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Horizonless rotating solutions in„n¿1…-dimensional Einstein-Maxwell gravity
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We introduce two classes of rotating solutions of Einstein-Maxwell gravity inn11 dimensions which are
asymptotically anti–de Sitter type. They have no curvature singularity and no horizons. The first class of
solutions, which has a conic singularity, yields a spacetime with a longitudinal magnetic field andk rotation
parameters. We show that when one or more of the rotation parameters are nonzero, the spinning brane has a
net electric charge that is proportional to the magnitude of the rotation parameters. The second class of
solutions yields a spacetime with an angular magnetic field andk boost parameters. We find that the net
electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the
magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS conformal field
theory correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic
divergencies associated with the Weyl anomalies and matter field are zero, and ther divergence of the action
can be removed by the counterterm method.
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I. INTRODUCTION

The anti–de Sitter conformal field theory~AdS/CFT! cor-
respondence@1#, which relates the low energy limit of strin
theory in asymptotically anti–de Sitter~AAdS! spacetime
and the quantum field theory living on the boundary of
have attracted a great deal of attention in recent years.
equivalence between the two formulations means that
least in principle, one can obtain complete information
one side of the duality by performing computation on t
other side. A dictionary translating between different quan
ties in the bulk gravity theory and its counterparts on
boundary has emerged, including the partition functions
both theories. An interesting application of the AdS/CFT c
respondence is the interpretation of the Hawking-Page ph
transition between a thermal AdS and AAdS black hole
the confinement-deconfinement phases of the Yang-M
~dual gauge! theory defined on the AdS boundary@2#. This
conjecture is now a fundamental concept that furnishe
means for calculating the action and conserved quant
intrinsically without reliance on any reference spaceti
@3–5#. It has also been applied to the case of black holes w
constant negative or zero curvature horizons@6# and rotating
higher genus black branes@7#. Although the AdS/CFT corre-
spondence applies for the case of a spatially infinite bou
ary, it was also employed for the computation of the co
served and thermodynamic quantities in the case of a fi
boundary@8#. The counterterm method also has been
tended to the case of asymptotically de Sitter spacetimes@9#.

Thus, it has become important to obtain new solutions
the Einstein gravity with a negative cosmological const
and apply the AdS/CFT correspondence to them. For AA
spacetimes, the presence of a negative cosmological con
makes it possible to have a large variety of static and stat
ary solutions with planar, spherical, or cylindrical symm
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tries. Asymptotically AdS black holes whose event horizo
are hypersurfaces with a positive, negative, or zero sc
curvature were considered in@10#. Asymptotically AdS rotat-
ing topological black brane solutions have also been
tained@11#. The AAdS rotating solution of Einstein’s equa
tion with cylindrical and toroidal horizons and its extensio
to include the electromagnetic field were considered in R
@12#. The generalization of this AAdS charged rotating so
tion of the Einstein-Maxwell equation to higher dimensio
and higher derivative gravity and investigation of its therm
dynamics were done in@13,14#. In the context of gauged
supergravity models, the rotating brane solution has b
considered by many authors~see, for example,@15#!.

In this paper we are dealing with the issue of the spa
times generated by spinning string/brane sources
(n11)-dimensional Einstein-Maxwell theory that are ho
zonless and have nontrivial external solutions. These ki
of solutions have been investigated by many authors in f
dimensions. Static uncharged cylindrically symmetric so
tions of Einstein gravity in four dimensions were consider
in @16#. Similar static solutions in the context of cosm
string theory were found in@17#. All of these solutions
@16,17# are horizonless and have a conical geometry; they
everywhere flat except at the location of the line source. T
extension to include the electromagnetic field has also b
done@18,19#. Some solutions of type IIB supergravity com
pactified on a four-dimensional torus were considered
@20#, which have no curvature singularity and no conic s
gularity. Here we will generalize the four-dimensional sol
tion found in @19# to the case of the (n11)-dimensional
solution with all rotation and boost parameters, and use
AdS/CFT correspondence to compute the conserved qu
ties of the system.

The outline of our paper is as follows. In Sec. II, we fir
review the field equations of Einstein-Maxwell gravity an
then introduce two classes of (n11)-dimensional AAdS
horizonless charged rotating solutions with more rotation a
boost parameters. In Sec. III, we give a brief review of Ad
©2004 The American Physical Society24-1
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CFT correspondence, and obtain the logarithmic divergen
associated with the Weyl anomalies and matter fields.
electric charge and conserved quantities of the system
also be computed. We finish our paper with some conclud
remarks.

