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Chameleon cosmology
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~Received 15 September 2003; published 27 February 2004!

The evidence for the accelerated expansion of the Universe and the time dependence of the fine-structure
constant suggests the existence of at least one scalar field with a mass of orderH0. If such a field exists, then
it is generally assumed that its coupling to matter must be tuned to unnaturally small values in order to satisfy
the tests of the equivalence principle~EP!. In this paper, we present an alternative explanation which allows
scalar fields to evolve cosmologically while having couplings to matter of order unity. In our scenario, the mass
of the fields depends on the local matter density: the interaction range is typically of order 1 mm on Earth
~where the density is high! and of order 10–104 AU in the solar system~where the density is low!. All current
bounds from tests of general relativity are satisfied. Nevertheless, we predict that near-future experiments that
will test gravity in space will measure an effective Newton’s constant different by order unity from that on
Earth, as well as EP violations stronger than currently allowed by laboratory experiments. Such outcomes
would constitute a smoking gun for our scenario.
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I. INTRODUCTION

There is growing evidence in cosmology for the existen
of nearly massless scalar fields in our Universe. On the
hand, a host of observations, from supernovae luminos
distance measurements@1# to the cosmic microwave back
ground anisotropy@2#, suggests that 70% of the current e
ergy budget consists of a dark energy fluid with negat
pressure. While observations are consistent with a non-
cosmological constant, the dark energy component is m
generally modeled as quintessence: a scalar field rol
down a flat potential@3,4#. In order for the quintessence fiel
to be evolving on cosmological time scales today, its m
must be of orderH0, the present Hubble parameter.

On the other hand, recent measurements of absorp
lines in quasar spectra suggest that the fine-structure con
a has evolved by roughly one part in 105 over the redshift
interval 0.2,z,3.7 @5#. Time variation of coupling con-
stants is generally modeled with rolling scalar fields@6#, and
the recent evidence for a time-varyinga requires the mass o
the corresponding scalar field to be of orderH0 @7#.

In either case, the inferred scalar field is essentially ma
less on solar system scales, and therefore subject to
constraints from tests of the equivalence principle~EP! @8#.
The current bound on the Eo¨tvös parameter,h, which quan-
tifies the deviation from the universality of free fall, ish
,10213, from the Eöt-Wash experiment@9#.

From a theoretical standpoint, massless scalar field
moduli are abundant in string and supergravity theories.
deed, generic compactifications of string theory result i
plethora of massless scalars in the low-energy, fo
dimensional effective theory. However, these massless fi
generally couple directly to matter with gravitation
strength, and therefore lead to unacceptably large violat
of the EP. Therefore, if the culprit for quintessence or tim
varyinga is one of the moduli of string theory, some mech
nism must effectively suppress its EP-violating contrib
tions.

For instance, Damour and Polyakov@10# ~see also@11#!
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have proposed a dynamical mechanism to suppress the
pling constantsb i between the various matter fields and t
dilaton of string theory. Alternatively, the suppression cou
be the result of approximate global symmetries@12#.

In a recent paper@13#, we presented a scenario in whic
scalar fields can evolve cosmologically while having co
plings to matter of order unity, i.e.,b i;O(1). This is be-
cause the scalar fields acquirea mass whose magnitude d
pends on the local matter density. In a region of high density,
such as on Earth, the mass of the fields is large, and thus
resulting violations of the EP are exponentially suppress
In the solar system, where the density is much lower,
moduli are essentially free, with a Compton wavelength t
can be much larger than the size of the solar system. Fin
on cosmological scales, where the density is very low,
mass can be of the order of the present Hubble param
thereby making the fields potential candidates for causing
acceleration of the universe or the time evolution of the fin
structure constant. While the idea of density-dependent m
terms is not new@10,14–16#, the novelty of our work lies in
the fact that the scalar fields can couple directly to bary
with gravitational strength.

In our scenario, scalar fields that have cosmological
fects, such as quintessence, do not result in large violat
of the EP in the laboratory because we happen to live i
very dense environment. Thus, the main constraint on
model is that the mass of the field be sufficiently large
Earth to evade EP and fifth force constraints@17#.

The generation of a density-dependent mass for a gi
modulusf results from the interplay of two source terms
its equation of motion. The first term arises from se
interactions, described by a monotonically decreasing po
tial V(f) which is of the runaway form~see Fig. 1!. In
particular, we underscore the fact that the potential need
have a minimum; rather, it must be monotonic. The seco
term arises from the conformal coupling to matter fields,
the form eb if/M Pl. The coupling constantsb i need not be
small, however, and values of order unity or greater are
lowed. Although these two contributions are both monoto
©2004 The American Physical Society26-1
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functions off, their combined effect is that of an effectiv
potential which does display a minimum~see Fig. 2!. Fur-
thermore, since this effective potential depends explicitly
the local matter densityr, both the field value at the mini
mum and the mass of small fluctuations depend onr as well,
with the latter being an increasing function of the density

Although the scalar fields are quite massive on Ea
their behavior is strikingly different in the solar syste
where the local matter density is much smaller. Thus
model makes a crucial prediction for near-future experime
that will test gravity in space. For example, consider the S
Project @18# which among other things will measure New
ton’s constant to an unprecedented accuracy. Our scen
generically predicts that the SEE experiment should obse
corrections of order unity to Newton’s constant compared
its measured value on Earth, due to fifth-force contributio
which are important in space but exponentially suppres
on Earth.

Moreover, three satellite experiments to be launched

FIG. 1. Example of a runaway potential.

FIG. 2. The chameleon effective potentialVe f f ~solid curve! is
the sum of two contributions: one from the actual potentialV(f)
~dashed curve!, and the other from its coupling to the matter dens
r ~dotted curve!.
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the near future, STEP@19#, Galileo Galilei ~GG! @20# and
MICROSCOPE@21#, will test the universality of free fall in
orbit with expected accuracy of 10218, 10217 and 10215,
respectively. We predict that these experiments should
serve a strong EP-violating signal. In fact, for a wide ran
of parameters, our model predicts that the signal will
larger than the ground-based Eo¨t-Wash bound of 10213.

If SEE does measure an effective Newton’s constant
ferent from that on Earth, or if STEP observes an E
violating signal larger than thought permitted by the E¨t-
Wash experiment, this will strongly indicate that
mechanism of the form proposed here is realized in nat
for otherwise it would be hard to explain the discrepanc
between measurements in the laboratory and those in o
These new and surprising outcomes are a direct consequ
of the fact that scalar fields in our model have drastica
different behavior in regions of high density than in regio
of low density.

We refer tof as a ‘‘chameleon’’ field, since its physica
properties, such as its mass, depend sensitively on the e
ronment. Moreover, in regions of high density, the cham
leon ‘‘blends’’ with its environment and becomes essentia
invisible to searches for EP violation and the fifth force.

Even though we predict significant violations of the EP
space, all existing constraints from planetary orbits@8#, such
as those from lunar laser ranging@22#, are easily satisfied in
our model. This is because of the fact that the chamele
mediated force between two large objects, such as the E
and the Sun, is much weaker than one would naively exp
To see this, we use calculus and break up the Earth in
collection of infinitesimal volume elements. Consider o
such volume element located well within the Earth. Since
mass of the chameleon is very large inside the Earth, thf
flux from this volume element is exponentially suppress
and therefore contributes negligibly to thef field outside the
Earth. This is true for all volume elements within the Ear
except for those located in a thin shell near the surface.
finitesimal elements within this shell are so close to the s
face that they do not suffer from the bulk exponential su
pression. Thus, the exterior field is generated almost enti
by this thin shell, whereas the bulk of the Earth contribu
negligibly. A similar argument applies to the Sun. Cons
quently, the chameleon-mediated force between the E
and the Sun is suppressed by this thin-shell effect, wh
thereby ensures that solar system tests of gravity are s
fied.

