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Horizonless rotating solutions in(n+1)-dimensional Einstein-Maxwell gravity
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We introduce two classes of rotating solutions of Einstein-Maxwell gravity+#1i dimensions which are
asymptotically anti—de Sitter type. They have no curvature singularity and no horizons. The first class of
solutions, which has a conic singularity, yields a spacetime with a longitudinal magnetic fieldratation
parameters. We show that when one or more of the rotation parameters are nonzero, the spinning brane has a
net electric charge that is proportional to the magnitude of the rotation parameters. The second class of
solutions yields a spacetime with an angular magnetic field armbost parameters. We find that the net
electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the
magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS conformal field
theory correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic
divergencies associated with the Weyl anomalies and matter field are zero, anditkegence of the action
can be removed by the counterterm method.
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[. INTRODUCTION tries. Asymptotically AdS black holes whose event horizons
are hypersurfaces with a positive, negative, or zero scalar
The anti—de Sitter conformal field theo@&dS/CFT) cor-  curvature were considered [ih0]. Asymptotically AdS rotat-
respondencgl], which relates the low energy limit of string ing topological black brane solutions have also been ob-
theory in asymptotically anti—de SittdAAdS) spacetime tained[11]. The AAdS rotating solution of Einstein’s equa-
and the quantum field theory living on the boundary of it,tion with cylindrical and toroidal horizons and its extension
have attracted a great deal of attention in recent years. This include the electromagnetic field were considered in Ref.
equivalence between the two formulations means that, dtl2]. The generalization of this AAdS charged rotating solu-
least in principle, one can obtain complete information ontion of the Einstein-Maxwell equation to higher dimensions
one side of the duality by performing computation on theand higher derivative gravity and investigation of its thermo-
other side. A dictionary translating between different quanti-dynamics were done if13,14]. In the context of gauged
ties in the bulk gravity theory and its counterparts on thesupergravity models, the rotating brane solution has been
boundary has emerged, including the partition functions oftonsidered by many authofsee, for exampld,15]).
both theories. An interesting application of the AAS/CFT cor- In this paper we are dealing with the issue of the space-
respondence is the interpretation of the Hawking-Page phasenes generated by spinning string/brane sources in
transition between a thermal AdS and AAdS black hole agn+1)-dimensional Einstein-Maxwell theory that are hori-
the confinement-deconfinement phases of the Yang-Millzonless and have nontrivial external solutions. These kinds
(dual gaugg theory defined on the AdS bounddr®]. This  of solutions have been investigated by many authors in four
conjecture is now a fundamental concept that furnishes dimensions. Static uncharged cylindrically symmetric solu-
means for calculating the action and conserved quantitiesons of Einstein gravity in four dimensions were considered
intrinsically without reliance on any reference spacetimein [16]. Similar static solutions in the context of cosmic
[3-5]. It has also been applied to the case of black holes witlstring theory were found if17]. All of these solutions
constant negative or zero curvature horizpfilsand rotating [16,17] are horizonless and have a conical geometry; they are
higher genus black bran¢g]. Although the AdS/CFT corre- everywhere flat except at the location of the line source. The
spondence applies for the case of a spatially infinite boundextension to include the electromagnetic field has also been
ary, it was also employed for the computation of the con-done[18,19. Some solutions of type |IB supergravity com-
served and thermodynamic quantities in the case of a finitpactified on a four-dimensional torus were considered in
boundary[8]. The counterterm method also has been ex{20], which have no curvature singularity and no conic sin-
tended to the case of asymptotically de Sitter spacetj@les gularity. Here we will generalize the four-dimensional solu-
Thus, it has become important to obtain new solutions otion found in[19] to the case of then+1)-dimensional
the Einstein gravity with a negative cosmological constantolution with all rotation and boost parameters, and use the
and apply the AdS/CFT correspondence to them. For AAdAdS/CFT correspondence to compute the conserved quanti-
spacetimes, the presence of a negative cosmological constaigs of the system.
makes it possible to have a large variety of static and station- The outline of our paper is as follows. In Sec. I, we first
ary solutions with planar, spherical, or cylindrical symme-review the field equations of Einstein-Maxwell gravity and
then introduce two classes oh+{ 1)-dimensional AAdS
horizonless charged rotating solutions with more rotation and
*Electronic address: dehghani@physics.susc.ac.ir boost parameters. In Sec. lll, we give a brief review of AdS/
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CFT correspondence, and obtain the logarithmic divergences p? a 2

associated with the Weyl anomalies and matter fields. The — ds’=—"—(Z dt-ad¢)>+ f(p)(— dt—Equ&)

electric charge and conserved quantities of the system will | !

