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Gravitational waveforms from a point particle orbiting a Schwarzschild black hole

Karl Martel
Department of Physics, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

~Received 5 November 2003; published 27 February 2004!

We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time do-
main. We obtain the gravitational waveforms produced by a point particle of massm traveling around a
Schwarzschild black hole of massM on arbitrary bound and unbound orbits. Fluxes of energy and angular
momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of
eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate
that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so
long as the orbital radiusr p(t) satisfiesr p(t).5M at all times.
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I. INTRODUCTION

Tightly bound binary systems consisting of a compact
ject of a few solar masses and a supermassive black ho
(106–109)M ( are very promising sources of gravitation
waves for space-based detectors such as the Laser Inte
ometer Space Antenna~LISA! @1#. There is now strong evi-
dence that most galaxies harbor a (106–109)M ( supermas-
sive black hole in their center@2#, and that they are likely
surrounded by a large population of solar-mass compact
jects that reside in the galactic cusp@3#.

The motion of objects in the galactic cusp is governed
the gravity of the supermassive black hole, but they are a
constantly scattered due to the presence of multiple com
objects. For a given compact object, this process occurs
it settles on a highly eccentric orbit that is tightly bound
the central black hole. On such an orbit, the object pas
very close to the black hole at periastron and it emits a
nificant amount of gravitational waves. Capture occurs
those orbits that are sufficiently eccentric and have a su
ciently small periastron~on the order ofM ) @4#. In these
cases, orbital evolution is driven by emission of gravitatio
waves, and the binary strongly radiates gravitational rad
tion, until the final plunge of the compact object into th
central black hole.

The question is then to determine the rate at which so
mass compact objects are captured by the central black
and how quickly the orbits decay by emission of gravi
tional waves. Because capture occurs when the time
evolve due to emission of gravitational waves is mu
smaller than the time to evolve due to diffusion and scat
ing, determination of the type of orbits for which captu
occurs and estimate of capture rates are sensitive to
strength of gravitational wave emission. Current estimate
orbital parameters for which capture occurs and associ
capture rates are based on the quadrupole approximatio
the emission of gravitational waves@5#. Although this is well
justified for large periastron, it is not a good approximati
for highly eccentric orbits with small periastron, those
interest for gravitational-wave astronomy.

In this paper, we consider a situation in which the co
pact object has already been captured by a spherically s
metric central black hole, and calculate the correct, gen
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relativistic, rates at which the system loses energy and an
lar momentum to gravitational waves. We consider th
types of orbits: circular, eccentric, and parabolic orbi
These calculations will then be used to refine capture
estimates, but this will be left for future work.

At this level of approximation, the internal dynamics
the small compact object are irrelevant. We treat it as a p
particle and base our calculations on first-order perturbati
of a Schwarzschild black hole; this is appropriate in view
the small mass ratio involved. The gravitational wavefor
produced by the orbital motion are obtained by solving
even parity Zerilli-Moncrief@6,7# ~ZM! and the odd parity
Regge-Wheeler @8# ~RW! equations. We work with
Schwarzschild coordinates, for which both wave equatio
take the form

F2
]2

]t2
1

]2

]r * 2
2Vl~r !Gc lm~r ,t !5Slm~r ,t !, ~1.1!

where r * 5r 12M log(r/2M21) is the usual tortoise coor
dinate, andVl(r ) is a potential defined in Eq.~A4! for both
modes. Explicit definitions for the ZM and the RW function
are given in Eqs.~A2! and ~A3! of Appendix A. The source
term Slm(r ,t) is of the form

Slm~r ,t !5G~r ,t !d@r 2r p~ t !#1F~r ,t !d8@r 2r p~ t !#,
~1.2!

where a prime denotes anr derivative, r p(t) denotes the
radial position of the particle as a function of time, an
G(r ,t) andF(r ,t) are known functions ofr and t once the
orbital motion of the particle is specified; they are given
Eq. ~A6! for the Zerilli-Moncrief equation, and by Eq.~A7!
for the Regge-Wheeler equation.

Instead of Fourier decomposing Eq.~1.1! and solving in
the frequency domain, we choose to integrate them in
time domain. The numerical method we use was first dev
oped by Lousto and Price@9#, and later corrected by Marte
and Poisson to yield second-order convergence@10#; it is a
finite-difference scheme, based on the null cones of
Schwarzschild spacetime, which incorporates the sou
term without approximatingd@r 2r p(t)# and d8@r 2r p(t)#.
This method is advantageous compared to Fourier decom
©2004 The American Physical Society25-1
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KARL MARTEL PHYSICAL REVIEW D 69, 044025 ~2004!
sition because of the need, in the case of highly eccen
orbits, to sum over a very large number of frequencies
order to obtain accurate results@11,12#. As an added bonus
the time-domain method provides the Zerilli-Moncrief a
Regge-Wheeler functions everywhere in the spacetime.
each multipole moment, information about the fluxes of e
ergy and angular momentum at infinity and through the ev
horizon is obtained by a single numerical integration.

Astrophysical black holes are very likely to be rapid
rotating and the assumption of spherical symmetry for
central black hole is unrealistic. However, removing this
sumption would require a substantial revision of our nume
cal method. The source term for the Schwarzschild pertu
tion equations can be treated exactly because, by remo
the angular dependence, the problem is reduced to inte
ing a one-dimensional partial differential equation. A dive
gent source term of the form of Eq.~1.2! then leads to a
simple jump in the field at the particle’s position, and th
can easily be handled by finite-difference methods. Fo
rotating black hole, one is faced with the task of solving t
inhomogeneous Teukolsky equation@13#. It is well known
that this equation is not separable in the time domain,
cause the eigenvalues of the angular functions are frequ
dependent. Insisting on working in the time domain leave
two-dimensional partial differential equation to integra
Unfortunately, ad-function source no longer leads to
simple jump at the position of the particle: the field is no
~logarithmically! divergent at this location. Standard finite
difference methods are inadequate to deal with this type
behavior and cannot be used. The problem can be circ
vented by smearing the particle around its position~for ex-
ample by using narrow Gaussian functions instead ofd func-
tions!. This eliminates the divergence in the source term a
consequently, in the field; standard finite-difference meth
can then be applied. Such an approach has been use
obtain gravitational waveforms produced by a particle on
equatorial circular orbit of the Kerr black hole@14#, but the
error introduced by smearing the particle is difficult to asc
tain. By specializing to Schwarzschild, comparison with t
present work will allow such a determination; this is anoth
important justification for the work presented here. With th
application in mind, we consider orbits with a wide range
eccentricities and semi-major axis, and do not necessa
restrict ourselves to highly eccentric orbits.

The paper is organized as follows. In Sec. II we descr
the orbital parametrization of bound and marginally bou
geodesics of the Schwarzschild spacetime. In Sec. III A
provide a relation between the Zerilli-Moncrief and Regg
Wheeler functions and the gravitational waveforms at infi
ity and near the event horizon; from these relations,
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fluxes of energy and angular momentum can be calcula
In Sec. III B, we provide a discussion of numerical issu
that limit the accuracy with which we can determine t
fluxes. In Sec. III C, Sec. III D, and Sec. III E, we prese
our results for the gravitational waveforms and fluxes
circular, eccentric, and parabolic orbits, respectively. In S
IV, we summarize our findings. Appendix A contains a br
summary of first-order black hole perturbation theory, wh
Appendix B contains a detailed derivation of the flux form
las at infinity~Appendix B 3! and through the event horizo
~Appendix B 4!.

II. ORBITAL PARAMETRIZATION

Following Cutler et al. @12#, we introducep, the semi-
latus rectum, ande, the eccentricity, as orbital parameter
They are defined so that the periastron and apastron a
pM/(11e) andpM/(12e), respectively. In terms of thes
parameters, the energy and angular momentum per unit m
of a point particle are

Ẽ25
~p2222e!~p2212e!

p~p232e2!
,

L̃25
M2p2

p232e2
. ~2.1!

For e50 the periastron and apastron coincide, and the o
is circular. In the interval 0<e,1, the motion occurs be
tween two turning points, while fore51, the apastron is
pushed back to infinity and the motion is parabolic.1 In all
cases, stable orbits exist only ifp.612e.

The position of the particle at timet is given by the co-
ordinates (r p(t),wp(t),up5p/2). Inspired by the solution to
the two-body problem in Newtonian mechanics, the rad
position of the particle is expressed as

r p~x!5
pM

11e cosx
, ~2.2!

wherex is a parameter along the orbit. This is well behav
at the turning points (x50, p), which facilitates the numeri-
cal integration of the geodesic equations for the time a
angular coordinates. In terms ofx, these are@12#

1In analogy with Newtonian mechanics, we use the term ‘‘pa

bolic’’ for marginally bound orbits: they havee51 (Ẽ51), but the
trajectories traced out arenot parabolas, except in the limitp@1.
d

dx
t5Mp2

~p2222e!1/2~p2212e!1/2

~p2222e cosx!~11e cosx!2~p2622e cosx!1/2
, ~2.3!

d

dx
wp5

p1/2

~p2622e cosx!1/2
. ~2.4!
5-2
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GRAVITATIONAL WAVEFORMS FROM A POINT . . . PHYSICAL REVIEW D 69, 044025 ~2004!
FIG. 1. In the left panel, we display the trajectories in thexp-yp plane for a geodesic withe51, andp58.001. For this choice of
parameters, the particle orbits the black hole approximately four times before leaving the central region. In the right panel, we
e50.9 andp57.8001 geodesic. When the particle reaches the periastron, it orbits the black hole on a quasi-circular orbit for appro
six cycles. In both cases, the exact number of cycles is given by Eq.~2.5!.
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The first of these equation can be numerically inverted
yield x(t); knowledge ofr p(x) andwp(x) is then equivalent
to knowing r p(t) andwp(t).

