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Area spectrum of extremal Reissner-Nordstro¨m black holes from quasinormal modes

M. R. Setare*
Physics Department, Institute for Studies in Theoretical Physics and Mathematics (IPM), P. O. Box 19395-5531, Tehran, Ira

~Received 29 September 2003; published 23 February 2004!

Using the quasinormal mode frequency of extremal Reissner-Nordstro¨m black holes, we obtain the area
spectrum for these types of black holes. We show that the area and entropy black hole horizon are equally
spaced. Our results for the spacing of the area spectrum differ from that for Schwarzschild black holes.

DOI: 10.1103/PhysRevD.69.044016 PACS number~s!: 04.70.Dy
o
nc

as
c,
ns

ot
or

b

en

c

o
av

re
e
m
pe
th
tu
b

ed
n

po
en
c
ll
en

fi

re

ge

py

the
s of
ole
the
ese

the
ntum
an

the
se.

for
s-

the
ide:

-
es

tant
its
I. INTRODUCTION

The quantization of the black hole horizon area is one
the most interesting manifestations of quantum gravity. Si
its first prediction by Bekenstein in 1974@1#, there has been
much work on this topic@2–16#. Recently, the quantization
of the black hole area has been considered@5,6# as a result of
the absorption of a quasinormal-mode excitation. The qu
normal modes~QNMs! of black holes are the characteristi
ringing frequencies which result from their perturbatio
@17# and provide a unique signature of these objects@18#,
that might be observed in gravitational waves. In asympt
cally flat spacetimes the idea of QNMs started with the w
of Regge and Wheeler@19# where the stability of a black
hole was tested, and they were first numerically computed
Chandrasekhar and Detweiler several years later@20#. The
quasinormal modes now attract a lot of interest in differ
contexts: in AdS conformal field theory correspondence@21–
31#, when considering thermodynamic properties of bla
holes in loop quantum gravity@6–8#, and in the context of
the possible connection with critical collapse@21,32,33#.

Bekenstein’s idea for quantizing a black hole is based
the fact that its horizon area, in the nonextreme case, beh
as a classical adiabatic invariant@1,4#. In the spirit of the
Ehrenfest principle, any classical adiabatic invariant cor
sponds to a quantum entity with a discrete spectrum; Bek
stein conjectured that the horizon area of a nonextre
quantum black hole should have a discrete eigenvalue s
trum. Moreover, the possibility of a connection between
quasinormal frequencies of black holes and the quan
properties of the entropy spectrum was first observed
Bekenstein@34#, and further developed by Hod@5#. In par-
ticular, Hod proposed that the real part of the quasinorm
frequencies, in the infinite damping limit, might be relat
via the correspondence principle to the fundamental qua
of mass and angular momentum. The proposed corres
dence between quasinormal frequencies and the fundam
quantum of mass automatically leads to an equally spa
area spectrum. Remarkably, the spacing was such as to a
a statistical mechanical interpretation for the resulting eig
values for the Bekenstein-Hawking entropy. Dreyer@6# also
used the large damping quasinormal mode frequency to
the value of the Immirzi parameterg in loop quantum grav-
ity. He found that loop quantum gravity gives a correct p
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diction for the Bekenstein-Hawking entropy if the gau
group is SO~3! and not SU~2!.

In this article our aim is to obtain the area and entro
spectrum of extremal Reissner-Nordstro¨m ~RN! black holes
in four-dimensional spacetime. Using the results of@35,36#
for highly damped quasinormal modes, we show how
horizon area and entropy would be quantized. The author
@36# noted that the variation of the mass of a RN black h
is not enough to determine the variation of its area, since
corresponding variation of the charge must be known. Th
authors, then, assumed the same area quantum as in
Schwarzschild case and deduced the corresponding qua
of charge emission. It would seem that in the case of
extremal RN black hole this issue does not arise, sinceM and
Q are equal. We show that the results for the spacing of
area spectrum differ from the Schwarzschild black hole ca
Conversely, if we assume thatDA is indeed universal@36#
and thus remains as in the Schwarzschild case,DA
54\ ln 3, then the real part of the quasinormal frequency
an extremal RN black hole is different from the Schwarz
child black hole case.

II. EXTREMAL REISSNER-NORDSTRÖ M BLACK HOLES

The RN black hole’s~event and inner! horizons are given
in terms of the black hole parameters by

r 65M6AM22Q2, ~1!

whereM andQ are, respectively, the mass and charge of
black hole. In the extreme case these two horizons coinc

r 65M , M5Q. ~2!

Accordingly, a very interesting conclusion follows@35# ~see
also the more recent paper@36#!: the real part of the quasi
normal frequency for extremal RN black holes coincid
with the Schwarzschild value

vR
RN5

ln 3

4pRH
, ~3!

where

RH52M . ~4!

