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Rotating black hole orbit functionals in the frequency domain
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In many astrophysical problems, it is important to understand the behavior of functions that come from
rotating~Kerr! black hole orbits. It can be particularly useful to work with the frequency domain representation
of those functions, in order to bring out their harmonic dependence upon the fundamental orbital frequencies
of Kerr black holes. Although, as has recently been shown by Schmidt, such a frequency domain representation
must exist, the coupled nature of a black hole orbit’sr and u motions makes it difficult to construct such a
representation in practice. Combining Schmidt’s description with a clever choice of timelike coordinate sug-
gested by Mino, we have developed a simple procedure that sidesteps this difficulty. One first Fourier expands
all quantities using Mino’s time parameterl. In particular, the observer’s timet is decomposed withl. The
frequency domain description is then built from thel-Fourier expansion and the expansion oft. We have found
this procedure to be quite simple to implement, and to be applicable to a wide class of functionals. We test the
procedure using a simple test function, and then apply it to a particularly interesting case, the Weyl curvature
scalarc4 used in black hole perturbation theory.
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I. INTRODUCTION

The black holes which appear to exist in a wide range
masses throughout the Universe~see, e.g. Refs.@1–8#! are
most likely described by the Kerr solution of general relat
ity. The charged generalization is unlikely to be interesti
as macroscopic charged objects should be rapidly neutra
by astrophysical plasma. The Schwarzschild limit is an
realistic idealization given how unlikely it is for an astro
physical macroscopic object to have precisely zero spin. T
motivates a need to thoroughly understand phenomena in
vicinity of Kerr black holes. Such an understanding becom
quite important as studies probe ever more deeply int
black hole’s strong fields.

Of particular interest to many applications is an und
standing of Kerr black hole orbits. In the language of gene
relativity, ‘‘orbits’’ are bound, stable geodesic trajectories.
is a relatively simple matter to write down the equatio
governing these orbits and to integrate in the time domai
find the detailed trajectory that a body will follow.

These orbits have a rich phenomenology, owing to
complicated shape of the hole’s gravitational ‘‘potential.’’ A
largish radii (r *20 times the radius of the hole!, a generic
orbit is not too different from the ellipses of Newtonia
theory. However, the plane in which this ellipse lies p
cesses~due largely to the spin of the black hole and t
oblateness of the hole’s geometry!, and the ellipse precesse
within that precessing plane. We can identify two fundam
tal orbital frequencies: a frequencyV r characterizing the ra
dial motion ~from periapsis to apoapsis and back!, and a
frequencyVu characterizing the latitudinal motion. A thir
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frequency of somewhat different nature describes the a
age secular accumulation of the angle about the hole’s s
metry axis, and is denoted byVf . The various precession
of the orbit are due to mismatches between these frequ
cies: the orbital plane precesses atVf2Vu ; the orbital el-
lipse precesses atVf2V r . Closed form expressions for a
three of these frequencies have recently been worked ou
Schmidt@9#. In the deep strong field of the hole, the freque
cies become so different that the qualitative picture giv
above—a precessing ellipse on a precessing plane—ceas
be useful. The orbits just become complicated and mess

Despite this complicated nature, a wide class of functio
of black hole orbits are completely described by the frequ
cies V r and Vu . Any function of the formf @r (t),u(t)# ~a
common functional form for black hole orbits, since the m
ric is independent of botht andf) can be expanded as

f @r ~ t !,u~ t !#5(
kn

f kne
2 ikVute2 inVr t. ~1.1!

Unless otherwise noted, the index of all sums runs fr
2` to `. The fact that such expansions exist is very use
since it suggests we can Fourier analyze a wide class
interesting orbit functionals to understand their harmonic
pendence upon the orbital frequencies.

Some functions have a more complicated form depend
on all four components of the orbital worldline,za

5(t,r ,u,f). A similar, but slightly modified, expansion ca
be written down which handles functions of this sort. Su
an expansion is needed, for example, to give the harmo
decomposition of an orbiting body’s stress-energy tens
used in frequency domain perturbation theory of Kerr bla
holes@10#. One could also imagine using this harmonic e
pansion to describe the emission spectrum of hot mate
©2004 The American Physical Society15-1
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accreting onto a black hole. This could facilitate identifyin
features that are imprinted upon a black hole’s x-ray sp
trum.

Actually computing the expansion coefficientsf kn turns
out to be somewhat difficult. This is fundamentally becau
the r andu motions of a black hole orbit are coupled, and
a result are not periodic in coordinate timet ~or proper time
t). This difficulty can be fixed by working with a time vari
able l, recently suggested by Mino@13#, which decouples
the r andu motions. With respect tol, the r andu motions
are truly periodic. In contrast to the time domain expans
~1.1!, a similar expansion usingl is straightforward to com-
pute.

The clocks of distant observers tick at evenly spaced
tervals of t, not l. For the purpose of describing quantitie
that could be measured by such observers, thet expansion is
more useful than thel expansion. Fortunately, it is straigh
forward to convert. That is the subject of this paper. The k
observation is that observer timet contains oscillatory ele-
ments that are periodic with respect to Mino’s timel. Thus,
t itself can be expanded in a Fourier series ofl-frequency
harmonics.