The geodesic equations given by Eqs.~2.3! and ~2.4! are
integrated using the Burlisch-Stoer method@15#, and we
chose the initial conditions as follows. The gravitation
waveforms are extracted as functions of time at a loca
r obs* . We take the initial momentt52to,0 to be the one a
which the particle is at periastron@x50, r p(2to)5Mp/(1
1e), andwp(2to)50]. We setto equal to the light travel
time between the periastron and the observation point. T
radiation emitted at the initial moment will reach the o
server att'0.

This parametrization of the geodesic is suitable for bou
and unbound orbits of the Schwarzschild spacetime; foe
,1, the parameterx can take any real value, whereas f
e>1, it is confined to2p/e<x<p/e. In this paper, we
consider circular orbits, selected cases of eccentric or
and parabolic orbits (e51), but the code is capable of pro
ducing gravitational waveforms for any value ofe. For anyp
ande, the particle orbits the central black hole a numberN
5Dwp /(2p) of times before moving out of the central re
gion. Integrating Eq.~2.4! over one radial period yields@12#

N5
2

p
A p

p2612e
KS 4e

p2612eD , ~2.5!

whereK(m)5*0
p/2dx(12m sin2x)21/2 is the complete ellip-

tic integral of the first kind. To visualize the trajectorie
we introduce xp(t)5r p(t)/(2M )cos@wp(t)# and yp(t)
5r p(t)/(2M )sin@wp(t)#. In Fig. 1, we display trajectories in
the xp-yp plane for p57.8001 ande50.9 ~left!, and p
58.001 ande51 ~right!. In both cases, the number of time
the particle orbits the central black hole is large. This
becausep is close to the critical value 612e at which N
diverges. In these cases, gravitational-wave emission
dominated by the quasi-circular portion of the orbit near
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riastron. The total energy emitted is then well approxima
by E5NEcircular , whereN is the ~divergent! number of or-
bits, P the period of a circular orbit atr p5Mp/(11e), and
Ecircular the energy emitted by a particle on such an orbit
similar approximation holds forL.

III. WAVEFORMS, ENERGY AND ANGULAR MOMENTUM
RADIATED

To numerically evolve Eq.~1.1! initial conditions must be
provided for the gravitational perturbations. The manner
which the initial configuration of the gravitational field influ
ences the subsequent evolution has been studied previo
for radial geodesics@10#. For bound geodesics, the motion
quasi-periodic and waiting a sufficiently long time eliminat
the contribution from the initial conditions, which simpl
propagates away. For marginally bound geodesics, we ch
the initial position of the particle to be very far from th
periastron. Far away from the black hole, the velocity of t
particle is small and it takes much longer for the particle
reach periastron than for the initial gravitational-wave co
tent to escape from the system. At the point where the em
sion of radiation is strongest, there is no trace left of t
initial configuration of the gravitational perturbations. Th
allows us to completely avoid problems related to the cho
of initial data for both bound and marginally bound geod
sics. We chose zero initial conditions for the gravitation
perturbations, acknowledging that this is inconsistent~creat-
ing the particle from nothing violates energy-momentu
conservation!, but recognizing that artifacts of this choic
disappear in time. Fluxes may then be computed relia
after waiting a sufficiently long time.

A. Far-zone fluxes and black hole absorption

We first provide a short summary of the relations betwe
the Zerilli-Moncrief and the Regge-Wheeler functions a
the radiative portion of the metric perturbation at infinity a
5-3
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KARL MARTEL PHYSICAL REVIEW D 69, 044025 ~2004!
at the event horizon, as well as flux formulas used throu
out the paper. Complete summaries of first-order black h
perturbation theory and flux calculations are relegated to
pendixes A and B, respectively. In the radiation zone, the
gravitational-wave polarizations are related to the Zeri
Moncrief and the Regge-Wheeler functions by

h12ıh35
1

2r (
lm
A~ l 12!!

~ l 22!!

3S cZM~ t !22ıE t

dt8cRW~ t8! D
22

Ylm~u,w!.

~3.1!

Similarly, when r→2M , the two gravitational-wave polar
izations are given by

h11ıh35
1

4M (
lm
A~ l 12!!

~ l 22!!

3S cZM~ t !22ıE t

dt8cRW~ t8! D
2
Ylm~u,w!.

~3.2!

In these equations,sY
lm are spherical harmonics of spi

weight s @16#.
From Isaacson’s stress-energy tensor for gravitatio

waves@17#, as well as Eqs.~3.1! and ~3.2!, we calculate the
energy flux in each multipole moment to be

Ėlm
`,eh5H 1

64p

~ l 12!!

~ l 22!!
uċZMu2, l 1m even,

1

16p

~ l 12!!

~ l 22!!
ucRWu2, l 1m odd,

~3.3!

and the angular momentum flux to be

L̇ lm
`,eh5H ım

128p

~ l 12!!

~ l 22!!
ċZMc̃ZM1c.c., l 1m even,

ım

32p

~ l 12!!

~ l 22!!
cRWE dtc̃RW1c.c., l 1m odd,

~3.4!

where a tilde over a quantity denotes complex conjugat
c.c. is the complex conjugate, and thel and m indices are
implicit on cZM andcRW. In Eqs.~3.3! and ~3.4!, Ėlm

` and

L̇ lm
` denote the fluxes across a surfacer 5const→`, while

Ėlm
eh and L̇ lm

eh denote the fluxes through a surfacer 5const
→2M . The fluxes at infinity are calculated using the Zeril
Moncrief and Regge-Wheeler functions extracted atr *
5r obs* , wherer obs* is large and positive, while for the hori
zon fluxes, they are extracted atr * 5r eh* , wherer eh* is large

and negative. OnceĖlm and L̇ lm are known, the total fluxes
are obtained by summing over all modes:
04402
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Ė`,eh5(
l 52

`

Ėl
`,eh , Ėl

`,eh5Ėl0
`,eh12 (

m51

l

Ėlm
`,eh,

~3.5!

L̇`,eh5(
l 52

`

L̇ l
`,eh , and L̇ l

`,eh52 (
m51

l

L̇ lm
`,eh ;

~3.6!

there is nom50 contribution to the angular momentum flu
and the factor of 2 in front ofĖlm

`,eh and L̇ lm
`,eh comes from

folding them,0 contributions over tom.0 ~see Appendix
A!. In a slow-motion, weak-field approximation the quadr
pole moment dominates (l 52 andm52) and the total en-
ergy and angular momentum radiated over one orbital pe
are @18#

EQ~p,e!5
64p

5

m2

M S 11
73

24
e21

37

96
e4D p27/2, ~3.7!

LQ~p,e!5
64p

5
m2S 11

7

8
e2D p22. ~3.8!

The average energy and angular momentum radiated per
time, defined by performing an orbital average, are

^ĖQ&5
32

5 S m

M D 2 ~12e2!3/2

p5 S 11
73

24
e21

37

96
e4D ,

^L̇Q&5
32

5

m2

M

~12e2!3/2

p7/2 S 11
7

8
e2D . ~3.9!

For the binaries considered in this paper, the slow-mot
and weak-field approximations break down, and the flu
must be computed using Eqs.~3.5! and ~3.6!. Numerically
we cannot perform the infinite sums, and we truncate them
a finite valuel max. In the next subsection, we explain th
criteria used to choosel max and discuss the overall accurac
of the time-domain computation.

B. Accurate determination of the fluxes: Numerical issues

In order to calculate the fluxes to a relative accuracy«
~we use«50.01), we need to consider three sources of er
discretization of Eq.~1.1!, effects of the finite size of our
computational grid, as well as truncation of the sums in E
~3.5! and ~3.6!.

First, discretization of Eq.~1.1! introduces numerica
truncation errors. In a previous paper, we showed that
Lousto and Price algorithm can be corrected to yield seco
order convergence@10#, i.e. truncation errors scale asDt2,
with Dt denoting the numerical step size for evolutio
Throughout this work we generated gravitational wavefor
by setting Dt50.1(2M ) in the numerical algorithm; this
proved sufficient to determine the fluxes at infinity to t
desired 1% accuracy. However, for a given step size
fluxes through the event horizon are never determined
accurately as the fluxes at infinity. The gravitational wav
flowing through the event horizon are weaker than the o
5-4
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FIG. 2. The dominant radiation modes for the Zerilli-Moncrief~left, l 52 and m52) and Regge-Wheeler~right, l 52 and m51)
functions for a particle orbiting the black hole atr p512M . At early times, the waveforms are dominated by the initial data content.
calculate the energy and angular momentum fluxes after a timet/(2M )5350.0.
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escaping to infinity, and, because of this difference in sca
horizon fluxes are determined with an accuracy&5%. But
we will see below that horizon fluxesneveramount to more
than a few percent of the total fluxes. The lower accura
with which black hole absorption is determined is then s
ficient for our goal of 1% overall accuracy.

