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Rotating black hole orbit functionals in the frequency domain
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In many astrophysical problems, it is important to understand the behavior of functions that come from
rotating(Kerr) black hole orbits. It can be particularly useful to work with the frequency domain representation
of those functions, in order to bring out their harmonic dependence upon the fundamental orbital frequencies
of Kerr black holes. Although, as has recently been shown by Schmidt, such a frequency domain representation
must exist, the coupled nature of a black hole orhitand # motions makes it difficult to construct such a
representation in practice. Combining Schmidt's description with a clever choice of timelike coordinate sug-
gested by Mino, we have developed a simple procedure that sidesteps this difficulty. One first Fourier expands
all quantities using Mino’s time parametgr In particular, the observer’s timteis decomposed with. The
frequency domain description is then built from thé-ourier expansion and the expansiori.die have found
this procedure to be quite simple to implement, and to be applicable to a wide class of functionals. We test the
procedure using a simple test function, and then apply it to a particularly interesting case, the Weyl curvature
scalary, used in black hole perturbation theory.
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[. INTRODUCTION frequency of somewhat different nature describes the aver-
age secular accumulation of the angle about the hole’s sym-
The black holes which appear to exist in a wide range ofmetry axis, and is denoted Wy, . The various precessions
masses throughout the Univerésee, e.g. Refd.1-8]) are  of the orbit are due to mismatches between these frequen-
most likely described by the Kerr solution of general relativ-cCies: the orbital plane precesses(b;—{),; the orbital el-
ity. The charged generalization is unlikely to be interestinglipse precesses & ,—(,. Closed form expressions for all
as macroscopic charged objects should be rapidly neutralizébiree of these frequencies have recently been worked out by
by astrophysical plasma. The Schwarzschild limit is an unSchmidt[9]. In the deep strong field of the hole, the frequen-
realistic idealization given how unlikely it is for an astro- cies become so different that the qualitative picture given
physical macroscopic object to have precisely zero spin. Thighove—a precessing ellipse on a precessing plane—ceases to
motivates a need to thoroughly understand phenomena in tHe useful. The orbits just become complicated and messy.
vicinity of Kerr black holes. Such an understanding becomes Despite this complicated nature, a wide class of functions
quite important as studies probe ever more deeply into @f black hole orbits are completely described by the frequen-
black hole’s strong fields. cies), andQ,4. Any function of the formf[r(t),0(t)] (a
Of particular interest to many applications is an under-common functional form for black hole orbits, since the met-
standing of Kerr black hole orbits. In the language of generatic is independent of bothand ¢) can be expanded as
relativity, “orbits” are bound, stable geodesic trajectories. It
is a relatively simple matter to write down the equations _ _
governing these orbits and to integrate in the time domain to fr(t),0(t)]=>, fine Koteminort, (1.9
find the detailed trajectory that a body will follow. kn
These orbits have a rich phenomenology, owing to the
complicated shape of the hole’s gravitational “potential.” At Unless otherwise noted, the index of all sums runs from
largish radii {=20 times the radius of the hglea generic —« to «. The fact that such expansions exist is very useful,
orbit is not too different from the ellipses of Newtonian since it suggests we can Fourier analyze a wide class of
theory. However, the plane in which this ellipse lies pre-interesting orbit functionals to understand their harmonic de-
cesses(due largely to the spin of the black hole and thependence upon the orbital frequencies.
oblateness of the hole’'s geometrand the ellipse precesses  Some functions have a more complicated form depending
within that precessing plane. We can identify two fundamen-on all four components of the orbital worldlinez®
tal orbital frequencies: a frequen€y, characterizing the ra- =(t,r,8,¢). A similar, but slightly modified, expansion can
dial motion (from periapsis to apoapsis and backnd a be written down which handles functions of this sort. Such
frequency(), characterizing the latitudinal motion. A third an expansion is needed, for example, to give the harmonic
decomposition of an orbiting body’s stress-energy tensor,
used in frequency domain perturbation theory of Kerr black
*Electronic address: sd68@cornell.edu holes[10]. One could also imagine using this harmonic ex-
Electronic address: sahughes@mit.edu pansion to describe the emission spectrum of hot material
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accreting onto a black hole. This could facilitate identifying tum,” and “Carter constant}; these quantities are conserved
features that are imprinted upon a black hole’s x-ray specalong any orbit of the family. For notational simplicity, we
trum. have putp?=r2+aco$9 andA=r?—2Mr +a?. Note that
Actually computing the expansion coefficieritg, turns  Egs.(2.1) and(2.2) have been divided by?, and Eqs(2.3)
out to be somewhat difficult. This is fundamentally becauseand (2.4) by w (wherew is the mass of a small body in an
ther and # motions of a black hole orbit are coupled, and asorbit); E, L,, and Q are thus the specific energy, angular
a result are not periodic in coordinate tirnéor proper time  momentum and Carter constant. The parameter proper
7). This difficulty can be fixed by working with a time vari- time measured along the orbitjs the Boyer—Lindquist co-
able \, recently suggested by Mind3], which decouples ordinate time. We choosesfa<M; prograde and retrograde
ther and # motions. With respect ta, ther and # motions  orbits are distinguished by an orbital inclination angle rather
are truly periodic. In contrast to the time domain expansiorthan the sign of the hole’s spin.
(1.1), a similar expansion using is straightforward to com- By picking initial conditions and physically reasonable
pute. values of the constants L,, andQ, one can integrate these
The clocks of distant observers tick at evenly spaced inequations to obtain a worldline parameterized by proper time
tervals oft, not . For the purpose of describing quantities 7 along the orbit. Schmidi9] has derived formulas for these
that could be measured by such observerst tagansion is  constants as functions of an orbit’s semi-latus rectyrac-
more useful than th& expansion. Fortunately, it is straight- centricitye, and an inclination angle; further discussion of
forward to convert. That is the subject of this paper. The keythese parameters is given in the Appendix. Schmidt's formu-
observation is that observer tintecontains oscillatory ele- las do not work well for circular orbitsg=0). Formulas
ments that are periodic with respect to Mino’s timeThus,  which apply to that case were originally worked out by
t itself can be expanded in a Fourier serieshefrequency  Shakura[15]; we use a parameterization which was origi-
harmonics. nally derived by Williams[16], and then rederived by
The remainder of this paper describes our prescription. ItHughes[17].
Sec. Il, we briefly discuss thedomain description of the For the purpose of understanding quantities which could
orbits. We then show how Mino’s time fixes many of the be measured by distant observers, proper time is not a par-
difficulties associated with these orbits in Sec. Ill. In Sec. IV ticularly good choice of parameterization for the orbit—it is
we show how to use a expansion to compute theexpan-  connected to the orbit itself, and so contains components
sion coefficients,,,. In Sec. V, we apply this technique first which oscillate with respect to the clocks of distant observ-
to a relatively simple function of black hole orbits, and theners. Since the Boyer-Lindquist time coordinateeduces at
to the Weyl curvature scalap,, demonstrating that every- large radius to time as measured by distant observers, one
thing works quite robustly. The Appendix discusses someshould parameterize withrather thanr. It is trivial to con-
important details related to an implementation of these techvert: just divide the geodesic equations inby dt/dr to
niques. obtain equations it