However, note that this applies only to large objects, su
as planets. Sufficiently small objects do not suffer from th
shell suppression, and thus their entire mass contribute
the exterior field. In particular, a small satellite in orbit, su
as SEE, may not exhibit a thin-shell effect. This is why t
orbits of the planets are essentially unaffected by thef force,
whereas the fifth force between two test particles in the S
capsule is significant.

Sincef couples directly to matter fields, all mass sca
and coupling constants of the standard model depend
space and time. Once again due to the thin-shell mechan
described above, spatial variations of constants are s
ciently small in our model to satisfy current experimen
6-2
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bounds, for instance from the Vessot-Levine experim
@23#. Time variation of coupling constants are also not
problem since, during most of the history of the universe,
various couplings actually change by very little. Thus t
bounds from big bang nucleosynthesis, for instance, are
ily satisfied. This will be described in more detail in a sep
rate paper dealing with the cosmological evolution in o
model @24#.

In Sec. II, we describe the ingredients of the scena
focusing on a single modulusf for simplicity. We show how
the dynamics off are governed by an effective potential th
depends on the local matter density. In Sec. III, we der
approximate solutions forf for a compact object such as th
Sun, for instance, and describe the thin-shell mechan
mentioned earlier. In Sec. IV, we specialize the solution
f to the case of the Earth, and apply the results in Sec. V
derive constraints on the parameters of the theory base
laboratory tests of the EP and searches for a fifth force.
then show in Sec. VI that, for a potential of power-law form
V(f)5M41nf2n, these constraints translate into the r
quirement that the energy scaleM be less than an invers
millimeter or so. Curiously, this is also the scale associa
with the cosmological constant today. In Sec. VII, we arg
that our model easily satisfies constraints from solar sys
tests of general relativity~GR!. It is shown~Sec. VIII! that
the same holds true for bounds from spatial and time va
tion of coupling constants. We then predict~Sec. IX! that
near-future experiments that aim at testing the EP and m
suring a fifth force should observe a large signal, perh
stronger than previously thought possible. Finally, we c
clude and summarize our results in Sec. X.

II. THE INGREDIENTS OF THE MODEL

Focusing on a single scalar fieldf for simplicity, the
action governing the dynamics of our model is given by

S5E d4xA2gH M Pl
2

2
R2

1

2
~]f!22V~f!J

2E d4xLm~cm
( i ) ,gmn

( i ) !, ~1!

whereM Pl[(8pG)21/2 is the reduced Planck mass,g is the
determinant of the metricgmn , R is the Ricci scalar andcm

( i )

are matter fields. The scalar fieldf interacts directly with
matter particles through a conformal coupling of the fo
eb if/M Pl. Explicitly, each matter fieldcm

( i ) couples to a metric
gmn

( i ) which is related to the Einstein-frame metricgmn by the
rescaling

gmn
( i ) 5e2b if/M Plgmn , ~2!

where b i are dimensionless constants@25#. Moreover, for
simplicity, we assume that the differentcm

( i )’s do not interact
with each other. Note that Eq.~1! is of the general form of
low-energy effective actions from string theory and sup
gravity, whereV(f) arises from non-perturbative effects.
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The potentialV(f) is assumed to be of the runaway form
That is, it is monotonically decreasing and satisfies

lim
f→`

V50, lim
f→`

V,f

V
50, lim

f→`

V,ff

V,f
50 . . . , ~3!

as well as

lim
f→0

V5`, lim
f→0

V,f

V
5`, lim

f→0

V,ff

V,f
5` . . . , ~4!

whereV,f[dV/df, etc.~see Fig. 1!. For instance, a fiducia
example is the inverse power-law potential

V~f!5M41nf2n, ~5!

whereM has units of mass andn is a positive constant. The
above conditions on the asymptotics ofV are generally sat-
isfied by potentials arising from non-perturbative effects
string theory@14–16,26#. Note that it is also of the desire
form for quintessence models of the universe@27#.

The equation of motion forf derived from the above
action is then

¹2f5V,f2(
i

b i

M Pl
e4b if/M Plg( i )

mnTmn
( i ) , ~6!

whereTmn
( i ) 5(2/A2g( i ))dLm /dg( i )

mn is the stress-energy ten
sor for thei th form of matter. For the purpose of this pape
it will suffice to approximate the geometry as Minkows
space, that is,gmn'hmn . This is valid provided that the
Newtonian potential is small everywhere, and that the b
reaction due to the energy density inf is also small. This
latter assumption will be justified when we analyze po
Newtonian corrections in Sec. VII B.

For non-relativistic matter, one hasg( i )
mnTmn

( i ) '2 r̃ i , where

r̃ i is the energy density. However, we shall find it convenie
to express our equations not in terms ofr̃ i , but rather in
terms of an energy densityr i[r̃ ie

3b if/M Pl which is con-
served in Einstein frame. In other words,r i is defined so that
it is independent off. Equation~6! thus reduces to

¹2f5V,f1(
i

b i

M Pl
r ie

b if/M Pl. ~7!

From the right-hand side of Eq.~7!, we see that the dy-
namics off are not solely governed byV(f), but rather by
an effective potential

Ve f f~f![V~f!1(
i

r ie
b if/M Pl ~8!

which depends explicitly on the matter densityr i . In par-
ticular, althoughV(f) is monotonic,Ve f f does exhibit a
minimum provided thatb i.0. This is illustrated in Fig. 2
for the case of a single componentr with couplingb. ~One
could equivalently consider the caseV,f.0 andb i,0.! Un-
fortunately, known examples in string theory haveV,f and
6-3
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FIG. 3. Chameleon effective potential fo
large and smallr, respectively. This illustrates
that, asr decreases, the minimum shifts to larg
values off and the mass of small fluctuation
decreases.~Line styles are the same as in Fig. 2!
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b i occurring with the same sign. Iff is the modulus of an
extra dimension, for instance, then one expects thatV→0
andV,f→0 in the decompactification limit@28#; in this limit,
the various masses of particles also tend to zero.

We will denote byfmin the value assumed byf at the
minimum, that is,

V,f~fmin!1(
i

b i

M Pl
r ie

b ifmin /M Pl50. ~9!

Meanwhile, the mass of small fluctuations aboutfmin is ob-
tained as usual by evaluating the second derivative of
potential atfmin :

mmin
2 5V,ff~fmin!1(

i

b i
2

M Pl
2

r ie
b ifmin /M Pl. ~10!

Equations~9! and ~10! respectively imply that the loca
value of the field,fmin , and its mass,mmin , both depend on
the local matter density. SinceV,f is negative and monotoni
cally increasing, whileV,ff is positive and decreasing,
also follows that larger values ofr i correspond to smalle
fmin and largermmin . This is illustrated in Fig. 3. The
denser the environment, the more massive is the chame
We will later see that it is possible formmin to be sufficiently
large on Earth to evade current constraints on EP violati
and fifth force, while being sufficiently small on cosmolog
cal scales forf to have interesting cosmological effects.

The upshot of our model, from a theoretical standpoint
that the potentialV(f) need not have a minimum, nor doe
the coupling constantb need to be tuned to less than 1024 to
satisfy EP constraints@10#. Quite the contrary,V(f) is as-
sumed monotonic, whileb can be of order unity.