also be computed. We finish our paper with some concluding ) )

remarks. L 2P p—dX2 5)
127

f(p)

II. (n+1)-DIMENSIONAL ROTATING SOLUTIONS

2= 1+a%|2 2_5N-204x)2 j i
OF EINSTEIN-MAXWELL GRAVITY where E=\1+a“/1°, dX°=2_;(dx")“ is the Euclidean

metric on the —2)-dimensional submanifold, arfdp) is
A. Field equations

The gravitational action for Einstein-Maxwell theory in f(p)= P_Z_I_ 8m|n_2_ 8 g2l ®)
n+1 dimensions for AAdS spacetimes is p |2 pn2 (n—=1)(n—-2) p2n—4 '
1 Ce
— n+1 oA _EuY The gauge potential is given by
s 167JMd x\Jg(R—2A~FH'F,,,)
1 2 q"? SO _ =25
A,=—F7——(as,—El<5%). (7)
— n [ — -2 Iz M
taz] amfo, ® (n=2) pn

As we will see in Sec. lllmandq in Egs.(5)—(7) are the
whereF ,,=d,A,—d,A, is the electromagnetic tensor field mass and charge parameters of the metric, which are related
andA,, is the vector potential. The first term is the Einstein-to the mass and charge densities of the brane.

Hilbert volume term with negative cosmological constant In order to study the general structure of this solution, we
A=-n(n—1)/2? and the second term is the Gibbons- first look for curvature singularities. It is easy to show that
Hawking boundary term, which is chosen such that the variathe Kretschmann scald,,,, ,R*"** diverges atp=0 and
tional principle is well defined. The manifoldt has metric  therefore one might think that there is a curvature singularity
g, and covariant derivativ¥, . K is the trace of the extrin- located atp=0. However, as will be seen below, the space-
sic curvatureK*” of any boundargies) 9 M of the manifold  time will never achievep=0. Now we look for existence of
M, with induced metris) ; ;. horizons, and therefore we look for possible black brane so-
Varying the action over the metric tensgy, and electro-  lutions. One should conclude that there are no horizons and
magnetic fieldF the equations of gravitational and elec- therefore no black brane solutions. The horizons, if any exist,

uv
tromagnetic fields are obtained as are given by the zeros of the functierp)zg;pl. Let us
denote the zeros df(p) by r, . The functionf(p) is nega-
1 n(n—1) tive for p<r, and positive forp>r,, and therefore one
Ruv_igwR_TngTuw (20  may think that the hypersurface of constant time agnd

=r, is the horizon. However, this analysis is not correct.
Inde?d, one may note thg},, andg,, are related byf(p)
V,F,,=0, 3) =0, =| zgw, and therefore wheg,,, bec_omes negative
(which occurs forp<r.) so doesg,,. This leads to an
apparent change of signature of the metric fram-(L)+ to
(n—2)+, and therefore indicates that we are using an incor-

rect extension. To get rid of this incorrect extension, we in-

whereT} " is the electromagnetic stress tensor

TZ‘T:ZF)\;LFAV_ LFLFM,,. (4) troduce the new radial coordinateas
r2
Now we want to obtain spacetimes generated by brane r2:p2—ri:>dp2: 2 dr2.
sources inn+1 dimensions which satisfy the above field re+riy

equations. Some solutions were obtained 2d]. We will
introduce two new classes of horizonless solutions to EqgWVith this new coordinate, the metri§) is
(2)—(4), which are a generalization of those given by Dias

