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Two-dimensional quantum-corrected black hole in a finite size cavity

O. B. Zaslavskii*
Department of Mechanics and Mathematics, Kharkov V.N. Karazin’s National University, Svoboda Square 4, Kharkov 61077, U

~Received 28 August 2003; published 17 February 2004!

We consider the gravitation-dilaton theory~not necessarily exactly solvable!, whose potentials represent a
generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such
theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity
the field is in the Boulware state. We calculate quantum corrections to the Hawking temperatureTH , with the
contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the
system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The
quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We
discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays
a crucial role in some theories~e.g., Callan-Giddings-Harvey-Strominger!, where it enables us to define the
stable canonical ensemble, whereas consideration in an infinite space would predict instability.

DOI: 10.1103/PhysRevD.69.044008 PACS number~s!: 04.70.Dy, 04.60.Kz
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I. INTRODUCTION

Two-dimensional~2D! dilaton gravity serves as an exce
lent tool for studying~at least, on the semiclassical leve!
quantum effects in gravitation and constructing the protot
of ~yet unfinished! 4D quantum gravity. In the first place,
concerns black hole physics, where string-inspired mod
@1# became very popular during the last decade and ena
us to trace in the simplified context many effects, typical
4D black hole physics, such as black hole evaporation, t
modynamic features, etc.~for reviews see, e.g., recent pape
@2,3#!. On the other hand, studies in 2D black hole phys
revealed the fact that, in some aspects, such theories
rather unusual and open new interesting possibilities, ab
in general relativity and deserving treatment on their ow
For example, the Hawking temperatureTH in the classical
Callan-Giddings-Harvey-Strominger~CGHS! model and
some of its semiclassical generalizations is a constant,
depending on the horizon radius. This makes the questio
black hole thermodynamics, which is one of the most imp
tant black hole features, quite nontrivial. First, as pure cl
sical thermodynamics is poor for such systems, quan
back reaction and the corresponding quantum correction
the Hawking temperature become crucial for the calculat
of the heat capacity. Second, even with quantum back r
tion taken into account, some models that include a w
family of exactly solvable ones still exhibit no quantum co
rections toTH . To obtain substantial thermodynamics, o
should take into account that for self-gravitating system
finite size can be crucial in carefully constructing the cano
cal ensemble@4#. We will see below that the competitio
between these two factors, small quantum corrections
large ~but finite! spatial size, may lead to well-defined the
mal properties even in situations when the pure classical
proach gives no sensible answer.

The issue of the finiteness of the system has one m
aspect. Consider a black hole enclosed inside a reflec
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shell ~that, in the 111 case, represents a point! in thermal
equilibrium with its Hawking radiation. If the shell is perfec
all Hawking radiation is concentrated inside and no radiat
comes outside. However, the entire object ‘‘black ho
1radiation1shell’’ curves spacetime and serves as a sou
of gravitation field outside. In turn, this leads to the appe
ance of quantum stresses even in an otherwise empty sp
In other words, the field state is supposed to be the Har
Hawking inside the shell and the Boulware one outside. U
ally these states are opposed in the 4D world, where the
state is attributed to a black hole, while the second one
responds to a relativistic star. However, the boundary effe
may lead to their overlap and, thus, the Boulware state
comes relevant for black hole thermodynamics, so this ef
deserves attention on its own.

The quantum corrections toTH were calculated in@5# for
the black hole in the Hartle-Hawking state for the particu
case of the CGHS model, but the contribution of vacuu
polarization was neglected there~that looks quite reasonable
if a boundary is situated sufficiently far from the horizon!.
Recently, these corrections were considered in@6# ~in the
quite different approach! for a slowly evaporating black hole
in the Unruh state. The results differ by the sign that seem
affect the sign of the heat capacity in an infinite space. T
prompts us to consider the issue of stability carefully, w
proper account for the finite size of the system. We will s
that the stable canonical ensemble can be defined even i
cases when consideration in an infinite space would give
negative heat capacity.