III. PROFILE FOR A COMPACT OBJECT

In order to study the observable consequences of
model, in particular with regard to EP violations and fif
force mediation, we must first understand the profile thaf
acquires on Earth and in the solar system. Therefore, in
section, we derive an approximate solution forf in the case
where the source is a compact object, which we idealize
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being perfectly spherical and having homogeneous dens
Thus, consider a static, spherically symmetric body of

dius Rc , homogeneous densityrc and total massMc

54pRc
3rc/3. In the case of the Earth, the latter can be a

proximated by the characteristic terrestrial densityr %

'10 g/cm3. We treat the object as isolated, in the sense t
the effect of surrounding bodies is neglected. It is not
vacuum, however, but is instead immersed in a backgro
of homogeneous densityr` . In the case of solar system
objects, this models the fact that our local neighborhood
the galaxy is not empty, but rather filled with an approx
mately homogeneous component of baryonic gas and d
matter with densityr`[rG'10224 g/cm3. In the case of a
baseball in the Earth’s atmosphere,r` denotes the surround
ing atmospheric density:r`[ratm'1023 g/cm3.

With these assumptions, Eq.~7! reduces to

d2f

dr2
1

2

r

df

dr
5V,f1

b

M Pl
r~r !ebf/M Pl, ~11!

where

r~r !5H rc for r ,Rc ,

r` for r .Rc .
~12!

Note that we temporarily focus on the case where allb i ’s
assume the same valueb. This is done for simplicity only,
and the following analysis remains qualitatively unchang
when these are taken to be different. Moreover, this assu
tion will be dropped when we derive the resulting violatio
of the EP in Sec. V. In other words, in the end we are n
assuming that the theory is Brans-Dicke@29#.

Throughout the analysis, we denote byfc and f` the
field value which minimizesVe f f for r ,Rc and r .Rc , re-
spectively. That is, from Eqs.~9! and ~12!, we have

V,f~fc!1
b

M Pl
rce

bfc /M Pl50,

V,f~f`!1
b

M Pl
r`ebf` /M Pl50. ~13!
6-4
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Similarly, we denote bymc andm` the mass of small fluc-
tuations aboutfc andf` , respectively. That is,mc(m`) is
the mass of the chameleon field inside~outside! the object.

Equation~11! is a second order differential equation a
as such requires two boundary conditions. Since the solu
must be non-singular at the origin, we requiredf/dr50 at
r 50, as usual. Moreover, sincer5r` at infinity, it is natural
to imposef→f` as r→`. This latter condition is physi-
cally sensible as it impliesdf/dr→0 asr→`, and thus that
the f force between the compact object and a test part
tends to zero as their separation becomes infinite. To s
marize, Eq.~11! is subject to the following two boundar
conditions:

df

dr
50 at r 50,

f→f` as r→`. ~14!

A. Qualitative description of the solution

Before solving this problem explicitly, it is useful to giv
a heuristic derivation of the solution. Far outside the obje
r @Rc , we know that the chameleon tends tof` , as re-
quired by the second boundary condition. There are then
types of solution, depending on whether the object is la
~e.g., the Earth! or small ~e.g., a baseball!. The distinction
between large and small will be made precise below.

Small objects do not generate large variations inf. Thus,
their solution can be thought of as a perturbation on
background solutionf5f` . Hence, one hasf'f` every-
where in this case, including the interior of the object.

Large objects, on the other hand, are strongly perturb
Within the object, r ,Rc , one finds that the chameleo
nearly minimizes the effective potential, and thusf'fc .
Hence, the solution essentially extrapolates betweenf5fc
within the core andf5f` far outside.

To be more precise, let us describe the exterior solu
(r .Rc) for large bodies, assumingm`Rc!1 for simplicity.
For this purpose, it is convenient to break up the object i
infinitesimal volume elementsdV and consider their indi-
vidual contribution to thef field. Well within the object, one
has f'fc , and the mass of the chameleon is large,mc
@m` . Thus, the contribution from a volume elementdV

within the core is proportional to exp(2mcr̃) and is therefore
exponentially suppressed. In other words, it contributes n
ligibly to the f field outside. This holds for all infinitesima
volume elements within the object, except for those lyi
within a thin shell of thicknessDRc near the surface@30#; see
Fig. 4. Thus, the exterior solution is obtained by summ
over all elements within this shell:

f~r !'2S b

4pM Pl
D S 3DRc

Rc
D Mce

2m`r

r
1f` , ~15!

wherer is the distance from the center of the object.
We will find in Sec. III B that
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DRc

Rc
5

f`2fc

6bM PlFc
, ~16!

whereFc5Mc/8pM Pl
2 Rc is the Newtonian potential at th

surface of the object. The derivation of Eq.~15! implicitly
assumed that the shell was thin, that is,

DRc

Rc
!1. ~17!

We shall henceforth refer to this as the thin-shell conditio
Small objects, in the sense thatDRc /Rc.1, do not have

a thin shell. Rather, their entire volume contributes to thef
field outside, and thus the exterior solution is

f~r !'2S b

4pM Pl
D Mce

2m`r

r
1f` , ~18!

which is recognized as the Yukawa profile for a scalar fi
of massm` . Note that Eqs.~15! and ~18! differ only by a
thin-shell suppression factor ofDRc /Rc . To summarize, the
exterior solution for a compact object is given by

f~r !'2S b

4pM Pl
D Mce

2m`r

r
1f` if

DRc

Rc
.1,

f~r !'2S b

4pM Pl
D S 3DRc

Rc
D Mce

2m`r

r
1f`

if
DRc

Rc
!1, ~19!

with DRc /Rc defined in Eq.~16!.
The ratio (f`2fc)/M PlFc , which appears in Eq.~16!

and determines whether or not an object has a thin shell,
be interpreted physically as follows. Given a backgrou
profile f(r ), it is straightforward to show from the action~1!

FIG. 4. For large objects, thef field a distancer .Rc from the
center is to a good approximation entirely determined by the c
tribution from infinitesimal volume elementsdV ~dark rectangle!
lying within a thin shell of thicknessDRc ~shaded region!. This
thin-shell effect suppresses the resulting chameleon force.
6-5
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FIG. 5. The inverted potential2Ve f f for a
compact object of radiusRc is discontinuous at
r 5Rc since the matter density equals~a! rc for
r ,Rc ; ~b! r` for r .Rc . The dots represent the
position of the particle at some value ofr.
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that the resulting chameleon force on a test particle of m
M and couplingb is given by

FW f52
b

M Pl
M¹W f. ~20!

It follows that f should be thought of as a potential for th
‘‘fifth’’ force. Thus, (f`2fc)/M PlFc is the ratio of the dif-
ference inf potential to the Newtonian potential, and effe
tively quantifies how perturbing the object is for thef field.

B. Derivation

To get an intuition for the boundary value problem
hand, it is useful to think ofr as a time coordinate andf as
the position of a particle, and treat Eq.~11! as a dynamical
problem in classical mechanics. This is akin to the famil
trick performed in bubble nucleation calculations@31#. In
this language, the particle moves along the inverted poten
2Ve f f , and the second term on the left-hand side of E
~11!, proportional to 1/r , is recognized as a damping term
An important difference here is that2Ve f f is ‘‘time’’ depen-
dent sincer depends onr. More precisely, the effective po
tential undergoes a jump at timer 5Rc , as illustrated
in Fig. 5.

The particle begins at rest, sincedf/dr50 at r 50, from
some initial value which we denote byf i :

f i[f~r 50!. ~21!

