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Gravitational waveforms from a point particle orbiting a Schwarzschild black hole
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We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time do-
main. We obtain the gravitational waveforms produced by a point particle of masaveling around a
Schwarzschild black hole of madg on arbitrary bound and unbound orbits. Fluxes of energy and angular
momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of
eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate
that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so
long as the orbital radius,(t) satisfiesr,(t)>5M at all times.
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[. INTRODUCTION relativistic, rates at which the system loses energy and angu-
lar momentum to gravitational waves. We consider three
Tightly bound binary systems consisting of a compact obtypes of orbits: circular, eccentric, and parabolic orbits.
ject of a few solar masses and a supermassive black hole dhese calculations will then be used to refine capture rate
(]_OG_]_O))M@ are very promising sources of gra\/itationa| estimates, but this will be left for future work.
waves for space-based detectors such as the Laser Interfer-At this level of approximation, the internal dynamics of
ometer Space Antenn&ISA) [1]. There is now strong evi- the small compact object are irrelevant. We treat it as a point
dence that most galaxies harbor a {20)M, supermas- particle and base our calculations on first-order perturbations
sive black hole in their centdi2], and that they are likely ©Of @ Schwarzschild black hole; this is appropriate in view of
surrounded by a large population of solar-mass compact oihe small mass ratio involved. The gravitational waveforms
jects that reside in the galactic cug3. produced by the orbital motion are obtained by solving the
The motion of objects in the galactic cusp is governed byeven parity Zerilli-Moncrief[6,7] (ZM) and the odd parity
the gravity of the supermassive black hole, but they are alsiegge-Wheeler[8] (RW) equations. We work with
constantly scattered due to the presence of multiple compa&chwarzschild coordinates, for which both wave equations
objects. For a given compact object, this process occurs untifke the form
it settles on a highly eccentric orbit that is tightly bound to
the central black hole. On such an orbit, the object passes
very close to the black hole at periastron and it emits a sig- N EJF W_V'(r) Yim(r,O=Sm(r,0),  (1.D
nificant amount of gravitational waves. Capture occurs for
those orbits that are sufficiently eccentric and have a suffiyherer* =r +2M log(r/2M — 1) is the usual tortoise coor-

ciently small periastror{on the order ofM) [4]. In these  ginate, andv,(r) is a potential defined in EqA4) for both
cases, orbital evolution is driven by emission of gravitationalynodes. Explicit definitions for the ZM and the RW functions

waves, and the binary strongly radiates gravitational radiagre given in Eqs(A2) and (A3) of Appendix A. The source
tion, until the final plunge of the compact object into the term's (r,t) is of the form

central black hole.
The question is_ then to determine the rate at which solar- Sm(r,)=G(r,t)s[r —r () ]+F(r,t)8'[r—rp(t)],
mass compact objects are captured by the central black hole
and how quickly the orbits decay by emission of gravita-
tional waves. Because capture occurs when the time twhere a prime denotes anderivative, ry(t) denotes the
evolve due to emission of gravitational waves is muchradial position of the particle as a function of time, and
smaller than the time to evolve due to diffusion and scatterG(r,t) andF(r,t) are known functions of andt once the
ing, determination of the type of orbits for which capture orbital motion of the particle is specified; they are given by
occurs and estimate of capture rates are sensitive to tHeq. (A6) for the Zerilli-Moncrief equation, and by E¢A7)
strength of gravitational wave emission. Current estimates ofor the Regge-Wheeler equation.
orbital parameters for which capture occurs and associated Instead of Fourier decomposing E@.1) and solving in
capture rates are based on the quadrupole approximation ftfre frequency domain, we choose to integrate them in the
the emission of gravitational wavgs]. Although this is well  time domain. The numerical method we use was first devel-
justified for large periastron, it is not a good approximationoped by Lousto and Pridé®], and later corrected by Martel
for highly eccentric orbits with small periastron, those of and Poisson to yield second-order convergeids; it is a
interest for gravitational-wave astronomy. finite-difference scheme, based on the null cones of the
In this paper, we consider a situation in which the com-Schwarzschild spacetime, which incorporates the source
pact object has already been captured by a spherically synterm without approximatings{r —r(t)] and 6'[r —r(t)].
metric central black hole, and calculate the correct, generalhis method is advantageous compared to Fourier decompo-
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sition because of the need, in the case of highly eccentriluxes of energy and angular momentum can be calculated.

orbits, to sum over a very large number of frequencies inn Sec. Ill B, we provide a discussion of numerical issues

order to obtain accurate resuftkl,12. As an added bonus, that limit the accuracy with which we can determine the

the time-domain method provides the Zerilli-Moncrief and fluxes. In Sec. Il C, Sec. lll D, and Sec. Il E, we present

Regge-Wheeler functions everywhere in the spacetime. Fayur results for the gravitational waveforms and fluxes for

each multipole moment, information about the fluxes of en<ircular, eccentric, and parabolic orbits, respectively. In Sec.

ergy and angular momentum at infinity and through the evenkv, we summarize our findings. Appendix A contains a brief

horizon is obtained by a single numerical integration. summary of first-order black hole perturbation theory, while
Astrophysical black holes are very likely to be rapidly Appendix B contains a detailed derivation of the flux formu-

rotating and the assumption of spherical symmetry for thdas at infinity (Appendix B 3 and through the event horizon

central black hole is unrealistic. However, removing this as{Appendix B 4.

sumption would require a substantial revision of our numeri-

cal method. The source term for the Schwarzschild perturba- Il. ORBITAL PARAMETRIZATION

tion equations can be treated exactly because, by removing

the angular dependence, the problem is reduced to integrat- Following Cutleret al. [12], we introducep, the semi-

ing a one-dimensional partial differential equation. A diver-latus rectum, ane, the eccentricity, as orbital parameters.

gent source term of the form of E@l.2) then leads to a They are defined so that the periastron and apastron are at

simple jump in the field at the particle’s position, and thisPpM/(1+e€) andpM/(1—e), respectively. In terms of these

can easily be handled by finite-difference methods. For #arameters, the energy and angular momentum per unit mass

rotating black hole, one is faced with the task of solving theof @ point particle are

inhomogeneous Teukolsky equatifh3]. It is well known
(p—2—2e)(p—2+2e)

that this equation is not separable in the time domain, be- B2=

cause the eigenvalues of the angular functions are frequency p(p—3—¢e?)

dependent. Insisting on working in the time domain leaves a

two-dimensional partial differential equation to integrate. M?2p2

Unfortunately, ad-function source no longer leads to a [2=——. 2.9
simple jump at the position of the particle: the field is now p—3-¢°

(logarithmically divergent at this location. Standard finite- ) o i

difference methods are inadequate to deal with this type ofor e=0 the periastron and apastron coincide, and the orbit

behavior and cannot be used. The problem can be circunts circular. In the interval &e<1, the motion occurs be-

vented by smearing the particle around its positifor ex- ~ tween two turning points, while foe=1, the apastron is

ample by using narrow Gaussian functions instead ffnc-  Pushed back to infinity and the motion is parabdlin all

tions). This eliminates the divergence in the source term andGases, stable orbits exist onlypf-6+2e.

consequently, in the field; standard finite-difference methods The position of the particle at timeis given by the co-

can then be applied. Such an approach has been used @glinates (,(t),¢p(t),6,=7/2). Inspired by the solution to

obtain gravitational waveforms produced by a particle on athe two-body problem in Newtonian mechanics, the radial

equatorial circular orbit of the Kerr black hoJ@4], but the  Position of the particle is expressed as

error introduced by smearing the particle is difficult to ascer-

tain. By specializing to Schwarzschild, comparison with the

present work will allow such a determination; this is another

important justification for the work presented here. With this

application in mind, we consider orbits with a wide range ofwherey is a parameter along the orbit. This is well behaved

eccentricities and semi-major axis, and do not necessarilgt the turning pointsx=0, ), which facilitates the numeri-

restrict ourselves to highly eccentric orbits. cal integration of the geodesic equations for the time and
The paper is organized as follows. In Sec. Il we describengular coordinates. In terms gf these ar¢12]

the orbital parametrization of bound and marginally bound

geodesics of the Schwarzschild spacetime. In Sec. Il A we

provide a relation between the Zerilli-Moncrief and Regge- *In analogy with Newtonian mechanics, we use the term “para-

Wheeler functions and the gravitational waveforms at infin-bolic” for marginally bound orbits: they have=1 (E=1), but the

ity and near the event horizon; from these relations, therajectories traced out areot parabolas, except in the limg>1.

pM

- 1+ecosy’ 2.2

Mo(X)

d (p—2—2e)Y4p—2+2e)?
d—t=Mp2 2 1/2’ 23
X (p—2—2ecosy)(1l+ecosy)“(p—6—2ecosy)
d p1/2
dx 7P (p—6—2ecosy)? 4
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FIG. 1. In the left panel, we display the trajectories in #ey, plane for a geodesic wite=1, andp=8.001. For this choice of
parameters, the particle orbits the black hole approximately four times before leaving the central region. In the right panel, we display a
e=0.9 andp=7.8001 geodesic. When the particle reaches the periastron, it orbits the black hole on a quasi-circular orbit for approximately
six cycles. In both cases, the exact number of cycles is given by2&s).