II. „n¿1…-DIMENSIONAL ROTATING SOLUTIONS
OF EINSTEIN-MAXWELL GRAVITY

A. Field equations

The gravitational action for Einstein-Maxwell theory
n11 dimensions for AAdS spacetimes is

I G52
1

16pEM
dn11xA2g~R22L2FmnFmn!

1
1

8pE]M
dnxA2gK~g!, ~1!

whereFmn5]mAn2]nAm is the electromagnetic tensor fie
andAm is the vector potential. The first term is the Einste
Hilbert volume term with negative cosmological consta
L52n(n21)/2l 2 and the second term is the Gibbon
Hawking boundary term, which is chosen such that the va
tional principle is well defined. The manifoldM has metric
gmn and covariant derivative¹m . K is the trace of the extrin-
sic curvatureKmn of any boundary~ies! ]M of the manifold
M, with induced metric~s! g i , j .

Varying the action over the metric tensorgmn and electro-
magnetic fieldFmn , the equations of gravitational and ele
tromagnetic fields are obtained as

Rmn2
1

2
gmnR2

n~n21!

2l 2
gmn5Tmn , ~2!

¹mFmn50, ~3!

whereTmn
e.m. is the electromagnetic stress tensor

Tmn
e.m.52Fl

mFln2 1
2 FlsFlsgmn . ~4!

Now we want to obtain spacetimes generated by br
sources inn11 dimensions which satisfy the above fie
equations. Some solutions were obtained in@21#. We will
introduce two new classes of horizonless solutions to E
~2!–~4!, which are a generalization of those given by Di
and Lemos@19#.

B. Longitudinal magnetic field solutions with one
rotation parameter

It is a matter of calculation to show that the generalizat
of the four-dimensional solution given by Dias and Lem
@19# in n11 dimensions with one rotation parameter can
written as
04402
es
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g
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n

e

ds252
r2

l 2
~J dt2a df!21 f ~r!S a

l
dt2J ldf D 2

1
dr2

f ~r!
1

r2

l 2
dX2, ~5!

where J5A11a2/ l 2, dX25( i 51
n22(dxi)2 is the Euclidean

metric on the (n22)-dimensional submanifold, andf (r) is

f ~r!5
r2

l 2
1

8mln22

rn22
2

8

~n21!~n22!

q2l 2n24

r2n24
. ~6!

The gauge potential is given by

Am5
2

~n22!

ql (n23)

rn22
~adm

0 2J l 2dm
f!. ~7!

As we will see in Sec. III,m and q in Eqs. ~5!–~7! are the
mass and charge parameters of the metric, which are rel
to the mass and charge densities of the brane.

In order to study the general structure of this solution,
first look for curvature singularities. It is easy to show th
the Kretschmann scalarRmnlkRmnlk diverges atr50 and
therefore one might think that there is a curvature singula
located atr50. However, as will be seen below, the spac
time will never achiever50. Now we look for existence of
horizons, and therefore we look for possible black brane
lutions. One should conclude that there are no horizons
therefore no black brane solutions. The horizons, if any ex
are given by the zeros of the functionf (r)5grr

21 . Let us
denote the zeros off (r) by r 1 . The functionf (r) is nega-
tive for r,r 1 and positive forr.r 1 , and therefore one
may think that the hypersurface of constant time andr
5r 1 is the horizon. However, this analysis is not corre
Indeed, one may note thatgrr andgff are related byf (r)
5grr

215 l 22gff , and therefore whengrr becomes negative
~which occurs forr,r 1) so doesgff . This leads to an
apparent change of signature of the metric from (n21)1 to
(n22)1, and therefore indicates that we are using an inc
rect extension. To get rid of this incorrect extension, we
troduce the new radial coordinater as

r 25r22r 1
2 ⇒dr25

r 2

r 21r 1
2

dr2.