The remainder of this paper describes our prescription
Sec. II, we briefly discuss thet-domain description of the
orbits. We then show how Mino’s timel fixes many of the
difficulties associated with these orbits in Sec. III. In Sec.
we show how to use al expansion to compute thet expan-
sion coefficientsf kn . In Sec. V, we apply this technique firs
to a relatively simple function of black hole orbits, and th
to the Weyl curvature scalarc4, demonstrating that every
thing works quite robustly. The Appendix discusses so
important details related to an implementation of these te
niques.

II. ORBITS IN BOYER-LINDQUIST TIME

The geodesic equations that govern Kerr black hole or
are usually presented in the following ‘‘classic’’ form@14#:

r4S dr

dt D 2

5@E~r 21a2!2aLz#
22D@r 21~Lz2aE!21Q#

[R~r !, ~2.1!

r4S du

dt D 2

5Q2cot2uLz
22a2cos2u~12E2![Q~u!,

~2.2!

r2S df

dt D5csc2uLz1aES r 21a2

D
21D2

a2Lz

D
[F~r ,u!,

~2.3!

r2S dt

dt D5EF ~r 21a2!2

D
2a2sin2uG1aLzS 12

r 21a2

D D
[T~r ,u!. ~2.4!

Up to initial conditions, orbits are specified by the quantit
E, Lz , andQ ~‘‘energy,’’ ‘‘ z-component of angular momen
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tum,’’ and ‘‘Carter constant’’!; these quantities are conserve
along any orbit of the family. For notational simplicity, w
have putr25r 21a2cos2u andD5r 222Mr 1a2. Note that
Eqs.~2.1! and~2.2! have been divided bym2, and Eqs.~2.3!
and ~2.4! by m ~wherem is the mass of a small body in a
orbit!; E, Lz , and Q are thus the specific energy, angul
momentum and Carter constant. The parametert is proper
time measured along the orbit;t is the Boyer–Lindquist co-
ordinate time. We choose 0<a<M ; prograde and retrograd
orbits are distinguished by an orbital inclination angle rath
than the sign of the hole’s spin.

By picking initial conditions and physically reasonab
values of the constantsE, Lz , andQ, one can integrate thes
equations to obtain a worldline parameterized by proper t
t along the orbit. Schmidt@9# has derived formulas for thes
constants as functions of an orbit’s semi-latus rectump, ec-
centricity e, and an inclination anglei; further discussion of
these parameters is given in the Appendix. Schmidt’s form
las do not work well for circular orbits (e50). Formulas
which apply to that case were originally worked out b
Shakura@15#; we use a parameterization which was orig
nally derived by Williams @16#, and then rederived by
Hughes@17#.

For the purpose of understanding quantities which co
be measured by distant observers, proper time is not a
ticularly good choice of parameterization for the orbit—it
connected to the orbit itself, and so contains compone
which oscillate with respect to the clocks of distant obse
ers. Since the Boyer-Lindquist time coordinatet reduces at
large radius to time as measured by distant observers,
should parameterize witht rather thant. It is trivial to con-
vert: just divide the geodesic equations int by dt/dt to
obtain equations int:

dr

dt
5

dr

dt S dt

dt D 21

, ~2.5!

and likewise fordu/dt anddf/dt. Then, pick initial condi-
tions and an allowed set of orbital constants (E,Lz ,Q), and
integrate to findz(t)5@r (t),u(t),f(t)#.

Using elegant Hamilton-Jacobi techniques, Schmidt@9#
has recently shown that bound orbits satisfying these eq
tions are characterized by multiply-periodic motion inr, u,
and f. These motions are given by three fundamental f
quencies,V r , Vu , andVf . In fact, the frequencyVf can
be considered less fundamental thanV r and Vu . This is
because thef orbital motion corresponds~in the language of
Goldstein @11#! to a rotation-type periodic motion, rather
than an oscillatory orlibration-type periodicity. The fre-
quencyVf is the average rate at whichf accumulates over
an orbit. Becausedf/dt depends only onr andu, deviations
from that average accumulation are oscillations at ther andu
frequencies:

f~ t !5Vft1(
kn

wkne
2 ikVute2 inVr t. ~2.6!

Physically, one can imagine analyzing black hole orbits in
frame that co-rotates at the frequencyVf . In that corotating
5-2
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ROTATING BLACK HOLE ORBIT FUNCTIONALS IN . . . PHYSICAL REVIEW D69, 044015 ~2004!
frame, the rotation-type periodicity atVf is removed, and
only the libration-type oscillations at harmonics ofV r and
Vu remain~see the discussion in Ref.@11#, pp. 466–467!.

By this logic, many functionsf @z(t)# can be reduced to
functions ofr andu only. It is then possible to expand in
Fourier series as

f @r ~ t !,u~ t !#5(
kn

f kne
2 i (kVu1nVr )t. ~2.7!