and Lemog19]. 42 r2+r2

a 2
(2 dt—ad¢)2+f(r)<|—dt—Eld¢>

|2

B. Longitudinal magnetic field solutions with one
- 2 24,2
rotation parameter r re+re

dr2+ 2 dx?, 8

+
It is a matter of calculation to show that the generalization (r’+ ri)f(r)
of the four-dimensional solution given by Dias and Lemos
[19] in n+ 1 dimensions with one rotation parameter can bewhere the coordinatesand ¢ assume the values<Or <o
written as and 0< ¢<2, andf(r) is now given as
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r2+r2 8mi"~2 2 gl"=? e
NE AL M=n=2) (7412 D2 1o
8 q2|2n—4 E )
— —_—— . | i
n=D)(n=2) (r2+ri)”‘2' (9 ma,ﬁﬂ (no sumoni). (12

Again this spacetime has no horizon and curvature singular-
ity. However, it has a conical singularity e 0. One should
note that these solutions are different from those discussed in
2 gl [13], which were electrically charged rotating black brane

= 0_=|25% .
A= h—2) (r2+r§r)(n—2)/2(a5,u El°5;). (100  solutions.

The gauge potential in the new coordinate is

D. Angular magnetic field solutions with one boost parameter
The functionf(r) given in Eq.(9) is positive in the whole

spacetime and is zero at=0. Also note that the angular magnetic field to the case of ant(1)-dimensional

Kretschmann scalar d-oes not diverge in the rfp’mgeﬁ.o_o' éAdS charged rotating brane with one boost parameter is
Therefore this spacetime has no curvature singularities an

The generalization of four-dimensional spacetime with

no horizons. However, it has a conic geometry and has a r24r2 v 2 2
conical singularity at =0, since ds?=— 5 = dt— I—dz) +f(r)( dt—2= dz)
I
/04y Nh  40° (I)Z”‘3 r2dr?
I|m =t —| = #1. —————— (1?4712 2
"M NG, 2 "n-1lh +(r2+ri)f(r)+(r +r4)dQ, (13

That is, as the radius tends to zero, the limit of the ratio WhereE=1+v?/1?, d0?== £(d¢)?, andf(r) is the
“circumference/radius” is not & and therefore the space- Same as before given in E(). The coordinates and ¢''s
time has a conical singularity at=0. Of course, one may assume the values<r <o and 0<¢'=2m, and the gauge
ask for the completeness of the spacetime with0 (or p  Potential is given by

=r,). It is easy to see that the spacetime described by Eq.

(8) is both null and timelike geodesically complgsee the A — 2 qi"? (a— =1 &) (14)
Appendix for more detajl T (n—2) (r2+r )(n=2)122 55 =1 Cul-
C. Longitudinal magnetic field solutions with more Using the same arguments given for the case of longitudinal
rotation parameters magnetic field solutions discussed in Sec. Il B, one can show

) ) ) ) ) that this spacetime has no curvature singularity, no horizons,
The rotation group inn+1 dimensions isSO(n) and and no conical singularity.

therefore the number of independent rotation parameters is
[(n+1)/2], where[x] is the integer part ok. We now gen-
eralize the above solution given in E¢) with k<[(n
+1)/2] rotation parameters. This generalized solution can be

E. Angular magnetic field solutions with more
boost parameters

written as In this section we introduce the solutions of the Einstein-
. ) Maxwell equation with no rotation parameter ardboost
re+re parameters. The maximum number of boost parameters can
= =Zdt— . =2_ . . .
ds’=— 2 Edt ;1 ad¢ +f(r) VES-1dt ben—2. In this case the solution can be written as
= k& 2 242 r2+ré - .
__~ > aidrz')i) - ds?=— Edt—l‘12 v dx' | +f(r)| VE2—1dt
JEZ-1i=1 (r2+r2)f(r) =t
pu— K 2 2 2 K
2. .2 12412 =} re<+r
re+rs +r+ = Ay + dx.
TEEn & 2 (3 dy =y dg) "+ —7— X AN e &
11 r2dr?
1y —v; dx)?+ —————+(r?+r%)dQ?, (15)