The first of these equation can be numerically inverted taiastron. The total energy emitted is then well approximated

yield x(t); knowledge ofr ,(x) andey(x) is then equivalent by E=NEg,cuiar, WhereN is the (divergeni number of or-

to knowingr ,(t) and ¢p(t). bits, P the period of a circular orbit at,=Mp/(1+e), and
The geodesic equations given by E(®.3) and(2.4) are  Egcuiar the energy emitted by a particle on such an orbit; a

integrated using the Burlisch-Stoer methftb], and we similar approximation holds fok.

chose the initial conditions as follows. The gravitational

waveforms are extracted as functions of time at a location. wAVEFORMS, ENERGY AND ANGULAR MOMENTUM

reps- We take the initial momertt= —t,<<0 to be the one at RADIATED
which the particle is at periastrdry=0, r,(—t,)=Mp/(1 . _ .
+e), and ¢p(—t,)=0]. We sett, equal to the light travel To numerically evolve Eq(1.1) initial conditions must be

time between the periastron and the observation point. Thu®rovided for the gravitational perturbations. The manner in
radiation emitted at the initial moment will reach the ob- which the initial configuration of the gravitational field influ-
server att~0. ences the subsequent evolution has been studied previously
This parametrization of the geodesic is suitable for bound®r radial geodesicg10]. For bound geodesics, the motion is
and unbound orbits of the Schwarzschild spacetime;efor qua3|—per!od|p and waiting gwfﬂmentlyllong time ehm_mates
<1, the parametey can take any real value, whereas for the contribution from the initial conditions, which simply
e=1, it is confined to— w/e<y</e. In this paper, we propaggtes away. For marglna_llly bound geodesics, we chose
consider circular orbits, selected cases of eccentric orbitéhe.'mtIal position of the particle to be very far fr_om the
and parabolic orbitsg=1), but the code is capable of pro- ﬁerlastr(_)n. Far away _from the black hole, the veIomty_of the
ducing gravitational waveforms for any valueefFor anyp particle |s_small and it takes ”.‘“.C.h Ionge.r fqr the particle to
ande, the particle orbits the central black hole a number reach periastron than for the initial gravitational-wave con-
=A<p’p/(27-r) of times before moving out of the central re- tent to escape from the system. At the point where the emis-

gion. Integrating Eq(2.4) over one radial period yield&.2] sion of radiation is strongest, there is no trace left of the

initial configuration of the gravitational perturbations. This
2 \/T de allows us to completely avoid problems related to the choice
=— K
N T Y p—6+2e (p—6+2e
whereK (m) = [7?dx(1—msir’X) "2 is the complete ellip-

, (2.5 of initial data for both bound and marginally bound geode-
sics. We chose zero initial conditions for the gravitational
perturbations, acknowledging that this is inconsistentat-

_ ) . . . : . ing the particle from nothing violates energy-momentum

&Ce mtiﬁ?r:iliu?:feﬂ:(e (I')ritrk'(':;j/'(;&)\gz;i“?g] thzntéajic'z?)nes, conservatiop but recognizing that artifacts of this choice
p\t) = 1p p p i in ti '

— 1 (1) (2M)sin{gn(®)]. In Fig. 1, we display trajectories in disappear in time. Fluxes may then be computed reliably

the x,-y, plane for p=7.8001 ande=0.9 (left), and p

=8.001 ance=1 (right). In both cases, the number of times

the particle orbits the central black hole is large. This is

after waiting a sufficiently long time.
becausep is close to the critical value 62e at which N We first provide a short summary of the relations between
diverges. In these cases, gravitational-wave emission ithe Zerilli-Moncrief and the Regge-Wheeler functions and
dominated by the quasi-circular portion of the orbit near pethe radiative portion of the metric perturbation at infinity and

A. Far-zone fluxes and black hole absorption
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at the event horizon, as well as flux formulas used through-

out the paper. Complete summaries of first-order black hole ~ E*¢"= E Efeh, Efeh=EpeM+2 E Ereh,
perturbation theory and flux calculations are relegated to Ap-

pendixes A and B, respectively. In the radiation zone, the two (3.5
gravitational-wave polarizations are related to the Zerilli-

Moncrief and the Regge-Wheeler functions by [ =eh— E L°° eh  and L°° eh_ o 2 L°° eh,

1 [(1+2)1 (3.6
h—th.=5- >, (I—2)!

" there is nan=0 contribution to the angular momentum flux,

t, , m and the factor of 2 in front oE[;*" andL;*" comes from

X '/’ZM(t)_Z'J dt’rw(t’) 72Y (6.¢). folding them<0 contributions over tan>0 (see Appendix
A). In a slow-motion, weak-field approximation the quadru-

3.1 pole moment dominated £ 2 andm=2) and the total en-

o o ergy and angular momentum radiated over one orbital period
Similarly, whenr—2M, the two gravitational-wave polar- are[1g]

izations are given by

E 64 1+ 73 2+37 ) S (g
h =t (1+2)! oP =g | Tt gge /P B
TaM (1-2)!
64 7
t LQ(p,e)=?,u2 1+ gez)p‘z. (3.9
X(lﬁZM(t)_Z'f dt’l/wa(t')> Y'™(6,0).
? The average energy and angular momentum radiated per unit
(3.2 time, defined by performing an orbital average, are
In these equations,Y'™ are spherical harmonics of spin 32 (1—e?)%? 73 37
weights [16]. (EQ)=+ ( ) —5< t54 e +%e
From lsaacson’s stress-energy tensor for gravitational P
waves[17], as well as Eqs(3.1) and(3.2), we calculate the 21302
energy flux in each multipole moment to be 32 ’“ (1-e) L
<LQ>— 5 M T 1 ge (3.9)
1 (I1+2)! o . s :
' ——|yym|? 1+ m even, For the bln_arles conS|_dere_d in this paper, the slow-motion
E=.eh_ 64m (1-2)! 3.3 and weak-field approximations break down, and the fluxes
Im 1 (1+2)! ' must be computed using Eg&.5 and (3.6). Numerically

2 L
167 (1-2)1 |prwd?, 1+ m odd, we cannot perform the infinite sums, and we truncate them at
a finite valuel 4. In the next subsection, we explain the
criteria used to choodg,,, and discuss the overall accuracy

and the angular momentum flux to be of the time-domain computation.

im_(+2)! B. A d inati f the fl :N ical i
1287 (1= 2),¢zm¢ZM+CC [+m even, . Accurate determination of the fluxes: Numerical issues
Lpeh= In order to calculate the fluxes to a relative accuracy
m (1+2)! f Ayt c.c., 1+m odd, (we uses =0.01), we need to consider three sources of error:
327 (1- Vrw RW discretization of Eq(1.1), effects of the finite size of our

(3.4 computational grid, as well as truncation of the sums in Egs.
(3.5 and(3.9).
where a tilde over a quantity denotes complex conjugation, First, discretization of Eq.1.1) introduces numerical
c.c. is the complex conjugate, and thand m indices are truncation errors. In a previous paper, we showed that the
implicit on ¢z, and ¢rw. In Egs.(3.3) and (3.4), E,°°m and Lousto and Price algorithm can be corrected to yield second-
Lf°m denote the fluxes across a surfaceconstse, while ~ Order convergencgl0], i.e. truncation errors scale ast®,
with At denoting the numerical step size for evolution.
m and Liiy denote the fluxes through a surface const Throughout this work we generated gravitational waveforms
—>2M The fluxes at infinity are calculated using the Zerilli-

' ; by setting At=0.1(2M) in the numerical algorithm; this
Moncrief and Regge-Wheeler functions extracted rat — ,.oveq sufficient to determine the fluxes at infinity to the

=I5ns: Whererg,is large and positive, while for the hori- gegjred 19 accuracy. However, for a given step size the
zon fluxes, they are extractedrdt=rg,,, whererg, is large  fluxes through the event horizon are never determined as
and negative. OncE,,, andL,,, are known, the total fluxes accurately as the fluxes at infinity. The gravitational waves
are obtained by summing over all modes: flowing through the event horizon are weaker than the ones
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FIG. 2. The dominant radiation modes for the Zerilli-Moncrigft, | =2 andm=2) and Regge-Wheeldright, |=2 andm=1)
functions for a particle orbiting the black hole gf=12M. At early times, the waveforms are dominated by the initial data content. We
calculate the energy and angular momentum fluxes after atfi(@é )= 350.0.

escaping to infinity, and, because of this difference in scales, Finally, the last source of error limiting the accuracy of
horizon fluxes are determined with an accurag$%. But the determination of the fluxes arises from truncating the
we will see below that horizon fluxeseveramount to more  sums in Eqs(3.5) and(3.6) at a finite valud ,,,,. The error
than a few percent of the total fluxes. The lower accuracys made small enough for our requirements by demanding
with which black hole absorption is determined is then suf+that

ficient for our goal of 1% overall accuracy.