Unfortunately, the functionsr (t) andu(t) are in general not
periodic~although they are in the Newtonian limit where a
the orbital frequencies are identical!. This not-quite-periodic
character is fundamentally due to the coupling of ther andu
motions in Eqs.~2.1! and~2.2!: the functions (r2dt/dt)22R
and (r2dt/dt)22Q each depend explicitly on bothr andu.
~Note that this coupling remains if we use proper time alo
the orbitt as our parametrization.! The non-separated natur
of the r and u motions makes it difficult to compute th
coefficientsf kn appearing in Eq.~2.7!. If the motions sepa-
rated, one could define angle variableswr[V r t and wu

[Vut, such thatr would be a function only ofwr andu a
function only ofwu @11,12#. Computing the coefficientsf kn
would then be straightforward~see, e.g., Ref.@11#, p. 466!.
Since the motions do not in fact separate, the angleswr and
wu are not well defined. An alternative scheme to comp
the Fourier series coefficients appears necessary.

III. ORBITS IN MINO TIME

In a recent paper, Y. Mino@13# introduced a new param
eterization of Kerr geodesic motion which separates thr
andu motion. In terms of what we shall call ‘‘Mino time’’l,
the geodesic equations become

S dr

dl D 2

5R~r !, ~3.1!

S du

dl D 2

5Q~u!, ~3.2!

df

dl
5F~r ,u!, ~3.3!

dt

dl
5T~r ,u!, ~3.4!

whereR(r ), Q(u), F(r ,u), andT(r ,u) are defined in Eqs
~2.1!–~2.4!. The r and u motions are now strictly periodic
functions:

r ~l!5r ~l1nL r !,

u~l!5u~l1nLu!, ~3.5!

wheren is any integer and the periods are given by

L r52E
r peri

r ap dr

R~r !1/2
, ~3.6!
04401
g

e

Lu54E
umin

p/2 du

Q~u!1/2
. ~3.7!

The radial motion is taken to range between periapsis,r peri,
and apoapsis,r ap; theu motion ranges from a minimumumin
to a maximump2umin . ~With a particular reparameteriza
tion, we can write theL r integral in such a way that it be
haves well as we approach the limit of circular orbits,r peri
→r ap. Likewise it is simple to reparameterize such thatLu
is well behaved in the equatorial orbit limit,umin→p/2. See
the Appendix.!

For what follows, it will be useful to define the following
frequencies conjugate tol:

Y r ,u52p/L r ,u , ~3.8!

as well as the angle variables

wr ,u5Y r ,ul. ~3.9!

These angles allow us to take advantage of the separ
nature of r and u motion in Mino time: we treatr as a
function only ofwr , u as a function only ofwu, and we treat
wr andwu as independent parameters. This allows us to F
rier decompose any function of the orbital worldline usi
standard action-angle variable techniques@11#.

Before moving on, we should analyze the remaining c
ordinate motions of black hole orbits—the observer~Boyer-
Lindquist! time t and the azimuthal anglef. Both of these
motions consist of a component that accumulates secu
as a function ofl, superposed on components which osc
late atY r andYu . Let us analyze the oscillations first. Fro
the geodesic equations~3.3! and ~3.4!, we know thatdt/dl
and df/dl are functions only ofr and u. This means that
they can be expanded in a Fourier series:

dt

dl
[T~r ,u!5(

kn
Tkne

2 i (kYu1nYr )l, ~3.10!

df

dl
[F~r ,u!5(

kn
Fkne

2 i (kYu1nYr )l,

~3.11!

with the expansion coefficients given by

Tkn5
1

~2p!2E0

2p

dwrE
0

2p

dwuT@r ~wr !,u~wu!#ei (kwu1nwr ),

~3.12!

Fkn5
1

~2p!2E0

2p

dwrE
0

2p

dwuF@r ~wr !,u~wu!#ei (kwu1nwr ).

~3.13!

In these equations and in what follows,r (wr)[r (l
5wr /Y r) andu(wu)[u(l5wu/Yu).
5-3
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Because the functionsT(r ,u) and F(r ,u) are real, we
have the following relations:

T2k,2n5T̄kn , ~3.14!

F2k,2n5F̄kn , ~3.15!

where the overbar denotes complex conjugation. The m
cesTkn andFkn have another interesting property:Tk0 and
T0n are nonzero, butTkn50 if kÞ0 andnÞ0 ~and likewise
for Fkn). This lack of ‘‘crosstalk’’ between theu and r har-
monics is becauseT(r ,u) and F(r ,u) have the formf (r )
1g(u). To take advantage of this property, we define

Tk
u[Tk0 , Tn

r [T0n ; ~3.16!

Fk
u[Fk0 , Fn

r [F0n . ~3.17!

Using the complex conjugate relations and Eqs.~3.16! and
~3.17!, we rewrite the double sums appearing in the Fou
expansions~3.1! and ~3.10! as a pair of single sums@18#:

dt

dl
[T~r ,u!5G1 (

k51

`

~Tk
ue2 ikYul1c.c.!

1 (
n51

`

~Tn
r e2 inYrl1c.c.!; ~3.18!

df

dl
[F~r ,u!5Yf1 (

k51

`

~Fk
ue2 ikYul1c.c.!