For smallr, the friction term is large, and thus the particle
essentially frozen atf5f i . It remains stuck there until the
damping term, proportional to 1/r , is sufficiently small to
allow the driving term,dVe f f /df, to be effective. In other
words, the amount of ‘‘time’’ the particle remains stuck ne
f5f i depends on the slope of the potential,dVe f f /df, at
f5f i . Once friction is negligible, the particle begins to ro
down the potential; see Fig. 5~a!.

It rolls down until, at some later timer 5Rc , the potential
suddenly changes shape asr(r ) undergoes a jump fromrc to
r` @see Eq.~12!#. But f anddf/dr are of course continuou
at the jump, and the particle keeps rolling, this time climbi
up the inverted potential; see Fig. 5~b!. If the initial position
f i is carefully chosen, the particle will barely reachf` in
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the limit r→`, as desired.~It is easy to prove that suchf i
always exists.! Thus the problem is reduced to determinin
the initial valuef i .

In the endf i will depend on the physical properties of th
compact object, such as its densityrc and its radiusRc , as
well as on the various parameters of the theory, such ab
and the shape of the potential. Rather than first choosin
set of values forrc , Rc , etc. and then solving forf i , we
will instead choose a range off i and determine the corre
sponding region in the (rc ,Rc , . . . ) parameter space. Mor
precisely, we shall consider the two regimes (f i2fc)!fc
andf i*fc , and we will show that these correspond resp
tively to DRc /Rc!1 andDRc /Rc.1. Anticipating this re-
sult, we refer to these two regimes asthin shell and thick
shell, respectively.

Thin-shell regime: (f i2fc)!fc . This corresponds tof
being released from a point very close tofc . Sincefc is a
local extremum of the effective potential, the driving ter
dVe f f /df is negligible initially, and the dynamics ar
strongly dominated by friction. Consequently, the field r
mains frozen at its initial valuef i'fc for a long time, until
the friction force is sufficiently small to allow the particle t
roll. We shall denote byRroll the ‘‘moment’’ at which this
occurs. Hence, we have

f~r !'fc for 0,r ,Rroll . ~22!

When r;Rroll , the field is still nearfc but has now begun
to roll. Since M PluV,fu!brebf/M Pl as soon asf is dis-
placed significantly fromfc , as illustrated in Fig. 2, we may
approximate Eq.~11! in the regimeRroll ,r ,Rc by

d2f

dr2
1

2

r

df

dr
'

b

M Pl
rc , ~23!

where we have also assumedbf/M Pl!1. The solution to
Eq. ~23! with boundary conditionsf5fc anddf/dr50 at
r 5Rroll is

f~r !5
brc

3M Pl
S r 2

2
1

Rroll
3

r D 2
brcRroll

2

2M Pl
1fc

for Rroll ,r ,Rc . ~24!
6-6
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The full solution for 0,r ,Rc is thus approximated by Eqs
~22! and ~24!. The approximation of separating the solutio
into the two regions 0,r ,Rroll and Rroll ,r ,Rc makes
sense, however, only ifRc2Rroll !Rc , for otherwise there is
no clear separation between the two regions, and one ne
solution valid over the entire range 0,r ,Rc .

At r 5Rc , the energy density undergoes a jump fromrc
to r` , as described by Eq.~12!. For r .Rc , the effective
potential is shown in Fig. 5~b!, and the particle is climbing
up the hill. Since the speed of the particle is initially lar
compared to the curvature of the potential, Eq.~11! can be
approximated by

d2f

dr2
1

2

r

df

dr
'0, ~25!

whose solution, satisfyingf→f` as r→`, is given by

f~r !'2
Ce2m`(r 2Rc)

r
1f` , ~26!

whereC is a constant and where we have used the fact
the potential is approximately quadratic nearf5f` .

The two unknowns,Rroll andC, are then determined b
matchingf and df/dr at r 5Rc using Eqs.~24! and ~26!.
With the approximation thatRc2Rroll !Rc , it is straightfor-
ward to show that the exterior solution is

f~r !'2S b

4pM Pl
D S 3DRc

Rc
D Mce

2m`(r 2Rc)

r
1f` , ~27!

with

DRc

Rc
[

f`2fc

6bM PlFc
'

Rc2Rroll

Rc
!1, ~28!

where we have substituted the Newtonian potentialFc .
Thick-shell regime: f i*fc . In this case, the field is ini-

tially sufficiently displaced fromfc that it begins to roll
almost as soon as it is released atr 50. Hence there is no
friction-dominated regime in this case, and the interior so
tion for f is most easily obtained by taking theRroll →0
limit of Eq. ~24! and replacingfc by f i . Matching to the
exterior solution as before, we obtain

f~r !5
brcr

2

6M Pl
1f i for 0,r ,Rc ~29!

and

f~r !'2S b

4pM Pl
D Mce

2m`(r 2Rc)

r
1f` for r .Rc .

~30!

Moreover, equating these two equations atr 5Rc , we find
f i5f`23bFc /M Pl . In particular, sincef i*fc and using
the definitionDRc /Rc5(f`2fc)/6bM PlFc , this implies
04402
s a

at

-

DRc

Rc
.1. ~31!

We conclude this section with a word on how the abo
solutions, which assumed homogeneousr, can be general-
ized to the more realistic case of spatially varying mat
density. In most cases of interest, such as the interior of
Earth for instance, we will find that the matter density var
on scales much larger than the Compton wavelengthm21 of
the chameleon field in that region. More precisely, it is ge
erally the case thatu¹ logr(xW)u!m within dense objects. If
so, one can make an adiabatic approximation which cons
of treatingr(xW ) as a constant in the equations of motion.
other words, in this case one may simply substituter(xW ) in
the expressions above.

IV. PROFILE FOR THE EARTH

Since the most stringent constraints on possible violati
of the EP derive from experiments performed on Earth, i
important to discuss in some detail the profile forf inside
and in the vicinity of the Earth. Admittedly, the model fo
our planet described below is rather crude, but is sufficien
accurate to derive order-of-magnitude estimates of resul
violations of the EP. More realistic descriptions can be o
tained for instance by using the adiabatic approximation d
cussed at the end of Sec. III, or through numerical analy

The Earth is modeled as a solid sphere of radiusR% 56
3108 cm and homogeneous densityr % 510 g/cm3. Sur-
rounding it is an atmosphere which we approximate a
layer 10 km in radius with homogeneous densityratm
51023 g/cm3. Moreover, we treat our planet as an isolat
body, neglecting the effect of surrounding compact obje
such as the Sun and the Moon. Furthermore, far away f
the Earth, the matter density is approximated by the den
of homogeneous gas and dark matter in our local neighb
hood of the galaxy:rG510224 g/cm3.

The setup is thus almost identical to that of Eq.~11!,
except that the matter density now has three phases ins
of two:

r~r !5H r % for 0,r ,R% ,

ratm for R% ,r ,Ratm ,

rG for r .Ratm ,

~32!

where Ratm[R% 110 km. We henceforth denote byf % ,
fatm and fG the field value that minimizes the effectiv
potential for the corresponding densities. Similarly,m% ,
matm andmG are the corresponding masses.

Following the discussion in Sec. III, the solution depen
on whether or not the Earth and its atmosphere have a
shell. As we will prove below, it is necessary that the atm
sphere has a thin shell, for otherwise unacceptably large
lations of the EP will ensue. In this case, one hasf'fatm in
the bulk of the atmosphere. Moreover, since the Earth
much denser than the atmosphere, it follows that the E
itself has a thin shell, in which casef'f % inside the Earth.
6-7
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From Eqs.~16! and ~17!, the thin-shell condition for the
atmosphere reads

DRatm

Ratm
5

fG2fatm

6bM PlFatm
!1, ~33!

whereFatm[ratmRatm
2 /6M Pl

2 . We can refine this bound b
noting that, in order for the atmosphere to have a thin sh
clearly the thickness of the shell must be less than the th
ness of the atmosphere itself, which is'1023Ratm . Hence
this requiresDRatm /Ratm&1023. Using the fact thatratm
'1024r % , and thusFatm'1024F % , we can write this as
o
d

th

nc

di
o

a

04402
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DR%

R%

[
fG2fatm

6bM PlF %

,1027. ~34!