Second, the expressions for the fluxes displayed in Egs. i w
(3.3 and (3.4) hold only asymptotically (* — *=o). Nu- _ B o Llna —10
merically we are forced to extract the waveforms at finite g=ma E* | L” <1% 3.10

values, and this introduces finite-size effects in our results.
Numerical efficiency requires a small computational grid,

but accuracy .r.eqtilres the waveforms to be gxtracted at Be satisfied. Typically, Eq3.10 is satisfied with ,,,, given
large and positive, . and at a large and negativ§,. The 20 2) o .
by [p/(1+e)] Vmax“)<g, which is known to hold for cir-
flux formulas developed here are based on the stress-energ _ - - )
tensor for gravitational waves, as constructed by Isaacsoptlar orbits[19]. Note that becaus;  andL, are in-
[17]. The validity of the construction depends anR<1 cluded in the sum, the error comes from neglecting terms
being satisfied, wherk is a wavelength of the radiation and starting att =1,,,5,+ 1. In effect, the relative error made from
R a typical radius of curvature. To calculate the fluxes farneglecting these terms is much smaller than 1%. In the fol-
from the black hole, we extract the waveforms in an aperOXHowing, we will return with empirical estimates of our nu-
mate radiation zone defined by/r,,<1, where N~ merical errors; these will confirm the preceding qualitative
fv(M/Rg)l’2 andR, is a typical orbital radius. The radiation discussion.
zone is then defined bR, /1 op( R, /M) < 1. For relativis-

tic motionR,~M and by imposindR, /1 yps<&, we make an

error of ordere in approximating the radiation zone. This is C. Circular orbits
somewhat different from the criteria for the validity of Isaac-
son’s stress-energy tensor, but simee 1~ (M/r3, )2 we For circular orbitse=0 and the radius of the orbit is,

have that /R~ (R, /1 op9 ¥?~&*2, and the use of the stress- =pM. In Fig. 2 we display typical gravitational waveforms
energy tensor is justified. In practice we also imposggl  emitted by a particle traveling on a circular orbit. Both wave-
>750(2M). At the horizon, the situation is somewhat dif- forms have the same pattern: The field oscillates with an
ferent. The typical radius of curvature®~\22M, but the  angular frequency given by}, whereQ =M ~1p~32is the
radiation is blueshifted so that~feh(R2/M)1/2—>O, where  orbital angular velocity anthis the multipole index. The left
fenr=1—2M/ro,. The requiremenh/R<1 then translates panel contains the dominant quadrupolar motle  and

to fe Rp/(2M)]¥2<e. We usedR}/|r}|<e, as well as  m=2), while the right panel contains the dominant odd par-
rsn<<—750(2M), which amply satisfies the above require- ity mode (=2 andm=1).

ment. This yielded good results, but a better, more efficient The code output€sr and Lgg directly, but it proves
choice would have been,,=2M[1+(2M/R,)¥%]. With  convenient to express the fluxes in termscpfandc, : co-
these choices aofy,  andry,, we are making an error it efficients that remain close to 1 for all valuespfThe total
mostordere in determining the fluxes at infinity and through fluxes are calculated using Eq8.5 and (3.6) and we ex-
the event horizon, respectively. press the numerically obtained results in the form

044025-5



KARL MARTEL

Relativistic correction
for circular orbits

0.9

0.7

086

0.5

0.4

0.3

Residuals in %

02

@

40 45 50

(b)

PHYSICAL REVIEW D 69, 044025 (2004

& KT x X

Rg +

40 45 50

FIG. 3. In the left panel, we displage(FD), as well axg(TD) andc (TD), as functions op. Both cg andc, slowly approach 1 from
below for largep. For small values of, the coefficients approach 1.15@mapproaches 6. In the right panel, we display the residRaland
R_ as defined in the text. Using the time-domain method, the fluxes are calculated accurately to Q796.f2001, and to 0.2% for large

values ofp.

TABLE I. Energy and angular momentum fluxes for circular orbits, calculated using a time déhigicode, are compared with fluxes
calculated by Poisson using a frequency dom&b) approach20]. Here we chos@=7.9456 andp=46.062. The energy fluxes are in
units of (M/u)?, and the angular momentum fluxes are in unitvbfu?. They are calculated aff,=1500M andr*,=5200M for p
=7.9456 andp=46.062, respectively.

| m E* (FD) E* (TD) Relative difference L= (FD) L= (TD) Relative difference
p=7.9456
2 1 8.163% 1077  8.1623x 10’ <0.1% 1.828%10°°  1.8270<10°° 0.1%
2 1.7063x 104  1.7051x 1074 <0.1% 3.821%10° %  3.8164x10°° 0.1%
3 1 2173 10°°  2.1741x10°° <0.1% 4.867x10° %  4.8684x10 8 <0.1%
2 2.519% 107  2.5164x10° 7 0.1% 5.643%10 ¢ 5626210 ° 0.3%
3 2.5471x10°°  2.5432<10°° 0.1% 5.704%10°*  5.6878x10 * 0.3%
4 1 8.3956<10° 1%  8.3507x 10 13 0.2% 1.880%x 10 't  1.8692<10 ! 0.6%
2 2.5091x107°  2.4986x10°° 0.4% 5.619%10° 8  55926x10°° 0.5%
3 5.775X10°8  5.7464<10°8 0.5% 1.293410°%  1.2933<10°° <0.1%
4 4.7256<10°%  4.7080<10°© 0.4% 1.058410°%  1.0518<10°* 0.6%
5 1 1.259410°1° 1.2544<10° % 0.4% 2.8206x10° 4  2.8090x 10 4 0.4%
2 2.7896<10 1%  2.7587 10712 1.1% 6.247%10 1 6.1679% 10 1! 1.3%
3 1.093%10°°  1.0830x10°° 1.0% 244861078 242271078 1.1%
4 1.2324<10°8  1.2193x10°8 1.1% 2.760% 1077  2.7114x10°7 1.8%
5 9.4563< 1077  9.3835<10 7 0.8% 2.117%10°%  2.0933x10°° 1.2%
Total 2.031%k10°%  2.0273<10°* 0.2% 4544610°°  4.5399< 1073 0.1%
p=46.062
2 1 1.8490x 1071t 1.8713<10° % 1.2% 5.780410°°  5.8497%10°° 1.2%
2 2.8650x 1078  2.8728<10°8 0.3% 8.9566x10°°®  8.9809x 10 ° 0.3%
3 1 7.5485% 1074  7.7275<10 14 2.4% 2.359% 101 2.4158<10 ! 2.4%
2 1.0926<10° %2 1.0990x 10 12 0.6% 3.415% 10"  3.435910°1° 0.6%
3 8.0640<10°*°  8.0835x 10 *° 0.2% 25211077  2.5270x10° 7 0.2%
4 1 9.979%10°%°  1.0390x10 18 4.1% 3.119K10° %  3.2480x10 16 4.1%
2 1.6018<10° % 1.6171x10 1.0% 5.007%10 2  5.0555<10 2 1.0%
3 4660310 %  4.6799<10 0.4% 1.456% 10 1  1.4631x10 0.4%
4 2.793% 107 27997 1071t 0.2% 8.733%10°°  8.7525x10°° 0.2%
Total 2.9505 104  2.9584<10 8 0.3% 9.223%10°®  9.2486x10°° 0.3%
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FIG. 4. We display the energy and angular momentum fluxes through the event horizon normalized by the fluxes in the radiation zone.
Even for highly relativistic motion, the horizon fluxes contribute less than 0.4% of the total fluxes. For circular orbits, the theoretical
prediction is thaEeVE*=LeWL". Numerically, this relation is only approximate, but nevertheless the two curves are indistinguishable. The
right panel displays these ratios normalized by/qvl)"‘, the weak-field and slow-motion approximation.

In Table | we perform a mode by mode comparison be-
tween the two methods fqo=7.9456 andp=46.062. For
- : p=7.9456, the fluxes from each multipole moment calcu-
Ler(P)=CLLo(P.0), (3.19 lated with the time-domain code agree to 1% or better with
) i the fluxes calculated in the frequency domain. A similar
whereEq(p.€) andLqo(p,e) are given by Eq(3.9 above  agreement is found fqu=46.062, with the exception of the
with e=0. For circular orbits, we should finE=QL and [=3 andm=1, andl=4 andm=1 modes, for which the
therefore,cg=c, . relative difference is 2.4% and 4.1%, respectively. This re-
Circular orbits have been studied extensively and we ussults from the huge difference in amplitude between these
them to quantitatively test the accuracy of the time-domairmodes and the dominant mode. The step size used through-
method. We perform a comparison of our results with theout this work is sufficient to obtain an overall relative accu-
time-domain (TD) code with results obtained in the fre- racy of 1%, but it is not small enough to determine indi-
quency domairiFD) by Poissori20]. In the left panel of Fig.  vidual, small-amplitude modes to better than 2-5%.
3 we displaycg(TD), ¢ (TD), andcg(FD). In the right  Although these modes could be resolved properly by using a
panel, we display the residuals,Rg=100cg(TD) smaller step size, it is not necessary for our goal of 1%
—ce(FD)|/ce(FD) and R, =100c, (TD) overall accuracy; the contributions from these modes to the
—cg(FD)|/cg(FD). In the interval 6<p<50, the time- total fluxes are six and ten orders of magnitude smaller than
domain code reproduces the frequency domain calculationthe leading-order contributions, respectively. As such, they
to 0.7% or better, with the best agreement occurring for largelo not affect the overall accuracy of the computation;dor