1 (
n51

`

~Fn
r e2 inYrl1c.c.!. ~3.19!

The ‘‘c.c.’’ means the complex conjugate of the preced
term. We have pulled thek50, n50 terms out of these sum
and defined

G5T00, ~3.20!

Yf5F00. ~3.21!

These numbers tell us about the secular, average ra
which f and t accumulate with respect tol @19#.

Using these results, it is simple to integrate forf(l) and
t(l):

t~l!5Gl1Dt~l!, ~3.22!

f~l!5Yfl1Df~l!. ~3.23!

We have chosent(l50)505f(l50), and defined

Dt~l!5 (
k51

`

~Dtk
ue2 ikYul1c.c.!1 (

n51

`

~Dtn
r e2 inYrl1c.c.!;

~3.24!
04401
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Df~l!5 (
k51

`

~Dfk
ue2 ikYul1c.c.!

1 (
n51

`

~Dfn
r e2 inYrl1c.c.!. ~3.25!

We have defined Dt j
r ,u5 iT j

r ,u/( j Y r ,u) and Df j
r ,u

5 iF j
r ,u/( j Y r ,u). With this definition, we have separate

t(l) andf(l) into pieces which accumulate secularly wi
l plus piecesDt(l) andDf(l) that oscillate at harmonics
of Yu andY r .

SinceVf is the average rate at whichf accumulates as a
function of t and sinceG and Yf are the average rates a
which t andf accumulate as a functions ofl,

Vf5Yf /G. ~3.26!

The other frequencies are likewise related:

Vu5Yu /G, ~3.27!

V r5Y r /G. ~3.28!

When performing a harmonic decomposition of any fun
tion, we will want to work in terms of the angleswj

5Y jl, for j 5r ,u,f, and the average accumulated timeT
5Gl. In terms of these variables,

t~T,wu,wr !5T1Dt~wu,wr !, ~3.29!

f~wf,wu,wr !5wf1Df~wu,wr !, ~3.30!

where

Dt~wu,wr !5 (
k51

`

~Dtk
ue2 ikwu

1c.c.!

1 (
n51

`

~Dtn
r e2 inwr

1c.c.!; ~3.31!

Df~wu,wr !5 (
k51

`

~Dfk
ue2 ikwu

1c.c.!

1 (
n51

`

~Dfn
r e2 inwr

1c.c.!. ~3.32!

Putting all of this together, the Fourier expansion coe
cients f̃ kn of any function of the formf @r (l),u(l)# is

f̃ kn5
1

~2p!2E0

2p

dwrE
0

2p

dwu f @r ~wr !,u~wu!#ei (kwu1nwr ).

~3.33!

It is useful to note that the worldlineza can be reorga-
nized in a similar form, separating the oscillations from t
secular accumulations:

za~l!5zsec
a ~l!1Dza@r ~l!,u~l!#, ~3.34!

wherezsec
a (l)5(Gl,0,0,Yfl), and where

Dza@r ,u#5@Dt~r ,u!,r ,u,Df~r ,u!# ~3.35!
5-4
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ROTATING BLACK HOLE ORBIT FUNCTIONALS IN . . . PHYSICAL REVIEW D69, 044015 ~2004!
can be expanded using the simple Fourier coefficients
scribed by Eq.~3.33! with f 5za. This leaves the worldline
in the desirable form

za~l!5zsec
a ~l!1(

kn
Dzkn

a e2 i (kYu1nYr )l. ~3.36!

By making use of Eq.~3.36!, even rather complicated func
tional forms turn out to have a straightforward harmonic d
scription.

IV. CONVERTING FOURIER EXPANSION COEFFICIENTS

There are two ways of Fourier expanding a function of
form f @r (t),u(t)# which are essentially equivalent: we ca
expand in observer timet,

f @r ~ t !,u~ t !#5(
kn

f kne
2 iVknt; ~4.1!

or, we can expand in Mino timel,

f @r ~l!,u~l!#5(
kn

f̃ kne
2 iYknl. ~4.2!

We have defined

Vkn5kVu1nV r ,

Ykn5kYu1nY r . ~4.3!

From the standpoint of measurable physics, the expan
~4.1! is more interesting—the componentsf kn tell us about
the harmonic structure off as seen by distant observer
However, the expansion~4.2! is far more accessible—usin
Eq. ~3.33!, it is straightforward to compute the expansio
componentsf̃ kn . In this section, we show how to convert th
accessible componentsf̃ kn into the measurable componen
f kn .

We begin by taking the Fourier transform off @r (t),u(t)#.
Using Eq.~4.1!, we have

(
kn

f knd~v2Vkn!5
1

2pE2`

`

dt f@r ~ t !,u~ t !#eivt,

5
1

2pE2`

`

dl
dt

dl
f @r ~l!,u~l!#eivt(l).

~4.4!

Our goal is to evaluate the integral on the right-hand side
Eq. ~4.4! and to find an expression relatingf kn to f̃ kn . To do
so, we take advantage of the Fourier expansion fort(l) pre-
viously established, Eq.~3.22!.