With this new coordinate, the metric~5! is

ds252
r 21r 1

2

l 2
~J dt2a df!21 f ~r !S a

l
dt2J ldf D 2

1
r 2

~r 21r 1
2 ! f ~r !

dr21
r 21r 1

2

l 2
dX2, ~8!

where the coordinatesr and f assume the values 0<r ,`
and 0<f,2p, and f (r ) is now given as
4-2
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f ~r !5
r 21r 1

2

l 2
1

8mln22

~r 21r 1
2 !(n22)/2

2
8

~n21!~n22!

q2l 2n24

~r 21r 1
2 !n22

. ~9!

The gauge potential in the new coordinate is

Am5
2

~n22!

ql (n23)

~r 21r 1
2 !(n22)/2

~ad m
0 2J l 2dm

f!. ~10!

The function f (r ) given in Eq.~9! is positive in the whole
spacetime and is zero atr 50. Also note that the
Kretschmann scalar does not diverge in the range 0<r ,`.
Therefore this spacetime has no curvature singularities
no horizons. However, it has a conic geometry and ha
conical singularity atr 50, since

lim
r→0

1

r
Agff

grr
5

nh

2l
1

4q2

n21 S l

hD 2n23

Þ1.

That is, as the radiusr tends to zero, the limit of the ratio
‘‘circumference/radius’’ is not 2p and therefore the space
time has a conical singularity atr 50. Of course, one may
ask for the completeness of the spacetime withr>0 ~or r
>r 1). It is easy to see that the spacetime described by
~8! is both null and timelike geodesically complete~see the
Appendix for more detail!.

C. Longitudinal magnetic field solutions with more
rotation parameters

The rotation group inn11 dimensions isSO(n) and
therefore the number of independent rotation paramete
@(n11)/2#, where@x# is the integer part ofx. We now gen-
eralize the above solution given in Eq.~5! with k<@(n
11)/2# rotation parameters. This generalized solution can
written as

ds252
r 21r 1

2

l 2 S Jdt2(
i 51

k

aidf i D 2

1 f ~r !S AJ221dt

2
J

AJ221
(
i 51

k

aidf i D 2

1
r 2 dr2

~r 21r 1
2 ! f ~r !

1
r 21r 1

2

l 2~J221!
(
i , j

k

~ai df j2aj df i !
21

r 21r 1
2

l 2
dX2,

~11!

whereJ5A11( i
kai

2/ l 2, dX2 is the Euclidean metric on th
(n2k21)-dimensional submanifold andf (r ) is the same as
f (r ) given in Eq.~9!. The gauge potential is
04402
nd
a

q.

is

e

Am5
2

~n22!

ql (n22)

~r 21r 1
2 !(n22)/2S AJ221dm

0

2
J

AJ221
aidm

i D ~no sum on i !. ~12!

Again this spacetime has no horizon and curvature singu
ity. However, it has a conical singularity atr 50. One should
note that these solutions are different from those discusse
@13#, which were electrically charged rotating black bra
solutions.

D. Angular magnetic field solutions with one boost parameter

The generalization of four-dimensional spacetime w
angular magnetic field to the case of an (n11)-dimensional
AAdS charged rotating brane with one boost parameter

ds252
r 21r 1

2

l 2 S J dt2
v
l

dzD 2

1 f ~r !S v
l

dt2J dzD 2

1
r 2 dr2

~r 21r 1
2 ! f ~r !

1~r 21r 1
2 !dV2, ~13!

where J5A11v2/ l 2, dV25( i 51
n22(df i)2, and f (r ) is the

same as before given in Eq.~9!. The coordinatesr andf i ’s
assume the values 0<r ,` and 0<f i<2p, and the gauge
potential is given by

Am5
2

~n22!

qln23

~r 21r 1
2 !(n22)/2

~adm
0 2J ldm

z !. ~14!

Using the same arguments given for the case of longitud
magnetic field solutions discussed in Sec. II B, one can sh
that this spacetime has no curvature singularity, no horizo
and no conical singularity.

E. Angular magnetic field solutions with more
boost parameters

In this section we introduce the solutions of the Einste
Maxwell equation with no rotation parameter andk boost
parameters. The maximum number of boost parameters
be n22. In this case the solution can be written as

ds252
r 21r 1

2

l 2 S J dt2 l 21(
i 51

k

v i dxi D 2

1 f ~r !S AJ221dt

2
J

lAJ221
(
i 51

k

v i dxi D 2

1
r 21r 1

2

l 4~J221!
(
i , j

k

~v i dxj

2v j dxi !
21

r 2 dr2

~r 21r 1
2 ! f ~r !