EO(;R( p)= CEEQ( p.0),

values ofp. =7.9456 andp=46.062 the total fluxes calculated with the
08 T T T T T 0.008 HeI(WRw)
Im{wpw) =-meen
0.005 1
0.004 -
0.003 -
5 z 0.002
> >
2 3 0001
- =
s jui 0
-0.001 -
-0.002 -
-0.003
06 . . . . ‘ 0004 . . . . .
-200 0 200 400 600 800 1000 -200 0 200 400 600 800 1000
(a) t2M (b) t2M

FIG. 5. The Zerilli-Moncrief(left, | =2,m=2) and Regge-Wheeléright, | =2,m= 1) functions forp=12 ande=0.2. As in the case of
circular orbits, early times are dominated by the initial data content.
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FIG. 6. The Zerilli-Moncrief(left, | =2,m=2) and Regge-Wheeléright, | =2,m=1) functions forp=7.801 ance=0.9. As in the case
of circular orbits, early times are dominated by the initial data content. The radiation occurs in short bursts when the particle approaches the

periastron. This is typical of the zoom-whirl behavior studiedif|.

time-domain method agree with the frequency domain reerrors originating from the discretization of Ed..1) and the
sults to within 0.2% and 0.3%, respectively. finite stepsize used in the numerical evolution. Based on the
Black hole absorption was calculated in a weak-field andaccuracy of thé=4 andm=1 mode forp=46.062 in Table
slow-motion approximation for a particle in circular orbit by 1, the error is seen to be 5% for modes whose contribution
Poisson and Sasak1] and Alvi [22] who showed that it is ten orders of magnitude smaller than the dominant mode.
gives rise to av® correction to the quadrupole formula: For the range op values considered in this paper, black hole
Eeh/E =p8= |_eh/|_Q, wherev =p~2=(M/r )1/2 isthe or- absorption is at most seven orders of magnitude smaller than

bital velocny The time-domain method allows black holethe dominant contribution[This is evaluated using the
absorption to be calculated for arbitrary geodesics. In par{M/r)* relation atr,=50M, the value at which black hole
ticular, for circular orbits our results show that even whenabsorption is least significaitt is then safe to assume that
v~0.4 and the particle travels in a region of strong gravita-fluxes through the event horizon are determined with an ac-
tional field, the amount of energy and angular momentunfuracy <5%. (For values ofp close to 6+2e, black hole
absorbed by the black hole is always a small correction to th@bsorption is more important and therefore more accurately
total fluxes. For highly relativistic motion, this never grows determined.
large enough to contribute more than 0.4% of the total fluxes

(see left panel of Fig. )4 For the purpose of calculating total

fluxes with an overall accuracy of 1%, black hole absorption

can safely be ignored. The right panel displays the ratio of For eccentric orbits, €e<1, and the radial motion is
horizon fluxes to the fluxes at infinity, normalized by bounded by the periastran|mi,=pM/(1+e€) and the apas-
(M/rp)“, the weak-field and slow-motion approximation. As tron rp|max=pM/(1—e). In Fig. 5 and Fig 6 we display
expected for circular motion, the normalized ratios for en-waveforms for two casep=12 ande=0.2, as well ap

ergy and angular momentum are equal to each other, and7.801 ande=0.9.
they approach 1 for largg. This type of orbital motion generates gravitational wave-

We estimate the accuracy with which black hole absorpforms that are different in nature and in frequency content
tion can be determined using the time-domain method to b&om circular orbits. Rather than being emitted uniformly
5%. This estimate is based on the following argument. Forlong the orbit, the radiation is now emitted preferably at
small amplitude modes, the accuracy with which their conperiastron. As the eccentricity increases the radiation is emit-
tribution to the total fluxes can be determined is limited byted in short bursts occurring near periastron. In these situa-

D. Eccentric orbits

TABLE Il. Comparison of averaged fluxes for eccentric orbits with Cutkeal. for two points in thep-e
plane [12]. The two cases presented aii¢ p=7.50478 ande=0.188917, andii) p=8.75455 ande

=0.764124.
Case Cutleet al. Time domain Relative difference
0 p=7.50478 (E) 3.1680<10°* 3.1770<10°4 0.3%
e=0.188917  ([) 5.9656< 102 5.9329¢10°3 0.5%
(i) p=8.75455 (E) 2.1008< 10~ 4 2.1484x 104 2.3%
e=0.764124 (L) 2.7503x 103 2.7932<x10°3 1.6%
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o) — T =0.764124. The results are displayed in Table Il. For small
TR e eccentricities, e.g. cas@), the agreement is similar to the
12 1o . 1 agreement achieved for circular orbits. For large eccentrici-
ties, e.g. caséi), the agreement is2%. Because eccentric
orbits in Schwarzschild space are characterized by two in-
commensurate frequencies, the gravitational waveforms are
quasi-periodic. By working in the frequency domain, Cutler
= =+ ] et al. were able to formally average their fluxes over an in-
finite time. It is not, of course, possible to perform such an
average in the time domain. Rather, for high eccentricities,
the fluxes are averaged over a limited number of radial
cycles (~3). This difference in averaging the fluxes is the
most likely source of disagreement between time-domain
o7l . . . . . . . . . . and frequency-domain calculations for cdsg For casd(),
this is not as much of an issue, since the radial period is short

enough to allow the time average to be performed over 10
FIG. 7. Coefficientg andc, for the energy and angular mo- cycles or more.

124 T %e... J
122} B S

Renormalized energy and angular momentum
for e=0.5 eccentric orbits
3
T

mentum radiated as functions pffor e=0.5 eccentric orbits. Near Finally, we calculate the total energy and angular momen-
the last stable orbit{=7), ce approaches 1.24, while, ap-  tym emitted during one radial period as functionspofor
proaches 1.26. e=0.5. We express the total energy and angular momentum

. . . ) . radiated to infinity, as calculated from the time domain code,
tions a time-domain approach is far more efficient than

frequency-domain approach. The reason is that in order to
correctly calculate the waveforms in the frequency domain, a  Egr(p,e)=cg[Eq(p,e)+(N—1)Eq(p/(1+e€),0)],
large number of individual frequenciélsarmonics of the ra-
dial and azimuthal frequenciesre required, and summing Ler(p.e)=c.[Lo(p,e)+(N—1)Lo(p/(1+e),0)],
over them can be hugely expensive. By contrast, a time- (3.13
domain method handles all frequencies simultaneously.
The fluxes are calculated over a number of wave cyclegvhere we us&€ggr=P(p,e)(E), P(p,e) is the radial period
according to of the orbit obtained by integrating E@2.3) over O<y
Lo <27, (E) is given by Eq.(3.12, N=N(p,e) is given by
(E)= _f Edt, (3.12 Eqg. (2.5 with e=0.5, Eq(p,e) andLq(p,e) are given by
TJo Eqg. (3.9, andcg andc, are parameters that stay close to 1
for all values ofp. In Fig. 7 we displaycg andc, as func-
whereT is a few (>3) radial periods; a similar expression tjons of p for e=0.5. The coefficientg is close to 0.9 for
holds for(L). To obtain a quantitative idea of the relative largep and approaches 1.24 fprnear 7. Similarly, the co-
accuracy of the time-domain method for eccentric orbits, weefficient ¢, stays close to 0.95 for large and approaches
compute the fluxes for two points in tigee plane and com- 1.26 forp near 7. The formulas above for the total energy
pare our calculations with those of Cutletal. [12]: (i) p and angular momentum radiated by a particle in eccentric
=7.50478 ande=0.188917, and(ii) p=8.75455 ande orbit are justified by the fact that they have the correct lim-

0016 F———T——T——T—T—T—T—T T T T T T T T T
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0.006

for e=0.5 eccentric orbits
for e=0.5 eccentric orbits

0.004

the black hole to those radiated to infinity
the black hole to those radiated to infinity

0.002

Ratio of energy and angular momentum absorbed by
Ratio of energy and angular momentum absorbed by
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FIG. 8. Black hole absorption for a particle in &= 0.5 eccentric orbit. The absorption of both energy and angular momentum is
negligible until the particle reachgs~7.3, at which point it contributes approximately 1-2 % of the total fluxes; these are eccentric orbits
whose periastron is smaller than K19 The right panel displays the same ratio normalized Myr(p|mm)4.
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iting behavior both fop large and fopp— 6+ 2e. For large 008 ' - - e p—
p, the total energy and angular momentum radiated by R4
particle on an eccentric orbit are well approximated by the
guadrupole formulas given by Ed3.7). In this limit, N
—1 and Eq.(3.13 produce the correct approximate energy
and angular momentum radiated. When:6+ 2e, the par-
ticle orbits the black hole for a numbéd—1 of quasi-
circular orbits whose radius is equal to the periastron radius
r,=Mp/(1+e). In this limit N is large and the second term 5
of Eq. (3.13 dominates the energy and angular momentumg
radiated. This term corresponds to the energy and angulas
momentum radiated aftéd such quasi-circular orbits

The frequency of the radiation emitted by the orbiting
particle increases as the periastron of the orbit become;
smaller. Since for a given eccentriciy the periastron is % 02 04 06 08 1
proportional top, the frequency of the radiation increases e
with decreasmgp. Because. the potential barrler around the FIG. 9. Displayed ar€®VE and L®"L* as functions of ec-
Schwarzschild black hole is less opaque to hlgh_frequencxentricit along the curvgp=6.001+ 2e. Because of the decrease
gravitational waves, we expect an increase in black hole ab- y 9 P=5. '