-1
[l. ORBITS IN BOYER-LINDQUIST TIME ﬂ: ﬂ ﬂ (2.5
_ . . dt dr\d7/

The geodesic equations that govern Kerr black hole orbits
are usually presented in the following “classic” forff4]: and likewise ford¢/dt andd¢/dt. Then, pick initial condi-

tions and an allowed set of orbital constanisl(,,Q), and

o[ dr 2_ 2, .2 2 2 2 integrate to findz(t) =[r(t),6(t),(t)].
p (d_r =LE(r+af—al P~ AlrtH (L. ~aB) ™+ Q] Using elegant Hamilton-Jacobi techniques, Schnpft
B has recently shown that bound orbits satisfying these equa-
=R(r), (2D tions are characterized by multiply-periodic motionring,
do\? and ¢. These motions are given by three fundamental fre-
A 2 2 2 guenciesf},, Q,, andQ,. In fact, the frequencyl, can
P (dr) =Q-cofdL,—a’cos o(1—-E*)=0(6), be considered less fund¢amental th@n and Q. Tﬁis is
(2.2 because thé orbital motion correspondén the language of
Goldstein[11]) to a rotation-type periodic motion, rather
L(de) 2 r’+a? a’L, than an oscillatory ofibration-type periodicity. The fre-
P\ g, —CscoL FaE ———1]— ——=2(r.0), quency(, is the average rate at whieh accumulates over
(2.3 an orbit. Becausd¢/dt depends only on and 6, deviations
from that average accumulation are oscillations at taed ¢
24 a2)2 24+ a2 frequencies:
pz(%)=E %—azsinzb’ +al, 1-- Za |
=T(r,6). 2.4) HO=0gt+ 2, g e 29

Up to initial conditions, orbits are specified by the quantitiesPhysically, one can imagine analyzing black hole orbits in a
E, L,, andQ (“energy,” “ z-component of angular momen- frame that co-rotates at the frequerf@y; . In that corotating
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frame, the rotation-type periodicity &, is removed, and 2 de
only the libration-type oscillations at harmonics Qf and 0= f —- (3.7
Q, remain(see the discussion in Rdfl1], pp. 466—46Y. Omin® (60)