Second, the expressions for the fluxes displayed in E
~3.3! and ~3.4! hold only asymptotically (r * →6`). Nu-
merically we are forced to extract the waveforms at finiter *
values, and this introduces finite-size effects in our resu
Numerical efficiency requires a small computational gr
but accuracy requires the waveforms to be extracted
large and positiver obs* and at a large and negativer eh* . The
flux formulas developed here are based on the stress-en
tensor for gravitational waves, as constructed by Isaac
@17#. The validity of the construction depends onl/R!1
being satisfied, wherel is a wavelength of the radiation an
R a typical radius of curvature. To calculate the fluxes
from the black hole, we extract the waveforms in an appro
mate radiation zone defined byl/r obs!1, where l21

;(M /Rp
3)1/2 andRp is a typical orbital radius. The radiatio

zone is then defined byRp /r obs(Rp /M )1/2!1. For relativis-
tic motionRp;M and by imposingRp /r obs,«, we make an
error of order« in approximating the radiation zone. This
somewhat different from the criteria for the validity of Isaa
son’s stress-energy tensor, but sinceR 21;(M /r obs

3 )1/2, we
have thatl/R;(Rp /r obs)

3/2;«3/2, and the use of the stress
energy tensor is justified. In practice we also imposedr obs*
.750(2M ). At the horizon, the situation is somewhat d
ferent. The typical radius of curvature isR;A22M , but the
radiation is blueshifted so thatl; f eh(Rp

3/M )1/2→0, where
f eh5122M /r eh . The requirementl/R!1 then translates
to f eh@Rp /(2M )#3/2,«. We usedRp* /ur eh* u,«, as well as
r eh* ,2750(2M ), which amply satisfies the above requir
ment. This yielded good results, but a better, more effici
choice would have beenr eh52M @11(2M /Rp)3/2«#. With
these choices ofr obs* and r eh* , we are making an error ofat
mostorder« in determining the fluxes at infinity and throug
the event horizon, respectively.
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Finally, the last source of error limiting the accuracy
the determination of the fluxes arises from truncating
sums in Eqs.~3.5! and~3.6! at a finite valuel max. The error
is made small enough for our requirements by demand
that

«[maxS Ėl max

`

Ė`
,
L̇ l max

`

L̇` D <1% ~3.10!

be satisfied. Typically, Eq.~3.10! is satisfied withl max given
by @p/(11e)#2( l max22),«, which is known to hold for cir-

cular orbits@19#. Note that becauseĖl max

` and L̇ l max

` are in-

cluded in the sum, the error comes from neglecting ter
starting atl 5 l max11. In effect, the relative error made from
neglecting these terms is much smaller than 1%. In the
lowing, we will return with empirical estimates of our nu
merical errors; these will confirm the preceding qualitati
discussion.

C. Circular orbits

For circular orbits,e50 and the radius of the orbit isr p

5pM. In Fig. 2 we display typical gravitational waveform
emitted by a particle traveling on a circular orbit. Both wav
forms have the same pattern: The field oscillates with
angular frequency given bymV, whereV5M 21p23/2 is the
orbital angular velocity andm is the multipole index. The left
panel contains the dominant quadrupolar mode (l 52 and
m52), while the right panel contains the dominant odd p
ity mode (l 52 andm51).

The code outputsĖGR and L̇GR directly, but it proves
convenient to express the fluxes in terms ofcE andcL : co-
efficients that remain close to 1 for all values ofp. The total
fluxes are calculated using Eqs.~3.5! and ~3.6! and we ex-
press the numerically obtained results in the form
5-5
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FIG. 3. In the left panel, we displaycE(FD), as well ascE(TD) andcL(TD), as functions ofp. BothcE andcL slowly approach 1 from
below for largep. For small values ofp, the coefficients approach 1.15 asp approaches 6. In the right panel, we display the residualsRE and
RL as defined in the text. Using the time-domain method, the fluxes are calculated accurately to 0.7% forp56.0001, and to 0.2% for large
values ofp.

TABLE I. Energy and angular momentum fluxes for circular orbits, calculated using a time domain~TD! code, are compared with fluxe
calculated by Poisson using a frequency domain~FD! approach@20#. Here we chosep57.9456 andp546.062. The energy fluxes are i
units of (M /m)2, and the angular momentum fluxes are in units ofM /m2. They are calculated atr obs* 51500M and r obs* 55200M for p
57.9456 andp546.062, respectively.

l m Ė` ~FD! Ė` ~TD! Relative difference L̇` ~FD! L̇` ~TD! Relative difference

p57.9456
2 1 8.163331027 8.162331027 ,0.1% 1.828331025 1.827031025 0.1%

2 1.706331024 1.705131024 ,0.1% 3.821531023 3.816431023 0.1%
3 1 2.173131029 2.174131029 ,0.1% 4.867031028 4.868431028 ,0.1%

2 2.519931027 2.516431027 0.1% 5.643931026 5.626231026 0.3%
3 2.547131025 2.543231025 0.1% 5.704831024 5.687831024 0.3%

4 1 8.3956310213 8.3507310213 0.2% 1.8803310211 1.8692310211 0.6%
2 2.509131029 2.498631029 0.4% 5.619531028 5.592631028 0.5%
3 5.775131028 5.746431028 0.5% 1.293431026 1.293331026 ,0.1%
4 4.725631026 4.708031026 0.4% 1.058431024 1.051831024 0.6%

5 1 1.2594310215 1.2544310215 0.4% 2.8206310214 2.8090310214 0.4%
2 2.7896310212 2.7587310212 1.1% 6.2479310211 6.1679310211 1.3%
3 1.093331029 1.083031029 1.0% 2.448631028 2.422731028 1.1%
4 1.232431028 1.219331028 1.1% 2.760331027 2.711431027 1.8%
5 9.456331027 9.383531027 0.8% 2.117931025 2.093331025 1.2%

Total 2.031731024 2.027331024 0.2% 4.544631023 4.539931023 0.1%

p546.062
2 1 1.8490310211 1.8713310211 1.2% 5.780431029 5.849731029 1.2%

2 2.865031028 2.872831028 0.3% 8.956631026 8.980931026 0.3%
3 1 7.5485310214 7.7275310214 2.4% 2.3598310211 2.4158310211 2.4%

2 1.0926310212 1.0990310212 0.6% 3.4157310210 3.4359310210 0.6%
3 8.0640310210 8.0835310210 0.2% 2.521031027 2.527031027 0.2%

4 1 9.9792310219 1.0390310218 4.1% 3.1191310216 3.2480310216 4.1%
2 1.6018310214 1.6171310214 1.0% 5.0075310212 5.0555310212 1.0%
3 4.6603310214 4.6799310214 0.4% 1.4569310211 1.4631310211 0.4%
4 2.7937310211 2.7997310211 0.2% 8.733931029 8.752531029 0.2%

Total 2.950531024 2.958431028 0.3% 9.223931026 9.248631026 0.3%
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FIG. 4. We display the energy and angular momentum fluxes through the event horizon normalized by the fluxes in the radiat
Even for highly relativistic motion, the horizon fluxes contribute less than 0.4% of the total fluxes. For circular orbits, the the

prediction is thatĖeh/Ė`5L̇eh/L̇`. Numerically, this relation is only approximate, but nevertheless the two curves are indistinguishab
right panel displays these ratios normalized by (r p /M )24, the weak-field and slow-motion approximation.
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ĖGR
` ~p!5cEĖQ~p,0!,

L̇GR
` ~p!5cLL̇Q~p,0!, ~3.11!

where ĖQ(p,e) and L̇Q(p,e) are given by Eq.~3.9! above
with e50. For circular orbits, we should findĖ5VL̇ and
therefore,cE5cL .

Circular orbits have been studied extensively and we
them to quantitatively test the accuracy of the time-dom
method. We perform a comparison of our results with
time-domain ~TD! code with results obtained in the fre
quency domain~FD! by Poisson@20#. In the left panel of Fig.
3 we displaycE(TD), cL(TD), and cE(FD). In the right
panel, we display the residuals,RE5100ucE(TD)
2cE(FD)u/cE(FD) and RL5100ucL(TD)
2cE(FD)u/cE(FD). In the interval 6,p<50, the time-
domain code reproduces the frequency domain calculat
to 0.7% or better, with the best agreement occurring for la
values ofp.
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In Table I we perform a mode by mode comparison b
tween the two methods forp57.9456 andp546.062. For
p57.9456, the fluxes from each multipole moment calc
lated with the time-domain code agree to 1% or better w
the fluxes calculated in the frequency domain. A simi
agreement is found forp546.062, with the exception of the
l 53 andm51, and l 54 andm51 modes, for which the
relative difference is 2.4% and 4.1%, respectively. This
sults from the huge difference in amplitude between th
modes and the dominant mode. The step size used thro
out this work is sufficient to obtain an overall relative acc
racy of 1%, but it is not small enough to determine ind
vidual, small-amplitude modes to better than 2–5
Although these modes could be resolved properly by usin
smaller step size, it is not necessary for our goal of 1
overall accuracy; the contributions from these modes to
total fluxes are six and ten orders of magnitude smaller t
the leading-order contributions, respectively. As such, th
do not affect the overall accuracy of the computation; forp
57.9456 andp546.062 the total fluxes calculated with th
FIG. 5. The Zerilli-Moncrief~left, l 52,m52) and Regge-Wheeler~right, l 52,m51) functions forp512 ande50.2. As in the case of
circular orbits, early times are dominated by the initial data content.
5-7
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FIG. 6. The Zerilli-Moncrief~left, l 52,m52) and Regge-Wheeler~right, l 52,m51) functions forp57.801 ande50.9. As in the case
of circular orbits, early times are dominated by the initial data content. The radiation occurs in short bursts when the particle appro
periastron. This is typical of the zoom-whirl behavior studied in@11#.
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time-domain method agree with the frequency domain
sults to within 0.2% and 0.3%, respectively.