(r2+r3)f(r)
whereE = \[1+=FaZ/12, dX? is the Euclidean metric on the
(n—k—1)-dimensional submanifold arfqr) is the same as whereE = 1+ = 2/12, dQ?=3""/"1(d¢)?, andf(r) is
f(r) given in Eq.(9). The gauge potential is given in Eq.(9). The gauge potential is given by
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A 2 A(n=2) EEIS - Ine f 4 3 RO)3 4 RO)il ROKIRD
#(n-2) (r24r%)n-272 - # 9 gag|3 woy %( ) kI
_ = 5 ; 16 - }ROR(O)H RY +}R(0)ij D.D:R°— ER(O)H 0°RY
|\/:2——1vi " (nosumoni). (16) 2 iiTg it 2 ij
1
Again this spacetime has no curvature singularity, no hori- + %RODORO]. (20)
zons, and no conical singularity.
lll. THE CONSERVED QUANTITIES OF MAGNETIC In Egs.(19) and(20) R® andR(®' are the Ricci scalar and
ROTATING BRANE Ricci tensor of the leading order metri® in the following
expansion:
It is well known that the gravitational action given in Eq.
(1) diverges. A systematic method of dealing with this diver- = 7i(} +x2yﬁ +X47i41 T (21)

gence is through the use of the counterterm method inspired
by AdS/CFT correspondence. The AdS/CFT correspondence ) ] o ]
states that, if the metric near the conformal boundacry ( @dD; is the covariant derivative constructed by the leading

—0) can be expanded in the AAdS form, order metricy®. Also, one should note that the inclusion of
matter fields in the gravitational action produces an addi-
d 1 o tional logarithmic divergence in the action for evenThis
d2=——+ =y, dx dx, (17 logarithmic divergence fon=4 andn=6 are[23]
12x2  x2 "
with nondegenerate metrig, then one may remove the di- em— In e j dAXWF(O)”F? ' (22)
vergent terms in the action by adding a counterterm action 9 64l .

I, Which is a functional of the boundary curvature invari-
ants. The counterterm for asymptotically AdS spacetimes up

Ine 1 -
to seven dimensions is ||%g‘-: 3f dbx—9° 1_6R0|:(0)|J|:i(}

8l

1 ——|/n=1 10(n-3) 1 1

& 8w ade X 7[ [ 2(n—2) R _gR(O)IJFi(O)IFJ()I+aF(O)lj(DjDkFEi
1°®(n—5) (
— ——————— | RypR*"- RZ|+--- ¢, —D;D*FP) T, (23)
2(n—4)(n—-2)21 " 4(n-1) DFi

(18 whereFﬂ is the leading term of the electromagnetic field on
whereR, R,,.4, andR,;, are the Ricci scalar, Riemann, and the conformal boundary. All the contractions in E(®2) and
Ricci tensors of the boundary metrig,,, and®(x) is the (23 should be done by the leading order metyif:. In 4
step function, which is equal to 1 for=0 and zero other- <n<7 the matter field will cause a power law divergence in
wise. Although other counterterrisf higher mass dimen- the action, which can be removed by a counterterm of the
sion) may be added tby, they will make no contribution to  form [23]
the evaluation of the action or Hamiltonian due to the rate at
which they decrease toward infinity, and we shall not con- 1 (n—8) -
sider them in our analysis here. These counterterms have |§{m'=EJ d”X\/;—(@(n—S)F”Fij- (24)

. ) . (n—4)
been used by many authors for a wide variety of spacetimes,
including Schwarzschild-AdS, topological Schwarzschild-
AdS, Kerr-AdS, Taub-Newman-Unti-Tamburino-AdS, Taub- Thus, the total action can be written as a linear combination
bolt-AdS, and Taub-bolt-Kerr-Ad§22]. of the gravity term(1) and the counterterm@8) and (24).