By this logic, many function$[z(t)] can be reduced to

functions ofr and @ only. It is then possible to expand in a The radial motion is taken to range between periapsis;,
Fourier series as and apoapsis,,,; the & motion ranges from a minimuré,;,

to a maximumm— 6,,,. (With a particular reparameteriza-
_ KO 4N tion, we can write the\, integral in such a way that it be-
f[r(t),e(t)]—% fipe (o, 2.7 haves well as we approach the limit of circular orbitg,;
— T 4p. Likewise it is simple to reparameterize such thaf
Unfortunately, the functions(t) and 4(t) are in general not is well behaved in the equatorial orbit limig,,,— /2. See
periodic (although they are in the Newtonian limit where all the Appendix)
the orbital frequencies are identigalhis not-quite-periodic For what follows, it will be useful to define the following
character is fundamentally due to the coupling ofttemdé  frequencies conjugate to:
motions in Eqs(2.1) and(2.2): the functions p2dt/d7) %R
and (p?dt/d7) 20 each depend explicitly on bothand 6. Y, ,=2mlA, ,, (3.9
(Note that this coupling remains if we use proper time along ' ’
the orbit7 as our parametrizationThe non-separated nature g well as the angle variables
of the r and # motions makes it difficult to compute the
coefficientsf,, appearing in Eq(2.7). If the motions sepa- WO=Y )\ (3.9
rated, one could define angle variable$=Q,t and w’ "o
=Q,t, such that would be a function only ofv" and ¢ a
function only ofw? [11,12. Computing the coefficients,,,
would then be straightforwar(see, e.g., Ref.11], p. 468.
Since the motions do not in fact separate, the angleand
w? are not well defined. An alternative scheme to comput
the Fourier series coefficients appears necessary.

These angles allow us to take advantage of the separated
nature ofr and # motion in Mino time: we treatr as a
function only ofw", @ as a function only ofv’, and we treat
w' andw’ as independent parameters. This allows us to Fou-
Sier decompose any function of the orbital worldline using
standard action-angle variable techniq{i&s.

Before moving on, we should analyze the remaining co-
IIl. ORBITS IN MINO TIME ordinate motions of black hole orbits—the obser(oyer-

In a recent paper, Y. Minp13] introduced a new param- Lind_quisl) timgt and the azimuthal anglé. Both of these
eterization of Kerr geodesic motion which separates rthe motions consist of a component that accumulates secularly

and ¢ motion. In terms of what we shall call “Mino timex, @S @ function of, superposed on components which oscil-
the geodesic equations become late atY, andY ,. Let us analyze the oscillations first. From

the geodesic equatior{8.3) and(3.4), we know thatdt/d\
dr\? andd¢/dA are functions only of and 6. This means that
=R(r), (3D they can be expanded in a Fourier series:

dA

de\? dt [

aoe i _ —i(KY g+nY )\

(d)\) =0(0), (3.2 g =1(r.0) % Tkne 0 : (3.10
do d
—=d(r,0), (3.3 _d’E _ —i(KY g+ nY )\
d Gy =P 0) =2 Dype (Cormi,
dt (3.11)
——=T(r,0), (3.9
dA with the expansion coefficients given by

whereR(r), ©(0), ®(r,0), andT(r, ) are defined in Egs. 1 ) X
(2.1)—(2.4). Ther and # motions are now strictly periodic Ten= J’ dw'f dW"T[r(wr),a(wo)]e‘(kW9+“Wr),
0

functions: kn™ (2m)2J)o

(3.12
r(N)=r(A+nA,),
— 1 27 27 ) ;

0()\) 0()\"‘”/\3), (35) q)kn: . ZJ dw’ dWHCD[I'(Wr),0(W0)]el(kwg+nW)-

0
wheren is any integer and the periods are given by (2m) (3.13
Arzzfrapil (3.6 In these equations and in what follows(w")=r(x

rperR(1) 12 =w'/Y,) and 8(wf)=o(\ =wirY ).
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Because the function$(r,6) and ®(r,0) are real, we * _
have the following relations: Ap(N)=2, (Aple Y +c.c)
k=1
T—k,—n:?kna (3-14) ”

+ 21 (Aghe ™ tc.c). (3.29
_ n=
Dy —n=Dyn, (3.19
We have defined At]’=iT]/(jY,,) and A’
where the overbar denotes complex conjugation. The matr|L|<I>r (’/(]Yr o). With th|s def|n|t|on we have separated
cesTy, and ®,,, have another interesting properily, and  t(\) and d)()\) into pieces which accumulate secularly with
Ton are nonzero, buf,,=0 if k#0 andn+#0 (and likewise A\ plus piecesAt(\) andA@(\) that oscillate at harmonics
for ®,,). This lack of “crosstalk” between thé andr har- of Y,andY,.

monics is becaus&(r,6) and ®(r,d) have the formf(r) SinceQ¢ is the average rate at whieh accumulates as a
+9g(6). To take advantage of this property, we define function of t and sincel’ andY , are the average rates at
whicht and ¢ accumulate as a functions if
6_ r_ )
T=Tw, Ti=Ton; (3.16 Qu=Y,IT. (3.26
@le@kO, Ol=d,. (3.17 The other frequencies are likewise related:

Using the complex conjugate relations and E¢s16 and
(3.17, we rewrite the double sums appearing in the Fourier Q,=Y,IT. (3.29
expansiong3.1) and(3.10 as a pair of single suni4.8]:

When performing a harmonic decomposition of any func-
tion, we will want to work in terms of the angleg!