Black hole absorption was calculated in a weak-field a
slow-motion approximation for a particle in circular orbit b
Poisson and Sasaki@21# and Alvi @22# who showed that it
gives rise to av8 correction to the quadrupole formula
Ėeh/ĖQ5v85L̇eh/L̇Q , wherev5p21/25(M /r p)1/2 is the or-
bital velocity. The time-domain method allows black ho
absorption to be calculated for arbitrary geodesics. In p
ticular, for circular orbits our results show that even wh
v;0.4 and the particle travels in a region of strong gravi
tional field, the amount of energy and angular moment
absorbed by the black hole is always a small correction to
total fluxes. For highly relativistic motion, this never grow
large enough to contribute more than 0.4% of the total flu
~see left panel of Fig. 4!. For the purpose of calculating tota
fluxes with an overall accuracy of 1%, black hole absorpt
can safely be ignored. The right panel displays the ratio
horizon fluxes to the fluxes at infinity, normalized b
(M /r p)4, the weak-field and slow-motion approximation. A
expected for circular motion, the normalized ratios for e
ergy and angular momentum are equal to each other,
they approach 1 for largep.

We estimate the accuracy with which black hole abso
tion can be determined using the time-domain method to
5%. This estimate is based on the following argument.
small amplitude modes, the accuracy with which their co
tribution to the total fluxes can be determined is limited
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errors originating from the discretization of Eq.~1.1! and the
finite stepsize used in the numerical evolution. Based on
accuracy of thel 54 andm51 mode forp546.062 in Table
I, the error is seen to be&5% for modes whose contributio
is ten orders of magnitude smaller than the dominant mo
For the range ofp values considered in this paper, black ho
absorption is at most seven orders of magnitude smaller
the dominant contribution.@This is evaluated using the
(M /r p)4 relation atr p550M , the value at which black hole
absorption is least significant.# It is then safe to assume tha
fluxes through the event horizon are determined with an
curacy,5%. ~For values ofp close to 612e, black hole
absorption is more important and therefore more accura
determined.!

D. Eccentric orbits

For eccentric orbits, 0,e,1, and the radial motion is
bounded by the periastronr pumin5pM/(11e) and the apas-
tron r pumax5pM/(12e). In Fig. 5 and Fig 6 we display
waveforms for two cases:p512 ande50.2, as well asp
57.801 ande50.9.

This type of orbital motion generates gravitational wav
forms that are different in nature and in frequency cont
from circular orbits. Rather than being emitted uniform
along the orbit, the radiation is now emitted preferably
periastron. As the eccentricity increases the radiation is e
ted in short bursts occurring near periastron. In these si
TABLE II. Comparison of averaged fluxes for eccentric orbits with Cutleret al. for two points in thep-e
plane @12#. The two cases presented are~i! p57.50478 ande50.188917, and~ii ! p58.75455 ande
50.764124.

Case Cutleret al. Time domain Relative difference

~i! p57.50478 ^Ė& 3.168031024 3.177031024 0.3%

e50.188917 ^L̇& 5.965631023 5.932931023 0.5%

~ii ! p58.75455 ^Ė& 2.100831024 2.148431024 2.3%

e50.764124 ^L̇& 2.750331023 2.793231023 1.6%
5-8
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GRAVITATIONAL WAVEFORMS FROM A POINT . . . PHYSICAL REVIEW D 69, 044025 ~2004!
tions a time-domain approach is far more efficient than
frequency-domain approach. The reason is that in orde
correctly calculate the waveforms in the frequency domai
large number of individual frequencies~harmonics of the ra-
dial and azimuthal frequencies! are required, and summin
over them can be hugely expensive. By contrast, a tim
domain method handles all frequencies simultaneously.

The fluxes are calculated over a number of wave cyc
according to

^Ė&5
1

TE0

T

Ėdt, ~3.12!

whereT is a few (.3) radial periods; a similar expressio
holds for ^L̇&. To obtain a quantitative idea of the relativ
accuracy of the time-domain method for eccentric orbits,
compute the fluxes for two points in thep-e plane and com-
pare our calculations with those of Cutleret al. @12#: ~i! p
57.50478 ande50.188917, and~ii ! p58.75455 ande

FIG. 7. CoefficientscE andcL for the energy and angular mo
mentum radiated as functions ofp for e50.5 eccentric orbits. Nea
the last stable orbit (p57), cE approaches 1.24, whilecL ap-
proaches 1.26.
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50.764124. The results are displayed in Table II. For sm
eccentricities, e.g. case~i!, the agreement is similar to th
agreement achieved for circular orbits. For large eccentr
ties, e.g. case~ii !, the agreement is;2%. Because eccentri
orbits in Schwarzschild space are characterized by two
commensurate frequencies, the gravitational waveforms
quasi-periodic. By working in the frequency domain, Cut
et al. were able to formally average their fluxes over an
finite time. It is not, of course, possible to perform such
average in the time domain. Rather, for high eccentriciti
the fluxes are averaged over a limited number of rad
cycles (;3). This difference in averaging the fluxes is th
most likely source of disagreement between time-dom
and frequency-domain calculations for case~ii !. For case~i!,
this is not as much of an issue, since the radial period is s
enough to allow the time average to be performed over
cycles or more.

Finally, we calculate the total energy and angular mom
tum emitted during one radial period as functions ofp for
e50.5. We express the total energy and angular momen
radiated to infinity, as calculated from the time domain co
as

EGR~p,e!5cE@EQ~p,e!1~N21!EQ„p/~11e!,0…#,

LGR~p,e!5cL@LQ~p,e!1~N21!LQ„p/~11e!,0…#,
~3.13!

where we useEGR5P(p,e)^Ė&, P(p,e) is the radial period
of the orbit obtained by integrating Eq.~2.3! over 0<x

<2p, ^Ė& is given by Eq.~3.12!, N5N(p,e) is given by
Eq. ~2.5! with e50.5, ĖQ(p,e) and L̇Q(p,e) are given by
Eq. ~3.9!, andcE andcL are parameters that stay close to
for all values ofp. In Fig. 7 we displaycE andcL as func-
tions of p for e50.5. The coefficientcE is close to 0.9 for
largep and approaches 1.24 forp near 7. Similarly, the co-
efficient cL stays close to 0.95 for largep and approaches
1.26 for p near 7. The formulas above for the total ener
and angular momentum radiated by a particle in eccen
orbit are justified by the fact that they have the correct li
m is
orbits
FIG. 8. Black hole absorption for a particle in ane50.5 eccentric orbit. The absorption of both energy and angular momentu
negligible until the particle reachesp'7.3, at which point it contributes approximately 1–2 % of the total fluxes; these are eccentric
whose periastron is smaller than 4.9M . The right panel displays the same ratio normalized by (M /r pumin)

4.
5-9
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KARL MARTEL PHYSICAL REVIEW D 69, 044025 ~2004!
iting behavior both forp large and forp→612e. For large
p, the total energy and angular momentum radiated b
particle on an eccentric orbit are well approximated by
quadrupole formulas given by Eq.~3.7!. In this limit, N
→1 and Eq.~3.13! produce the correct approximate ener
and angular momentum radiated. Whenp→612e, the par-
ticle orbits the black hole for a numberN21 of quasi-
circular orbits whose radius is equal to the periastron rad
r p5Mp/(11e). In this limit N is large and the second term
of Eq. ~3.13! dominates the energy and angular moment
radiated. This term corresponds to the energy and ang
momentum radiated afterN such quasi-circular orbits

The frequency of the radiation emitted by the orbiti
particle increases as the periastron of the orbit beco
smaller. Since for a given eccentricitye, the periastron is
proportional top, the frequency of the radiation increas
with decreasingp. Because the potential barrier around t
Schwarzschild black hole is less opaque to high-freque
gravitational waves, we expect an increase in black hole
sorption with a decrease inp. This is confirmed numerically
for e50.5 and displayed in Fig. 8. Forp&7.3 (r p'4.9M ),
the absorption of energy and angular momentum by
black hole contributes more than 1% of the total flux
while for p*7.3 it contributes less than 1% and can be
nored when determining the total fluxes. In the right pane
the figure, we display black hole absorption fore50.5, nor-
malized by (M /r pumin)

4, where r pumin5Mp/(11e) is the
periastron distance. This is the correction expected fr
black hole absorption for a particle incircular orbit at
r pumin . We use this normalization here because black h
absorption for generic orbits has not been calculated ana
cally. For largep, black hole absorption fore50.5 does not
seem to converge toward the slow-motion and weak-fi
approximation for circular orbits. The normalized ener
stays above 1, while the normalized angular moment
curve stays below 1. But because the relationdE5VdL
used in deriving black hole absorption for circular orb
does not hold in general, there is no reason to believe
(M /r pumin)

4 should hold for generic orbits. Determining th
differences in black hole absorption due to a finite eccent
ity in a weak-field and slow-motion approximation wou
require a more detailed analysis than ours, since it is in
regime that our determination of black hole absorption is
least accurate.