This condition, which ensures that the atmosphere has a
shell, will play a crucial role in the analysis of tests of gra
ity in the following sections. The exterior solution,r
.Ratm , is then given by Eq.~27! with m`5mG and f`
5fG :

f~r !'2S b

4pM Pl
D S 3DR%

R%

D M %e2mG(r 2Ratm)

r
1fG .

~35!

To summarize, the solution forf for the Earth and its
atmosphere is well approximated by
f~r !'H f % for 0,r &R% ,

fatm for R% &r &Ratm ,

2S b

4pM Pl
D S 3DR%

R%

D M %e2mG(r 2Ratm)

r
1fG for r *Ratm ,

~36!
in

ra-
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e a
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III:
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n

whereDR% /R% is defined in Eq.~34!.
It remains to show that tests of the EP require the atm

sphere to have a thin shell. The proof proceeds by contra
tion. Suppose that condition~34! is violated and instead we
have

DR%

R%

.1027. ~37!

We can therefore ignore the atmosphere altogether, and
the f profile in the laboratory is given by Eq.~35!:

f~r !'2S b

4pM Pl
D S 3DR%

R%

D M %

r
1fG for r *R% ,

~38!

where we have neglected the exponential factor si
mGR% !1, as we will see in Sec. VI. From Eq.~20!, this
profile results in a fifth force on a test particle of massM and
couplingb i of magnitude

uFW fu52bb i S 3DR%

R%

D M % M

8pM Pl
2 r 2

. ~39!

Supposing that theb i ’s are all of orderb but assume differ-
ent values for different matter species; then the resulting
ference in relative free-fall acceleration for two bodies
different composition will be

h[2
ua12a2u
a11a2

;1024b2
DR%

R%

, ~40!

whereh is the Eötvös parameter, and where the numeric
coefficient is appropriate for Cu and Be test masses@10#, as
-
ic-

us

e

f-
f

l

used in the Eo¨t-Wash experiment@9#. For b of order unity,
we see from Eq.~37! that this violates the boundh
,10213. It follows that the atmosphere must have a th
shell.

V. SEARCHES FOR EP VIOLATION AND FIFTH FORCE
ON EARTH

The tightest constraints on our model derive from labo
tory tests of EP and searches for a fifth force@8,17#. Since
these experiments are usually done in vacuum, we first n
to derive an approximate solution for the chameleon insid
vacuum chamber. For simplicity, we model the chamber a
perfectly empty, spherical cavity of radiusRvac . In the ab-
sence of any other parts within the chamber, and ignoring
effect of the walls, the equation forf is given by Eq.~11!:

d2f

dr2
1

2

r

df

dr
5V,f1

b

M Pl
r~r !, ~41!

where we have assumedbf/M Pl!1 as we did throughou
Sec. III, and where

r~r !'H 0 for r ,Rvac ,

ratm for r .Rvac .
~42!

The boundary conditions are the same as in Sec.
df/dr50 at r 50 andf→fatm as r→`.

The solution within the vacuum chamber is analogous
the solution for a compact object with a thin shell~see Sec.
III !. In both cases, due to the large density contrast betw
the object or the vacuum cavity and its environment,f must
start atr 50 from a point where it can remain almost froze
for the entire volume; that is, for 0,r ,Rc in the case of the
overdense object and 0,r ,Rvac for the vacuum cavity. For
6-8
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a compact object, this freezing point lies naturally near
local extremumf5fc of the effective potential. For the
vacuum chamber, the effective potential has no extremum
r ,Rvac ~since r50 there!, and thus the only wayf can
remain still is by starting from a point where it will be fric
tion dominated for almost the entire range 0,r ,Rvac . In
other words the curvature of the potential at that point m
be of orderRvac

22 , that is, this freezing point corresponds to
valuef5fvac where the mass of small fluctuations,mvac ,
is equal toRvac

21 .
While the precise solution to Eq.~41! depends of course

on the details of the potential, numerical analysis confir
the above qualitative discussion:

The chameleon assumes the valuef;fvac within the
vacuum chamber, wherefvac satisfies

mvac[AV,ff~fvac!5Rvac
21 . ~43!

That is, fvac is the field value about which the Compto
wavelength of small fluctuations equalsRvac , the radius of
the chamber.

Throughout the chamber,f varies slowly, withudf/dru
&fvac /Rvac .

Outside the chamber the solution tends tofatm within a
distance ofmatm

21 from the walls.
These generic properties are all we need for our analy

A. Fifth force searches

The potential energy associated with fifth force intera
tions is generally parameterized by a Yukawa potential:

V~r !52a
M1M2

8pM Pl
2

e2r /l

r
, ~44!

where M1 and M2 are the masses of two test bodies,r is
their separation,a is the strength of the interaction~with a
51 for gravitational strength!, andl is the range. Null fifth-
force searches therefore constrain regions in the (l,a) pa-
rameter space~see Fig. 2.13 of@17#!.

As discussed above, the rangel of f-mediated interac-
tions inside a vacuum chamber is of the order of the size
the chamber. That is,l'Rvac . For l'10 cm–1 m, the
tightest bound on the coupling constanta from laboratory
experiments is from Hoskinset al. @32#:

a,1023. ~45!

Now consider two identical test bodies of uniform dens
rc , radiusRc and total massMc . If these have no thin shell
then they each generate a field profile given by Eq.~18! with
f`5fvac andm`5Rvac

21 :

f~r !'2S b

4p D Mc

M Pl

e2r /Rvac

r
1fvac . ~46!

Dropping the irrelevant constant, the resulting potential
ergy is
04402
e

or
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V~r !522b2
Mc

2

8pM Pl
2

e2r /Rvac

r
. ~47!

Comparison with Eq.~44! shows that the coupling strength
a52b2 in this case, which clearly violates the bound in E
~45! for b;O(1).

Hence it must be that the test masses have a thin s
that is,

DRc

Rc
[

fvac2fc

6bM PlFc
!1. ~48!

In this case, their field profile is given by Eq.~15!:

f~r !'2S b

4pM Pl
D S 3DRc

Rc
D Mce

2r /Rvac

r
1fvac , ~49!

and the corresponding potential energy is

V~r !522b2S 3DRc

Rc
D 2 Mc

2

8pM Pl
2

e2r /Rvac

r
. ~50!

Once again comparing with Eq.~44!, we find that the bound
in Eq. ~45! translates into

2b2S 3DRc

Rc
D 2

&1023. ~51!

Note that, forb*O(1), this constraint implies that the thin
shell condition in Eq.~48! is satisfied.

To make the condition~51! more explicit, note that a typi-
cal test body used in Hoskinset al. had massMc'40 g and
radiusRc'1 cm, corresponding toFc'3310227. Substi-
tuting in Eq. ~48! and assumingfvac@fc , we obtain the
constraint

fvac&10228 M Pl , ~52!

which ensures that the current bounds from laborat
searches of a fifth force are satisfied.

B. Tests of the EP

Turning our attention to the magnitude of EP violatio
inside our vacuum cavity, we recall that the solution forf
inside the chamber satisfies

Udf

dr U& fvac

Rvac
. ~53!