The paper is organized as follows. In Sec. II we list ba
equations, governing the gravitational-dilatonic system w
minimal fields, and, by considering quantum back reaction
perturbation, derive the quantum corrections to the Hawk
temperature in an infinite space. This generalizes our pr
ous result which was obtained for the particular case of
CGSH model. In Sec. III we consider a black hole, enclos
inside a perfect reflecting shell, outside of which the qua
tum field in the Boulwars state, heated to some temperat
For exactly solvable models we find the modified Hawki
temperature exactly, for a generic model we find the m
©2004 The American Physical Society08-1
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quantum corrections. In Sec. IV we analyze the canon
ensemble and its stability with account for both quant
back reaction and finiteness of the system. We also dis
briefly the case of the microcanonical ensemble. In Sec
we summarize the main results.

II. QUANTUM CORRECTIONS TO HAWKING
TEMPERATURE IN AN INFINITE SPACE

Let us consider the system governed by the action

I 5I gd1I PL , ~1!

where the gravitation-dilaton part

I gd5
1

2pEM
d2xA2g@F~f!R1V~f!~¹f!21U~f!#,

~2!

I PL is the Polyakov-Liouville action incorporating effects
Hawking radiation of minimal fields and its back reaction
spacetime for a multiplet of N conformal scalar fields~we
omit boundary terms in the action!. As is known, it can be
written down in the form

I PL52
k

2pEM
d2xA2gF ~¹c!2

2
1cRG , ~3!

k5
\N

24
. The functionc obeys the equation

hc5R. ~4!

Varying the action with respect to the metric, we get

dI 5
1

4pE d2xA2gGmndgmn50. ~5!

For static spacetimes~with which we are dealing with in
this paper! in the Schwarzschild gauge

ds252 f dt21 f 21dx2, ~6!

field equations take the following explicit form@see, for ex-
ample, Eqs.~23! and ~24! of @7##:

G0
052 f

]2F̃

]x2
1

] f

]x

]F̃

]x
2U2Ṽf S ]f

]x D 2

50, ~7!

G1
15

] f

]x

]F̃

]x
2U1Ṽf S ]f

]x D 2

50. ~8!

Here

F̃5F2kc,Ṽ5V2
k

2 S dc

df D 2

. ~9!

In what follows we will use notationsU54l2u for the
potential andz5lx for a coordinate. It is also convenient t
take the sum and difference of Eqs.~7! and~8! that gives us
04400
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F ]2F̃

]f2
2ṼG S ]f

]z D 2

1
]F̃

]f

]2f

]z2
50, ~10!

4u5S f
]F̃

]f

]f

]z
D

,f

]f

]z
. ~11!

In the conformal frame

ds25 f ~2dt21ds2! ~12!

we have (y[ls)

F ]2F̃

]f2
2Ṽ2 f 21

] f

]fG S ]f

]y D 2

1
]F̃

]f

]2f

]x2
50 ~13!

and

4u5 f 21
]2F̃

]y2
. ~14!

In what follows we will dwell upon the string-inspired
models of the form

F5exp~22f!1bkf, V54 exp~22f!1ck,

u5exp~22f!. ~15!

Then the solutions of Eqs.~4!, ~10!, and~11! @or ~13!, ~14!#,
regular on the horizon of a black hole, in the main appro
mation with respect tok look like

c522f1O~k!, ~16!

z52f1
k

4
e2fS 12

c

2D , ~17!

f 512a exp~2f!1k exp~2f!H q

2
@12a exp~2f!#

1S 12
c

2DfJ . ~18!

a5exp~22f1!1kf1S 12
c

2D . ~19!

TH5T0F11
k

2
exp~2f1!qG , T0[

l

2p
. ~20!

whereq5b1c/211.
It is seen from Eq.~20! that, classically, the Hawking

temperature is a constant and all dependence on the ho
position arises only via quantum corrections. For the CG
modelc505b, q51 and we return to the result that can b
obtained by the limiting transitionfB→2` from Eq. ~18!
of Ref. @5#. If

b52~d21!, c52~122d!, ~21!

that is equivalent to
8-2
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q5b1
c

2
1150, ~22!

the model becomes exactly solvable@8# and reduces, in par
ticular cases, to the RST (c50, b521) @9# or BPP (c
52, b522) @10# ones. In this case quantum corrections
the Hawking temperature vanish in accordance with ob
vations made in@11# and @12#.

