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Two-dimensional quantum-corrected black hole in a finite size cavity
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We consider the gravitation-dilaton theolryot necessarily exactly solvablevhose potentials represent a
generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such
theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity
the field is in the Boulware state. We calculate quantum corrections to the Hawking temp@&afuséth the
contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the
system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The
guantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We
discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays
a crucial role in some theorigg.g., Callan-Giddings-Harvey-Stromingewhere it enables us to define the
stable canonical ensemble, whereas consideration in an infinite space would predict instability.

DOI: 10.1103/PhysRevD.69.044008 PACS nuni®er04.70.Dy, 04.60.Kz

[. INTRODUCTION shell (that, in the 1 case, represents a pginh thermal
equilibrium with its Hawking radiation. If the shell is perfect,
Two-dimensional2D) dilaton gravity serves as an excel- all Hawking radiation is concentrated inside and no radiation
lent tool for studying(at least, on the semiclassical level comes outside. However, the entire object “black hole
quantum effects in gravitation and constructing the prototypetradiationt+shell” curves spacetime and serves as a source
of (yet unfinishedl 4D quantum gravity. In the first place, it of gravitation field outside. In turn, this leads to the appear-
concerns black hole physics, where string-inspired modelance of quantum stresses even in an otherwise empty space.
[1] became very popular during the last decade and enabldd other words, the field state is supposed to be the Hartle-
us to trace in the simplified context many effects, typical ofHawking inside the shell and the Boulware one outside. Usu-
4D black hole physics, such as black hole evaporation, therlly these states are opposed in the 4D world, where the first
modynamic features, etffor reviews see, e.g., recent papersstate is attributed to a black hole, while the second one cor-
[2,3]). On the other hand, studies in 2D black hole physicsesponds to a relativistic star. However, the boundary effects
revealed the fact that, in some aspects, such theories loakay lead to their overlap and, thus, the Boulware state be-
rather unusual and open new interesting possibilities, abseabmes relevant for black hole thermodynamics, so this effect
in general relativity and deserving treatment on their owndeserves attention on its own.
For example, the Hawking temperatufg in the classical The quantum corrections fB, were calculated if5] for
Callan-Giddings-Harvey-Strominge(CGHS model and the black hole in the Hartle-Hawking state for the particular
some of its semiclassical generalizations is a constant, natase of the CGHS model, but the contribution of vacuum
depending on the horizon radius. This makes the question gfolarization was neglected theftbat looks quite reasonable,
black hole thermodynamics, which is one of the most impor4f a boundary is situated sufficiently far from the horizon
tant black hole features, quite nontrivial. First, as pure clasRecently, these corrections were consideredéh (in the
sical thermodynamics is poor for such systems, quantunguite different approagtor a slowly evaporating black hole
back reaction and the corresponding quantum corrections @ the Unruh state. The results differ by the sign that seem to
the Hawking temperature become crucial for the calculatioraffect the sign of the heat capacity in an infinite space. This
of the heat capacity. Second, even with quantum back rea@rompts us to consider the issue of stability carefully, with
tion taken into account, some models that include a widgroper account for the finite size of the system. We will see
family of exactly solvable ones still exhibit no quantum cor- that the stable canonical ensemble can be defined even in the
rections toT, . To obtain substantial thermodynamics, onecases when consideration in an infinite space would give the
should take into account that for self-gravitating systems aegative heat capacity.
finite size can be crucial in carefully constructing the canoni- The paper is organized as follows. In Sec. Il we list basic
cal ensembld4]. We will see below that the competition equations, governing the gravitational-dilatonic system with
between these two factors, small quantum corrections anchinimal fields, and, by considering quantum back reaction as
large (but finite) spatial size, may lead to well-defined ther- perturbation, derive the quantum corrections to the Hawking
mal properties even in situations when the pure classical agemperature in an infinite space. This generalizes our previ-
proach gives no sensible answer. ous result which was obtained for the particular case of the
The issue of the finiteness of the system has one mor€GSH model. In Sec. Il we consider a black hole, enclosed
aspect. Consider a black hole enclosed inside a reflectingside a perfect reflecting shell, outside of which the quan-
tum field in the Boulwars state, heated to some temperature.
For exactly solvable models we find the modified Hawking
*Email address: ozaslav@kharkov.ua temperature exactly, for a generic model we find the main
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guantum corrections. In Sec. IV we analyze the canonical PE _]lap\2 oF %4
ensemble and its stability with account for both quantum ——V (—) +——=0, (10
back reaction and finiteness of the system. We also discuss d¢ 9z N
briefly the case of the microcanonical ensemble. In Sec. V _
we summarize the main results. dF dp\ d¢
4u=|f——| —. (11
do Iz é Jz
IIl. QUANTUM CORRECTIONS TO HAWKING '
TEMPERATURE IN AN INFINITE SPACE In the conformal frame
Let us consider the system governed by the action ds?=f(—dt’>+do?) (12
I=lgat+IpL, (1) we have g=\0)
where the gravitation-dilaton part P2F of |[ag\2 F o2
(WL E
1, , o7 apf\ay] o ax?
lgd=2—f dXV=g[F(#)R+V()(Ve) "+ U()],
TIm
and
2
2
I 5 is the Polyakov-Liouville action incorporating effects of 4u=f‘1£. (14)
Hawking radiation of minimal fields and its back reaction on ay?
spacetime for a multiplet of N conformal scalar fielgge _ S
omit boundary terms in the actipnAs is known, it can be In what follows we will dwell upon the string-inspired
written down in the form models of the form