For radiation emitted by a particle whose orbital para
eters arep5612e and 0<e<1, the argument relating
black hole absorption to the orbital separation suggests
black hole absorption should be an increasing function oe
along the linep5612e (r pumin is a decreasing function ofe
along this line!. It then comes as no surprise that numeri
results displayed in Fig. 9 support this assertion~we usedp
56.00112e). Along this line, the radiation is emitted prin
cipally at periastron, where the orbit is quasi-circular. T
relation dE5VdL, whereV5(M /r pumin)

1/2 is the angular
velocity of a particle on a circular orbit atr pumin , holds
approximately and we findEeh/E`'Leh/L`.

E. Parabolic orbits

Particles on a parabolic trajectory havee51 ~equivalently
Ẽ51), and p specifies the value of the periastron:r pumin
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5Mp/2 with p.8. For large values ofp, the particle does
not spend much time aroundr pumin , the position where the
radiation is maximum; the waveforms have a simple str
ture aroundt50, the time at which the radiation emitted
r pumin reaches an observer atr obs* . This is displayed for even
and odd modes in Fig. 10. In contrast, whenp approaches its
minimum value (pmin*8), the particle circles the black hol
for a numberN of cycles. BecauseN diverges atp58, we
get the zoom-whirl behavior displayed in Fig. 1@11#. The
quasi-circular nature of the motion whenr p approaches
r pumin results in a number of oscillations in the waveform
these occur neart50 for the observer atr obs* , and are dis-
played in Fig. 11 forp58.001.

In similarity with eccentric orbits, we express the nume
cally calculated energy and angular momentum radiated

EGR~p,e!5cE@EQ~p,e!1~N21!EQ„p/~11e!,0…#,

LGR~p,e!5cL@LQ~p,e!1~N21!LQ„p/~11e!,0…#,
~3.14!

whereN5N(p,e) is given by Eq.~2.5! with e51, ĖQ(e,p)
andL̇Q(e,p) are given by Eq.~3.9!, andcE andcL are again
parameters that stay close to 1 for allp. For parabolic orbits,
the total energy and angular momentum are computed u
Eqs.~3.5! and ~3.6! as

EGR
` 5E

2T

T

Ė`dt,

LGR
` 5E

2T

T

L̇`dt, ~3.15!

for T large@we usedT5300(2M )]. In Fig. 12, we displaycE
andcL for parabolic orbits. These quantities are close to 1
large p, but increase above 1 asp approaches 8. Near thi
value ofp, cE reaches 1.81, whilecL approaches 1.84. As fo

FIG. 9. Displayed areEeh/E` and Leh/L` as functions of ec-
centricity along the curvep56.00112e. Because of the decreas
in periastron distance with increasinge, black hole absorption in-
creases withe. A good approximation to these curves is given
Eeh/E`5(1114e2)(Eeh/E`)ue50.
5-10
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FIG. 10. Displayed arecZM ~left, l 52,m52) andcRW ~right, l 52,m51) as functions of time fore51 andp540. As in the case of
circular orbits, early times are dominated by the initial data content. Total energy and angular momentum are calculated in t
2300<t/2M<300.
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eccentric orbits, we find that for largep the energy and an
gular momentum approach the values given by the qua
pole approximation, but that forp close to 612e they are
better approximated by the energy and angular momen
radiated by a particle orbiting the black holeN times on a
circular orbit of radiusr pumin5Mp/(11e).

The argument given previously for eccentric orbits ho
true for parabolic orbits: whenp*8, black hole absorption
is more important than for circular or eccentric orbit~see Fig.
9!. Our numerical results show that forp.10, Eeh andLeh

account for less than 1% of the total energy and ang
momentum radiated, while forp&10 they can contribute a
much as 5% of the total amounts~see Fig. 13!. Hence, for
p&10, black hole absorption contributes a few percent of
total energy and angular momentum radiated and needs
included in an accurate computation. Black hole absorp
is not determined as accurately as the energy and ang
momentum radiated to infinity, but the error we make
evaluating it is never large enough to spoil our goal of;1%
overall accuracy.
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For completeness, in Table III we displayEGR
`,eh and

LGR
`,eh , the total energy and angular momentum radiated

infinity and through the event horizon, as returned by
time-domain code, for a wide range ofp values. Based on the
accuracy obtained for circular and eccentric orbits, we e
mate that the total energy and angular momentum los
gravitational waves are calculated to a relative accuracy
1–2 %. The actual accuracy is likely to be close to the ac
racy achieved for circular orbits. The reason for this is qu
simple. For parabolic orbits, there is no issue of performin
time average, since the particle passes through perias
only once and we calculate the total energy for that moti

IV. CONCLUSION

The time-domain method can produce waveforms a
compute the associated fluxes of energy and angular mom
tum to a relative accuracy of a few percent. For circu
orbits, the method is extremely reliable and produces flu
with an overall accuracy of 1% or better over the who
ar

FIG. 11. Displayed arecZM ~left, l 52,m52) andcRW ~right, l 52,m51) as functions of time fore51 andp58.001. Early times,

where the choice of initial data dominates, are not displayed in order to make thet50 region clearly visible. The energy and angul
momentum fluxes are integrated in the range2300<t/2M<300 to obtain the total energy and angular momentum radiated.
5-11
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KARL MARTEL PHYSICAL REVIEW D 69, 044025 ~2004!
range ofp values explored. For eccentric orbits, the compa
son with the results of Cutleret al. @12# is spoiled by the
difficulty in performing a time average of the fluxes over
sufficiently long time. Because the disagreement arises f
the differences in time averaging, the time-domain metho
still capable of producing accurate waveforms for highly e
centric motion. We stress here that the limitation is in t
computation of the time-averaged fluxes, not in obtaining
waveforms. On the other hand, for geodesics with small
centricities there is no such limitation and the time-dom
results are in better agreement with those calculated by
ler et al. @12#. In all cases, the time-domain method is c
pable of determining the fluxes accurately to 1–2 %. Sim
accuracy is obtained for the total energy and angular mom
tum radiated by a particle traveling on a parabolic orbit.

We also computed the absorption of energy and ang
momentum by the black hole. For circular orbits withp
.6, this contribution can always be neglected, but not
orbits whose periastron is smaller than 5M . For such orbits,

FIG. 12. CoefficientscE andcL for the total energy and angula
momentum radiated as functions ofp for a particle in parabolic
orbit. Nearp58, cE approaches 1.81 whilecL approaches 1.84.
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black hole absorption contributes more than 1% of the to
fluxes and cannot be ignored. We showed that fore50.5 it
can constitute a correction as large as 2% of the total flux
for parabolic orbits the contribution increases to 5%.
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APPENDIX A: A SHORT REVIEW OF BLACK HOLE
PERTURBATION THEORY

Since the pioneering work of Regge and Wheeler@8# and
Zerilli @6#, perturbations of the Schwarzschild black ho
have been studied extensively. Here we provide a short s
mary of the formalism, including the source terms approp
ate for the Zerilli-Moncrief and Regge-Wheeler equations

The perturbations of the Schwarzschild spacetime
described by a linear perturbation tensorhmn5gmn

2gmn
Schwarzschild, wheregmn is the metric of the perturbed

spacetime andgmn
Schwarzschildthe Schwarzschild solution. Thi

tensor is written as a multipole expansion using scalar, v
torial, and tensorial spherical harmonics. In Schwarzsch
coordinates, we have

htt5 f H0~ t,r !Ylm, htr5H1~ t,r !Ylm,

hrr 5 f H2~ t,r !Ylm,

htA5q0~ t,r !ZA
lm1h0~ t,r !XA

lm ,

hrA5q1~ t,r !ZA
lm1h1~ t,r !XA

lm ,

hAB5r 2@K~ t,r !UAB
lm 1G~ t,r !VAB

lm #1h2~ t,r !WAB
lm ,

~A1!
entum is

ck hole
FIG. 13. Black hole absorption for a particle following a parabolic geodesic. The absorption of both energy and angular mom
negligible until the particle reachesp'10 or r pumin'5M . The right panel displays the same ratio normalized by (M /r pumin)

4, wherer pumin

is the radii at periastron. Again, this factor is meaningful only for circular orbits, and is used only to illustrate the behavior of bla
absorption as a function ofp.
5-12
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TABLE III. Total energy and angular momentum radiated by a particle orbiting a Schwarzschild
hole in a parabolic orbit. As usual,EGR

` and LGR
` denote the energy and angular momentum radiated

infinity, while EGR
eh andLGR

eh are the energy and angular momentum absorbed by the black hole. The
hole absorption contributes to less than 1% whenp*10: for parabolic orbits with periastron smaller tha
5M , black hole absorption contributes a significant amount to the total energy and angular mom
radiated.

p EGR
` EGR

eh LGR
` LGR

eh

8.00001 3.6703 1.887631021 3.0133310 1.5208
8.001 2.2809 1.126031021 1.9088310 9.116631021