0

—=T(r,0)=I+ >, (Tie Yo +c.c) =Y;\, for j=r,0,¢, and the average accumulated tire
d\ =1 | .
=I'\. In terms of these variables,
. ; 0 \Why = 0\ f
+ Z (Tge_er)\‘f‘C.C.); (318) t(IW W ) T+At(W "W )a (329)

=t d(W? Wl w)=w?+Ap(w? w, (3.30
d - where
df P, 0)=Y,+ 2, (e Y tcc)

. At(wlwh= >, (Atle '+ c.c)
) k=1
+> (Pre ™ icc).  (3.19
n=1

+> (Atte"™'ycc);  (3.3)
The “c.c.” means the complex conjugate of the preceding n=1
term. We have pulled thie=0, n=0 terms out of these sums

and defined Apwlw)= (Agfe W +c.c)
k=1
F:Too, (32@ w
+ Agle ™ rce). (3.3
Y = Do, (320 2 (A, ). (332
These numbers tell us about the secular, average rate at Putting all of this together, the Fourier expansion coeffi-
which ¢ andt accumulate with respect o [19]. cientsf,, of any function of the fornf[r(\),8(\)] is
Using these results, it is simple to integrate #(f\) and
. - 2w 2m
t()\)- fkn (2 dw dwef[r(w) 0(W0)]el(kw +nw)
a
t(N)=N+At(N), (3.22 (3.33
BN =Y A +AGN). (3.23 It is useful to note that the worldling” can be reorga-

nized in a similar form, separating the oscillations from the

We have choset(\ =0)=0= ¢(\=0), and defined secular accumulations:

B . Z°(N) =2z N) +AZYTr(N),6(N)], (3.39
At()\)=k21 (At;fﬁ‘_iwf’h-i-C.C.)+n§1 (Athe ™Y +c.c); wherezZ,(\)=(I'\,0,0Y 4\), and where
(3.29 Azr,0]=[At(r,0),r,0,A¢(r,0)] (3.35
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can be expanded using the simple Fourier coefficients de-
scribed by Eq(3.33 with f=z% This leaves the worldline kE frnd(w—Qypn)
in the desirable form "

1 o0
i =5=| ANMTLr(n), 000 1f[r (M), 6(N)]
Z(N)=2Zged M) + kE Azge (Yot nYOh (336 ZWJW {

X eiwAt()\)}ein)\

By making use of Eq(3.36), even rather complicated func- 1 (= _
tional forms turn out to have a straightforward harmonic de- = —f dANF[r(N),0(N), w]e' ™. (4.5
scription. 2m) -

We next wish to insert the Fourier expansion of
IV. CONVERTING FOURIER EXPANSION COEFFICIENTS FLr(N\),6(\),w] under the integral. We first write this func-

There are two ways of Fourier expanding a function of thetIon in terms of the angle variables:

form f[r(t),6(t)] which are essentially equivalent: we can . '
expan(EI i(n)ob(se)gver time Y e FWl, W', w)=TLr(w"), o(w’)]el S W fr (wh), o(w?)].
(4.6)

f[r(t),ﬂ(t)]=k2 fkne—iﬂknt; (41) The eXpanSion Oﬂ:[r()\),ﬂ()\),w] is

— =Y aph 4.
or, we can expand in Mino timg, FIr0), 600, ] % Fanlw)e ’ @.7

h
f[r()\),e()\)]=; frpe Yt (4.2 wnere

1 2m 2m . I
Fap(w)= —Zf dwrf dw"f(w",wr,w)e'awﬁe'bw.
We have defined (2m)<Jo 0

(4.8

Qin=kQ, 400, Inserting expansior4.6) into Eq.(4.5), we find

Y, =KY,+nY,. (4.3 1 (= |
kn 0 r E fkn5(w—an)=EJ’ d)\z Fap()e T~ Yah
kn

—x ab
From the standpoint of measurable physics, the expansion

(4.1) is more interesting—the componerftg, tell us about

the harmonic structure of as seen by distant observers. =2 Fap(@) (ol =Y 4p),
However, the expansiof.2) is far more accessible—using ab

Eqg. (3.33, it is straightforward to compute the expansion

components,,. In this section, we show how to convert the =T 1Y Fan(0)S(w—Qyp),
accessible componenfg,, into the measurable components ab
frn-
We begin by taking the Fourier transformfgfr (t), 6(t)]. =r-> Fur Qap) (0 — Qp).
Using Eqg.(4.1), we have ab
4.9
1 (= . . . . .
> fnd(w— Q)= 2—f dtfr(t),6(t)]e'", Equating the left-hand sides and right-hand sides, we read off
kn TJ) -
frn=Fin( Qi) /T (4.10

1 (> dt ‘
=-—| drx—f[r(N),08(N)]e et _ _ _ . .
277J_0c dn [r(h), 600)] We use this form of the Fourier expansion coefficients in all

of our calculations.