F=exp—2¢)+brp, V=4exg—2¢)+ck,

\Y) )2
IPL=—%JMd2xJ—_g[(f +yYR]|, 3)

u=exp —24¢). (15

Then the solutions of Eq$4), (10), and(11) [or (13), (14)],
regular on the horizon of a black hole, in the main approxi-
mation with respect ta look like

AN
K=27 The functionys obeys the equation

O¢y=R. (4)
_ o _ y=—2¢+0(x), (16)
Varying the action with respect to the metric, we get
1 z=—¢+ 5e2</’(1—3) (17
Sl = EJ d?x\/—-gG,,89*"=0. (5) 4 2)
For static spacetimesvith which we are dealing with in f=1—aexp2¢)+ Kexq2¢)[g[1—aexq2¢)]
this papey in the Schwarzschild gauge 2
ds?= — fdt2+fLdx?, 6) _¢
+(1 5 bf. (18
field equations take the following explicit forpsee, for ex-
ample, Eqs(23) and(24) of [7]]: c
a=exp —2¢, )+ ko, 1—5 . (19
oo PFE of oF s e 2_0 .
e a0 Tu=Tol1+ Sexp26.)a|, To=me. (20
H= To 2 +)4], =5
2
Gi:ﬁi_ ~f(% =0. (8) Whereq=b+c/2+1.
IX IX X It is seen from Eq.20) that, classically, the Hawking
temperature is a constant and all dependence on the horizon
Here position arises only via quantum corrections. For the CGHS
x| dip\2 modelc=0=b, g=1 and we return to the result that can be
F—F—Kl/f,v V—— _) 9) obtained by the limiting transitiopg— —o from Eq. (18)
2\d¢ of Ref. [5]. If
In what follows we will use notations) =4\2u for the b=2(d—1), c¢=2(1-2d), (21

potential andz=\x for a coordinate. It is also convenient to
take the sum and difference of E¢%) and(8) that gives us that is equivalent to
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c Let now a O-dimensional point-like perfect shell between
q=b+3+1=0, (22 the horizon and right infinity be situated at soge. To the
left of the shell, the field is in the Hartle-Hawking state,
the model becomes exactly solvah8 and reduces, in par- While_to the right to the shell it i_s in the Boulware state.
ticular cases, to the RSTc&0, b=—1) [9] or BPP ¢ Consider the solution in both regions separately and, after-
=2, b=—2) [10] ones. In this case quantum corrections toWards, sew them at=yg.

the Hawking temperature vanish in accordance with obser- FirSt, consider the regiog<yg. We can exploit the al-
vations made if11] and[12]. ready obtained solutioi26) but with the reservation that

there is a freedom in the choice of the conformal coordinate
that preserves the conformal gau@e). The coordinatey

can be rescaled as— Ay, whereA is a constant. Apart from
this, there is also a freedom in translatigns 'y + const. For

In the 1+1 world, a “shell” represents a point. If it is the solution in an infinite space it was inessential since, due

Ill. MATCHING HARTLE-HAWKING AND BOULWARE
STATES AND ROLE OF BOUNDARY

present, field equations modify to to the Conditionf(OC)=1, it had to be reduced to E(QG)
However, now there is no right infinity in the left region and
G,=S,, (23 such parameters should be kept arbitrary, their values will be

fixed from matching the solutions in two regiolisee be-
whereS}, is a dimensionless stress-energy of the shell, conlow). Therefore now we should write
taining only delta-like terms. We assume that quantities

y, f, ¢, F are continuous across the shell, while first deriva- F=FO=qaexp2Ay)+F,, (29
tives 9F/dy may experience jumps. Then it follows from
explicit expressions7), (8) or (10), (11) thatG} is bounded aA? A?