We now insert dt/dl5T(r ,u) and eivt(l)5eivGl

3eivDt(l), under the integral:
04401
e-

-

e
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(
kn

f knd~v2Vkn!

5
1

2pE2`

`

dl$T@r ~l!,u~l!# f @r ~l!,u~l!#

3eivDt(l)%eivGl,

[
1

2pE2`

`

dlF @r ~l!,u~l!,v#eivGl. ~4.5!

We next wish to insert the Fourier expansion
F@r (l),u(l),v# under the integral. We first write this func
tion in terms of the angle variables:

F~wu,wr ,v!5T@r ~wr !,u~wu!#eivDt(wu,wr ) f @r ~wr !,u~wu!#.

~4.6!

The expansion ofF @r (l),u(l),v# is

F @r ~l!,u~l!,v#5(
ab

Fab~v!e2 iYabl, ~4.7!

where

Fab~v!5
1

~2p!2E0

2p

dwrE
0

2p

dwuF~wu,wr ,v!eiawu
eibwr

.

~4.8!

Inserting expansion~4.6! into Eq. ~4.5!, we find

(
kn

f knd~v2Vkn!5
1

2pE2`

`

dl(
ab

Fab~v!ei (vG2Yab)l,

5(
ab

Fab~v!d~vG2Yab!,

5G21(
ab

Fab~v!d~v2Vab!,

5G21(
ab

Fab~Vab!d~v2Vab!.

~4.9!

Equating the left-hand sides and right-hand sides, we read

f kn5Fkn~Vkn!/G. ~4.10!

We use this form of the Fourier expansion coefficients in
of our calculations.

V. EXAMPLES

In this section we use the methods described above in
test cases. We first decompose and reconstruct a simple f
tion of the form f (r ,u). We then show how to decompose
more complicated function which appears in black hole p
turbation calculations.
5-5



io
on
u

er
ar

dy

ed
-

an
e

rg
o

r
d

-
tio

ws
ua

ua

at
e

er
h
f
n

n
t of
or
data

en

not
the

s
ring
se

he
-

the
the

he

S. DRASCO AND S. A. HUGHES PHYSICAL REVIEW D69, 044015 ~2004!
A. Simple test case

We now test our prescription by computing the expans
coefficients of a test function and showing that the rec
structed time series agrees with the original function. O
test function isz[r cosu, where r and u are the Boyer-
Lindquist coordinates. Our calculations are actually p
formed using the tips given in the Appendix. In particul
we map the radial coordinater to a coordinatec defined via

r 5
pM

11« cosc
, ~5.1!

a reparametrization commonly used in Newtonian orbital
namics @20#. Whereas r oscillates from periapsis@r peri
5pM/(11«)# to apoapsis@r ap5pM/(12«)# and back,c
winds secularly from 0~periapsis! to p ~apoapsis! and be-
yond. We truncate all infinite sums at some finite valueN,
discussed below. We also map theu motion to a coordinatex
via

cosu5Az2~a,E,i ! cosx, ~5.2!

wherez2(a,E,i) is one root of a quadratic equation defin
in Appendix. The inclination anglei relates the angular mo
mentumLz to the Carter constantQ:

cosi5
Lz

ALz
21Q

. ~5.3!

Although i is not quite the geometrical angle describing
orbit’s excursion from the equatorial plane, it is closely r
lated, and has other convenient properties~see, e.g., Ref.@21#
for further discussion!.

It is worth noting that the parametrization~5.1! makes
manifestly clear that the radial motion has a slowly conve
ing Fourier expansion for large eccentricity. Using the bin
mial expansion,

r 5pM(
n50

`

~21!n«n cosnc. ~5.4!

The amplitude of radial harmonicn is roughly« smaller than
the amplitude of harmonicn21. When we truncate ou
sums at some finite valueN, we expect that a reconstructe
time series will have a fractional error of order«N11 ~the
amplitude of the next neglected coefficient!. Hence, many
harmonics will be needed as« approaches 1. This slow con
vergence has been noted in studies of gravitational radia
reaction on eccentric black hole orbits@22,23#.

The top panel in Figs. 1 and 2 show the functionz(t)
computed in two different ways. The solid black line sho
z(t) constructed by direct integration of the geodesic eq
tions; the dotted line~red in the color version! showsz(t)
reconstructed from a Fourier expansion using Eq.~4.10!. The
lower panel of these figures shows the fractional resid
@z(t)2z rec(t)#/zmax, where z rec(t) is the reconstructed
timeseries andzmax5r maxcosumin .
04401
n
-
r

-
,

-

-

-
-

n

-

l,

Figure 1 comparesz(t) and z rec(t) for an orbit with p
53, «50.3, i520°; the black hole’s spin parametera
50.9M . The reconstructed timeseries converges toz(t)
rather quickly: even when the infinite sums are truncated
N51, the maximum deviation is only a few percent; th
difference betweenz(t) and z rec(t) for N51 is barely dis-
cernible on the plot. The convergence is quite a bit slow
when«50.6. The motion shown in Fig. 2 is for an orbit wit
p54, «50.6, andi550°. The timeseries is within 2% o
z(t) whenN54; reducing the error by a further factor of te
requires increasingN to 8. It is worth noting that, even whe
the amplitude error is relatively large, the phase alignmen
z rec(t) with z(t) appears to be very good. This bodes well f
problems that rely on an accurate phase match between
and a model~or template!.