(4.9
Our goal is to evaluate the integral on the right-hand side of V. EXAMPLES
Eq. (4.4) and to find an expression relatirfig, to ,,. To do In this section we use the methods described above in two
so, we take advantage of the Fourier expansioni(foy pre-  test cases. We first decompose and reconstruct a simple func-
viously established, Eq3.22). ' . tion of the formf(r, ). We then show how to decompose a
We now insert dt/dA=T(r,6) and gt =gl more complicated function which appears in black hole per-
x e @A) ynder the integral: turbation calculations.
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A. Simple test case L — AR

We now test our prescription by computing the expansion=
coefficients of a test function and showing that the recon-= 05
structed time series agrees with the original function. Ours
test function is{=r cosé, wherer and ¢ are the Boyer- &
Lindquist coordinates. Our calculations are actually per-5 —0-5
formed using the tips given in the Appendix. In particular, 4
we map the radial coordinateto a coordinate/ defined via

r(t

o
TTT [T T[T [TT I [TITT 7Tt

15 0 5 N I 1 A

pM

=1+s cosy’ D E 7

T 0021 E

a reparametrization commonly used in Newtonian orbital dy-2 5, | E

namics [20]. Whereasr oscillates from periapsigr pe; & g 1

=pM/(1+e)] to apoapsigr,=pM/(1—e)] and back,y E o \ ‘ E

winds secularly from ngri_apsi$ to m (apoaps_i}s.and be- S 01 [ ‘ / 3

yond. We truncate all infinite sums at some finite vaNie & E | | i W/ W \ | ]

discussed below. We also map thenotion to a coordinatg = 002 | | i v ! x \W E
via 0 500 1000

t/M

cosf=+z_(a,E,¢) cosy, (5.2
FIG. 1. The function{(t)=r(t) coga(t)] for orbits about a

wherez_(a,E,.) is one root of a quadratic equation defined Plack hole witha=0.9M, and with parameterp=3, £=0.2, «

in Appendix. The inclination angle relates the angular mo- =20°. Top panel shows this function computed directly from the
mentumL, to the Carter constar@: geodesic equationsolid black ling as well as the time series con-
2 :

structed using Eq(4.10 (dotted line; red in color versionin the
reconstructed time serie§.{t), we have truncated the infinite

_ L, 53 sums atN=1. We find remarkably good agreement despite the
cost= \/LZT (5.3 small number of terms kept in the sum. The bottom panel shows the
:+Q fractional residual] {(t) — {;edt) 1/ {max, fOr several values oN.

) ) ) o The largest differenceged in color versiop are for N=1, and
Although ¢ is not quite the geometrical angle describing anhaye a magnitude of about 0.025. The next larggeten in color
orbit's excursion from the equatorial plane, it is closely re-yersion are forN=2 and have a magnitude of about 0.003. The
lated, and has other convenient propertgse, e.g., Ref21]  smallest differencetblue in color versionare forN=3 and have a
for further discussion magnitude of about 0.0002.

It is worth noting that the parametrizatiais.1) makes
manifestly clear that the radial motion has a slowly converg-
ing Fourier expansion for large eccentricity. Using the bino-
mial expansion,

Figure 1 compareg(t) and {,.{t) for an orbit with p
=3, £=0.3, t=20°; the black hole’s spin parameter
=0.9M. The reconstructed timeseries converges{b)

@ rather quickly: even when the infinite sums are truncated at
r=pME (—1)"" cod'y. (5.4) N.=1, the maximum deviation is only a fgw percent.; the
n=0 difference betweerd(t) and {,{t) for N=1 is barely dis-
cernible on the plot. The convergence is quite a bit slower
The amplitude of radial harmonitis roughlye smaller than ~ whene =0.6. The motion shown in Fig. 2 is for an orbit with
the amplitude of harmoniai—1. When we truncate our p=4, £=0.6, and.:=50°. The timeseries is within 2% of
sums at some finite valud, we expect that a reconstructed ¢(t) whenN=4; reducing the error by a further factor of ten
time series will have a fractional error of ordel™? (the  requires increasindy to 8. It is worth noting that, even when
amplitude of the next neglected coefficientience, many the amplitude error is relatively large, the phase alignment of
harmonics will be needed asapproaches 1. This slow con- ¢,(t) with {(t) appears to be very good. This bodes well for
vergence has been noted in studies of gravitational radiatioproblems that rely on an accurate phase match between data
reaction on eccentric black hole orbf2,23. and a modelor template.