Of course, for evem one has logarithmic divergences in For the charged rotating and traveling magnetic branes inves-
the partition function which can be related to the Weyltigated in this paper the counterted@™ is zero and there-
anomalies in dual conformal field thedi§]. These logarith- ~ fore the total action is
mic divergences associated with the Weyl anomalies of the
dual field theory fom=4 andn=6 are[23] I=1g+lg. (25)

Ine
64173

(RQ)R(O)ii_E(RO)Z , Having the total action, one can use the Brown and York
. 3 definition [24] to construct a divergence-free stress-energy
(19 tensor as

f d*x\—»°

I log™—
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metries generated b§=d/d¢' are the components of total

ab:i ab__ ab _n_l ab l ab_l ab
T . (K Ky2?) R4 + — R 5 Ry angular momentum of the system enclosed by the boundary

given as
1°®(n—5) { 1 ( n ) V
ab| pcd 2 _ n—1 _
—— |-z R°Reg— ——<R = n-1 asb_ "2 =P Ima
(n—)(n_22 2 4 4~ Z(n=1) J; de X\ T gpn?s! g NEIP'ma. (30
. n RREO+ 2R RACDI_ n-2 vVaybR In the case of the spacetimes with an angular magnetic
(2n—2) cd 2(n—1) field introduced in Sec. Il E, we encounter conserved quan-
tities associated with translational Killing symmetries gener-
2pab_ abo 2 o ated bys;=d/dx'. These conserved quantities are the com-
VR 2(n—1) YUVIR|H } (26) ponents of linear momentum calculated as
The above stress tensor is divergence-freenfai6, but we pi:f dn—1x J}Tabnagib:\ﬁngm—zmvi . (3D
can always add more counterterms to have a finite action in B 8

higher dimensiongsee, e.g.[25]).

The conserved charges associated with a Killing vegtor Now we show that the divergence of the total action can

be removed by the counterterm method. We first calculate

S the logarithmic divergences due to the Weyl anomaly and
matter field given in Eqs(19), (20), (22), and (23). The
Q(é)= de”X\/;naTabSb, (27 leading metrich} can be obtained as
whereo is the determinant of the metrig;; , appearing in hij dx' dxl = — —dt?+dQ%+dX% (32
the Arnowitt-Deser-Misner-like decomposition of the bound- |
ary metric,

Therefore the curvature scald&®(h®) and Ricci tensor

ds= — N2 d?+ o (dX + N dt)(dx+ N db).  (28) R{(h?) are zero. Also, it is easy to show tha‘ﬂ in Eqgs.(22)

and (23) vanishes. Thus, all the logarithmic divergences for

In Eq. (28), N andN' are the lapse and shift functions, re- f[he (n+1)-dimensional squ_tions given in Sec. Il are zero. It
spectively. For boundaries with timelike Killing vectog (1S a}lso a matter of calculation to.sh_ow t_hat the counterterm
=dl/at), rotational Killing vector field (i=&/a¢i), and act_lon due to the electromagnetic field in Eg4) is zero.
translational Killing vector & =a/dx') one obtains the con- USing Egs.(1), (18), and(25), one can show that thedi-
served mass, angular momentum, and linear momentum &rgence of the action will be removed. ,
the system enclosed by the bounddy In the context of Nex;, we calculatg thg electric charge of the solut|ons._ To
AdS/CFT correspondence, the limit in which the boundary Qetermlne the electric f|elq we should conS|der_ the projec-
becomes infinite 8..) is taken, and the counterterm prescrip- tions of the electromagnetic field tensor on special hypersur-

tion ensures that the action and conserved charges are finilfécﬁs' IThe_n%r_mall to such h})c(pﬁjrs_urfaces for the spacetimes
No embedding of the surfadginto a reference spacetime is With @ longitudinal magnetic field is

required and the quantities which are computed are intrinsic 1 N
to the spacetimes. uwW=—, u=0 u=-—,
For our case, horizonless rotating spacetimes, the first N N

Killing vector is £&=d/dt and therefore its associated con-

: d the electric field is€“=g*’F,,u”. Then the electric
Eihvrfga(r:;] Zri?/irlst;; @ total mass of the system enclosed by t@ﬁargeQ can be found by calculating the flux of the electro-

magnetic field at infinity, yielding

Vi
_ n-1 agh_ ‘N7l ip-ir o2 V-1 = .
M de X\oTapn*¢"=—2—mlP{[n(5%-1)+1], 0= “Tr JEZ=11P2, (33)