Sorption with a decrease i This is confirmed numericall in periastron distance with increasimg black hole absorption in-
P . m T y creases witte. A good approximation to these curves is given by
for e=0.5 and displayed in Fig. 8. F@=7.3 (r,~4.9M),

ehjze 2 eh/ g
the absorption of energy and angular momentum by théE /B = (141467 (BVE) |-,

black hole contributes more than 1% of the total fluxes, . .

while for p=7.3 it contributes less than 1% and can be ig-—MP/2 with p>8. For large values of, the particle does
nored when determining the total fluxes. In the right panel oot spend much time aroung| i, the position where the
the figure, we display black hole absorption &+0.5, nor-  radiation is maximum; the waveforms have a simple struc-
malized by Q\/l/rp|mm)4, wherer p|min=Mp/(1+e€) is the ture around=0, the time at which the radiation emitted at
periastron distance. This is the correction expected fromm |, reaches an observer,s. This is displayed for even
black hole absorption for a particle inircular orbit at  and odd modes in Fig. 10. In contrast, wheapproaches its
rplmin- We use this normalization here because black holgninimum value p,,,,=8), the particle circles the black hole
absorption for generic orbits has not been calculated analytfor a numberN of cycles. Becaus®l diverges ap=8, we
cally. For largep, black hole absorption foe=0.5 does not  get the zoom-whirl behavior displayed in Fig.[11]. The
seem to converge toward the slow-motion and weak-fielgyasi-circular nature of the motion whem, approaches

approximation for qircular orbits. 'The normalized energyrp|min results in a number of oscillations in the waveforms:
stays above 1, while the normalized angular momentum *

‘ hese occur nedr=0 for the observer atg,, and are dis-
curve stays below 1. But because the relatB=QdL played in Fig. 11 fop=8.001.
used in deriving black hole absorption for circular orbits
does not hold in general, there is no reason to believe th
(M/r min)* should hold for generic orbits. Determining the
differences in black hole absorption due to a finite eccentric-  Egg(p,e)=cg[Eq(p.e)+(N—1)Eq(p/(1+e€),0)],
ity in a weak-field and slow-motion approximation would
require a more detailed analysis than ours, since it is in this  Lgg(p,e)=c([Lg(p,e)+(N—1)Lo(p/(1+e),0)],
regime that our determination of black hole absorption is the (3.19
least accurate. )

For radiation emitted by a particle whose orbital param-whereN=N(p,e) is given by Eq.(2.5 with e=1, Eq(e,p)
eters arep=6+2e and O<e<1, the argument relating andLQ(e,p) are given by Eq(3.9), andcg andc, are again
black hole absorption to the orbital separation suggests th@farameters that stay close to 1 for@llFor parabolic orbits,
black hole absorption should be an increasing functior of the total energy and angu|ar momentum are Computed using
along the lingp=6+2e (rp|mm is a decreasing function & Eqgs.(3.5) and(3.6) as
along this ling. It then comes as no surprise that numerical
results displayed in Fig. 9 support this assertioe usedp S e
=6.001+2e). Along this line, the radiation is emitted prin- Ecr= f_TE dt,
cipally at periastron, where the orbit is quasi-circular. The
relation dE=QdL, where Q= (M/r ,|min)*? is the angular T
velocity of a particle on a circular orbit aty|mi,, holds Lngf L*dt, (3.19
approximately and we fin@®"E*~L®"VL". T
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In similarity with eccentric orbits, we express the numeri-
El',tally calculated energy and angular momentum radiated as

for T large[we usedl = 300(2M)]. In Fig. 12, we displaycg

andc, for parabolic orbits. These quantities are close to 1 for
Particles on a parabolic trajectory hawe 1 (equivalently  |arge p, but increase above 1 gsapproaches 8. Near this

E=1), andp specifies the value of the periastran| i, Vvalue ofp, cg reaches 1.81, while_ approaches 1.84. As for

E. Parabolic orbits

044025-10



GRAVITATIONAL WAVEFORMS FROM A POINT . .. PHYSICAL REVIEW D 69, 044025 (2004

T T T T — T
e |
i
1e-04
5e-05
=4 2
&
E S
2 2 0
= =
2 =
Q S
~ =
-5e-05
-0.0001
-0.00015
0.4 P L 1 L L L L L L L L 1
-600 -400 -200 0 200 400 -600 -400 -200 0 200 400
t2M t2M
(a) (b)

FIG. 10. Displayed ar&,, (left, |=2,m=2) andyg\y (right, |=2m=1) as functions of time foe=1 andp=40. As in the case of
circular orbits, early times are dominated by the initial data content. Total energy and angular momentum are calculated in the range
—300<t/2M < 300.
eccentric orbits, we find that for largethe energy and an- For completeness, in Table Il we displ gﬁh and
gular momentum approach the values given by the quadru-%", the total energy and angular momentum radiated to
pole approximation, but that fqu close to 6+2e they are infinity and through the event horizon, as returned by the
better approximated by the energy and angular momentuime-domain code, for a wide rangepfalues. Based on the
radiated by a particle orbiting the black hdetimes on a  accuracy obtained for circular and eccentric orbits, we esti-
circular orbit of radius | min=Mp/(1+e). mate that the total energy and angular momentum lost to

The argument given previously for eccentric orbits holdsgravitational waves are calculated to a relative accuracy of
true for parabolic orbits: whep=8, black hole absorption 1-29%. The actual accuracy is likely to be close to the accu-
is more important than for circular or eccentric orfsiée Fig.  racy achieved for circular orbits. The reason for this is quite
9). Our numerical results show that fpr>10, E®" andL®"  simple. For parabolic orbits, there is no issue of performing a
account for less than 1% of the total energy and angulatime average, since the particle passes through periastron
momentum radiated, while fqr=10 they can contribute as only once and we calculate the total energy for that motion.
much as 5% of the total amountsee Fig. 13 Hence, for
p=10, black hole absorption contributes a few percent of the IV. CONCLUSION
total energy and angular momentum radiated and needs to be
included in an accurate computation. Black hole absorption The time-domain method can produce waveforms and
is not determined as accurately as the energy and angulanmpute the associated fluxes of energy and angular momen-
momentum radiated to infinity, but the error we make intum to a relative accuracy of a few percent. For circular
evaluating it is never large enough to spoil our goat-cdf%  orbits, the method is extremely reliable and produces fluxes
overall accuracy. with an overall accuracy of 1% or better over the whole

T . : T T T ; . ,
o8 b Al ] 002 F 2 s Relvrw
|m(v§m _______ a o o |m}‘vnw; -------
06 _ 0.015 _
oal i 001 F 1
< ot _ z 0.005 1
N .,

S N | £

g o0 == = 1 e °

- :

S ozt . = 0005 - 4
o4l - 001 | 1
08 - -0.015 - 1
w08k ) . . . . 0.02 | . , i3 . . ]

300 200 “100 o 100 200 300 -300 -200 -100 0 100 200 300
t12M t2M

(a) (b)

FIG. 11. Displayed ara)y), (left, |=2,m=2) and ¢y (right, |=2m=1) as functions of time foe=1 andp=28.001. Early times,
where the choice of initial data dominates, are not displayed in order to make=theegion clearly visible. The energy and angular
momentum fluxes are integrated in the rang®800<t/2M <300 to obtain the total energy and angular momentum radiated.
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Y — T black hole absorption contributes more than 1% of the total
g e e ] fluxes and cannot be ignored. We showed thatefst0.5 it
g 184 ¢ | can constitute a correction as large as 2% of the total fluxes;
é ' 1153 i x. ] for parabolic orbits the contribution increases to 5%.
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Since the pioneering work of Regge and Wheg8rand

FIG. 12. Coefficientee andc, for the total energy and angular Zerilli [6], perturbations of the Schwarzschild black hole
momentum radiated as functions pffor a particle in parabolic have been studied extensively. Here we provide a short sum-
orbit. Nearp=8, cg approaches 1.81 while_ approaches 1.84.  mary of the formalism, including the source terms appropri-

ate for the Zerilli-Moncrief and Regge-Wheeler equations.

range ofp values explored. For eccentric orbits, the compari- The perturbations of the Schwarzschild spacetime are
son with the results of Cutleet al. [12] is spoiled by the described by a linear perturbation tensdr,,=g,,
difficulty in performing a time average of the fluxes over a —g5:"""**"'% whereg,,, is the metric of the perturbed
sufficiently long time. Because the disagreement arises frongpaceume angSC“WarZSC“"dthe Schwarzschild solution. This
the differences in time averaging, the time-domain method igensor is written as a multipole expansion using scalar, vec-
still capable of producing accurate waveforms for highly ec-torial, and tensorial spherical harmonics. In Schwarzschild
centric motion. We stress here that the limitation is in thecoordinates, we have
computation of the time-averaged fluxes, not in obtaining the
waveforms. On the other hand, for geodesics with small ec-  h,=fHq(t,r)Y'™, h,=H(t,r)Y'™,
centricities there is no such limitation and the time-domain
results are in better agreement with those calculated by Cut-  p — ¢y, (t,r)Y'™,
ler et al. [12]. In all cases, the time-domain method is ca-
pable of determining the fluxes accurately to 1-2 %. Similar
accuracy is obtained for the total energy and angular momen-
tum radiated by a particle traveling on a parabolic orbit. m m