III. MATCHING HARTLE-HAWKING AND BOULWARE
STATES AND ROLE OF BOUNDARY

In the 111 world, a ‘‘shell’’ represents a point. If it is
present, field equations modify to

Gm
n 5Sm

n , ~23!

whereSm
n is a dimensionless stress-energy of the shell, c

taining only delta-like terms. We assume that quantit
y, f , f, F̃ are continuous across the shell, while first deriv
tives ]F̃/]y may experience jumps. Then it follows from
explicit expressions~7!, ~8! or ~10!, ~11! that G1

1 is bounded
across the shell, soS1

150, whereasG0
0 may contain delta-

like singularities:

S0
052md (1)~y2yB!, m[22F S ]F̃

]y
D

1

2S ]F̃

]y
D

2
G ,

~24!

where the parameterm can be regarded as the mass of t
shell, yB is its position, ‘‘1’’ or ‘‘ 2 ’’ means ‘‘yB10’’ and
‘‘ yB20,’’ respectively. The delta functiond (1) is normalized
according to

E dyAgd (1)~y2yB!51, ~25!

where the index ‘‘B’’ refers to the boundary.

A. Exactly solvable case

First, we consider the exactly solvable case, when
coefficients obey the relationship~21!. As is shown in
@12,13#, the metric function, describing a black hole in a
infinite space, is equal in this case to

f 5exp~2f12y!. ~26!

The coefficient in the form off is chosen in Eq.~26! in such
a way thatf→1 at right infinity, where the spacetime is fla

In so doing,

F̃5exp~2y!1F̃1 , ~27!

the index ‘‘1’’ refers to the horizon, which is situated aty
52`, so

f 5exp~2f!~ F̃2F̃1!. ~28!
04400
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Let now a 0-dimensional point-like perfect shell betwe
the horizon and right infinity be situated at someyB . To the
left of the shell, the field is in the Hartle-Hawking stat
while to the right to the shell it is in the Boulware stat
Consider the solution in both regions separately and, af
wards, sew them aty5yB .

First, consider the regiony,yB . We can exploit the al-
ready obtained solution~26! but with the reservation tha
there is a freedom in the choice of the conformal coordin
that preserves the conformal gauge~12!. The coordinatey
can be rescaled asy→Ay, whereA is a constant. Apart from
this, there is also a freedom in translationsy→y1const. For
the solution in an infinite space it was inessential since,
to the conditionf (`)51, it had to be reduced to Eq.~26!.
However, now there is no right infinity in the left region an
such parameters should be kept arbitrary, their values wil
fixed from matching the solutions in two regions~see be-
low!. Therefore now we should write

F̃5F̃ (0)5a exp~2Ay!1F̃1 , ~29!

f l5
aA2

u
exp~2Ay!5

A2

u
~ F̃2F̃1!, ~30!

wherea andA are constants. The Hawking temperature
the metric~12! TH5(1/4p)limy→2` f 21 (d f /dy), so

TH5
l

2p
A. ~31!

Consider now the region to the right of the shell,y.yB .
Now we should take into account that the function is det
mined from Eq.~4! up to the solution of the homogeneou
equation that is proportional toy. Again, we may exploit the
solution in an infinite spacetime, obtained in@13#:

c5c01
g

l
y. ~32!

F̃5F̃ (0)2k
g

l
y, ~33!

whereF̃ (0)5F2kc0 , c0 is bounded on the horizon~for the
exactly solvable under discussionc0522f),

F̃ (0)5exp~2y!2By1E, ~34!

whereE is a constant,

B5kS 12
T2

T0
2D . ~35!

f r5
e2y

u
. ~36!
8-3
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Here T is the temperature of the thermal gas at the ri
infinity. As is shown in@13#, the constantg is connected with
T according to

g52lS T

T0
21D . ~37!

The attempt of applying the above formulas to the reg
near the black hole horizon (y→2`) shows that the quan
tity c diverges there and so does the Polyakov-Liouvil
stresses@14#. However, this problem does not arise no
since the region, in which these formulas are valid, is
stricted by the conditiony.yB and does not include th
horizon.

On the boundaryf l(fB)5 f r(fB), whence

a5A22exp@2yB~12A!#. ~38!

E5~ F̃B
(0)2F̃1!~12A2!1ByB1F̃1 . ~39!

Calculating the difference@(]F̃/]y)12(]F̃/]y)2# and re-
membering Eq.~24!, we obtain

2 exp~2yB!F12
1

AG2B̃12
m

2
50, ~40!