1~r 21r 1
2 !dV2, ~15!

whereJ5A11( i
kv i

2/ l 2, dV25( i 51
n2k21(df i)2, and f (r ) is

given in Eq.~9!. The gauge potential is given by
4-3
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Am5
2

~n22!

l l (n22)

~r 21r 1
2 !(n22)/2S AJ221dm

0

2
J

lAJ221
v idm

i D ~no sum on i !. ~16!

Again this spacetime has no curvature singularity, no h
zons, and no conical singularity.

III. THE CONSERVED QUANTITIES OF MAGNETIC
ROTATING BRANE

It is well known that the gravitational action given in E
~1! diverges. A systematic method of dealing with this div
gence is through the use of the counterterm method insp
by AdS/CFT correspondence. The AdS/CFT corresponde
states that, if the metric near the conformal boundaryx
→0) can be expanded in the AAdS form,

ds25
dx2

l 2x2
1

1

x2
g i j dxi dxj , ~17!

with nondegenerate metricg, then one may remove the d
vergent terms in the action by adding a counterterm ac
I ct , which is a functional of the boundary curvature inva
ants. The counterterm for asymptotically AdS spacetimes
to seven dimensions is

I ct5
1

8pE]M `

dnxA2gH n21

l
2

lQ~n23!

2~n22!
R

2
l 3Q~n25!

2~n24!~n22!2 S RabR
ab2

n

4~n21!
R2D1•••J ,

~18!

whereR, Rabcd, andRab are the Ricci scalar, Riemann, an
Ricci tensors of the boundary metricgab , andQ(x) is the
step function, which is equal to 1 forx>0 and zero other-
wise. Although other counterterms~of higher mass dimen
sion! may be added toI ct , they will make no contribution to
the evaluation of the action or Hamiltonian due to the rate
which they decrease toward infinity, and we shall not co
sider them in our analysis here. These counterterms h
been used by many authors for a wide variety of spacetim
including Schwarzschild-AdS, topological Schwarzschi
AdS, Kerr-AdS, Taub-Newman-Unti-Tamburino-AdS, Tau
bolt-AdS, and Taub-bolt-Kerr-AdS@22#.

Of course, for evenn one has logarithmic divergences
the partition function which can be related to the We
anomalies in dual conformal field theory@3#. These logarith-
mic divergences associated with the Weyl anomalies of
dual field theory forn54 andn56 are@23#

I log52
ln e

64p l 3E d4xA2g0F ~Ri j
0 !R(0)i j 2

1

3
~R0!2G ,

~19!
04402
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I log5
ln e

84p l 3E d6xA2g0H 3

50
~R0!31R(0)i j R(0)klRi jkl

0

2
1

2
R0R(0)i j Ri j

0 1
1

5
R(0)i j DiD jR

02
1

2
R(0)i j h0Ri j

0

1
1

20
R0h0R0J . ~20!

In Eqs.~19! and ~20! R0 andR(0)i j are the Ricci scalar and
Ricci tensor of the leading order metricg0 in the following
expansion:

g i j 5g i j
0 1x2g i j

2 1x4g i j
4 1•••, ~21!

andDi is the covariant derivative constructed by the lead
order metricg0. Also, one should note that the inclusion
matter fields in the gravitational action produces an ad
tional logarithmic divergence in the action for evenn. This
logarithmic divergence forn54 andn56 are@23#

I log
e.m.5

ln e

64p l E d4xAg0F (0)i j Fi j
0 , ~22!

I log
e.m.5

ln e

8p l 3E d6xA2g0H 1

16
R0F (0)i j Fi j

0

2
1

8
R(0)i j Fi

(0)lF jl
0 1

1

64
F (0)i j ~D jD

kFki
0

2DiD
kFk j

0 !J , ~23!

whereFi j
0 is the leading term of the electromagnetic field

the conformal boundary. All the contractions in Eqs.~22! and
~23! should be done by the leading order metricg i j

0 . In 4
,n,7 the matter field will cause a power law divergence
the action, which can be removed by a counterterm of
form @23#

I ct
e.m.5

1

256pE dnxA2g
~n28!

~n24!
Q~n25!Fi j Fi j . ~24!

