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Area spectrum of extremal Reissner-Nordstran black holes from quasinormal modes
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Using the guasinormal mode frequency of extremal Reissner-Nonddttack holes, we obtain the area
spectrum for these types of black holes. We show that the area and entropy black hole horizon are equally
spaced. Our results for the spacing of the area spectrum differ from that for Schwarzschild black holes.

DOI: 10.1103/PhysRevD.69.044016 PACS nunifer04.70.Dy

[. INTRODUCTION diction for the Bekenstein-Hawking entropy if the gauge
group is S@3) and not SW2).

The quantization of the black hole horizon area is one of In this article our aim is to obtain the area and entropy
the most interesting manifestations of quantum gravity. Sincépectrum of extremal Reissner-NordstréRN) black holes
its first prediction by Bekenstein in 1974], there has been in four-dimensional spacetime. Using the resultq 28,36
much work on this topi¢2—16]. Recently, the quantization for highly damped quasinormal modes, we show how the
of the black hole area has been considéfe] as a result of horizon area and entropy would be quantized. The authors of
the absorption of a quasinormal-mode excitation. The quasi{-36] noted that the variation of the mass of a RN black hole
normal modegQNMs) of black holes are the characteristic, iS not enough to determine the variation of its area, since the
ringing frequencies which result from their perturbationscorresponding variation of the charge must be known. These
[17] and provide a unique signature of these objg¢d®], authors, then, assumed the same area quantum as in the
that might be observed in gravitational waves. In asymptoti-Schwarzschild case and deduced the corresponding quantum
cally flat spacetimes the idea of QNMs started with the workof charge emission. It would seem that in the case of an
of Regge and Wheeldrl9] where the stability of a black extremal RN black hole this issue does not arise, sM@nd
hole was tested, and they were first numerically computed b are equal. We show that the results for the spacing of the
Chandrasekhar and Detweiler several years |[f26t. The area spectrum differ from the Schwarzschild black hole case.
quasinormal modes now attract a lot of interest in differentConversely, if we assume thatA is indeed universa|36]
contexts: in AdS conformal field theory correspondefz®e- and thus remains as in the Schwarzschild caddy
31], when considering thermodynamic properties of black=4#% In 3, then the real part of the quasinormal frequency for
holes in loop quantum gravit}g—8|, and in the context of an extremal RN black hole is different from the Schwarzs-
the possible connection with critical collapfsl,32,33. child black hole case.

Bekenstein’s idea for quantizing a black hole is based on
the fact that its horizon area, in the nonextreme case, behaves EXTREMAL REISSNER-NORDSTRO M BLACK HOLES
as a classical adiabatic invariaft,4]. In the spirit of the ) ) )
Ehrenfest principle, any classical adiabatic invariant corre- The RN black hole’sevent and inngrhorizons are given
sponds to a quantum entity with a discrete spectrum; Bekerl terms of the black hole parameters by
stein conjectured that the horizon area of a nonextremal _ —
guantum black hole should have a discrete eigenvalue spec- re=M=yM*-Q%
trum. Moreover, the possibility of a connection between the
guasinormal frequencies of black holes and the quantu
properties of the entropy spectrum was first observed b
Bekenstein 34], and further developed by Hdd&]. In par- r.=M, M=0Q. @)
ticular, Hod proposed that the real part of the quasinormal - ’
frequencies, in the infinite damping limit, might be related accordingly, a very interesting conclusion follof85] (see
via the correspondence principle to the fundamental quantgiso the more recent papk86]): the real part of the quasi-

of mass and angular momentum. The proposed correspoRprmal frequency for extremal RN black holes coincides
dence between quasinormal frequencies and the fundamenigih the Schwarzschild value

guantum of mass automatically leads to an equally spaced

area spectrum. Remarkably, the spacing was such as to allow ey N3

a statistical mechanical interpretation for the resulting eigen- “R T 4aR.’ (©)
values for the Bekenstein-Hawking entropy. Drej@f also H

used the large damping quasinormal mode frequency to fiynere

the value of the Immirzi parameterin loop quantum grav-

ity. He found that loop quantum gravity gives a correct pre- Ry=2M. (4)

@

hereM andQ are, respectively, the mass and charge of the
lack hole. In the extreme case these two horizons coincide:

We assume that this classical frequency plays an important
*Email address: rezakord@ipm.ir role in the dynamics of the black hole and is relevant to its
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quantum propertief5,6]. In particular, we consideni" to Now if we assume thaAA is indeed universdl36] and
be a fundamental vibrational frequency for a black hole ofthus remains as in the Schwarzschild casé=4# In3,
energyE=M. Given a system with enerdy and vibrational ~ then the real part of the quasinormal frequency for an ex-

frequencyw one can show that the quantity tremal RN black hole is
In3
dE wRN= (15
= JR— R .
|5 ® R

. . o . . . In this case we have
is an adiabatic invarianf7], which via Bohr-Sommerfeld

guantization has an equally spaced spectrum in the semiclas- dE 7Ry T
sical (largen) limit: I—f w—sN—jm M= InSJ 2MdM= ﬁM +c;
|~nt. () (16

Now Egs. (5),(8),(9),(16) imply that the area spectrum is

Now by takingwg " in this context, we have equally spaced as follows:

dE 47Ry 47 47 A,=4n# In 3. (17
I=f ﬂ:f dM= fZMdM——M +c,
wR In3 In3 In3
IlI. CONCLUSION

(7)
Bekenestein’s idea for quanuzmg a black hole is based on
where c is a constant. On the other hand, the black holehe fact that its horizon area, in the nonextremal case, be-

horizon area is given by haves as a classical adiabatic invariant. It is interesting to
5 investigate how extremal black holes would be quantized.

A=4mry, (8)  Discrete spectra arise in quantum mechanics in the presence
. ) . ) of a periodicity in the classical system, which in turn leads to
which, using Eq(2), in the extremal case is as follows:  the existence of an adiabatic invariant or action variable.
5 Boher-Somerfeld quantization implies that this adiabatic in-

A=4mM*. (9 variant has an equally spaced spectrum in the semiclassical

L limit. In this article we have considered the extremal RN
The Boher-Sommerfeld quantization law and @) then 53¢k hole in four-dimensional spacetime. Using the results
imply that the area spectrum is equally spaced, for highly damped quasinormal modes, we obtained the area
—nh ] 1 and entropy spectrum of the event horizon. Here we accept
An=nfiIn 3. (10 the proposed correspondence between the quasinormal mode
We can obtain the above result by another method. From E%Sgrﬁl?ﬁlz‘:‘egnsdh c?ult gagsjffg Iin:f r%m 032]?1 ILnedrég?tpg;?s
(9) we get of highly damped quasinormal modes for Schwarzschild and
extremal RN black holes are equi@b], wg=(In 3)/87M, as
one can see, for example, [7,16,39, AA=4#41In3 for a
Schwarzschild black hole. Therefore, in contrast with the
where Wﬁ hav&assclcgteg thﬁ el\rllergy spac:zng \g”th4a frés claim of[36], AA is not universal for all black holes. Abdalla
quency throug wg - Now using Eqs(3),(4) ¢t 41 [10] have also shown that the results for the spacing of
we have the area spectrum for near extreme Kerr and near extreme
AA=%In3: 12 Schwarzschild—de Sitter black holes differ from those for
—hins, (12) Schwarzschild as well as nonextreme Kerr black holes. Al-
; hough this difference for the problem under consideration in
:?L(Ier:}efore the extremal RN black hole has the discrete spe%lql as the authors mentioned, may t?e justif_ied due to the
quite different nature of the asymptotic quasinormal mode
A,=n#In3, (13)  spectrum of the near extreme black hole, in our problem the
real parts of the highly damped quasinormal modes for

which is exactly the result of Eq10). Using the definition of ~Schwarzschild and extremal RN black holes are equal. Ac-

AA=87MAM=87MfiwkN, (11)

the Bekenstein-Hawking entropy we have cording to Eq.(2) the location of the horizon for an extreme
RN black hole is at =M, but the Schwarzschild black hole
s A, ~n In3 (14) horizon is located at=2M; therefore the factor of 4 in the

quantum area of a Schwarzschild black hal&y =47 In 3,
comes from the factor of 2 in=2M.

The above results for the area spectrum and entropy are On the other hand, if we assume thA is indeed uni-
contradicted by results of Andersson and Hol@6] for ex-  versal[36] and thus remains as in the Schwarzschild case,
tremal RN black holes. Andersson and Howls assumed thatA=4# In 3, then the real part of the quasinormal frequency
AA is universal and thus remains as in the Schwarzschildor an extremal RN black hole bg’\':(ln 3)/7Ry, which is
case, AA=4#1n 3. different from the Schwarzschild black hole case.
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