B̃5B1
g

l
k52

kg2

4l2
52kS 12

T

T0
D 2

. ~41!

Substituting exp(2yB)5A2(F̃B2F̃1), we obtain the equation

A22A2
B̃2m/2

2~ F̃B2F̃1!
50, ~42!

A5
1

2 S 11A12
2uB̃u1m

~ F̃B2F̃1!
D , B̃52uB̃u. ~43!

We choose the root of the quadratic equation for wh
A51, whenk505m.

It follows from Eq. ~43! that Amin5
1
2, whenm5F̃B2F̃1

12B̃. If m.0, 1
2 ,A,1. Quantum effects for the tempera

ture are compensated by the shell mass ifm52B̃,0. In the
limit yB→`, when F̃B→`, quantum corrections tend t
zero: DTH /T.21/2(uB̃u1m/2)/(F̃B2F̃1). It is seen from
Eq. ~43! that both the quantum effects and the shell with
positive mass tend to cool a system.

From the expression~43! it follows the restriction on the
position of the shell that cannot be placed too close to
horizon, if we want to maintain thermal equilibrium insid
the shell and the Boulware state, heated to the temperatuT,
outside:

F̃B2F̃122uB̃u2m.0. ~44!

As the Riemann curvatureR52l2/ f d2ln f/dy2, it follows
from Eqs.~26! and~24! that for the exactly solvable mode
the delta-like part of the curvature is equal toRs
04400
t

n

-

-
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5@ml2/F̃8(fB)#d(1)(y2yB). Therefore for a massless shell th
geometry is smooth across the shell.

B. Generic case: Perturbative approach

Now let the system be of the type~15! with generic coef-
ficients, not necessarily obeying the condition of exact so
ability ~22!. Then the explicit formulas can be obtained pe
turbatively ink, matching the solutions to the left and to th
right from the shell, following the same line, as in the pr
vious case. In so doing, we retain only terms of the zero
first order ink. Omitting details of calculations, which ar
rather straightforward, we list only basic formulas. To t
right from the shell the relationship between the dilaton a
spatial coordinate reads

df

dz
5212k

exp~2f!

2 S 12
c

2
2

D

12k exp~2f! D , ~45!

the metric function has the form

f 512k exp(2f)1k exp(2f)H q

2
[12k exp(2f)]

1S 12
c

2
2D Df1

D

2
ln(12k exp(2f)J , ~46!

D52
g

l S 11
g

4l D512
T2

T0
2

. ~47!

In the exactly solvable caseq50,

f 512k exp~2f!1kF ~b122D !f exp~2f!

1
D

2
exp~2f!ln 12k exp~2f!G , ~48!

that can be also obtained directly from Eq.~34!. If D50, Eq.
~18! is reproduced.

To the left from the shellf 5A2 f̃ , wheref̃ is given by Eq.
~18!.

Matching the solution in two regions, we obtain from E
~24!

A5
1

2
@11A12~m12kuD̃u!/Q#,

Q5@exp~22fB!2exp~22f1!#1
k

2 S 12
c

2D ~fB2f1!,

uD̃u5S 12
T

T0
D 2

. ~49!

For the massless shell, with the same accuracy~with terms
k2 and higher discarded!

A512
kuD̃u
2Q

, ~50!
8-4
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TH5T0~11k«!,«5
q

2
exp~2f1!2

uD̃u
2Q

. ~51!

For the CGSH modelb505c, q51, for T50 (uD̃
u51) in the limit ufBu@uf1u, neglecting the term
exp(22f1) in the denominator, we obtain that«
5 (q/2) exp(2f1)21

2 exp(22fB) that coincides with Eq.
~18! of @5#.1 If q.0 and the shell is placed atfB such that
exp(22fB)5exp(22f1)(11 uD̃u/q), the boundary and ordi
nary quantum corrections mutually cancel.