Thus, the total action can be written as a linear combinat
of the gravity term~1! and the counterterms~18! and ~24!.
For the charged rotating and traveling magnetic branes in
tigated in this paper the countertermI ct

e.m. is zero and there-
fore the total action is

I 5I G1I ct . ~25!

Having the total action, one can use the Brown and Yo
definition @24# to construct a divergence-free stress-ene
tensor as
4-4
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Tab5
1

8p H ~Kab2Kgab!2
n21

l
gab1

l

n22 S Rab2
1

2
RgabD

1
l 3Q~n25!

~n24!~n22!2 F2
1

2
gabS RcdRcd2

n

4~n21!
R2D

2
n

~2n22!
RRab12RcdR

acbd2
n22

2~n21!
¹a¹bR

1¹2Rab2
1

2~n21!
gab¹2RG1•••J . ~26!

The above stress tensor is divergence-free forn<6, but we
can always add more counterterms to have a finite actio
higher dimensions~see, e.g.,@25#!.

The conserved charges associated with a Killing vectoja

is

Q~j!5E
B
dnxAsnaTabj

b, ~27!

wheres is the determinant of the metrics i j , appearing in
the Arnowitt-Deser-Misner-like decomposition of the boun
ary metric,

ds252N2 dt21s i j ~dxi1Ni dt!~dxj1Nj dt!. ~28!

In Eq. ~28!, N and Ni are the lapse and shift functions, r
spectively. For boundaries with timelike Killing vector (j
5]/]t), rotational Killing vector field (z i5]/]f i), and
translational Killing vector (§ i5]/]xi) one obtains the con
served mass, angular momentum, and linear momentum
the system enclosed by the boundaryB. In the context of
AdS/CFT correspondence, the limit in which the boundaryB
becomes infinite (B`) is taken, and the counterterm prescri
tion ensures that the action and conserved charges are fi
No embedding of the surfaceB into a reference spacetime
required and the quantities which are computed are intrin
to the spacetimes.

For our case, horizonless rotating spacetimes, the
Killing vector is j5]/]t and therefore its associated co
served charge is the total mass of the system enclosed b
boundary given by

M5E
B
dn21xAsTabn

ajb5
Vn21

8p
mlp21@n~J221!11#,

~29!

whereVn21 denotes the volume of the hypersurface bou
ary B at constantt and r, and p is the number of angula
coordinatesf i of the spacetime. One may note that in t
case of a spacetime with a longitudinal magnetic field,
numbers of angular coordinates and rotation parameters
the same, but for a spacetime with an angular magnetic fi
they are different.

For the case of spacetimes with a longitudinal magn
field, the charges associated with the rotational Killing sy
04402
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metries generated byz i5]/]f i are the components of tota
angular momentum of the system enclosed by the bound
given as

Ji5E
B
dn21xAsTabn

az i
b5

Vn21

8p
nJ l p21mai . ~30!

In the case of the spacetimes with an angular magn
field introduced in Sec. II E, we encounter conserved qu
tities associated with translational Killing symmetries gen
ated by§ i5]/]xi . These conserved quantities are the co
ponents of linear momentum calculated as

Pi5E
B
dn21xAsTabn

a§ i
b5

Vn21

8p
nJ l p22mv i . ~31!

Now we show that ther divergence of the total action ca
be removed by the counterterm method. We first calcu
the logarithmic divergences due to the Weyl anomaly a
matter field given in Eqs.~19!, ~20!, ~22!, and ~23!. The
leading metrichi j

0 can be obtained as

hi j
0 dxi dxj52

1

l 2
dt21dV21dX2. ~32!

Therefore the curvature scalarR0(h0) and Ricci tensor
Ri j

0 (h0) are zero. Also, it is easy to show thatFi j
0 in Eqs.~22!

and ~23! vanishes. Thus, all the logarithmic divergences
the (n11)-dimensional solutions given in Sec. II are zero.
is also a matter of calculation to show that the counterte
action due to the electromagnetic field in Eq.~24! is zero.
Using Eqs.~1!, ~18!, and ~25!, one can show that ther di-
vergence of the action will be removed.