The top panel in Figs. 1 and 2 show the functidft) Notice, in both Figs. 1 and 2, that the differences between
computed in two different ways. The solid black line shows/(t) and the reconstructed time series aot precisely peri-
{(t) constructed by direct integration of the geodesic equaedic: the wiggles in the lower panels of these figures do not
tions; the dotted lindred in the color versionshows{(t) repeat themselves regularly. This is a manifestation of the
reconstructed from a Fourier expansion using @dL0. The  quasi-periodic nature of the orbital motion. As more terms
lower panel of these figures shows the fractional residualare kept in these sums, we are more successful at capturing
[£(t) = Lred) 1/ Emax, Where {{t) is the reconstructed this quasiperiodic motion, and the magnitude of these
timeseries and 2= ma;COmin - wiggles quickly becomes small.

044015-6



ROTATING BLACK HOLE ORBIT FUNCTIONALS IN . .. PHYSICAL REVIEW D69, 044015 (2004

where the angular functio8 is a spin weighted spheroidal
harmonic, and the radial functidRis a solution of a second
order ordinary differential equation known as the Teukolsky
equation(see Refs[10,22-27 for a detailed discussion of
the Teukolsky equationThe subscripf on the coordinates is
a reminder thattg ,r;,0;,¢;) denotes a field point. Coordi-
nates without the subscript will refer to the location of a
body orbiting the black hole. We will now rewritg, com-
pletely in terms of sums, eliminating the need for the integral
t/M over w.
: R The radial function can be written in the forfa2—26

r(t) cos[6(t)]/M
o
T 1 1 [ L ‘ L ‘ L

PRI NI N N AR RAVE BRI

o -
o
o
o
o
[av)
o
o
o

0.02 -
TN T A T T T Y A IR ) )
2 oot | “MJ. N‘ /JW ‘ﬂ’n\ ’U\ }‘ﬁ wﬂ\ i ‘v“ﬂ'\ ,(}'\ ‘M (\]H M = Rim(r¢,@)=Zin(re,0)Ri(re @)+ Zin (1, 0)Ri (T o),
g \w “J“\ w\ﬂ il W‘ | VJ\ MUM INITARLRE 5.6
= L Pl bt b o Tl ARt M| e —
s ° E w [ ‘u) W w ‘ f \ F \n(‘ H“ l“ | w‘r‘ I \ | \'\ | 1 whereR}}"(r¢, ) are the two independent solutions to the
SootE || | ‘} w\“v \ \’m‘ M I H \"N h‘w\j N | J“‘ 1 source-free Teukolsky equation and where the functidns
i E U‘\‘ [ N A { J\J 01 are

—0.02 = | L : L L | J“ J‘ 1 L: ]\ I d\ L -

0 1000 2000 .
t/M zrm(rf,w):f dtelet=meMIr I'r(t),0(t),r¢,w]
FIG. 2. The function{(t) for orbits about a black hole with (5.7

=0.9M and with parameterp=4, £¢=0.6, :=50°. Top panel . .
shows this function computed directly from the geodesic equationfo" *=H,%. The function Iy, [r(t),6(t),r;,«] depends
(solid black ling plus the time series constructed using E§10  upon the orbital worldline of the body perturbing the black
(dotted line; red in color versionWe have truncated sums in the hole spacetime. See R¢R3] for discussion in the case of a
time series aN=4. We begin to see the need to keep a largePody in an equatorial, eccentric orbit; see Rf] for the
number of terms at this relatively large eccentricity. The bottomcase of a body in an orbit that is inclined but of constant
panel shows the fractional residual for several valuedNoffhe  radius. (The general case, for orbits that are inclined and
largest differencegred in color versionare forN=4, and have a eccentric, is in preparatiof27].)

magnitude of about 0.02. The smaller differenégseen in color We next rewrite Eq(5.7) as an integral ovex

version are forN=8 and have a magnitude of about 0.002.

z,*m(rf,w)zf dre [t =meMIT> Tr(N), 0(N),r¢, o],
(5.9

B. Black hole perturbations

We now apply these techniques to a problem taken from
black hole perturbation theorj10]. Our goal is to under- b ore7* —1* Gy/d). Now we insert Eqs(3.22 and(3.23
stand how to decompose a complex functignwhich de- into Eq 'E“S 8)”20 that we have
scribes how a small body perturbs the spacetime curvature o? T
a Kerr black hole. Fromy,, one can extract information
about gravitational-wave emission and radiative backreaction Z; (rs ,w)=f d)\e‘[“’”‘mYWJTm[r(x),0()\),rf ,],
on small compact objects orbiting massive black holes— (5.9
extreme mass ratio binaries. When frequency domain pertur- ’
bation theory is used to study this probley, is expanded | hare
in multipoles and in a harmonic series of the fundamental
orbital frequencies. The gravitational waves generated by the j» [F(V),000),F,@]=T5[F(N), 000,11, o]
system and their backreaction onto the orbit can then be ex-~'™ ’ n m ' n
tracted from that harmonic/multipolar expansion. Aside from X @H{@Atlr(\), 001 =mA[r(r), 01}
being of great interest to the current authors, this example (5.10
nicely illustrates the principles of this Fourier decomposition '
for functionals more complicated than the previous simple . : . N
example. We will not dwell too much on the mathematics ofW'th At andA ¢ given by Egs(3.24 and (3'2.5)' SinceJip,
black hole perturbation theory, but will point the reader todepends ok only throughr(®) and 6(r), it can be ex-
references where appropriate. panded as