IV. ENERGY, ADM MASS, AND CHOICE
OF BACKGROUND

From the physical viewpoint, the perfect shell conside
in the previous section realizes microcanonical bound
conditions that fixed the energy~cf. @15#!. Meanwhile, an-
other physically relevant type of condition demands fixi
the temperature rather than the energy, thus defining the
nonical ensemble. This case is also discussed below. I
doing, the correct definition of thermal quantities, such as
energy, heat capacity, etc., can be obtained with the hel
the Euclidean action formalism, with account for the finit
ness of the system that, in particular, needs specifying the
of boundary data. Generalizing expressions for class
gravitation-dilaton systems@16#, one can write down the en
ergy of the quantum-corrected one as@14#

Egd52
1

p
S dF̃

dl
D

B

52
l

p S dF̃

df

Af

z8
D

B

[22T0S dF̃

df
Af

]f

]z
D

B

.

~52!

For exactly solvable models@see Eq.~2.7! of Ref. @12##

dz

df
5F̃8

exp~2f!

2
. ~53!

Here the common factor in the right-hand side of Eq.~53! is
chosen, for the models~15!, to give z52f1const ~linear
dilaton vacuum! at the right infinity, where spacetime is fla
Thus for exactly solvable models we have

Egd524T0exp~22fB!Af B. ~54!

In general, the energyE is measured with respect to som
background whose contributionE0 is to be subtracted from
Egd , soE5Egd2E0. In @11# two reference points were con

1It was stated in Ref.@5# that the shell should be inevitably ma
sive to maintain equilibrium, whereas in the present paper we m
tion a massless shell (m50) while comparing the results. There
no contradiction here since these statements refer to different q
tities. It follows from Eq.~24! that the mass is a linear functional o

the quantityF̃5F2kc and, correspondingly, can be spited in tw
parts—mF , connected withF ~the gravitational-dilatonic one! and
mc , connected withc ~the Polyakov contribution!. It is just mF

Þ0 which was implied in@5#, while the total summF1mc50
~massless shell!.
04400
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sidered: the classical hot flat spacetime~which is obtained by
putting k50 in the action! and the black hole configuratio
with the singular horizon. We adopt another reference c
figuration: as a background, we choose the ‘‘quasi-fl
spacetime which is close to the classical one but differs fr
it due to the presence of the terms withk in Eq. ~15!. Let me
remind the reader that the parameterk enters independently
both the Polyakov-Liouville action and the definition of th
action coefficients~15!. In the second case it was motivate
by the demand to construct exactly solvable models but n
we relaxed that condition. We discard the first contributi
but retain the second one. To avoid confusion, one may
placek in Eq. ~15! by another small parametert, effecting
the functional form of these coefficients and putt5k after
calculations. Physically, this means that our reference sta
pure classical in the sense that not any quantum back r
tion is present, but the functional form of the gravitatio
dilaton action is the same as for the quantum-corrected c
figuration.

To find E0, we have to solve field equations~10!, ~11! for
these potentials without the contribution ofc, so tilted quan-
tities should be replaced by the usual ones. Then, with te
of the orderk2 and higher neglected, we find

E0522T0SAf
]F

]f

]f

]z D
quasiflat

, ~55!

f 512k
c

2
f exp~2f!1

k

2
exp~2f!~q21!.

~56!

]z

]f
5212k

c

4
exp~2f!. ~57!

Asymptotically, for largeufu, f,0, we obtain

E0524T0exp~22f!1T0kcf1T0k
~c12b!

2
. ~58!

Now the quantityEg2E0 can be identified with the ADM
mass and we have, after asymptotic expansion ofE,

Eg2E05MBH1Mth1M0 , ~59!

MBH52T0Fexp~22f1!2k
c

2
f1G ,

Mth52T0k~f12f!,M05kT0. ~60!

Here the termMBH does not depend onf and should be
identified with the mass of a black hole itself. The quant
Mth represents the contribution of thermal gas at the te
peratureT0. Remarkably, the coefficientsb andc, that char-
acterize the model, are absorbed by these general definit
One can say that not only for the RST model@11# and even

n-

n-
8-5
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not only for a more general exactly solvable model, but
the general case for the family~15!, quantum corrections to
the universal form~59! vanish.

In a similar way, the total entropyStot5SBH1Sth , where
the entropy of the black hole itself

SBH52F~f1!52@exp~22f1!1bkf1#

5
MBH

T0
12k~q21!f1 , ~61!

while the entropy of the thermal gas@11,12,16,17#

Sth~T0 ,f12fB!54k~f12fB!. ~62!