Next, we calculate the electric charge of the solutions.
determine the electric field we should consider the proj
tions of the electromagnetic field tensor on special hypers
faces. The normal to such hypersurfaces for the spaceti
with a longitudinal magnetic field is

u05
1

N
, ur50, ui52

Ni

N
,

and the electric field isEm5gmrFrnun. Then the electric
chargeQ can be found by calculating the flux of the electr
magnetic field at infinity, yielding

Q5
Vn21

4p
AJ221l p22q. ~33!

Note that the electric charge is proportional to the rotat
parameter or boost parameter, and is zero for the case
static solution.

IV. CLOSING REMARKS

In this paper, we introduced two classes of solutions
Einstein-Maxwell gravity which are asymptotically anti–d
Sitter. The first class of solutions yields a rotating spaceti
with a longitudinal magnetic field. We found that these so
4-5
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tions have no curvature singularity and no horizons, but h
conic singularity atr 50. In these spacetimes, when all th
rotation parameters are zero~static case!, the electric field
vanishes, and therefore the brane has no net electric ch
For the spinning brane, when one or more rotation para
eters are nonzero, the brane has a net electric charge wh
proportional to the magnitude of rotation parameter given
( i

kai
2 . The second class of solutions yields a spacetime w

angular magnetic field. These solutions have no curva
singularity, no horizon, and no conic singularity. Again w
found that the branes in these spacetimes have no net ele
charge when all the boost parameters are zero. We
showed that, for the case of traveling branes with one
more nonzero boost parameters, the net electric charge o
brane is proportional to the magnitude of the velocity of t
brane (( i

kv i
2).

We also used the counterterm method inspired by
AdS/CFT correspondence conjecture and calculated the
served quantities of the two classes of solutions. We fo
that the logarithmic divergencies associated with the W
anomalies and matter field are zero, and showed that tr
divergence of the action is removed by use of the coun
term method.

APPENDIX

In this appendix, we want to show that the spaceti
described by the metric~8! is geodesically complete forr
>0 @19,26#. In fact, we want to show that every null o
timelike geodesic starting from an arbitrary point can eith
extend to infinite values of the affine parameter along
geodesic or end on a singularity atr 50. To do this, we
first perform the rotation boost (Jt2af)°t; (at
2J l 2 df)° l 2 df in the t-f plane. Then the metric~8!
becomes

ds252
r 21r 1

2

l 2
dt21

r 2

~r 21r 1
2 ! f ~r !

dr2

1 l 2f ~r !df21
r 21r 1

2

l 2
dX2. ~A1!
l-

,

04402
e

ge.
-
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y
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tric
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r

the

e
n-
d
l

r-

e

r
e

Using the geodesic equation, one obtains

ṫ5
l 2

r 21r 1
2

E, ẋi5
l 2

r 21r 1
2

Pi , ḟ5
1

l 2f ~r !
L, ~A2!

r 2ṙ 25~r 21r 1
2 ! f ~r !F l 2~E22P2!

r 21r 1
2

2aG2
r 21r 1

2

l 2
L2,

~A3!

where the overdot denotes the derivative with respect to
affine parameter anda is zero for null geodesics and11 for
timelike geodesics.E, L, andPi are the conserved quantitie
associated with the coordinatest, f, andxi respectively, and
P25( i 51

n22(Pi)2. Notice that f (r ) is always positive forr
.0 and zero forr 50.

First we consider the null geodesics (a50). ~i! If E2

.P2 the spiraling particles (L.0) coming from infinity
have a turning point atr tp.0, while the nonspiraling par-
ticles (L50) have a turning point atr tp50. ~ii ! If E5P and
L50, whatever is the value ofr, ṙ andḟ vanish, and there-
fore the null particles move in a straight line in th
(n22)-dimensional submanifold spanned byx1 to xn22.
~iii ! For E5P andLÞ0, and also forE2,P2 and any value
of L, there is no possible null geodesic.

Now, we analyze the timelike geodesics (a511). A
timelike geodesic is possible only ifl 2(E22P2).r 1

2 . In this
case spiraling (LÞ0) timelike particles are bound betwee
r tp

a and r tp
b given by

0,r tp
a <r tp

b ,Al 2~E22P2!2r 1
2 , ~A4!

while the turning points for the nonspiraling particles (L
50) arer tp

1 50 andr tp
2 5Al 2(E22P2)2r 1

2 . Thus, we have
confirmed that the spacetime described by Eq.~8! is both
null and timelike geodesically complete.
gy

.
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