We assume that this classical frequency plays an impor
role in the dynamics of the black hole and is relevant to
©2004 The American Physical Society16-1
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quantum properties@5,6#. In particular, we considervR
RN to

be a fundamental vibrational frequency for a black hole
energyE5M . Given a system with energyE and vibrational
frequencyv one can show that the quantity

I 5E dE

v~E!
~5!

is an adiabatic invariant@7#, which via Bohr-Sommerfeld
quantization has an equally spaced spectrum in the semi
sical ~largen) limit:

I'n\. ~6!

Now by takingvR
RN in this context, we have

I 5E dE

vR
RN

5E 4pRH

ln 3
dM5

4p

ln 3E 2MdM5
4p

ln 3
M21c,

~7!

where c is a constant. On the other hand, the black h
horizon area is given by

A54pr 1
2 , ~8!

which, using Eq.~2!, in the extremal case is as follows:

A54pM2. ~9!

The Boher-Sommerfeld quantization law and Eq.~7! then
imply that the area spectrum is equally spaced,

An5n\ ln 3. ~10!

We can obtain the above result by another method. From
~9! we get

DA58pMDM58pM\vR
RN , ~11!

where we have associated the energy spacing with a
quency throughDM5DE5\vR

RN . Now using Eqs.~3!,~4!
we have

DA5\ ln 3; ~12!

therefore the extremal RN black hole has the discrete s
trum

An5n\ ln 3, ~13!

which is exactly the result of Eq.~10!. Using the definition of
the Bekenstein-Hawking entropy we have

S5
An

4\
5

n ln 3

4
. ~14!

The above results for the area spectrum and entropy
contradicted by results of Andersson and Howls@36# for ex-
tremal RN black holes. Andersson and Howls assumed
DA is universal and thus remains as in the Schwarzsc
case,DA54\ ln 3.
04401
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Now if we assume thatDA is indeed universal@36# and
thus remains as in the Schwarzschild case,DA54\ ln 3,
then the real part of the quasinormal frequency for an
tremal RN black hole is

vR
RN5

ln 3

pRH
. ~15!

In this case we have

I 5E dE

vR
RN

5E pRH

ln 3
dM5

p

ln 3E 2MdM5
p

ln 3
M21c;

~16!

Now Eqs. ~5!,~8!,~9!,~16! imply that the area spectrum i
equally spaced as follows:

An54n\ ln 3. ~17!

III. CONCLUSION

Bekenestein’s idea for quantizing a black hole is based
the fact that its horizon area, in the nonextremal case,
haves as a classical adiabatic invariant. It is interesting
investigate how extremal black holes would be quantiz
Discrete spectra arise in quantum mechanics in the pres
of a periodicity in the classical system, which in turn leads
the existence of an adiabatic invariant or action variab
Boher-Somerfeld quantization implies that this adiabatic
variant has an equally spaced spectrum in the semiclas
limit. In this article we have considered the extremal R
black hole in four-dimensional spacetime. Using the resu
for highly damped quasinormal modes, we obtained the a
and entropy spectrum of the event horizon. Here we acc
the proposed correspondence between the quasinormal m
frequencies and a transition energyDM and find that the
quantum area should beDA5\ ln 3. Although the real parts
of highly damped quasinormal modes for Schwarzschild a
extremal RN black holes are equal@36#, vR5(ln 3)/8pM , as
one can see, for example, in@7,16,36#, DA54\ ln 3 for a
Schwarzschild black hole. Therefore, in contrast with t
claim of @36#, DA is not universal for all black holes. Abdall
et al. @10# have also shown that the results for the spacing
the area spectrum for near extreme Kerr and near extr
Schwarzschild–de Sitter black holes differ from those
Schwarzschild as well as nonextreme Kerr black holes.
though this difference for the problem under consideration
@10#, as the authors mentioned, may be justified due to
quite different nature of the asymptotic quasinormal mo
spectrum of the near extreme black hole, in our problem
real parts of the highly damped quasinormal modes
Schwarzschild and extremal RN black holes are equal.
cording to Eq.~2! the location of the horizon for an extrem
RN black hole is atr 5M , but the Schwarzschild black hol
horizon is located atr 52M ; therefore the factor of 4 in the
quantum area of a Schwarzschild black hole,DA54\ ln 3,
comes from the factor of 2 inr 52M .

On the other hand, if we assume thatDA is indeed uni-
versal @36# and thus remains as in the Schwarzschild ca
DA54\ ln 3, then the real part of the quasinormal frequen
for an extremal RN black hole isvR

RN5(ln 3)/pRH , which is
different from the Schwarzschild black hole case.
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