across the shell, s87=0, whereasG) may contain delta- fi=— - exA2Ay)= - (F-F.), (30)

where the parameten can be regarded as the mass of the
shell, yg is its position, “+” or * —” means “yg+0" and
“yg—0,” respectively. The delta functiod) is normalized
according to

wherea andA are constants. The Hawking temperature for

L —maV(y—yg), m=-—2 the metric(12) Ty =(1/4m)limy_ _.f~*(df/dy), so

)
(24) Tu=5_A. (31)

Consider now the region to the right of the shellryg.
Now we should take into account that the function is deter-
mined from Eq.(4) up to the solution of the homogeneous
equation that is proportional 4 Again, we may exploit the

f dy\gsM(y—yg)=1, (25  solution in an infinite spacetime, obtained[i8]:

where the index B” refers to the boundary. = o+ %y. (32

A. Exactly solvable case

First, we consider the exactly solvable case, when the |~:=|~:(°)—sz, (33
coefficients obey the relationshif21). As is shown in A
[12,13, the metric function, describing a black hole in an
infinite space, is equal in this case to whereF @ =F — ki, 1, is bounded on the horizoffor the
exactly solvable under discussigiy=—2¢),

f=exp2¢+2y). (26)
=)
The coefficient in the form of is chosen in Eq(26) in such F(©O=exp2y)-By+E, (34)
a way thatf —1 at right infinity, where the spacetime is flat.
In so doing, whereE is a constant,
F=exp2y)+F,, (27) T2
B=x|1l-= (35
the index “+” refers to the horizon, which is situated st 0
=—o0, S0
e?y
f—exp(24)(E—F.). 28) =T (36)
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Here T is the temperature of the thermal gas at the right=[m\2/F’(¢g)]8P(y—yg). Therefore for a massless shell the
|nf|n|ty As is shown |r'{13], the constany is connected with geometry is smooth across the shell.
T according to

B. Generic case: Perturbative approach

37 Now let the system be of the tyg&5) with generic coef-
ficients, not necessarily obeying the condition of exact solv-
The attempt of applying the above formulas to the regiorability (22). Then the explicit formulas can be obtained per-
near the black hole horizory{~ —«) shows that the quan- turbatively inx, matching the solutions to the left and to the
tity ¢ diverges there and so does the Polyakov-Liouville-right from the shell, following the same line, as in the pre-
stresseq 14]. However, this problem does not arise now vious case. In so doing, we retain only terms of the zero and
since the region, in which these formulas are valid, is refirst order in«. Omitting details of calculations, which are
stricted by the conditiony>yg and does not include the rather straightforward, we list only basic formulas. To the

horizon. right from the shell the relationship between the dilaton and
On the boundany,(¢g)=f,(¢$g), whence spatial coordinate reads
a=A"2exg 2yg(1-A)]. (39 d¢ exp(2¢) c D
——=—1-« l-s———%5-~|, (45
dz 2 2 1-kexp2¢)

E=(FO-F,)(1-A?)+Byg+F, . (39)
the metric function has the form
Calculating the differencg(aF/ay) . —(aF/ay)_] and re-

membering Eq(24), we obtain f=1-kexp(2p)+ k exp(2¢) [ g[l ~kexp(2¢)]
2 2ye)| 1 ! B+ m 0 (40) D
ex el -5 =Y ¢
[ 2yg A 2 + 1_§_D b+ 5In(1—kexp(2¢)], (46)
2 2
- y Ky T ?
B=B+—K=——:_K(1__) SN VY !
X > T =— 2=l
4\ 0 D==y|1+ax)71t T2 7

. . _ 2 — _~ . .
Substituting exp(Zs)=A°(Fg—F.), we obtain the equation In the exactly solvable cagg=0,

B-m/2
2(Fg—F.)

[ 2[Bl+m ) _
1+ 1-————|, B
(FB_F+)
that can be also obtained directly from E84). If D=0, Eq.

We choose the root of the quadratic equation for which(1g) is reproduced.
A=1, whenx=0=m. L To the left from the shelf = A%f, wheref is given by Eq.