From Eq.~20!, this yields an extra component to the acc
eration of magnitude (b/M Pl)fvac /Rvac . For Cu and Be
test masses, as used in the Eo¨t-Wash experiment@9#, this
yields an Eo¨tvös parameter of

h;4p1024b
M PlR%

2

M %

fvac

Rvac
. ~54!

SubstitutingRvac510 cm andb;O(1), the Eöt-Wash con-
straint ofh,10213 translates into
6-9
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fvac&10226 M Pl , ~55!

which is a much weaker constraint than Eq.~52! and thus
will henceforth be ignored.

VI. RESULTING CONSTRAINTS ON MODEL
PARAMETERS

In this section we summarize the constraints derived
the previous sections and apply them to a general power
potential

V~f!5M41nf2n, ~56!

whereM has units of mass andn is a positive constant. As
mentioned earlier, potentials of this form have the desi
features for quintessence models of the universe@27#. We
will find that the energy scaleM is generally constrained to
be of the order of (1 mm)21. We then discuss the resultin
bounds on the interaction range in the atmosphere, in
solar system and on cosmological scales.

Broad considerations of EP violation lead us to conclu
in Sec. IV that both the Earth and its atmosphere must h
a thin shell. This resulted in the constraint@see Eq.~34!#

DR%

R%

[
fG2fatm

6bM PlF %

,1027. ~57!

Recall that, by definition,fG is the value off which mini-
mizes the effective potential withr5rG , i.e., V,f(fG)
1brGebfG /M Pl/M Pl50. AssumingbfG /M Pl!1 and sub-
stituting the power-law potential of Eq.~56! gives

fG5S nM41nM Pl

brG
D 1/(n11)

. ~58!

With rG510224 g/cm3 andF % 51029, it is then straightfor-
ward to show that Eq.~57! can be rewritten as a bound onM:

M,S 6n11

n D 1/(n14)

b (n12)/(n14)
•10(15n27)/(n14)

•~1 mm!21.

~59!

Then, in Sec. V, we studied laboratory tests of the EP
fifth force, including the fact that these are performed
vacuum, and derived the condition

fvac&10228M Pl , ~60!

where fvac is the field value about which the Compto
wavelength of small fluctuations is of the order of the size
the vacuum chamber,Rvac . Applying Eq.~43! to the power-
law potential yields

Rvac
22 510268M Pl

2 5n~n11!M41nfvac
2(n12) , ~61!

where we have assumedRvac51 m51034M Pl
21 for concrete-

ness. It is easy to see that smaller values ofRvac result in
weaker constraints, and this is therefore a conserva
choice. It is then straightforward to show that Eq.~52! re-
duces to
04402
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M&@n~n11!#21/(41n)
•103n/(41n)

•~1 mm!21. ~62!

We thus see that, forn andb of order unity, Eqs.~59! and
~62! both constrainM to be less than approximately an in
verse millimeter, or 1023 eV. It is remarkable that this is
also the mass scale associated with the cosmological
stant or dark energy causing the present acceleration of
universe@24#. Granted, this is tiny compared to typical pa
ticle physics scales, such as the weak or the Planck scale
thus our potential~56! suffers from fine-tuning. Neverthe
less, it is our hope that whatever mechanism suppresse
scale of the cosmological constant from its natural value
1018 GeV down to 1023 eV might also naturally account fo
the energy scale characterizing our potential.

The above constraints can be translated into bounds
the range of chameleon-mediated interactions in the at
sphere (matm

21 ), in the solar system (mG
21) and on cosmologi-

cal scales today (m0
21). From Eq.~10!, these are given by

matm
2 5V,ff~fatm!1

b2

M Pl
2

ratmebfatm /M Pl,

mG
2 5V,ff~fG!1

b2

M Pl
2

rGebfG /M Pl,

m0
25V,ff~f0!1

b2

M Pl
2

r0ebf0 /M Pl, ~63!

wherer0'10229 g/cm3 is the current energy density of th
universe andf0 is the corresponding value off on cosmo-
logical scales. Substituting the above bounds onM, it is
straightforward to show that, forn&2 andb of order unity,

matm
21 &1 mm–1 cm,

mG
21&10–104 AU,

m0
21&0.1–103 pc, ~64!

where the numbers on the right-hand side depend some
on the value ofn andb ~recall that 1 AU'1.531013 cm and
1 pc'331018 cm).

Thus, whilef interactions are short range in the atm
sphere~short compared to the size of the atmosphere!, they
are rather long range in the solar system. In particular, i
possible for the scalar field to be essentially free on so
system scales. This striking difference in behavior of t
field in space compared to Earth is an original ingredient
our scenario and, as we will show in Sec. IX, can lead
unexpectedly large signals for EP and fifth force experime
to be performed in orbit in the near future. On cosmologi
scales, we see that a power-law potential implies an inte
tion range which is smaller than the present size of the
servable universe,H0

21;109 pc. It follows that m0 is too
large forf to be rolling on cosmological time scales today.
6-10
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general study of potentials and their viability for quinte
sence models of the universe will be presented in a fu
paper@24#.

VII. SOLAR SYSTEM TESTS OF GRAVITY

In this section, we discuss the constraints on scalar-te
theories from planetary orbits, in particular from solar sy
tem tests of the EP and fifth force~Sec. VII A!, as well as
post-Newtonian corrections~Sec. VII B!. In short, these con
straints are all satisfied because large bodies, such as the
and the Earth, all have a thin shell which greatly suppres
the f force between them.

A. Solar system tests of EP and fifth force

Precise measurements of the lunar orbit from laser ra
ing constrains the difference in free-fall acceleration of
Moon and the Earth toward the Sun to be less than appr
mately one part in 1013 @8#. That is, denoting their respectiv
acceleration byaMoon anda% , we have

uaMoon2a% u
aN

&10213, ~65!

whereaN is the Newtonian acceleration.
In our model, this difference is naturally very small sin

the Sun, Earth and Moon are all subject to the thin sh
effect. We have already imposed that the Earth~and its at-
mosphere! have a thin shell. So must the Sun, therefo
since its Newtonian potential is larger than that of the Ea
Hence we need to show only that the same holds true for
Moon. But, assumingfG@fMoon , this trivially follows
from Eq. ~34!:

DRMoon

RMoon
;

DR%

R%

F %

FMoon
,1025, ~66!

where we have usedF % 51029 andFMoon510211.
Hence thef profile outside each of these bodies is giv

by Eq. ~27! with m`5mG and f`5fG . AssumingmG
21

.1 AU, since this yields maximal violation of the EP, it
then straightforward to show that the acceleration of
Earth toward the Sun is given by

a% 5aN•H 1118b2S DR%

R%

D S DR(

R(
D J

'aN•H 1118b2S DR%

R%

D 2F %

F(
J , ~67!

while for the Moon

aMoon5aN•H 1118b2S DRMoon

RMoon
D S DR(

R(
D J

'aN•H 1118b2S DR%

R%

D 2 F %

2

F(FMoon
J . ~68!
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SubstitutingF(51026, F % 51029 andFMoon510211, this
gives a difference in free-fall acceleration of

uaMoon2a% u
aN

'b2S DR%

R%

D 2

,b2
•10214, ~69!

where we have used Eq.~34! in the last step. This satisfie
the bound in Eq.~65! for reasonable values ofb.