The expression~59! is valid in an infinite space. Now le
a wall be placed atf5fB . Takef5f0 to the right from the
boundary and consider the region between the boundary
infinity. Taking into account Eqs.~45!–~47! and ~37! and
expanding the expression for the energy for large nega
f0, where spacetime approaches its Minkowski limit, w
obtain after simple calculations:

Eg54k~T2T0!24T0exp~22f!12T0k

1T0k@q12D1~c2212D !f#, ~63!

Mtot5MBH1Mth~T0 ,f12fB!1Mth~T,fB2f0!1M0 ,

~64!

Mth~T,f12f2!5
p

6l
T2~f12f2!52k

T2

T0
~f12f2!.

~65!

The formula~64! generalizes Eq.~59! in a natural way: it
includes the contribution of the thermal gas with two diffe
ent temperatures—T0 between the horizon and the wall an
T between the wall and the point of observation. More s
prisingly, vacuum polarization in the Boulware state withT
50 ~when quantum stresses do not vanish! does not give
corrections at all, thus the only contribution of the state o
side comes due to thermal excitations, if the Boulware s
is heated to some temperatureT. This fact can be attributed
to the change of the effective coupling between the curva
and dilaton: the quantityF̃ changes toF̃1k (g/l) y in such
a way that the first term in Eq.~63! cancels the vacuum
contribution.

In Sec. III we obtained that if we want the shell to mai
tain thermal equilibrium inside and the Boulware state o
side, it cannot be placed too closely to the horizon. Now,
general formulas for the energy obtained above enable u
give a rather simple physical interpretation to the cor
sponding restriction on the position of the shell. Let t
quantum state be in the Boulware state (T50, uB̃u5k, D
51) outside. To elucidate the role of different terms conta
ing the parameterk, we consider the case when the restr
tion under discussion is obtained exactly~44!. Taking into
account the explicit expression for the action coefficie
~15!, the conditions of solvability~22!, restoring explicitly
the factor l/p 52T0 so that the mass of the shellM shell
04400
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52T0m, and using the expression for the total mass of bla
hole plus thermal radiationMtot ~64!, we obtain

Mtot8 .Mtot1M shell8 . ~66!

Here M shell8 5M shell13M0, and Mtot8 [2T0[exp(22fB)
2k (c/2)fB] represents the mass of a black hole whi
would form, if thermal radiation completely collapsed, pr
ducing a new black hole with the horizon atf18 5fB . This
horizon would coincide with the radius of the correspondi
111 ‘‘relativistic star,’’ the quantum field outside being i
the Boulware state.

V. CANONICAL ENSEMBLE AND HEAT CAPACITY

In general, for self-gravitating systems the conditions
stability can be different for different types of thermal e
sembles. As far as our gravitation-dilaton system is c
cerned, the stability of the microcanonical ensemble~without
account for boundary corrections! follows immediately from
Eq. ~12! of Ref. @18# ~casea50 in their notations!. The case
of the canonical ensemble is much more subtle since it
mands a simultaneous careful account for the finitenes
the system and quantum back reaction. Let us discuss
issue in more detail.

The canonical ensemble is defined by the value of te
perature and, possibly, some other parameters, which
self-gravitating systems are fixed on the boundary@4#. Ac-
cording to the Tolman relation,

TB5
TH

Af B

, ~67!

whereTB is the local temperature on the boundary. For t
system under discussion the value of the dilatonfB is also
fixed. The region, external with respect to the boundary
now discarded and replaced by a heat bath, so there i
sense in speaking about boundary corrections to the Ha
ing temperature. Nevertheless, the finiteness of the sys
reveals itself, as we will see below, in the dependence of
horizon radiusf1 and thermodynamic characteristics on t
boundary data.

First, we discuss briefly the exactly solvable case. Th
TH5T05const@12#. Then it follows from Eq.~28! that, for
given TB andfB , there is also one rootF̃1 . If the function
F̃(f) is monotonic~for example, this happens to the BP
model!, there is only one branch and one valuef1 . In gen-
eral, this function can have minima and maxima. For e
ample, in the RST model there are two branches of solutio
the upper branchfs,f,` and the lower branch2`,f
,fs , wherefs corresponds to the singularity@11#.

The heat capacity can be found from Eqs.~54!, ~67! ~now
the termE0 does not contribute and can be omitted!:

C5
dE

dTB
54 exp~22fB! f B54 exp~22fB!