We also computed the absorption of energy and angular  Pra=01(t,1)Zy"+hy(t,1) X3
momentum by the black hole. For circular orbits with
>6, this contribution can always be neglected, but not for  hyg=r[K(t, r)U g+ G(t, r)V 5]t ho(t, r)WAB,
orbits whose periastron is smaller thakl5 For such orbits, (A1)

hia=0o(t,r)ZW"+ho(t,r) X"

0.06 r T T T T T T T T EEh/E T T T T T T T T | /E T
—_ T ]
o r— 13 fa [“'" Leh fr—

0.04 4

Ratios of energy and angular momentum radiated
through the horizon to those at infinity

Ratios of energy and angular momentum radiated
through the horizon to those at infinity

FIG. 13. Black hole absorption for a particle following a parabolic geodesic. The absorption of both energy and angular momentum is
negligible until the particle reachgs=10 orr |,i,=5M. The right panel displays the same ratio normalized Myr(p|mm)4, wherer | min
is the radii at periastron. Again, this factor is meaningful only for circular orbits, and is used only to illustrate the behavior of black hole
absorption as a function qf.
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TABLE lIl. Total energy and angular momentum radiated by a particle orbiting a Schwarzschild black
hole in a parabolic orbit. As usuakgg and L&k denote the energy and angular momentum radiated to
infinity, while EghR and L(e;}? are the energy and angular momentum absorbed by the black hole. The black
hole absorption contributes to less than 1% wipenl0: for parabolic orbits with periastron smaller than
5M, black hole absorption contributes a significant amount to the total energy and angular momentum

radiated.

p EéR Eeer:? LZR Lgr:?
8.00001 3.6703 1.887610 ¢ 3.0133< 10 1.5208
8.001 2.2809 1.126010° 1 1.9088< 10 9.1166<10° !
8.201 7.113 10! 2.6586x 10 2 6.6010 2.214%10°t
8.401 5.174 10! 1.6534x 10?2 5.0433 1.424%10° 1
8.601 4.09710°* 1.1376x10°? 4.1665 1.014& 10!
8.801 3.376%10°* 8.1988< 103 3.5706 7.517% 10 2
9.0 2.841% 107! 6.0880x 1073 3.1196 5.7028 1072
9.2 2.440% 10t 4.6044x 1072 2.7756 4.389% 102
9.4 2.122& 107! 3.5352x 1073 2.4973 3.421%10°2
9.6 1.8644 101 2.7473x 1073 2.2665 2.695% 102
9.8 1.6506< 101 2.1565x< 1073 2.0718 2.142& 1072
10.0 1.471x10°?! 1.7072x 1073 1.9048 1.717610°?
10.5 1.129x10°* 9.8226x10° 4 1.5752 1.019% 102
11.0 8.897% 10 2 5.8626< 10 * 1.3320 6.281%10° 3
11.5 7.154% 1072 3.6067x 10°* 1.1455 3.997%10°3
12.0 5.846% 1072 2.2778x10°* 9.9827x 1071 2.6152<10°3
12.5 484241072 1.4732<10°4 8.7936x 1071 1.7546< 102
13.0 4.056K 102 9.7321x 10°° 7.8158x 1071 1.2036< 102
13.5 3.4326¢10° 2 6.5582x 107 ° 7.0011x 1071 8.4286x10°*
14.0 2.930% 1072 4.4999 1075 6.3136x 1071 6.0123x 104
14.5 2.513410 2 3.1409x 10°° 5.7133x 107! 4.3635< 1074
15.0 21774102 2.2273<10°° 5.2088< 107! 3.2171x10°*
16.0 1.6636 10?2 1.1675<10°° 4.3867x 1071 1.8241x10°4
17.0 1.297& 10?2 6.4484x< 10°° 3.7499< 107! 1.0869x 104
18.0 1.030% 102 3.7241x 10°° 3.2454x 1071 6.7569< 10°°
19.0 8.302% 1073 2.2354x10°° 2.8383x 107! 4.3565< 107>
20.0 6.7794 1073 1.3882<10°° 2.5047x 1071 2.8990< 10°°
22.0 4.673%10° 3 5.8355x 10”7 1.9949<10°* 1.3895< 10
24.0 3.3426¢10°3 2.6965x< 1077 1.6280<10°* 7.2550< 108
26.0 2.463% 1073 1.3447x 1077 1.3549%< 107! 4.0539<10°©
28.0 1.862x 103 7.1373x10°8 1.1459< 10! 2.3931x10°°
30.0 1.437410°3 3.9949< 1078 9.8213x 1072 1.4781x 106
32.0 1.129& 103 2.3372x10°8 8.5141x 1072 9.4827x 107
34.0 9.022%10°* 1.4201x<10°8 7.4534x 1072 6.2832<10° 7
36.0 7.295610° % 8.9299x 107 ° 6.5744x 1072 4.2804x 1077
38.0 5.979% 10 * 5.7886x 107 ° 5.8484x 1072 2.9873< 1077
40.0 4.954%10°* 3.8422x107° 5.2369x 1072 2.1296x 1077
42.0 4.145%10°* 2.6163x107° 4.7168< 1072 1.5469< 107
44.0 3.498% 1074 1.8214x10°° 4.2706< 102 1.1427 1077
46.0 2.976% 104 1.2887 10°° 3.8849< 10 2 8.5683< 108
48.0 2.550K 104 9.3316x 10710 3.5491x 102 6.5130< 1078
50.0 2.199% 104 6.8343x 10710 3.2550< 10 2 5.0118<10°®

where capital roman indices run over the angular coordinates - o 1(1+1) | . -
(0,¢), f=1-2M/r, andY'™ are the usual scalar harmonics, ~ Vap=Yjagt —5— QasY",  and Wap=Xupg) -
in terms of which the vectorial and tensorial spherical har-

monics are defined as
Here Q5= (1,sirf6), a bar denotes the covariant derivative

| | | | | A . . e ae e
ZN=YR, Xai'=eaYjn, Ung=QaeY'™, compatible withQ o5, ande g is the Levi-Civitatensor on
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the unit two-sphere. The coefficients of the multipole expan- 16712
sions have implicil andm indices, and there is an implicit Qab=8ﬂf TaPYIM* 4Q, Qa=|(| +1)J TAAZM™ dQ,
summation over these indices. Defined this widy, H,,
H,, o, d1, K andG are even parity modes, whilg,, h;
andh, are odd parity modes. Q*’=87Tr2f TABUIM* dQ),

By construction, the vectorial and tensorial spherical har-
monics obeyS'~ M=(—)MS™* whereS is any spherical

harmonic function(This relation holds for scalar spherical #— 32mr” f TAByIM* 4
harmonics, and since vectorial and tensorial spherical har- (I=DI(1+1)(1+2) AB T
monics are obtained by the actionrefl operators ory'™, it

also applies to these functiongin important consequence of and

this relation is that for real metric perturbations, the multi- 2

pole moments must satismM" "= (=)"M'™*  whereM'™ a_ 167" TaAYIm* 4

is any one oMy, Hy, Hs, qo, 01, K, G, hy, hy, andh,. It [(1+1) A '

is then easily established tha'™M*'M=M"~mpm*!.—m

This justifies folding them<0 terms over tan>0 in Egs. b 16mr* J TABYIMS g -
(3.5 and(3.6). T =DI(I+1)(1+2) AB TRT

A gauge transformation can be used to eliminate four of
the metric perturbations. In the Regge-Wheeler gauge, thiwer-case roman indices run oveandr, the integration is
freedom is used to sefy=q,=G=0, andh,=0. The two  over the unit two-sphere withQ) = sin éddde, and T3P, T3A

scalar fields andTAB are components 6. For a particle traveling on a
geodesic with proper time, coordinatesz;(7), and four-
r f d velocity u#(7), the stress-energy tensor is
¢ZM_)\+—1 K+K HZ—I'EK , (AZ)

TW:MJ dT(—g)‘l/zu“u”é“[X“—Zg], (AS5)

f
Yrw=~ N, (A3) where 6 x*—z%] is a four-dimensional Dirac functional.