The functiony, can decomposed into multipoles [d€)]

Jl*m[r()\)ve(}\)vrf,w]:% erkn(rf,w)efiYkn)\_
w4(tf’rf16f1¢f):p74% deRm](rf,a)) (511)

X Sm( s ,aw)e (M@t (55  Putting this into Eq(5.9) and performing the integral gives
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Zrm<rf,w>=2w12k Tner(T 1, @) (0T =Y )

2 .
= 2 Jmal11:0) 8@~ Qi
(5.12

where
Qin=Y mkn/ L =mQ ,+kQ p+nQ, . (5.13

Finally, when we substitute E@5.12 into Eq. (5.5 we ob-
tain

ba(ts re, 0, )

1 .
= 4 Z lekn(rf)slmkn(af)e'(m‘#f*()mkntf),
p~ Imkn

(5.19
where
Simkn(0r) = Sim( 0,2 min)
Rimke(T 1) = Zimke T 1) Rin(T Qi)
+ Zikn(F ORI £ Qi)
Zroknl 1) =273 (T, Qi) /T (5.15

VI. CONCLUSION

PHYSICAL REVIEW B9, 044015 (2004

construct, in the adiabatic limit, the inspiral worldlines and
waveforms followed by bodies spiraling into massive black
holes.
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APPENDIX: PRACTICAL EVALUATION OF THE KERR
GEODESICS

In this appendix, we present some useful tools for han-
dling functions of Kerr geodesics. A difficulty often encoun-
tered in evaluating these orbital motions is due to the pres-
ence of turning points in the motion: as the radial motion
approaches periapsis and apoapdis/d “time” passes
through zero and switches signegardless of which time
variable one usesAs the derivative approaches zero, one
typically finds in a numerical evaluation that small stepsizes
are needed to resolve the changing derivative; precision can
be badly degraded in this case. Theoordinate exhibits a
similar behavior due to the turning points 6f,, and
~ Omin-

A simple way to solve this behavior is to work with a
functional form that automatically builds in the correct be-
havior as the turning points are approached. We first describe

With the techniques described in this paper, it should nowthe transformation used to describe tthenotion. The core
be a relatively simple matter to describe functions of Kerridea of this transformation has been known for quite some
black hole orbits in the frequency domain. Although the mo-time [29], and has been used extensively in work on circular

tion is not truly periodic with respect to observer timét is
periodic with respect to Mino tima. It is thus quite simple
to represent functions using frequenciegonjugate to Mino
time. By using the fact that observer tinhés itself periodic
with respect to Mino time(after subtracting the secularly
growing contribution, it is straightforward to convert the
\-Fourier expansion into &Fourier expansion.

Kerr black hole orbitq26]; it turns out to be particularly
simple to use when studying geodesics parameterized by
Mino time. We then show a simple transformation that
greatly simplifies the description of the radial motion. This
transformation has also been used quite a bit in previous
work [22,23, but is worth discussing in the context of the
Mino-time parametrization.

As discussed in Sec. |, these techniques could find useful

application to a variety of astrophysical problems involving

1. Motion in @

Kerr black holes. One that is of particular interest to us is the _ _ _ _ o
problem of describing gravitational-wave emission from ex- We begin transforming thé motion by first defining the

treme mass ratio binarig22—-26§. Such systems are ex-

pected to be observable for future space based gravitational

variablez=cog6. Equation(3.2) becomes

wave detectors. It should now be fairly straightforward to dé . \/Zz[az(l—Ez)]—Z[Q+ L2+a%(1-E?)]+Q

extend current black hole perturbation theory codes to handle &z -

1-z

the very interesting case of generic orbits—binaries in which

torial plane and non-zero eccentricitg7]. If we had been

the small body has both inclination with respect to the equa- \/ﬁ(z+ -2)(z_—-2)
=

unable to exploit the discrete harmonic structure of these

1-z (A1)

systems, such a generalization would have had an enormous
computational cost. Combining that analysis with a schemé&he plus sign corresponds to motion frafg;, t0 7m— O in,

to compute the evolution of the Carter constarging a rig-
orous computation of a self fordd 3], or perhaps using a
cruder approximatior{28]), it should then be possible to

and vice versa for the minus sign. We have defingd
=a?(1—E?); z.. are the two roots of the quadratic in the top
line of Eq.(Al).
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We next define the variablg: z=z_coSy. As y varies By combining Egs.(3.8), (A3), and (A7) it is trivial to
from O to 2, 6 oscillates through its full range of motion, change variables so that integrals wf become integrals
from 6, t0 77— 6, @and back. Examiningz/d6 anddz/dy over y:
we see that

w’/(x)=Y g\ (x); (A8)
j_X: 1~z Og)(S’IT' dw? Y dn 27 1
o Vz —7 ! oy T
= dy ’dx Ay JB(z. -z cody)
1-z
_ 1
i T<y<2m. (A2) m (A9)