8.201 7.113031021 2.658631022 6.6010 2.214231021

8.401 5.174031021 1.653431022 5.0433 1.424431021

8.601 4.097031021 1.137631022 4.1665 1.014831021

8.801 3.376731021 8.198831023 3.5706 7.517531022

9.0 2.841931021 6.088031023 3.1196 5.702631022

9.2 2.440931021 4.604431023 2.7756 4.389131022

9.4 2.122831021 3.535231023 2.4973 3.421131022

9.6 1.864431021 2.747331023 2.2665 2.695131022

9.8 1.650631021 2.156531023 2.0718 2.142831022

10.0 1.471231021 1.707231023 1.9048 1.717631022

10.5 1.129231021 9.822631024 1.5752 1.019331022

11.0 8.897931022 5.862631024 1.3320 6.281931023

11.5 7.154531022 3.606731024 1.1455 3.997131023

12.0 5.846731022 2.277831024 9.982731021 2.615231023

12.5 4.842431022 1.473231024 8.793631021 1.754631023

13.0 4.056731022 9.732131025 7.815831021 1.203631023

13.5 3.432631022 6.558231025 7.001131021 8.428631024

14.0 2.930331022 4.499931025 6.313631021 6.012331024

14.5 2.513431022 3.140931025 5.713331021 4.363531024

15.0 2.177431022 2.227331025 5.208831021 3.217131024

16.0 1.663631022 1.167531025 4.386731021 1.824131024

17.0 1.297831022 6.448431026 3.749931021 1.086931024

18.0 1.030331022 3.724131026 3.245431021 6.756931025

19.0 8.302931023 2.235431026 2.838331021 4.356531025

20.0 6.779431023 1.388231026 2.504731021 2.899031025

22.0 4.673531023 5.835531027 1.994931021 1.389531025

24.0 3.342631023 2.696531027 1.628031021 7.255031026

26.0 2.463831023 1.344731027 1.354931021 4.053931026

28.0 1.862031023 7.137331028 1.145931021 2.393131026

30.0 1.437431023 3.994931028 9.821331022 1.478131026

32.0 1.129831023 2.337231028 8.514131022 9.482731027

34.0 9.022331024 1.420131028 7.453431022 6.283231027

36.0 7.295631024 8.929931029 6.574431022 4.280431027

38.0 5.979931024 5.788631029 5.848431022 2.987331027

40.0 4.954931024 3.842231029 5.236931022 2.129631027

42.0 4.145531024 2.616331029 4.716831022 1.546931027

44.0 3.498731024 1.821431029 4.270631022 1.142731027

46.0 2.976331024 1.288731029 3.884931022 8.568331028

48.0 2.550131024 9.3316310210 3.549131022 6.513031028

50.0 2.199331024 6.8343310210 3.255031022 5.011831028
at
s,
ar

e

where capital roman indices run over the angular coordin
(u,w), f 5122M /r , andYlm are the usual scalar harmonic
in terms of which the vectorial and tensorial spherical h
monics are defined as

ZA
lm5YuA

lm , XA
lm5«A

BYuB
lm , UAB

lm 5VABYlm,
04402
es

-
VAB

lm 5YuAB
lm 1

l ~ l 11!

2
VABYlm, and WAB

lm 5X(AuB)
lm .

HereVAB5(1,sin2u), a bar denotes the covariant derivativ
compatible withVAB , and«AB is the Levi-Civitàtensor on
5-13
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the unit two-sphere. The coefficients of the multipole exp
sions have implicitl andm indices, and there is an implici
summation over these indices. Defined this way,H0 , H1 ,
H2 , q0 , q1 , K and G are even parity modes, whileh0 , h1
andh2 are odd parity modes.

By construction, the vectorial and tensorial spherical h
monics obeySl ,2m5(2)mSlm* , where S is any spherical
harmonic function.~This relation holds for scalar spheric
harmonics, and since vectorial and tensorial spherical
monics are obtained by the action ofreal operators onYlm, it
also applies to these functions.! An important consequence o
this relation is that for real metric perturbations, the mu
pole moments must satisfyMl ,2m5(2)mMlm* , whereMlm

is any one ofH0 , H1 , H2 , q0 , q1 , K, G, h0 , h1, andh2. It
is then easily established thatMlmM* lm5Ml ,2mM* l ,2m.
This justifies folding them,0 terms over tom.0 in Eqs.
~3.5! and ~3.6!.

A gauge transformation can be used to eliminate four
the metric perturbations. In the Regge-Wheeler gauge,
freedom is used to setq05q15G50, andh250. The two
scalar fields

cZM5
r

l11 FK1
f

L S H22r
]

]r
K D G , ~A2!

cRW52
f

r
h1 , ~A3!

wherel5( l 12)(l 21)/2 andL5l13M /r are the Zerilli-
Moncrief and Regge-Wheeler functions, respectively. Th
evolution is governed by Eq.~1.1! with the potentials

VZM5
f

r 2L2 F2l2S l111
3M

r D1
18M2

r 2 S l1
M

r D G ,

VRW5
f

r 2 F l ~ l 11!2
6M

r G , ~A4!

and the source terms

SZM5
1

~l11!L H r 2f S f 2
]

]r
Qtt2

]

]r
Qrr D1r ~L2 f !Qrr

1r f 2Q[2
f 2

rL
@l~l21!r 21~4l29!Mr

115M2#QttJ 1
2 f

L
Qr2

f

r
Q],

SRW5
f

r F2

r S 12
3M

r D P2 f
]

]r
P1Pr G .

These are constructed from the perturbing stress-energy
sor Tmn and we have defined
04402
-

r-

r-

-

f
is

ir

n-

Qab58pE TabYlm* dV, Qa5
16pr 2

l ~ l 11!
E TaAZA

lm* dV,

Q[58pr 2E TABUAB
lm* dV,

Q]5
32pr 4

~ l 21!l ~ l 11!~ l 12!
E TABVAB

lm* dV,

and

Pa5
16pr 2

l ~ l 11!
E TaAXA

lm* dV,

P5
16pr 4

~ l 21!l ~ l 11!~ l 12!
E TABWAB

lm* dV;

lower-case roman indices run overt andr, the integration is
over the unit two-sphere withdV5sinududw, andTab, TaA

andTAB are components ofTmn. For a particle traveling on a
geodesic with proper timet, coordinateszp

m(t), and four-
velocity um(t), the stress-energy tensor is

Tmn5mE dt~2g!21/2umund4@xa2zp
a#, ~A5!

whered4@xa2za# is a four-dimensional Dirac functional.
These expressions for the source terms can be used,

bined with the geodesic equations of the Schwarzsc
spacetime, to calculate explicit expressions for the fact
G(t,r ) and F(t,r ) appearing in Eq.~1.2!. For even parity
modes~ZM!, we get

G~r ,t !5aY* ~ t !1bZw* ~ t !1cUww* ~ t !1dVww* ~ t !,

F~r ,t !5
8p

l11

f 2

L

Ṽ2

Ẽ
Y* ~ t !, ~A6!

whereṼ25 f (11L̃2/r 2),

a5
8p

l11

f 2

rL2 H 6M

r
Ẽ

2
L

Ẽ
Fl112

3M

r
1

L̃2

r 2 S l132
7M

r D G J ,

and

b5
16p

l11

L̃

Ẽ

f 2

r 2L
ur , c5

8p

l11

L̃2

Ẽ

f 3

r 3L
,

d5232p
~ l 22!!

~ l 12!!

L̃2

Ẽ

f 2

r 3
.

Finally, the source terms for odd parity modes~RW! are
5-14
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G~r ,t !5
f 2

r 3 F4

r S 12
3M

r Da1bG ,
F~r ,t !52a

f 3

r 3
, ~A7!

where

a516p
~ l 22!!

~ l 12!!

L̃2

Ẽ
Www* lm~ t !, b5

8p

l11

L̃

Ẽ
urXw*

lm~ t !.

Note thatG(r ,t) andF(r ,t) contain scalar, vectorial an
tensorial harmonic functions evaluated at the angular p
tion of the particlewp(t). For example, for even modes
some terms inG andF are proportional toYlm

„p/2,wp(t)….
Because the orbital motion takes place in the equato
plane, each spherical harmonic function is evaluated aup
5p/2. A useful consequence of this is that the source te
for the Zerilli-Moncrief function vanishes whenl 1m is odd,
while the source term for the Regge-Wheeler function v
ishes whenl 1m is even. This was used in Eq.~3.3! and Eq.
~3.4!.

OncecZM andcRW are found by solving Eq.~1.1!, with
the source terms of Eqs.~A6! and ~A7!, the perturbation
tensor can be reconstructed. In the Regge-Wheeler gauge
have

K5 f
]

]r
cZM1A~r !cZM2

r 2f 2

~l11!L
Qtt,

H25
L

f Fl11

r
cZM2KG1r

]

]r
K,

H15r
]

]t F ]

]r
cZM1B~r !cZMG

2
r 2

l11 FQtr1
r f

L

]

]t
QttG ,

H05H21Q] ~A8!

for even parity modes, where we have definedA(r )5@l(l
11)13M /r (l12M /r )#/(rL) and B(r )5@l(123M /r )
23M2/r 2#/(r f L). For odd parity modes, the reconstruct
metric perturbations are

h052 f E
2`

t

dt8F ]

]r
~rcRW~ t8,r !!1PG ,

h152r f 21cRW. ~A9!