We next consider solar-system tests of the existence
fifth force. Deviations from a 1/r 2 force law, for instance due
to the exponential factor in Eq.~44!, contribute an anoma
lous component to the perihelion precession of planetary
bits in comparison with the predictions of GR. For instan
lunar laser-ranging measurements lead to the constraina
&10210 for a fifth force with rangel;108 m @34#. A similar
analysis for the orbits of Mercury and Mars givesa&1029

for the rangel;1 AU @35#. ~Not surprisingly, these tests ar
most sensitive to a fifth force whose range is of the order
the distance between the Sun and the orbiting body.! In our
model, these celestial objects are all subject to the thin-s
effect, and, just as with the EP analysis above, the scree
mechanism makes the constraints from perihelion preces
trivial to satisfy.

B. Tests of post-Newtonian gravity

To estimate the constraints from post-Newtonian corr
tions, consider thef profile due to the Earth given by Eq
~35!:

f~r !'2S b

4pM Pl
D S 3DR%

R%

D M %

r
1fG , ~70!

where we have neglected the exponential factor. Compar
with the expected profile if there were no thin-shell suppr
sion, given by Eq.~30!, we see that the exterior solutio
above corresponds to that of a massless scalar with effec
coupling

be f f53b
DR%

R%

,3b31027, ~71!

where in the last step we have used the condition that
atmosphere has a thin shell@see Eq.~34!#. Treating our
model as a Brans-Dicke theory with effective coupling co
stantbe f f given above, which is a good approximation in th
solar system since the chameleon behaves essentially
free field, it is straightforward to show that the correspond
effective Brans-Dicke parameter,vBD , is given by@8#

312vBD5
1

2be f f
2

*631012b22. ~72!

The tightest constraint on Brans-Dicke theories comes fr
light-deflection measurements using very-long-baseline ra
interferometer@8#: vBD.3500. We see that this is easil
satisfied in our model. Similarly, one can show that the c
straint from the decay of the orbital period of binary pulsa
6-11
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vBD.100, is trivially satisfied.~Note that density-dependen
effective couplings were previously noted in a different co
text @33#.!

VIII. TESTS OF THE STRONG EP

Our discussion of the EP has so far been restricted to
weak EP, which essentially states that the laws of gravity
the same in any inertial frame. General relativity, howev
satisfies a stronger version of the EP@8#, in the sense that al
laws of physics, including non-gravitational interactions,
sume the same form in any inertial frame~local Lorentz in-
variance!, and the various parameters describing these n
gravitational forces, such as the fine-structure constant,
independent of space and time@local position invariance
~LPI!#.

At any space-time event, one can find a coordinate sys
in which the Einstein-frame metricgmn equals the
Minkowski metrichmn . Since all other metricsgmn

( i ) appear-
ing in the action~1! are conformally related togmn , all gmn

( i )

are proportional tohmn in this frame. All laws of physics are
therefore Lorentz invariant at that space-time event, and
our model satisfies local Lorentz invariance.

The most stringent constraint on spatial variations of c
plings comes from the Vessot-Levine experiment@23# which
measured the redshift between a hydrogen-maser clock fl
at an altitude of 104 km and another one on the ground. In
theory which has LPI, as in GR, the redshiftz is given by the
difference in Newtonian potentialDF between the emitte
and the receiver@36#. As shown in Will @8#, LPI violations
generate an extra contributionDz to the redshift, of the form

Dz5g•DF, ~73!

whereg is a constant that depends on the Newtonian po
tial of the emitter, withg50 corresponding to the case of n
LPI violation. The bound from the Vessot-Levine experime
is ugu&1024.

To estimateg in our case, recall from Eq.~2! that a test
particle of the matter fieldcm

( i ) follows geodesics of the met
ric gmn

( i ) related to the Einstein-frame metricgmn by gmn
( i )

5e2b if/M Plgmn . Thus, a constant mass scalem( i ) in the cm
( i )

frame is related to af-dependent mass scalem(f) in the
Einstein frame by the rescalingm(f)5eb if/M Plm( i ). Simi-
larly, acm

( i ) clock with frequencyn ( i ) is measured in Einstein
frame to have a frequencyn(f)5eb if/M Pln ( i ).

Assumingbf/M Pl!1, thef dependence ofn therefore
yields the following extra contribution to the redshift:

Dz'2
b

M Pl
@f~r em!2f~r rec!#, ~74!

where we have dropped the superscript (i ), and where
r em (r rec) is the distance between the emitter~receiver! and
the center of the Earth. For the Vessot-Levine experim
we haver em'104 km'2R% and r rec*R% , and it follows
from Eqs.~36! thatf(r em)'fG andf(r rec)'fatm , respec-
tively. Since DF'F % /2 in this case, massaging Eq.~74!
gives
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Dz5212b2S fG2fatm

6bM PlF %

DDF, ~75!

from which we can read off the corresponding value ofg:

ugu512b2
DR%

R%

&b231026. ~76!

This comfortably satisfies the Vessot-Levine bound ofugu
&1024.

Time variations of coupling constants are constrained
geophysical measurements~such as the Oklo Nuclear Reac
tor @37#!, by the study of absorption lines in quasar spec
and by nucleosynthesis. Recent analysis indicates that
fine-structure constant has evolved by more than one pa
105 over the cosmological redshift range 0.2,z,3.7 @5#,
thus suggesting that LPI does not hold in the Universe.

In our scenario, the various coupling constants are de
mined byf, whose value depends on the local density. Th
even though the coupling constants may vary on cosmol
cal scales today, the fact that the density of the Earth
constant in time implies that the various couplings measu
on Earth do not vary significantly. In particular, this implie
that constraints from the Oklo Nuclear Reactor are ea
evaded in our model.~See@38# for a related discussion of a
density-dependent fine-structure constant.!

In any case, we find that the time variation of couplin
constants and masses on cosmological scales is very sm
the case of the power-law potential of Eq.~56!. To see this,
consider once again a constant mass scalem( i ) in the matter
frame, with correspondingm(f)5eb if/M Plm( i ) in the Ein-
stein frame. Hence, the time variation ofm(f) between nu-
cleosynthesis and the present epoch, say, is given by

UDm

m U' b

M Pl
~f02fBBN!, ~77!

where fBBN is the value off at nucleosynthesis. For th
power-law potential considered earlier,V(f)5M41nf2n,
the bound ofM&(1 mm)21 derived in Sec. VI gives

UDm

m U&b310211, ~78!

which satisfies all current astrophysical and cosmolog
bounds. In particular, it appears that the power-law poten
cannot account for the variation of the fine-structure cons
reported by Webbet al. @5#. A more detailed analysis of time
variation of coupling constants in our model, including mo
general potentials, will be presented elsewhere@24#.

IX. NEW PREDICTIONS FOR NEAR-FUTURE SATELLITE
EXPERIMENTS

Our scenario has the remarkable feature that the phys
characteristics of the scalar field can be very different in
laboratory than in space. We have seen, for instance, tha
range of the interactions it mediates is of order 1 mm in
atmosphere while being greater than 10 AU in the solar s
6-12
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tem. Hence, as we will show in this section, the predic
strength of EP violations and fifth force can be striking
different in orbit than in the laboratory. This is particular
interesting as this decade should witness the launch of
eral satellite experiments that aim at making these meas
ments. Three of them, namely STEP, GG and MICR
SCOPE, will test the universality of free fall with respectiv
expected sensitivities of 10218, 10217 and 10215 for the
Eötvös parameterh. Another satellite, the SEE Project, wi
further attempt to measure a fifth force between two t
bodies in orbit.