T0
2

TB
2
.0.

~68!
8-6
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Of main interest is the region between the horizon a
Minkowski spacetime at infinity, with2`,f,f1 . Then it
follows from explicit expressions~15!, ~28! that in this re-
gion always 0< f ,1. Therefore, ifTB.T0, there is one
stable root. IfTB,T0, there are no roots at all. Thus if th
equilibrium is possible, the system is always locally stab

Consider now the case with generic coefficientsb, c
within the perturbative approach with respect tok. Now, in
contrast to the exactly solvable case, quantum correction
the Hawking temperature do not vanish and an interes
overlap between quantum and boundary effects appears
membering Eq.~20! and differentiating the relevant quant
ties, we obtain

]E

]f1
522

T0

Af

] f

]f1
exp~22fB!F12k

q

2
exp~2fB!G .

~69!

]T

]f1
52

T0

2 fAf
F ] f

]f1
22 f kq exp~2f1!G . ~70!

C54 exp~22fB!

f 8F12k
q

2
exp~2fB!G

f 822 f kq exp~2f1!
, ~71!

where f 85 d f /df1. Let fB→2`, k→0, then in the main
approximation] f /]f1 52 exp(2f22f1).

Writing T/T0 [11a with small, but nonzeroa, we ob-
tain from Eq.~67! the equation

r 222rr 01s50, r[exp~22f1!.0,

r 0[exp~22fB!a, s[kq exp~22fB!, ~72!

where parametersr 0 and s, constructed as the products
small and big quantities, are in general finite. Writing t
solution of the quadratic equation asr 65r 06Ar 0

22s, we
find

C54 exp~22fB!
r 2

r 22s
562 exp~22fB!

r 6

Ar 0
22s

,

~73!

where we took into account thatkfBexp(2fB)!1. Thus only
the root r 1 can correspond to the stable equilibrium. Ifr 0

2

,s, there are no black hole solutions in thermal equilibriu
at all, so the ground state lies in the same topological se
as the flat spacetime. Letr 0

2.s and discuss now particula
cases.

~1! r 0.0, s.0. Then r 1.0, r 2.0. There are two
roots: r 1 is stable,r 2 is unstable.

~2! r 0,0, s.0. r 1,0, r 2,0. There are no positive
roots at all.

~3! r 0.0, s,0. r 1.0, r 2,0. One stable rootr 1 .
~4! r 0,0, s,0. r 1.0, r 2,0. One stable rootr 1 .
04400
d

.

to
g
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Thus in cases~1!, ~3!, and~4! we have the locally stable
black hole solution. Pure classical consideration (k5s50)
would give only one stable rootr cl52r 0, and C
54 exp(22fB).0, C→` for fB→2`. In case~1! the root
r 1,r cl , whereas in case~3! r 1.r cl . According to Eq.~17!,
the spatial coordinatez grows, whenf diminishes. Therefore
in case~1! quantum corrections decrease the horizon rad
whereas in case~3! it slightly increases, as compared to th
classical case. Case~4! is pure quantum and does not exist
the classical domain. Indeed, fork so thats!r 0

2, the root

r 1.
usu

2ur 0u
5

k

2 U q

a U
is proportional to the quantum parameterk.

The Euclidean actionI 5bE2Stot , in the main approxi-
mation (k→0, fB→2`) I 522k(f12fB),0. Thus, if a
black hole solution exists, it is a favorable phase and is sta
not only locally, but also globally. Forq5s50, r 152r 0
and we return to an exactly solvable model.

It is instructive to discuss case~1! in more detail to reveal
the role of the finiteness of a system in the issue of stabi
Let us suppose, for a moment, that we proceed in an infi
space from the very beginning and, substitutingf 51 at in-
finity in Eq. ~67!, identify T5TH . The formula~20! can be
rewritten, in the main approximation with respect tok, as

TH5T0S 11k
T0d

MBH
D ,d5q. ~74!

Then, direct differentiation gives us

C5S dTH

dMBH
D 21

52
MBH

2

kqT0
2

52
4 exp~24fB!

kq
. ~75!

It would seem that the sign of the coefficientd is crucial
in that it determines the sign of the heat capacity and stab
or instability of the canonical ensemble. In particular, dire
application of Eq.~75! or Eq.~18! of @5# to the CGHS model
~for which q.0) leads to the conclusion about instabili
@6#.