T KV Iz0) V1-(z Iz, )c02x

Combining Egs(A1) and(A2), we obtain the geodesic equa- EquationA8) and(A9) are used in our applications to per-
tion for x: form all integrals with respect to the angle variaklé.

dyx 2. Motion in r
an_ VB(z4~2)

We use a similar trick to simplify the radial motion. First,
=\B(z,—z_coSy). (A3)
pM

we reparametrize the instantaneous orbital radius as
Using Eq.(A3), it is straightforward to find\ for all y. =1t cosy
First, define

(A10)

Such a reparametrization is commonly used to study Keple-
1 rian orbits in Newtonian theor20]; though relativistic or-
No(x)=—[K(Vz_lz,)—F(7l2— x,Nz_1z,)]; bits are not closed ellipses, the for@A10) remains very
VBZy useful. The parameter can thus be interpreted as the eccen-
(A4) tricity, ¢ as the orbital anomaly, anglas the semilatus rec-
tum. As ¢ varies from 0 tormr, r varies from periapsi&losest

note that approach to apoapsigfurthest distance
No(712) = —— K (N7 T20) (A5) M ALL
T = _ . e
0 J5z. - Mperi= 174 (A11)
In these equations, the functidh(¢,k) is the incomplete _ pM A12
elliptic integral of the first kind, and (k) is the complete Fap™ 1-¢° (A12)
elliptic integral of the first kindusing the notation of30]). ) )
Then, To proceed, we must do some massaging of the function
R(r) defined in Eq.(2.1). It is a quartic function ofr, and
Ax)=ho(x) Osx=m/2 thus has 4 roots:
5 R(r)=(E2=1)r*+2Mr3+[a%(E*~1)-L:-Q]r?
= \/IBTK(\/Z,/ZJr)—)\O(ﬂ'—X) m2<y<m +2M[Q+(aE-L,)?]r—a2Q
n
=(1=E?)(ri—r)(r—ry(r—ry)(r—ry). (Al3)
2 . o : .
= K(Vz_lz )+ No(x—7) w<x<3mwl2 The second line of Eq(A13) is written in a way that is
Bz, manifestly positive for bound orbitsE(<1). The roots are
ordered such that;=r,=r;>=r,; bound motion occurs for
4 r{=r=r,. From these definitions, it is clear thai=r,,,
. K(Vz_/z.)—No(2m—x) 3ml2<y<2m; a},]drzzrzpeﬁ_ ap

VBZ,

The radiir; andr, do not correspond to turning points of

(A6) the small body’s motion, but of course still represent zeros of
also the functionR. (In fact, r, is typically inside the event hori-
zon; whenQ=0 ora=0, r,=0.) It turns out to be useful to
4 remap these radii as follows:
A,y= \/_K(\/z, 1z.). (A7) psM

Bz r5= T (A14)
This form of A, is perfectly well behaved even for orbits
that are confined to the equatorial plarég,{,= 7/2); this is - paM (A15)
not the case for the original forit8.7). T 1+4e”
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This remapping is simply for mathematical convenience; the parameieand p, have no particular physical meaning.
It is now a simple matter to derive the geodesic equation/for

dyy M1-E’[(p—ps)—&(p+pscosy) )" (p—ps)+&(p—pscosy) ]

dn 1-¢2
=P(y). (A16)

As with the y reparameterization of thé motion, it is  This form of A, is well-behaved in the limit of circular or-

straightforward to find\ (¢) using Eq.(A16): bits.
Finally, we use these results to convert integrals aver
(v dy’ into integrals overy: combining Egs.(3.8), (Al6), and
o P(lﬁ'). (A17) (A18), we have
In our applications, we evaluate this integral numerically. It W () =Y N(); (A19)
is possible that an analytic form could be found in terms of .
elliptic integrals(though it appears to require more algebraic dl—Y d_)\
fortitude than these authors could mugtén any practical dy ~"dy
application, it is unlikely that such a form will be more use-
ful or accurate than a numerical evaluation of E417). o7 1
i i =——_—. A20
Note in particular that A, P()) (A20)
= FW dl (A18)  We use Eqs(A19) and (A20) to perform all integrals with
o P(y') respect tow'.
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