Notice, in both Figs. 1 and 2, that the differences betwe
z(t) and the reconstructed time series arenot precisely peri-
odic: the wiggles in the lower panels of these figures do
repeat themselves regularly. This is a manifestation of
quasi-periodic nature of the orbital motion. As more term
are kept in these sums, we are more successful at captu
this quasiperiodic motion, and the magnitude of the
wiggles quickly becomes small.

FIG. 1. The functionz(t)5r (t) cos@u(t)# for orbits about a
black hole witha50.9M , and with parametersp53, «50.2, i
520°. Top panel shows this function computed directly from t
geodesic equations~solid black line! as well as the time series con
structed using Eq.~4.10! ~dotted line; red in color version!. In the
reconstructed time seriesz rec(t), we have truncated the infinite
sums atN51. We find remarkably good agreement despite
small number of terms kept in the sum. The bottom panel shows
fractional residual,@z(t)2z rec(t)#/zmax, for several values ofN.
The largest differences~red in color version! are for N51, and
have a magnitude of about 0.025. The next largest~green in color
version! are for N52 and have a magnitude of about 0.003. T
smallest differences~blue in color version! are forN53 and have a
magnitude of about 0.0002.
5-6
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B. Black hole perturbations

We now apply these techniques to a problem taken fr
black hole perturbation theory@10#. Our goal is to under-
stand how to decompose a complex functionc4 which de-
scribes how a small body perturbs the spacetime curvatur
a Kerr black hole. Fromc4, one can extract information
about gravitational-wave emission and radiative backreac
on small compact objects orbiting massive black hole
extreme mass ratio binaries. When frequency domain pe
bation theory is used to study this problem,c4 is expanded
in multipoles and in a harmonic series of the fundamen
orbital frequencies. The gravitational waves generated by
system and their backreaction onto the orbit can then be
tracted from that harmonic/multipolar expansion. Aside fro
being of great interest to the current authors, this exam
nicely illustrates the principles of this Fourier decompositi
for functionals more complicated than the previous sim
example. We will not dwell too much on the mathematics
black hole perturbation theory, but will point the reader
references where appropriate.

The functionc4 can decomposed into multipoles as@10#

c4~ t f ,r f ,u f ,f f !5r24(
lm

E dvRlm~r f ,v!

3Slm~u f ,av!ei (mf f2vt f ), ~5.5!

FIG. 2. The functionz(t) for orbits about a black hole witha
50.9M and with parametersp54, «50.6, i550°. Top panel
shows this function computed directly from the geodesic equat
~solid black line! plus the time series constructed using Eq.~4.10!
~dotted line; red in color version!. We have truncated sums in th
time series atN54. We begin to see the need to keep a la
number of terms at this relatively large eccentricity. The bott
panel shows the fractional residual for several values ofN. The
largest differences~red in color version! are forN54, and have a
magnitude of about 0.02. The smaller differences~green in color
version! are forN58 and have a magnitude of about 0.002.
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where the angular functionS is a spin weighted spheroida
harmonic, and the radial functionR is a solution of a second
order ordinary differential equation known as the Teukols
equation~see Refs.@10,22–27# for a detailed discussion o
the Teukolsky equation!. The subscriptf on the coordinates is
a reminder that (t f ,r f ,u f ,f f) denotes a field point. Coordi
nates without the subscript will refer to the location of
body orbiting the black hole. We will now rewritec4 com-
pletely in terms of sums, eliminating the need for the integ
over v.

The radial function can be written in the form@22–26#

Rlm~r f ,v!5Zlm
H ~r f ,v!Rlm

` ~r f ,v!1Zlm
` ~r f ,v!Rlm

H ~r f ,v!,

~5.6!

whereRlm
H,`(r f ,v) are the two independent solutions to th

source-free Teukolsky equation and where the functionZ
are

Zlm
! ~r f ,v!5E dtei [vt2mf(t)] I lm

! @r ~ t !,u~ t !,r f ,v#

~5.7!

for !5H,`. The function I lm
! @r (t),u(t),r f ,v# depends

upon the orbital worldline of the body perturbing the bla
hole spacetime. See Ref.@23# for discussion in the case of
body in an equatorial, eccentric orbit; see Ref.@26# for the
case of a body in an orbit that is inclined but of consta
radius. ~The general case, for orbits that are inclined a
eccentric, is in preparation@27#.!