However, such consideration does not exhaust all poss
solutions for case~1!. Formally, the quantity~75! can be
obtained from the first equality in Eq.~73!, if the term
r 25exp(24f1) is finite, whereass5kq exp(22fB) grows
for fB→2`. Thenr 2 can be neglected in the denominato
Meanwhile, the point is that in case~1! there existtwo dif-
ferent roots. When a size of a system is large (2fB@1), in
this limit r 0

2@s. Correspondingly, r 1.2r 0 , r 2.s/2r 0

5kq/2a. Thus the rootr 2 does not depend onfB in the
limit of large ufBu, when the boundary is placed in the near
flat region, whereas the rootr 1 itself grows, as it follows
from Eq. ~72!. Therefore the inequalityr 2!s is valid only
for r 2 , but not for r 1 . As a result, the prediction of the
negative heat capacity on the basis of Eq.~75! refers to the
8-7
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root r 2 only which is indeed unstable. However, for the ro
r 1 the horizon radiusf15fB1const approaches infinity in
the same manner asfB does. Therefore, Eq.~75!, the deri-
vation of which tacitly assumes thatuf1u is finite, while
ufBu@1, does not work now. One is forced to use Eq.~73!,
not discarding ther 2 term in the denominator, whence it
seen that the root is indeedstable. In the limit under discus-
sion the heat capacityC54 exp(22fB) looks very much like
in the case of exactly solvable models~68! in spite of the fact
that nowqÞ0. In the limit fB→2` the heat capacity di-
verges, but for any large but finitefB it is finite and positive.

To a great extent, the situation resembles the one
Schwarzschild black holes in the canonical ensem
@4#. Naive application of the formula for the Hawking tem
perature T5(8pM )21 would give the heat capacit
C5 dM/dT528pM2,0 with the conclusion about insta
bility. However, thorough treatment showed that, for a giv
physical temperatureT on the boundary, there exists tw
different positions of the horizon as rootsr 1 and r 2 of Eq.
~67!. The light root r 2,r 1 has the horizon radius 2M
5(4pT)21, when the radius of the boundaryr B→`, and
for it the calculation of the heat capacity in an infinite spa
is justified with the conclusion about instability of the sol
tion. But the heavy rootr 1 itself tends tor B , whenr B→`
and one cannot apply to it formulas in an infinite spa
ignoring the boundary. Careful treatment shows that for t
root the ensemble is stable@4#. In our 2D system also it is the
‘‘heavy’’ root which is stable, whereas the ‘‘light’’ one is
unstable. In both cases~for our system and for Schwarzschi
black holes! one loses the heavy solution, which is mo
important physically, if the presence of the boundary is
nored. On the other hand, the difference between these
situations lies in that this effect manifests itself in@4# on the
pure classical level, while for our case it is relevant only
quantum back reaction is taken into account.
er
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VI. SUMMARY

We considered a generic string-inspired gravitatio
dilaton model that is characterized by numeric paramet
for particular values of which a model becomes exactly so
able. Quantum corrections to the Hawking temperature o
black hole in an infinite space are found. We analyzed a
how the presence of a finite size cavity affects thermal pr
erties of a black hole. Two types of different boundary co
ditions are considered—microcanonical and canonical on
In the first case there is a perfectly reflecting shell that fix
the energy inside. We found how vacuum polarization o
side the shell affects thermodynamics of a black hole ins
the shell and calculated the corrections to the Hawking te
perature due to the shell. As a by-product, it turned out t
the shell cannot be placed as near to the horizon as one l
In the second case the outer space is removed and is rep
by the heat bath. It is shown that the canonical ensembl
well-defined and stable in the wide region of paramete
Accounting for the finiteness of the system is important
the extent that in some cases it alters the conclusion a
instability ~typical of consideration in an infinite space! and
gives stable solutions. In so doing, quantum back reactio
also important. In particular, the type of solution is foun
which exists only due to such a back reaction.

The indirect dependence of black hole thermodynam
on vacuum polarization outside a shell should also be
evant for 4D black holes@19#. In this respect 2D dilaton
gravity revealed itself one more time as a clear and sim
fied tool for understanding overlap between quantum the
and gravitation that occurs in our real world.
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