APPENDIX B: RADIATION ZONE FLUXES AND BLACK
HOLE ABSORPTION

The fluxes of energy and angular momentum can be
tained from Isaacson’s stress-energy tensor for gravitatio
waves:
04402
i-

al

m

-

we

b-
al

Tmn
GW5

1

64p
^h ;m

ab hab;n&, ~B1!

where^ . . . & denotes an average over a region of spacet
large compared with the wavelength of the radiation. Ty
cally, Tmn can be defined when the wavelength of the rad
tion, l, is small compared to a typical radius of curvatureR.
By definition, l!R in the radiation zone and the stres
energy tensor for gravitational waves can be defined th
There is a second region where the conditionl!R is satis-
fied: A stationary observer nearr 52M seesR;2M , but the
radiation is strongly blueshifted andl→0; that this is the
case is clear from the divergence in Eq.~B30! below.

Because the Schwarzschild black hole is static and axi
symmetric, it possesses two Killing vectors,(t)j

a and (w)j
a,

that can be used, in conjunction withTmn , to obtain expres-
sions for the fluxes of energy and angular moment
through a surfaceS at constantr. We have that~dropping the
‘‘ GW’’ on the stress-energy tensor!

dE52E
S
Tn

m
(t)j

ndSm , ~B2!

dL5E
S
Tn

m
(w)j

ndSm , ~B3!

wheredSm is an outward oriented surface element onS. In
Schwarzschild coordinates, these expressions reduce to

Ė52er 2f E dVTtr ,

L̇5er 2f E dVTrw , ~B4!

where an overdot indicates differentiation with respect tot,
ande is 1 when calculating the fluxes in the radiation zo
and21 when calculating black hole absorption. Because
event horizon is a null surface, it is conceptually better to u
dE/dv anddL/dv in place ofdE/dt anddL/dt ~with v5t
1r * ). Similarly, because radiation travels toJ 1, which is
another null surface, it is conceptually better to usedE/du
anddL/du instead ofdE/dt anddL/dt for outgoing fluxes
~with u5t2r * ). However, because we numerically extra
the gravitational waveforms at finite values ofr * , without
ever reaching the event horizon orJ 1, the use ofdE/dt and
dL/dt is a better representation of our numerical procedu

We provided a summary of the perturbation formalism
Appendix A. This included explicit formulas to reconstru
the metric perturbations in the Regge-Wheeler gauge.
constructTtr and Trw , it proves convenient to extract th
radiative part of the perturbation tensor. To this end, we
troduce the null tetradl m, nm, andmm: l m and nn are null
vectors tangent to outgoing and ingoing rays, respectiv
while mm is a complex null vector~with complex conjugate
m̄m) on the two-sphere. They satisfy the relations
5-15
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l ml m505nmnm , mmmm505m̄mm̄m ,

l mnm52152mmm̄m . ~B5!

In Schwarzschild coordinates, their components are

l m5~21,f 21,0,0!, nm52
1

2
~ f ,1,0,0!,

mm5
A2

2
r ~0,0,1,ı sinu!. ~B6!

To find the perturbation tensor in a radiation gauge,
seek a gauge vectorjm that generates the transformation b
tween the Regge-Wheeler gauge and the radiation ga
Under such an infinitesimal coordinate transformation,
perturbation field transforms ashmn

RG5hmn
RW2j (m;n) , where

RG stands for radiation gauge andRW for Regge-Wheeler
gauge. Using the spherical harmonic functions introdu
previously, the vectorjm can be expressed as a multipo
expansion@8#:

jm
(even)5~a tY

lm,a rY
lm,r 2bZA

lm!,

jm
(odd)5~0,0,r 2kXA

lm!, ~B7!

wherea t , a r , b and k are freely specifiable gauge func
tions. Combining this with the multipole expansion for th
perturbation tensor in the Regge-Wheeler gauge, we ob
the transformation law for the each perturbation mode:

H0
RG5H0

RW22 f 21S ȧ t2
M

r 2
f a r D ,

H1
RG5H1

RW2S a t81ȧ r2
2M

r 2
f 21a tD ,

H2
RG5H2

RW22 f S a r81
M

r 2
f 21a r D ,

qt
RG52~a t1r 2ḃ !,

qr
RG52~a r1r 2b8!,

KRG5KRW2S 2 f

r
a r2 l ~ l 11!b D ,

GRG522b ~B8!

for the transformation of even parity modes, and

ht
RG5h0

RW2r 2k̇,

hr
RG5h1

RW2r 2k8,

h2
RG522r 2k ~B9!
04402
e
-
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e
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for odd modes; an overdot designates at derivative and a
prime anr derivative. In the next two subsections, we d
velop solutions appropriate to outgoing and ingoing radiat
gauges, respectively.

1. Outgoing radiation gauge

In an outgoing radiation gaugehmn
ORG, the perturbation

tensor satisfies@23#

hmn
ORGnmnn50,

hmn
ORGnmmn505hmn

ORGnmm̄n,

hmn
ORGnml n505hmn

ORGmmm̄n. ~B10!

The first two conditions indicate thehmn
ORG is transverse to

outgoing null rays, while the last condition indicates that it
traceless. Equations~B10! involve five conditions, one too
many for the specification of a gauge. But this system is
overdetermined: once four of these equations are enfor
the fifth is found to be satisfied automatically in the radiati
zone.

From Eqs.~B8! and ~B9!, the gauge conditions can b
expressed in terms of multipole moments. To leading or
in r 21, we get

4~ ȧ t2ȧ r !5H0
RW1H2

RW22H1
RW,

a t2a r12r 2ḃ50,

ȧ t1ȧ r50,

2

r
a r52KRW ~B11!

for even parity modes, and

2r 2k̇5h1
RW2h0

RW ~B12!

for odd parity modes. We used]/]t52]/]r 1O(r 21), ap-
propriate in the radiation zone, to eliminater derivatives in
favor of t derivatives.

The right-hand side of these equations contains the
turbation tensor in the Regge-Wheeler gauge. From
~A8!, we find that, in the radiation zone, even parity mod
have the asymptotic form

KRW'2ċZM , H2
RW'H0

RW'2H1
RW'r c̈ZM ,

while, from Eq. ~A9!, we find that odd parity modes ar
given asymptotically by

h0'2h1'rcRW.

Solutions to the gauge transformation are then easy
5-16
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find. For even modes, the last of Eq.~B11! yields a r

52(1/2)r ċZM . The other gauge functions are easily o
tained from the remaining equations of Eq.~B11!: a t5
2a r andb52cZM /(2r ). For odd modes, direct integratio
of Eq. ~B12! yields k51/r *2`

t dt8cRW(t8). Going back to
Eqs.~B8! and~B9!, we can reconstruct the perturbation te
sor in the radiation zone. Solving these forGORG andh2

ORG,
we get

hAB
ORG5r S cZM~ t !VAB

lm 22E
2`

t

dt8cRW~ t8!WAB
lm D 1O~1!.

~B13!

In this expression, the Zerilli-Moncrief and Regge-Whee
functions havel and m multipole indices and there is a
implicit summation over them. Dropping theO(1) term, we
refer tohAB

ORG as the radiative part of the perturbation tens
in the radiation zone, because it contains all of the inform
tion about energy and angular momentum carried to infin
This last expression can be re-written in terms of the t
gravitational-wave polarizations,h15huu

ORG/r 2, and h3

5huw
ORG/(r 2sinu). The result is Eq.~3.1!.

2. Ingoing radiation gauge

To obtain the radiative part of the gravitational field in t
vicinity of the event horizon, we impose an ingoing radiati
gauge. We seek a solution to leading order inf→0, the
expansion parameter near the horizon.

The ingoing radiation gauge can be obtained from E
~B10!, by making the replacementl m↔nm of the tetrad vec-
tors. The same comment about the number of gauge co
tions can be made here: only four gauge conditions nee
be imposed, and the fifth condition is then satisfied autom
cally.

From Eq.~B8!, Eq. ~B9!, and the ingoing radiation gaug
conditions, we obtain

4~ ȧ t1ȧ r !2
1

M
~a t1a r !52 f ~H2

RW1H1
RW!,

ȧ t2ȧ r50,

8M2ḃ1a t1a r50,

1

M
a r2b5KRW ~B14!

for the gauge transformation of even parity modes, and

r 2k̇5r ~h0
RW1 f h1

RW! ~B15!

for odd parity modes: we substituteda r→ f 21a r in Eq. ~B8!,
we used]/]r * 5]/]t1O( f ) to eliminate derivatives with
respect tor * , and an overdot denotes a time derivative.

The asymptotic form of the metric perturbations in t
04402
-

-

r

r
-
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Regge-Wheeler gauge is obtained from Eqs.~A8! and ~A9!.
We get

KRW'ċZM1
l11

2M
cZM ,

H2
RW5H0

RW5H1
RW5 f 21S 2M c̈ZM2

1

2
ċZMD

for even parity modes, and

h0
RW5 f h1

RW522McRW

for odd parity ones. These can be inserted back into E
~B14! and ~B15!. The solution to the gauge transformatio
then proceeds as follow. For even parity modes, the sec
and third equations yielda r5a t and 4M2ḃ52a t . These
can be substituted into the first and the time derivative of
fourth of Eq.~B14!, to yield a system of equation fora t :

ȧ t2
1

4M
a t5M c̈ZM2

1

4
ċZM , ~B16!