We next rewrite Eq.~5.7! as an integral overl

Zlm
! ~r f ,v!5E dlei [vt(l)2mf(l)]I lm

! @r ~l!,u~l!,r f ,v#,

~5.8!

whereI lm
! 5I lm

! dt/dl. Now we insert Eqs.~3.22! and~3.23!
into Eq. ~5.8! so that we have

Zlm
! ~r f ,v!5E dlei [vGl2mYfl]Jlm

! @r ~l!,u~l!,r f ,v#,

~5.9!

where

Jlm
! @r ~l!,u~l!,r f ,v#5I lm

! @r ~l!,u~l!,r f ,v#

3ei $vDt[ r (l),u(l)] 2mDf[ r (l),u(l)] %,

~5.10!

with Dt andDf given by Eqs.~3.24! and ~3.25!. SinceJlm
!

depends onl only through r (l) and u(l), it can be ex-
panded as

Jlm
! @r ~l!,u~l!,r f ,v#5(

kn
Jlmkn

! ~r f ,v!e2 iYknl.

~5.11!

Putting this into Eq.~5.9! and performing the integral gives

s

5-7
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Zlm
! ~r f ,v!52p(

jk
Jlmkn

! ~r f ,v!d~vG2Ymkn!

5
2p

G (
jk

Jlmkn
! ~r f ,v!d~v2Vmkn!,

~5.12!

where

Vmkn5Ymkn/G5mVf1kVu1nV r . ~5.13!

Finally, when we substitute Eq.~5.12! into Eq. ~5.5! we ob-
tain

c4~ t f ,r f ,u f ,f f !

5
1

r4 (
lmkn

Rlmkn~r f !Slmkn~u f !e
i (mf f2Vmknt f ),

~5.14!

where

Slmkn~u f !5Slm~u f ,aVmkn!

Rlmkn~r f !5Zlmkn
H ~r f !Rlm

` ~r f ,Vmkn!

1Zlmkn
` ~r f !Rlm

H ~r f ,Vmkn!

Zlmkn
! ~r f !52pJlmkn

! ~r f ,Vmkn!/G. ~5.15!

VI. CONCLUSION

With the techniques described in this paper, it should n
be a relatively simple matter to describe functions of K
black hole orbits in the frequency domain. Although the m
tion is not truly periodic with respect to observer timet, it is
periodic with respect to Mino timel. It is thus quite simple
to represent functions using frequenciesY conjugate to Mino
time. By using the fact that observer timet is itself periodic
with respect to Mino time~after subtracting the secularl
growing contribution!, it is straightforward to convert the
l-Fourier expansion into at-Fourier expansion.

As discussed in Sec. I, these techniques could find us
application to a variety of astrophysical problems involvi
Kerr black holes. One that is of particular interest to us is
problem of describing gravitational-wave emission from e
treme mass ratio binaries@22–26#. Such systems are ex
pected to be observable for future space based gravitati
wave detectors. It should now be fairly straightforward
extend current black hole perturbation theory codes to ha
the very interesting case of generic orbits—binaries in wh
the small body has both inclination with respect to the eq
torial plane and non-zero eccentricity@27#. If we had been
unable to exploit the discrete harmonic structure of th
systems, such a generalization would have had an enorm
computational cost. Combining that analysis with a sche
to compute the evolution of the Carter constant~using a rig-
orous computation of a self force@13#, or perhaps using a
cruder approximation@28#!, it should then be possible t
04401
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construct, in the adiabatic limit, the inspiral worldlines a
waveforms followed by bodies spiraling into massive bla
holes.
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APPENDIX: PRACTICAL EVALUATION OF THE KERR
GEODESICS

In this appendix, we present some useful tools for h
dling functions of Kerr geodesics. A difficulty often encou
tered in evaluating these orbital motions is due to the pr
ence of turning points in the motion: as the radial moti
approaches periapsis and apoapsis,dr/d ‘‘time’’ passes
through zero and switches sign~regardless of which time
variable one uses!. As the derivative approaches zero, o
typically finds in a numerical evaluation that small stepsiz
are needed to resolve the changing derivative; precision
be badly degraded in this case. Theu coordinate exhibits a
similar behavior due to the turning points atumin and p
2umin .

A simple way to solve this behavior is to work with
functional form that automatically builds in the correct b
havior as the turning points are approached. We first desc
the transformation used to describe theu motion. The core
idea of this transformation has been known for quite so
time @29#, and has been used extensively in work on circu
Kerr black hole orbits@26#; it turns out to be particularly
simple to use when studying geodesics parameterized
Mino time. We then show a simple transformation th
greatly simplifies the description of the radial motion. Th
transformation has also been used quite a bit in previ
work @22,23#, but is worth discussing in the context of th
Mino-time parametrization.

1. Motion in u

We begin transforming theu motion by first defining the
variablez5cos2u. Equation~3.2! becomes

du

dl
56Az2@a2~12E2!#2z@Q1Lz

21a2~12E2!#1Q

12z

56Ab~z12z!~z22z!

12z
. ~A1!

The plus sign corresponds to motion fromumin to p2umin ,
and vice versa for the minus sign. We have definedb
5a2(12E2); z6 are the two roots of the quadratic in the to
line of Eq. ~A1!.
5-8



,

-

s

r-

t,

ple-

n-
-

tion

f
of

ROTATING BLACK HOLE ORBIT FUNCTIONALS IN . . . PHYSICAL REVIEW D69, 044015 ~2004!
We next define the variablex: z5z2cos2x. As x varies
from 0 to 2p, u oscillates through its full range of motion
from umin to p2umin and back. Examiningdz/du anddz/dx
we see that

dx

du
5A 12z

z22z
, 0<x<p;

52A 12z

z22z
, p<x<2p. ~A2!

