(10)→O(5)^ O(5) case can yield clash-induce
further breaking to eitherO(4)^ O(4) or O(2)^ O(2)
^ O(3)^ O(3), depending on how the plus and minus sig
are arranged along the diagonals atz56`.

IV. CONCLUSION

We have discussed several varieties of kinks inO(10)
Higgs models, motivated by the clash of symmetries p
nomenon discovered by Davidson, Toner, Volkas and W
@2# and independently by Pogosian and Vachaspati@3,4#. Our
focus was primarily onO(10)-adjoint kinks that usually in-
duce the spontaneous breakdownO(10)→U(5). By care-
fully analyzing the different ways thatU(5) can be embed
04501
e-

r
n
t
o

e

-

t-

-
li

ded in SO(10), we showed that there are three differe
kinds of kinks: symmetric, asymmetric and supe
asymmetric. At finite distances from the walls, the invarian
groups areU(5), U(3)^ U(2)5GSM^ U(1)8 and U(4)
^ U(1), respectively. The last two of these display the cla
of symmetries phenomenon. At the centers of the walls,
unbroken symmetries increase toO(10), O(6)^ U(2) and
U(4)^ O(2), respectively. Since the connected part ofO(6)
is SO(6)5SU(4), theasymmetric kink is connected to bot
Pati-Salam-like models and the standard model.

All three kinks lie within the same topological class, b
they have different energies. Interestingly, for the spec
quartic potential that produces exact hyperbolic-tangent-
kink configurations, the super-asymmetric kink has the lo
est energy and is therefore the topologically stable one.

From the brane-world perspective of Davidson et al., it
encouraging that the group theory ofO(10) allows asymmet-
ric kink solutions, because theSO(10)→SU(4)^ SU(2)
^ U(1)→GSM^ U(1)8 invariance is obviously interesting
for model building purposes. If our Universe is a brane
cated at the center of such a wall, then we see theO(10)
symmetry as being strongly broken toSU(4)^ SU(2)
^ U(1). If the brane-world degrees of freedom leak slight
off the wall, then an additional symmetry breakdown
U(3)^ U(2)5GSM^ U(1)8 is effectively induced on the
brane. This provides a possible framework within which
address at least part of the gauge hierarchy problem:O(10)
is strongly broken toSU(4)^ SU(2)^ U(1), then more
weakly toGSM^ U(1)8 depending on the amount of leakag
off the brane.

A realistic brane-world model using this mechanis
would require a number of nontrivial additional feature
such as the inclusion of gravity, a rationale for why som
fields are confined to the brane while others propagate
the extra dimension, and a suitable symmetry breakdo
pattern induced by a topologically stable domain wall. O
results are also of general interest in the continuing study
kink and other soliton solutions of nontrivial field theories
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APPENDIX: DERIVING O„10…\U„3…‹U„2…
FOR ASYMMETRIC KINKS

We now prove that asymmetric kinks are invariant und
U(3)^ U(2). Similar reasoning shows that supe
asymmetric kinks are invariant underU(4)^ U(1).

The asymmetric kink configuration is of the form

F~z!5a~z! F~2`!1b~z! F~1`!, ~A1!

whereF(2`) is given by Eq.~2.25!, F(1`) is given by
the middle line of Eq.~2.26!, amina52( f 1g)/2 andaminb
0-8
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5( f 2g)/2. We seek the invariance group at anyz obeying
0,uzu,`. Consider SO(10) transformsF→AFAT. By
linearity,

F→a AF~2`!AT1b AF~1`!AT. ~A2!

At the unexceptional points 0,uzu,`, the invariance group
of F(z) is given by the set of matricesA that simultaneously
leaveF(2`) andF(1`) invariant. This is the intersection
of theU(5)h andU(5)1 groups defined in the main text@see
Eq. ~2.30!#.

Now, a generalU(5)h matrix A(h) has the form

A(h)5S c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55

D , ~A3!

where each entry is of the form

ci j 5r i j S cosu i j 2sinu i j

sinu i j cosu i j
D ~A4!

with real r i j >0. A generalU(5)1 matrix A(1) is of the form
in

-
e,

s.
.

04501
Q1A(h)Q1
T , as per Eq.~2.30!. Direct matrix multiplication

shows that

A(1)5S c11 c12 c13 d14 d15

c21 c22 c23 d24 d25

c31 c32 c33 d34 d35

d41 d42 d43 c44* c45*

d51 d52 d53 c54* c55*

D , ~A5!

where

ci j* [r i j S cos~2u i j ! 2sin~2u i j !

sin~2u i j ! cos~2u i j !
D , ~A6!

and

di j [r i j S 6sinu i j cosu i j

cosu i j 7sinu i j
D . ~A7!

The upper signs come from left multiplication bys1, while
the lower signs come from right multiplication. We now o
serve that while the set ofci j ’s is the same as the set ofci j* ’s,
almost no matrix ofdi j form can ever haveci j form because
det(di j )<0 while det(ci j )>0. The only overlap is forr i j
50. The intersection ofU(5)h and U(5)1 thus consists of
10310 matrices with nonzero 636 and 434 matrices along
the diagonal and zeroes everywhere else. These two bl
lead to independentU(3) and U(2) invariances, as theh
map immediately reveals.
ti,

.
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