These expressions for the source terms can be used, com-
whereh=(1+2)(I—1)/2 andA =\ +3M/r are the Zerilli- bined with the geodesic equations of the Schwarzschild
Moncrief and Regge-Wheeler functions, respectively. TheisSPacetime, to calculate explicit expressions for the factors

evolution is governed by Eq1.1) with the potentials G(t,r) and F(t,r) appearing in Eq(1.2). For even parity
modes(ZM), we get

M| 18M?2 M R * *
Vou= | 222 >\+1+—)+ >\+—) | G(r,t)=aY* (t)+bZ: (1) +cU* () +dVE (1),
r2A2 r r2 r
F = 8w f* VZY* A6
oM (r’t)_MXE (1), (A6)
Vew= S| 1(1+1) = ——|, (Ad)
' whereV2=f(1+12/r?),
and the source terms B 87 2 (6M.
A F1az| T
SZ — 1 r2f fziQtt_iQ” +r(A_f)er
MT(N+DA ar ar A

3M L2 7™
A+1l-—+ —|[\+3——
r r2

2
2 L,_f_ _ 2 —
+rfeQ rA[)\()\ Dre+(4xN—9)Mr

and
r1smziQu) + 2o Lo T T
QY+ T 16m T 2 g T2 f3
PTAIEA " CTAIE Ay
fl2 3M J .
SRWIF[F( _T>P_fEP+P . (l_z)!’l:g §2
d— - 327Tm E r_3
These are constructed from the perturbing stress-energy ten-
sor T*” and we have defined Finally, the source terms for odd parity mod@&dV) are
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f2[4(  3M ew_ 1 .
G(r,t):r_s[r(l__ a+pB T/.w :%<h ﬁ;,uhaﬁ;v>' (B1)

r

£3 where( . . .) denotes an average over a region of spacetime

F(ri)=—a (A7) large compared with the wavelength of the radiation. Typi-

rs cally, T,,, can be defined when the wavelength of the radia-
tion, \, is small compared to a typical radius of curvat@e
where By definition, \<R in the radiation zone and the stress-
(1—2)1 T2 80 T energy tensor for gra\(itational waves can'be dgfined' there.
a=16m : er,Lm(t), B=— _urlem(t). There is a second region where the conditicRR is satis-

(I+2)! E A+1E fied: A stationary observer neas=2M seesR~2M, but the

radiation is strongly blueshifted and—0; that this is the
Note thatG(r,t) andF(r,t) contain scalar, vectorial and case is clear from the divergence in E§30) below.

tensorial harmonic functions evaluated at the angular posi- Because the Schwarzschild black hole is static and axially

tion of the particleg,(t). For example, for even modes, symmetric, it possesses two Killing vectqest® and ()&%,

some terms irG and F are proportional tof'"™(m/2,¢,(t)). that can be used, in conjunction wilh,,, to obtain expres-

Because the orbital motion takes place in the equatoriadions for the fluxes of energy and angular momentum

plane, each spherical harmonic function is evaluated,at through a surfac® at constant. We have thatdropping the
=m/2. A useful consequence of this is that the source termi GW” on the stress-energy tensor
for the Zerilli-Moncrief function vanishes whdn-m is odd,
while the source term for the Regge-Wheeler function van-
ishes wher +m is even. This was used in E(.3) and Eq. dE=— J’ET’,f([)fvdEM, (B2)
(3.4).

Once iz and yry are found by solving Eq1.1), with

the source terms of Eq$A6) and (A7), the perturbation aL= [ 1, evas B3)
tensor can be reconstructed. In the Regge-Wheeler gauge, we s (98" a2, (
have
P r2§2 wheredZ. , is an outward oriented surface elementXnin
=f— + ER—— Schwarzschild coordinates, these expressions reduce to
K fﬁr Yzm+A(r) Pzm ()\+1)AQ , p
AN+1 d E:—erszdQTtr,
HZ—T —r vru—K +I’EK,
ad| d 2
Hi=r—| ——dzm+B(r)¢zm L ffdQT“P' B4)
at|or
2 b Pa where an overdot indicates differentiation with respect, to
CNt1 CHR EQ : ande is 1 when calculating the fluxes in the radiation zone
and —1 when calculating black hole absorption. Because the
Ho=H,+ Q¥ (Ag)  eventhorizon is a null surface, it is conceptually better to use

dE/dv anddL/dv in place ofdE/dt anddL/dt (with v =t

for even parity modes, where we have defird)=[\(\ +r*). Similarly, because radiation travels ", which is
+1)+3M/r(N+2M/r)]/(rA) and B(r)=[N(1—3M/r)  another null surface, it is conceptually better to ds&/du
—3M?/r?]/(rfA). For odd parity modes, the reconstructedanddL/du instead ofdE/dt anddL/dt for outgoing fluxes
metric perturbations are (with u=t—r*). However, because we numerically extract
the gravitational waveforms at finite values 6f, without
ever reaching the event horizon ", the use ofiE/dt and
dL/dt is a better representation of our numerical procedure.

We provided a summary of the perturbation formalism in
hy=—rf ~ Lymuw. (A9)  Appendix A. This included explicit formulas to reconstruct
the metric perturbations in the Regge-Wheeler gauge. To
constructT,, and T,,, it proves convenient to extract the
radiative part of the perturbation tensor. To this end, we in-
troduce the null tetrad*, n#, andm*: |# andn” are null

The fluxes of energy and angular momentum can be obY€ctors tangent to outgoing and ingoing rays, respectively,
tained from Isaacson’s stress-energy tensor for gravitationdvhile m* is a complex null vectotwith complex conjugate
waves: m*) on the two-sphere. They satisfy the relations

t P
ho= —fj_mdt'b(npm(t’,r))+ P,

APPENDIX B: RADIATION ZONE FLUXES AND BLACK
HOLE ABSORPTION
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for odd modes; an overdot designates$ derivative and a
prime anr derivative. In the next two subsections, we de-
velop solutions appropriate to outgoing and ingoing radiation
gauges, respectively.

A =0=nt “m =0=m“m
IIMO n“n,, m“m,=0=m*m,,

l“n,=—1=—m*m,. (B5)
M “

In Schwarzschild coordinates, their components are
1. Outgoing radiation gauge

1
l,=(-1710,0), n,=-5(f,100, In an outgoing radiation gauge’,®, the perturbation
tensor satisfief23]
V2 ho R n#n =0,

mM=7r(O,O,1| sing). (B6)

ORGAumV — () — WORGH 1Y
To find the perturbation tensor in a radiation gauge, we h, nfm*=0=h,, mm’,
seek a gauge vect@t that generates the transformation be-
tween the Regge-Wheeler gauge and the radiation gauge.
Under such an infinitesimal coordinate transformation, the
perturbation field transforms as)o=h""—£:,.,), where  The first two conditions indicate thie,® is transverse to
RG stands for radiation gauge amV for Regge-Wheeler outgoing null rays, while the last condition indicates that it is
gauge. Using the spherical harmonic functions introducedraceless. Equationd10) involve five conditions, one too
previously, the vecto&* can be expressed as a multipole many for the specification of a gauge. But this system is not
expansior 8]: overdetermined: once four of these equations are enforced,

hORCn#1Y=0=hoRmrm”. (B10)

giteven):(atYlmiarYlmirZBZ!A\m)y
099 0,052k X", (B7)

where o, a,, B and k are freely specifiable gauge func-
tions. Combining this with the multipole expansion for the

perturbation tensor in the Regge-Wheeler gauge, we obtain

the transformation law for the each perturbation mode:
.M
HEC=HEW-2f 1( a— ﬁfar>,

, - 2M
at+ar—r—2f ay

RG_ JRW_
HRC=HF

|

HRC=HEW—2f

’ M -1
ar+r—2f a |,

qtRG: _(at+r21.8)l

arC=—(a,+12p"),
KRC=KRW— ZTfar—I(H—l),B),
GRé=-2p (B8)
for the transformation of even parity modes, and
hRC=hRW—r2g,
hr®=hf"=r?’,
hRC= —2r2« (B9)

the fifth is found to be satisfied automatically in the radiation
zone.

From Egs.(B8) and (B9), the gauge conditions can be
expressed in terms of multipole moments. To leading order
inr—1 we get

4(ay— ay) =HRW+HEW—2HRW

at—ar+2r2,8=0,

a+a,=0,
2
Car=—K® (B11)
for even parity modes, and
2r2=hfW—hiW (B12

for odd parity modes. We usetlgt=—d/ar + O(r 1), ap-
propriate in the radiation zone, to eliminatelerivatives in
favor of t derivatives.

The right-hand side of these equations contains the per-
turbation tensor in the Regge-Wheeler gauge. From Eq.
(A8), we find that, in the radiation zone, even parity modes
have the asymptotic form

KRW%_‘Z'ZMa H§W~H§W~_H?W~V¢ZM,

while, from Eq. (A9), we find that odd parity modes are
given asymptotically by

ho~—hy~rrw-

Solutions to the gauge transformation are then easy to
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find. For even modes, the last of EB1l) yields «, Regge-Wheeler gauge is obtained from Eds3) and (A9).
=—(1/2)r ;. The other gauge functions are easily ob-We get

tained from the remaining equations of E@11): a;=

—a, andB=— iz /(2r). For odd modes, direct integration KRW g+ Elﬂ

of Eq. (B12) yields k=1/r ' _dt' yrw(t’). Going back to M 2m TeMe

Egs.(B8) and(B9), we can reconstruct the perturbation ten-
sor in the radiation zone. Solving these ®PR® andh3R®,

we get

. 1.
H2RW=H§W=H1RW:f_1(2M hzm— §¢ZM

t , , for even parity modes, and
h2§G=r(¢ZM<t)VK“B—2 f dt' Yrw(t )WAB | +O(1).