4
(29

Note that the electric charge is proportional to the rotation
whereV,_, denotes the volume of the hypersurface boundparameter or boost parameter, and is zero for the case of a
ary B at constant andr, andp is the number of angular static solution.

coordinates®' of the spacetime. One may note that in the

case of a spacetime with a longitudinal magnet|c field, the IV. CLOSING REMARKS

numbers of angular coordinates and rotation parameters are

the same, but for a spacetime with an angular magnetic field, In this paper, we introduced two classes of solutions of

they are different. Einstein-Maxwell gravity which are asymptotically anti—de
For the case of spacetimes with a longitudinal magnetiSitter. The first class of solutions yields a rotating spacetime

field, the charges associated with the rotational Killing sym-with a longitudinal magnetic field. We found that these solu-
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tions have no curvature singularity and no horizons, but havéJsing the geodesic equation, one obtains
conic singularity ar =0. In these spacetimes, when all the
rotation parameters are ze(static casg the electric field
vanishes, and therefore the brane has no net electric charge. o
For the spinning brane, when one or more rotation param- = 5332 E X=5—5P, ¢=——L, (A2
. C re+re re+re [1“f(r)
eters are nonzero, the brane has a net electric charge which is
proportional to the magnitude of rotation parameter given by
>ka?. The second class of solutions yields a spacetime with 0 2 o 5, 2
angular magnetic field. These solutions have no curvature  .2:.2_, .2, 2 1“(E"—P9) _ 1_r e
. . . S ; : rere=(re+r)f(r) L4,
singularity, no horizon, and no conic singularity. Again we r2+ri |2
found that the branes in these spacetimes have no net electric (A3)
charge when all the boost parameters are zero. We also
showed that, for the case of traveling branes with one or
more nonzero boost parameters, the net electric charge of thghere the overdot denotes the derivative with respect to an
brane is proportional to the magnitude of the velocity of theaffine parameter ana is zero for null geodesics and1 for
brane Efv?). timelike geodesicsE, L, andP' are the conserved quantities
We also used the counterterm method inspired by th@ssociated with the coordinatgsp, andx' respectively, and
AdS/CFT correspondence conjecture and calculated the COIﬁ’—2=EP;12(P')2. Notice thatf(r) is always positive for
served quantities of the two classes of solutions. We found>0 and zero for =0.
that the logarithmic divergencies associated with the Weyl First we consider the null geodesica£0). (i) If E?
anomalies and matter field are zero, and showed that the>P? the spiraling particles L(>0) coming from infinity
divergence of the action is removed by use of the counterhave a turning point at;,>0, while the nonspiraling par-
term method. ticles (L=0) have a turning point at,=0. (i) If E=P and
L=0, whatever is the value of r and ¢ vanish, and there-
APPENDIX fore the null particles move in a straight line in the

: . . (n—2)-dimensional submanifold spanned By to x" 2.

In this appendix, we want to show that the spacetime... B 5
described by the metri¢8) is geodesically complete far (||f|)LF(;]rE—_P andL#Qt,)land ﬁlso ng .<P and any value
=0 [19,26. In fact, we want to show that every null or of L, there Is no possible null geodesic.
timelike geodesic starting from an arbitrary point can either Now, we analyze the timelike 9620d62'0&35+1)' A
extend to infinite values of the affine parameter along thé'me“ke _gec_)desm IS pc_)ssm_)le onIyI_ﬁ(E —P9)>ry . Inthis
geodesic or end on a singularity 0. To do this, we c?se splgahrjg I(#+0) timelike particles are bound between
first perform the rotation boost Ht—ag)—t; (at  tp @ndry given by
—EI?2d¢)—1?d¢ in the t-¢ plane. Then the metri¢8)

becomes
0<ri=<rp<\I*E2-P?)—r7%, (A4)

2 2 2

12 |2

re+r
4=~ dttr———dr?
12 (r2+ri)f(r) while the turning points for the nonspiraling particlels (
(242 =0).arert1p=0 andrtzp=\/I?(E2—P2)fr2+. Thus, we have
+12f(r)d b2+ " dX2. (A1) conﬂrmeq thqt the spac_etlme described by Ej.is both
12 null and timelike geodesically complete.
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