In this section we will show that, for a wide range
parameters, our model predicts that these satellite exp
ments will see a strong signal. It is in fact likely that th
signal will be stronger than previously thought possib
based on laboratory measurements. For instance, the
capsule could detect corrections to the effective Newto
constant~including fifth force contribution! of order unity
compared to the value measured on Earth or inferred f
planetary motion. Moreover, STEP, GG and MICROSCO
could measure violations of the EP withh.10213, which is
larger than the current bound from the~ground-based! Eöt-
Wash experiment. Such outcomes would constitute a sm
ing gun for our model, for it would otherwise be difficult t
reconcile the results in space with those on Earth.

Let us begin with the SEE satellite, which will orbit th
Earth at an altitude of approximately 103 km. This multi-
faceted experiment will test for deviations from 1/r 2 in the
force law, search for violations of the EP and measure N
ton’s constantG to one part in 107. This will be achieved by
accurately determining the orbit of two test masses as t
interact gravitationally with each other and with the Ear
For our purposes we shall focus on the expected value oG,
including the contribution from the fifth force mediated b
f.

We first show that it is possible for the satellitenot to
have a thin shell. This is desirable in this case in order
maximize the signal. That is, we derive the conditions un
which DRSEE/RSEE.1 holds for the SEE capsule. Accord
ing to the current design, the satellite will have a total m
of ;2000 kg and an effective radius ofRSEE;2 m ~al-
though it has cylindrical symmetry, we approximate the c
sule as a sphere of equal volume for simplicity!. Thus its
Newtonian potential isFSEE'10224'10215F % . Moreover,
at an altitude of 1000 km, the chameleon field assumes
value f(r SEE);fG , as seen from Eq.~35!. Therefore, the
conditionDRSEE/RSEE.1 requires

DR%

R%

.10215. ~79!

Combining this with the condition that the atmosphere ha
a thin shell, Eq.~57!, we find that the allowed range fo
which the SEE satellite willnot have a thin shell is

10215,
DR%

R%

,1027. ~80!
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This constitutes a wide region in parameter space. Follow
the analysis of Sec. VI, for a potentialV(f)5M41nf2n

with n51/3 andb510, this requires the range of intera
tions in the atmosphere,matm

21 , to be anywhere betwee
0.1 mm and 1 mm.

Therefore, if the inequality in Eq.~79! is satisfied, the
scalar fieldf is only slightly perturbed by the satellite, an
thus the field value within the capsule isf;fG . Moreover,
since mG

21 is much larger than the size of the satellite,f
behaves as a massless field. Hence, if the test bodies
massMi and couplingb i , i 51,2, they will experience a
total force, gravitational plusf mediated, given by

uFW u5
GM1M2

r 2
~112b1b2!, ~81!

where we have restored Newton’s constantG
5(8pM Pl

2 )21. This implies, therefore, that the SEE satelli
will measure an effective Newton’s constant,Ge f f[G(1
12b1b2), which differs by order unity from Newton’s con
stant measured on Earth.

Since this is an important prediction, let us summar
how it was obtained. First of all, the key ingredient is that t
SEE experiment is performed in orbit, where the range
f-mediated interactions is greater than 10 AU. Thus, sm
perturbations inf are essentially massless on the scale of
capsule, and therefore the force law between two test bo
is proportional to 1/r 2 to a very good approximation. A sec
ond crucial condition is that there is no thin-shell effe
within the satellite, as expressed in Eq.~79!. This ensures
that there is no suppression of the fifth force, and the c
pling strength is therefore of orderb2. Hence, forb of order
unity, the effective Newton’s constant receives large corr
tions from the fifth force mediated byf. As mentioned ear-
lier, such an outcome would constitute strong evidence th
mechanism of the kind we are proposing is at play in natu

Our model also has surprising implications for satell
experiments that aim at measuring EP violations in or
such as MICROSCOPE, GG and STEP. These experim
will attempt to measure a difference in free-fall accelerat
between two concentric cylinders of different compositi
with expected sensitivities of one part in 1015, 1017 and 1018,
respectively.

We focus on the STEP satellite for concreteness. Althou
Eq. ~79! pertains to the SEE capsule, a similar condition
obtained for STEP, since its physical characteristics are
too different from those of SEE. Hence, there is no thin-sh
effect if Eq. ~79! holds, and thef profile within the satellite
is well approximated by Eq.~35!. It is then straightforward
to show that the Eo¨tvös parameter for Be and Nb test cylin
ders, as appropriate for STEP, is given by

h'1024b2
DR%

R%

. ~82!

Combining with Eq.~80!, we find the allowed range

b2310219,h,b2310211, ~83!
6-13



of

nd
u
nt
la
an

ic
by
n
a
r
a

all
ve

tin
vi

le
a
-
e
un
-
lly
e
w
u

la
s

the
tant
I-
ons
sed

a
tly,
ully

p
for
e-

For
eri-
ell
en-
fre-

de,
ake
he
ld re-
er-

n-
ur,
.
J.
.
for
o-

m
d

J. KHOURY AND A. WELTMAN PHYSICAL REVIEW D 69, 044026 ~2004!
which falls almost entirely within the range of sensitivity
STEP. Moreover, we see thatb can be larger than 10213, the
current bound from experiments performed on Earth@9#. In
other words, it is possible that MICROSCOPE, GG a
STEP will measure violations of the EP stronger than c
rently thought to be allowed by laboratory measureme
This is another striking manifestation of the fact that sca
field dynamics in our model are very different on Earth th
in orbit.

X. DISCUSSION

In this paper, we have presented a novel scenario in wh
both the strength and the range of interactions mediated
scalar fieldf depend sensitively on the surrounding enviro
ment. In a region of high density, such as on Earth, the m
of the scalar field is sufficiently large, typically of orde
1 mm21, to evade constraints on EP violation from labor
tory experiments. Meanwhile, the field can be essenti
free on solar system scales, with a typical Compton wa
length of 100 AU.

We have argued that our scenario satisfies all exis
bounds from ground-based and solar-system tests of gra
It will be left for future work to study our model in the
context of strongly gravitating systems, such as black ho
@39#. Implications for cosmology will be analyzed in a sep
rate paper@24#, where we will show in detail that chame
leons are consistent with cosmological constraints on the
istence of non-minimally coupled scalars, such as the bo
on the time variation ofG from nucleosynthesis, for ex
ample. Moreover, we will describe how the field dynamica
reaches the minimum of the effective potential, an elem
that was assumeda priori in the present work, and show ho
our scenario naturally provides a solution to the old mod
problem@40#.

The striking difference in interaction range in the so
system versus on Earth can lead to unexpected outcome
et
in

ipl
t
,

, U
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experiments that test gravity in space. It was argued that
SEE Project could measure an effective Newton’s cons
drastically different than that on Earth. Meanwhile, the M
CROSCOPE, GG and STEP satellites could detect violati
of the EP stronger than currently allowed by ground-ba
experiments. Either outcome would effectively constitute
proof of the existence of chameleons. More importan
these possible surprises for space experiments will hopef
strengthen the case for launching these satellites.

Also, the door is open for conceiving of new table-to
experiments to probe for the existence of chameleons,
instance by exploiting the fact that the properties of cham
leons are sensitive to the surrounding matter density.
example, one could imagine doing atomic physics exp
ments inside or in the vicinity of a massive oscillating sh
of matter. These oscillations would induce a time dep
dence in the profile of the chameleon and thus in the
quency of emission lines@41#. It would also be interesting to
investigate the behavior of the field at intermediate altitu
for instance at about 40 km where balloon experiments t
place. This would require a more realistic modeling of t
atmosphere than presented here. Such an analysis cou
veal that it may be possible to detect chameleons by p
forming gravity experiments in balloons@42#.
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