(B13) ho "= fhi"=—2Myrwy

In this expression, the Zerilli-Moncrief and Regge-WheeIerfor odd parity ones. Thesg can be inserted back into .Eqs.

functions havel and m multipole indices and there is an (B14) and (B19). The solution to the gauge transformation

implicit summation over them. Dropping th&(1) term, we then proceeds as follow. For even parity modes, the second
1 . . o . 2. —

refer tohQRC as the radiative part of the perturbation tensorand third equations yield:, =« and 4M°B=—a;. These

in the radiation zone, because it contains all of the informaan be substituted into the first and the time derivative of the

tion about energy and angular momentum carried to infinityfourth of Eq.(B14), to yield a system of equation far; :

This last expression can be re-written in terms of the two 1 1

gravitational-wave polarizationsh, =h5r%r2, and h, =~ =M gy~ b (B16)

=h9r%(r?sing). The result is Eq(3.1). boam S

. . . A+l . A+1.
2. Ingoing radiation gauge at Sy a=Midzut ——Yzwm. (B17)

To obtain the radiative part of the gravitational field in the
vicinity of the event horizon, we impose an ingoing radiation Eliminating the time derivative by subtraction, we fiag

gauge. We seek a solution to leading orderfin0, the — _ =/ - . . .
expansion parameter near the horizon, M, . For odd parity modes, integration of E@15),

The ingoing radiation gauge can be obtained from Eq_combined with tbe asyr’nptotic form o™ andhi™, yields
(B10), by making the replacemeht—n* of the tetrad vec- <~ L/(@M)Jdt" dpi(t’). - _IRG
tors. The same comment about the number of gauge condi-,R'érom t_hese, and EqéB8) and(B9), we obta_lnG_ and
tions can be made here: only four gauge conditions need B2 7 which are used to reconstruct the gravitational pertur-
be imposed, and the fifth condition is then satisfied automatiPation tensor:
cally.

Izr_o_m Eq.(B8), Eq. (B9), and the ingoing radiation gauge hiRS=2M
conditions, we obtain

lpZMvL(“BJrzf dt’apRW(t’)W'AmB}wLO(f).

(B18)
Aot e _i — 2f (HRW4 yRW ) o ) .
(et ar) = (et a) =2f(H "+ HTT), Again, the Zerilli-Moncrief and Regge-Wheeler functions

havel andm multipole indices, and there is an implicit sum-
mation over them. The componerni&y’ [without the O(f)

ar—a,=0, correctior] contains all the information about the energy and
angular momentum absorbed by the black hole. It is then
8M2B+ a,+ a, =0, meaningful to refer to these components as the radiative part

of the perturbation tensor in the vicinity of the event horizon.
In analogy with the far zone definitions, the two

iar—ﬁ= KRW (B14) gravitational-wave polarizations are defined ds.
M =hy,°/4M? and h, =h}°/(4M?sing). They are given in
Eq. (3.2.

for the gauge transformation of even parity modes, and

] W . 3. Radiation zone fluxes
2
r2k=r(hf"V+fhf% (B19) In terms of its tetrad components, the perturbation tensor
in the outgoing radiation gauge is
for odd parity modes: we substituted— f ~1«, in Eq. (B8),

we usedd/dr* =algt+O(f) to eliminate derivatives with hORC=hyn,n,+2(himn(,m,)+himng.m,)
respect ta*, and an overdot denotes a time derivative. o
The asymptotic form of the metric perturbations in the +hymm,m,+hym,m,, (B19)
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where h,,=h v*v", for any vectorv* belonging to the
tetrad. To Ieadmg order in~1, the tetrad components are

~O(r=?),
him~O(r ~?),
1
hm= —hag m*m®
R m= hg’BRGmm (B20)

where the vectom”=r(96"/dx*)m*, andh$g € is given in
Eq. (B13).

Calculating the covariant derivative of,X® and substi-
tuting the result in Eq(B1), we get

T,uv 647T[77 Mna,Bv_FnaBMpZBV

+p“ #UaﬁV+PaBMPzBV]+C-C-a (B21)

where

ﬂaB#: h” ’Mnanﬁ+ 2h|m1#n(amﬁ)+ 2h|,;#n(amﬁ)

+hmmMaMg+hip, M Mg,

Papu=hnilNaNgl.,+ 200 NMp) 1.,
+2hialnemg) 1., + el Mmampgl. ,

+hamlmemgl., . (B22)

The first term appearing in E¢B21) can be calculated ex-

actly. It is

+hom . Dm -

78 7= Nmm (B23)

PHYSICAL REVIEW D 69, 044025 (2004

where we replaced derivatives witht derivatives, and ne-
glected terms of orde®(r ~%) and higher.

These expressions for the stress-energy tensor can be used
to calculate the fluxes in the radiation zone. Inserting Eq.
(B24) into the first of Eq.(B4), where we sekt=1 andf
~1, yields

dE r? . . 1 .
az EJ dQ(hmmh +hﬁhmm):EJ dQhpgh

EZ

1"m’

dO[| Pz 2VERVEAD

+4|¢RM2W' AViee

1 (1+2)!

:E; —2)! [|¢ZM|2+4|¢RW|2] (B26)

where in the first equality we useQ"“QBPh,gh%,
=r2(hmmh —+hymhh, the second equality follows from

Eq.(B13), and the third equality follows from evaluating the
angular integral with the aid of

ape 1 (1+2)
Jdﬂvg“gvl,m*,—z(l 57 01l Omn
1(1+2)!
B
fdvi',{”Bwﬁmﬁ PR

The angular momentum flux calculation follows similar
steps. Inserting EqB25) into the second of EqB4), we get

Evaluating the remaining terms requires more effort. They
involve products of tetrad vectors and their covariant deriva- dL

tives. It is easy to show that the only non-vanishing and

¢ components arem®n —(V2/4)1fsing, m*m,
=—1c0s6, and m%n \/QM/(4r2)|S|n9 Using these

(par

and Eq.(B20), we find that

1 . . ..
T = 55 (Nt P (B24)
1., X
Teo= gz (el + Aihi,)
.
+%(hmmh +hﬁh§]m)cose+c.c., (B25)

r? , .
= | Q0L+ it ) =1 (e
+hmmh ) cosd]+c.c. (B27)

The last term involves the product of césvith a term of the
form sin6S™(0)S;,,(6), where S™(6) is a spherical har-
monic function. Under the interchanged— m=— 6,
we have that co8—-—cosf and sinGSm(H)S*,m,(e)
—sin#S™(0)S’,,(6). The overall term is therefore odd i
with respect tomw/2, and integration over € < yields

zero contribution to the angular momentum flux. We are then
left with
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dL r? S : 1
e LU R e RS =gz e (829
mr? . andm”® was introduced i
_ . . previously.
6477J dQ(hmphmt hamhnmt c.c) With the replacemenh”~1”, the steps we follow are

almost exactly the same as those of the radiation zone calcu-
lations. The stress-energy tensor is written as in (B&1),

with 7,4, andp g, changed to reflect the exchange of tetrad
vectors. It is not difficult to show that the non-vanishing

: . lme % AB components of the contracted derivatives of the tetrad vec-
YzmibzuVagVy o tors are nowm“l ., = (y/2/2)1 sin, m*m,.,= —1 cosé, and

Mm% |, =\2M/(2r?)1f ~*sing.

— m AB*
-y dQ(h*"hzg+c.c)

Im
=2 2 ) do

Im rm

t . .
+4 dt’ gkt YWABWFAB| L ¢ ¢ These, combined with EqB29), reveal that the relevant
l//Rijoc YRl ) Win Wi components of the stress-energy tensor are given by
-1
im (I+2)!I]. __f_. T
=2 T8 (—2)1| Yemlim T =" 37 (Mo M) (B30
t 71 * . .
+44,//wa dt’ kot | +c.c., (B29) Tre=~ gz (MmN o NN )
— _ — ; ; f1. .
where we uséy, ,= — Imhg in the first equality, and the + ! h h*—+h=—h* )cosf+c.c B31
remaining steps shadow the ones for the energy flux calcu- 64z Mmrefhn M) <. (B3

lation. o . L
where we replaced* derivatives witht derivatives and ne-

glected term of orde©(1). Note that this is exactly of the
The calculation of the black hole absorption is similar tosame form(apart from a factor of ™) as that obtained for
the calculation of the far-zone fluxes. Here we are looking toT"T%mi;Eu;gtéhfh;arﬂsggs; we insert these expressions into
isolate the divergent piece' at,,, sin_ce'it is this part that Eq. (B4), where we also se¢=— 1. The divergence in the
corre.sponds to the _blueshlfted grawta'qonal waves: :I'he ©Xstress-energy tensor is canceled by the factdragipearing
pansion parameter i and we are looking for the)(f™*) Eq. (B4). The remaining calculations are identical with

portion of thetr andr¢ components ofl ,,. We neglect qse of the far zone, with/X° given by Eq.(B18). The

4. Black hole absorption

terms of orderO(1). enerav flux is
The material developed in Sec. B 3 can be used here gy
simply by replacind#«<n#. In an ingoing radiation gauge, dE 1 (+2) .
the non-trivial tetrad components of the perturbation tensor E:% 647 (1—2)! [l zml*+4ldrul?],  (B32)
are
while the angular momentum flux is
Pon = LD dL (1+2)!
m .

hnm~(9(f), a:% 1287 (|_2)| ZMIJIEM

- 1 IRG~A--B ! rpk ’

hmm— _4M2hAB m™m y +4¢RW 7ocdt l//RMt ) +cC.C. (833)
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