ȧ t1
l11

2M
a t5M c̈ZM1

l11

2
ċZM . ~B17!

Eliminating the time derivative by subtraction, we finda t

5M ċZM . For odd parity modes, integration of Eq.~B15!,
combined with the asymptotic form ofh0

RW andh1
RW, yields

k521/(2M )*dt8cRW(t8).
From these, and Eqs.~B8! and~B9!, we obtainGIRG and

h2
IRG , which are used to reconstruct the gravitational pert

bation tensor:

hAB
IRG52M FcZMVAB

lm 12E dt8cRW~ t8!WAB
lm G1O~ f !.

~B18!

Again, the Zerilli-Moncrief and Regge-Wheeler function
havel andm multipole indices, and there is an implicit sum
mation over them. The componentshAB

IRG @without theO( f )
correction# contains all the information about the energy a
angular momentum absorbed by the black hole. It is th
meaningful to refer to these components as the radiative
of the perturbation tensor in the vicinity of the event horizo
In analogy with the far zone definitions, the tw
gravitational-wave polarizations are defined ash1

5huu
IRG/4M2 and h35huw

IRG/(4M2sinu). They are given in
Eq. ~3.2!.

3. Radiation zone fluxes

In terms of its tetrad components, the perturbation ten
in the outgoing radiation gauge is

hmn
ORG5hll nmnn12~hlm̄n(mmn)1hlmn(mm̄n)!

1hm̄m̄mmmn1hmmm̄mm̄n , ~B19!
5-17



-

e
va

used
q.

e

ar

en

KARL MARTEL PHYSICAL REVIEW D 69, 044025 ~2004!
where hvv5hmnvmvn, for any vectorvm belonging to the
tetrad. To leading order inr 21, the tetrad components are

hll ;O~r 22!,

hlm;O~r 22!,

hm̄m̄5
1

r 2
hAB

ORGm̄Am̄B,

hmm5
1

r 2
hAB

ORGmAmB, ~B20!

where the vectormA5r (]uA/]xm)mm, andhAB
ORG is given in

Eq. ~B13!.
Calculating the covariant derivative ofhmn

ORG and substi-
tuting the result in Eq.~B1!, we get

Tmn5
1

64p
@h m

ab habn* 1h m
ab rabn*

1r m
ab habn* 1r m

ab rabn* #1c.c., ~B21!

where

habm5hll ,mnanb12hlm,mn(am̄b)12hlm̄,mn(amb)

1hmm,mm̄am̄b1hm̄m̄,mmamb ,

rabm5hll @nanb# ;m12hlm@n(am̄b)# ;m

12hlm̄@n(amb)# ;m1hmm@m̄am̄b# ;m

1hm̄m̄@mamb# ;m . ~B22!

The first term appearing in Eq.~B21! can be calculated ex
actly. It is

h m
ab habn* 5hmm,mhm̄m̄,n

* 1hm̄m̄,mhmm,n* . ~B23!

Evaluating the remaining terms requires more effort. Th
involve products of tetrad vectors and their covariant deri
tives. It is easy to show that the only non-vanishingt, r, and
w components aremana;w52(A2/4)ı f sinu, m̄ama;w

52ı cosu, and m;w
a na;r5A2M /(4r 2)ı sinu. Using these

and Eq.~B20!, we find that

Ttr52
1

32p
~ ḣmmḣm̄m̄

* 1ḣm̄m̄ḣmm* !, ~B24!

Trw52
1

64p
~ ḣmmhm̄m̄,w

* 1ḣm̄m̄hmm,w* !

1
ı

64p
~ ḣmmhm̄m̄

* 1ḣm̄m̄hmm* !cosu1c.c., ~B25!
04402
y
-

where we replacedr derivatives witht derivatives, and ne-
glected terms of orderO(r 23) and higher.

These expressions for the stress-energy tensor can be
to calculate the fluxes in the radiation zone. Inserting E
~B24! into the first of Eq.~B4!, where we sete51 and f
'1, yields

dE

dt
5

r 2

32pE dV~ ḣmmḣm̄m̄
* 1ḣm̄m̄ḣmm* !5

1

32pE dVḣABḣ* AB

5
1

32p (
lm

(
l 8m8

E dV@ uċZMu2VAB
lm Vl 8m8

* AB

14ucRWu2WAB
lm Wl 8m8

* AB
#

5
1

64p (
lm

~ l 12!!

~ l 22!!
@ uċZMu214ucRWu2#, ~B26!

where in the first equality we useVACVBDhABhCD*
5r 2(hmmhm̄m̄

* 1hm̄m̄hmm* ), the second equality follows from
Eq. ~B13!, and the third equality follows from evaluating th
angular integral with the aid of

E dVVAB
lm Vl 8m8

AB* 5
1

2

~ l 12!!

~ l 22!!
d l l 8dmm8 ,

E dVWAB
lm Wl 8m8

AB* 5
1

2

~ l 12!!

~ l 22!!
d l l 8dmm8 .

The angular momentum flux calculation follows simil
steps. Inserting Eq.~B25! into the second of Eq.~B4!, we get

dL

dt
52

r 2

64pE dV@~ ḣmmhm̄m̄,w
* 1ḣm̄m̄hmm,w* !2ı~ ḣmmhm̄m̄

*

1ḣm̄m̄hmm* !cosu#1c.c. ~B27!

The last term involves the product of cosu with a term of the
form sinuSlm(u)Sl8m8

* (u), where Slm(u) is a spherical har-
monic function. Under the interchangeu→p2u,
we have that cosu→2cosu and sinuSlm(u)Sl8m8

* (u)
→sinuSlm(u)Sl8m8

* (u). The overall term is therefore odd inu
with respect top/2, and integration over 0<u<p yields
zero contribution to the angular momentum flux. We are th
left with
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dL

dt
52

r 2

64pE dV~ ḣmmhm̄m̄,w
* 1ḣm̄m̄hmm,w* 1c.c.!

5
ımr2

64p E dV~ ḣmmhm̄m̄
* 1ḣm̄m̄hmm* 1c.c.!

5
ım

64pE dV~ ḣABhAB* 1c.c.!

5(
lm

(
l 8m8

ım

64pE dVF ċZMcZM* VAB
lm Vl 8m8

* AB

14cRWE
2`

t

dt8cRW* ~ t8!Wlm
ABWl 8m8

* ABG1c.c.

5(
lm

ım

128p

~ l 12!!

~ l 22!! F ċZMcZM*

14cRWE
2`

t

dt8cRW* ~ t8!G1c.c., ~B28!

where we usehm̄m̄,w52ımhm̄m̄ in the first equality, and the
remaining steps shadow the ones for the energy flux ca
lation.

4. Black hole absorption

The calculation of the black hole absorption is similar
the calculation of the far-zone fluxes. Here we are looking
isolate the divergent piece ofTmn , since it is this part that
corresponds to the blueshifted gravitational waves: The
pansion parameter isf, and we are looking for theO( f 21)
portion of the tr and rw components ofTmn . We neglect
terms of orderO(1).

The material developed in Sec. B 3 can be used h
simply by replacingl m↔nm. In an ingoing radiation gauge
the non-trivial tetrad components of the perturbation ten
are

hnn;O~ f !,

hnm;O~ f !,

hm̄m̄5
1

4M2
hAB

IRGm̄Am̄B,
x-
3;
-

ys

04402
u-

o

x-

re

r

hmm5
1

4M2
hAB

IRGmAmB, ~B29!

andmA was introduced previously.
With the replacementnn↔ l n, the steps we follow are

almost exactly the same as those of the radiation zone ca
lations. The stress-energy tensor is written as in Eq.~B21!,
with habm andrabn changed to reflect the exchange of tetr
vectors. It is not difficult to show that the non-vanishin
components of the contracted derivatives of the tetrad v
tors are nowmal a;w5(A2/2)ı sinu, m̄ama;w52ı cosu, and
m ;w

a l a;r5A2M /(2r 2)ı f 21sinu.
These, combined with Eq.~B29!, reveal that the relevan

components of the stress-energy tensor are given by

Ttr52
f 21

32p
~ ḣmmḣm̄m̄

* 1ḣm̄m̄ḣmm* !, ~B30!

Trw52
f 21

64p
~ ḣmmhm̄m̄,w

* 1ḣm̄m̄hmm,w* !

1
ı f 21

64p
~ ḣmmhm̄m̄

* 1ḣm̄m̄hmm* !cosu1c.c., ~B31!

where we replacedr * derivatives witht derivatives and ne-
glected term of orderO(1). Note that this is exactly of the
same form~apart from a factor off 21) as that obtained for
Ttr andTrw in the far zone.

To calculate the fluxes, we insert these expressions
Eq. ~B4!, where we also sete521. The divergence in the
stress-energy tensor is canceled by the factor off appearing
in Eq. ~B4!. The remaining calculations are identical wi
those of the far zone, withhAB

IRG given by Eq.~B18!. The
energy flux is

dE

dt
5(

lm

1

64p

~ l 12!!

~ l 22!!
@ uċZMu214ucRWu2#, ~B32!

while the angular momentum flux is

dL

dt
5(

lm

ım

128p

~ l 12!!

~ l 22!! F ċZMcZM*

14cRWE
2`

t

dt8cRW* ~ t8!G1c.c. ~B33!
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