Combining Eqs.~A1! and~A2!, we obtain the geodesic equa
tion for x:

dx

dl
5Ab~z12z!

5Ab~z12z2cos2x!. ~A3!

Using Eq.~A3!, it is straightforward to findl for all x.
First, define

l0~x!5
1

Abz1

@K~Az2 /z1!2F~p/22x,Az2 /z1!#;

~A4!

note that

l0~p/2!5
1

Abz1

K~Az2 /z1!. ~A5!

In these equations, the functionF(w,k) is the incomplete
elliptic integral of the first kind, andK(k) is the complete
elliptic integral of the first kind~using the notation of@30#!.
Then,

l~x!5l0~x! 0<x<p/2

5
2

Abz1

K~Az2 /z1!2l0~p2x! p/2<x<p

5
2

Abz1

K~Az2 /z1!1l0~x2p! p<x<3p/2

5
4

Abz1

K~Az2 /z1!2l0~2p2x! 3p/2<x<2p;

~A6!

also

Lu5
4

Abz1

K~Az2 /z1!. ~A7!

This form of Lu is perfectly well behaved even for orbit
that are confined to the equatorial plane (umin5p/2); this is
not the case for the original form~3.7!.
04401
By combining Eqs.~3.8!, ~A3!, and ~A7! it is trivial to
change variables so that integrals ofwu become integrals
over x:

wu~x!5Yul~x!; ~A8!

dwu

dx
5Yu

dl

dx
5

2p

Lu

1

Ab~z12z2cos2x!

5
p

2K~Az2 /z1!

1

A12~z2 /z1!cos2x
. ~A9!

Equations~A8! and~A9! are used in our applications to pe
form all integrals with respect to the angle variablewu.

2. Motion in r

We use a similar trick to simplify the radial motion. Firs
we reparametrize the instantaneous orbital radius as

r 5
pM

11« cosc
. ~A10!

Such a reparametrization is commonly used to study Ke
rian orbits in Newtonian theory@20#; though relativistic or-
bits are not closed ellipses, the form~A10! remains very
useful. The parameter« can thus be interpreted as the ecce
tricity, c as the orbital anomaly, andp as the semilatus rec
tum. Asc varies from 0 top, r varies from periapsis~closest
approach! to apoapsis~furthest distance!:

r peri5
pM

11«
, ~A11!

r ap5
pM

12«
. ~A12!

To proceed, we must do some massaging of the func
R(r ) defined in Eq.~2.1!. It is a quartic function ofr, and
thus has 4 roots:

R~r !5~E221!r 412Mr 31@a2~E221!2Lz
22Q#r 2

12M @Q1~aE2Lz!
2#r 2a2Q

5~12E2!~r 12r !~r 2r 2!~r 2r 3!~r 2r 4!. ~A13!

The second line of Eq.~A13! is written in a way that is
manifestly positive for bound orbits (E,1). The roots are
ordered such thatr 1>r 2>r 3>r 4; bound motion occurs for
r 1>r>r 2. From these definitions, it is clear thatr 1[r ap,
and r 2[r peri.

The radiir 3 andr 4 do not correspond to turning points o
the small body’s motion, but of course still represent zeros
the functionR. ~In fact, r 4 is typically inside the event hori-
zon; whenQ50 or a50, r 450.! It turns out to be useful to
remap these radii as follows:

r 35
p3M

12«
, ~A14!

r 45
p4M

11«
. ~A15!
5-9
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This remapping is simply for mathematical convenience; the parametersp3 andp4 have no particular physical meaning.
It is now a simple matter to derive the geodesic equation forc:

dc

dl
5

MA12E2@~p2p3!2«~p1p3 cosc!#1/2@~p2p4!1«~p2p4 cosc!#1/2

12«2

[P~c!. ~A16!
. I
o
ic

e-
As with the x reparameterization of theu motion, it is
straightforward to findl(c) using Eq.~A16!:

l~c!5E
0

c dc8

P~c8!
. ~A17!

In our applications, we evaluate this integral numerically
is possible that an analytic form could be found in terms
elliptic integrals~though it appears to require more algebra
fortitude than these authors could muster!. In any practical
application, it is unlikely that such a form will be more us
ful or accurate than a numerical evaluation of Eq.~A17!.

Note in particular that

L r5E
0

2p dc8

P~c8!
. ~A18!
. J

n
r-

k

d

ng
n

d
ls

f th
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This form of L r is well-behaved in the limit of circular or-
bits.

Finally, we use these results to convert integrals overwr

into integrals overc: combining Eqs.~3.8!, ~A16!, and
~A18!, we have

wr~c!5Y rl~c!; ~A19!

dwr

dc
5Y r

dl

dc

5
2p

L r

1

P~c!
. ~A20!

We use Eqs.~A19! and ~A20! to perform all integrals with
respect towr .
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