It follows from Eq. (43) that Ap,=3, whenm=Fg—F_.  (18).
+2B. If m>0, $<A<1. Quantum effects for the tempera-  Matching the solution in two regions, we obtain from Eq.
ture are compensated by the shell maga#2B<0. In the (24)
limit yg—o, when Fg—%, quantum corrections tend to 1 _
zero: ATy /T=—1/2(B|+m/2)/(Fg—F.). It is seen from A=3[1+ Vi-(m+2«/D))Ql,
Eq. (43) that both the quantum effects and the shell with a
positive mass tend to cool a system. P

From the expressiofd3) it follows the restriction on the Q=[exp(—2¢B)—exp(—2¢+)]+§
position of the shell that cannot be placed too close to the
horizon, if we want to maintain thermal equilibrium inside

AZ—A— =0, (42 f=1—kexp2¢)+«

(b+2—D)p exp(2¢)

D
A= Bl (@3 +§exp(2¢)ln 1—kexp(2¢)}, (48)

2

Cc
1—5)(¢B—¢+>,

2
the shell and the Boulware state, heated to the temperature ID|= ( 1— l) ) (49)
outside: To
|~:B—|E+—2|"B|—m>0. (44) For the massless shell, with the same accuragth terms

«? and higher discarded

As the Riemann curvatuf@= — \?/fd?In f/dy?, it follows -
from Eqgs.(26) and(24) that for the exactly solvable models A—1— x|D]
the delta-like part of the curvature is equal tBg 2Q "’

(50
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q |5| sidered: the classical hot flat spacetitadnich is obtained by

Ty=To(1+ke),e= zexp(2¢>+)— 20" (51)  putting «<=0 in the action and the black hole configuration
with the singular horizon. We adopt another reference con-

figuration: as a background, we choose the “quasi-flat”

spacetime which is close to the classical one but differs from

it due to the presence of the terms wi¢hn Eq. (15). Let me

1 . . remind the reader that the parameteenters independently

= (a/2) exp (2,)—zexp(~2¢%) that coincides with EQ. q the polyakov-Liouville action and the definition of the

(18) of [5]." If q>0 and the~shell is placed g such that action coefficientg15). In the second case it was motivated

exp(—2¢g)=exp(~2¢.)(1+ [D|/g), the boundary and ordi- py the demand to construct exactly solvable models but now

For the CGSH modeb=0=c, q=1, for T=0 (|D
[=1) in the limit |¢g|>|d.|, neglecting the term
exp(—2¢,) in the denominator, we obtain that

nary quantum corrections mutually cancel. we relaxed that condition. We discard the first contribution
but retain the second one. To avoid confusion, one may re-
IV. ENERGY, ADM MASS, AND CHOICE place k in Eq. (15) by another small parametet effecting
OF BACKGROUND the functional form of these coefficients and put « after

Ocalculations. Physically, this means that our reference state is

pure classical in the sense that not any quantum back reac-

in the previous section realizes microcanonical boundar)ﬁon is present, but the functional form of the gravitation-

conditions that fixed the energyf. [15]). Meanwhile, an- . o
. ” .. dilaton action is the same as for the quantum-corrected con-
other physically relevant type of condition demands flxmgfiguration

the temperature rather than the energy, thus defining the ca* To find E,, we have to solve field equatiof0), (11) for

nonical ensemble. This case is also discussed below. In ' . T :
doing, the correct definition of thermal quantities, such as th%ﬂese potentials without the coniribution%f so tilted quan-

. ' . ies should be replaced by the usual ones. Then, with terms
energy, heat capacity, etc., can be obtained with the help oF > . ;
the Euclidean action formalism, with account for the finite- of the orderx* and higher neglected, we find
ness of the system that, in particular, needs specifying the set

From the physical viewpoint, the perfect shell considere

of boundary data. Generalizing expressions for classical E —_oT ( f i ﬁ) (55)
gravitation-dilaton system4 6], one can write down the en- 0 0 dp 9z quasmat’
ergy of the quantum-corrected one[dd]
= = = c
__L[dF) __A[dFVR) _(dF od f=1-x3 6 exp24)+ 5 exXp2)(q-1).
gd™~ ar). = " wlde ) = 2TlagVtaz) - 2 2
(52)
For exactly solvable mode[see Eq(2.7) of Ref.[12]] fz . C
7% 1 K4exp(2¢). (57
dz_T:,exp(Zda) 53
dé 2 Asymptotically, for largel¢|, ¢<0, we obtain
Here the common factor in the right-hand side of E58) is (c+2b)
chosen, for the modelgl5), to give z= — ¢+ const(linear Eo= —4Toexp —2¢) + TokCh+ Tok . (58

dilaton vacuum at the right infinity, where spacetime is flat.
Thus for exactly solvable models we have
Now the quantityEq—E, can be identified with the ADM
Eqa= —4Toexp —2¢p) . (54)  mass and we have, after asymptotic expansioR, of

In general, the energl is measured with respect to some
background whose contributidf, is to be subtracted from
Egd» SOE=Ey4—Eo. In[11] two reference points were con-

Eg—Eo=Mgy+ M+ My, (59

c
Mgn=2To XA —2¢. )~ k5 ¢+ |,

1t was stated in Ref[5] that the shell should be inevitably mas-
sive to maintain equilibrium, whereas in the present paper we men-
tion a massless sheliM=0) while comparing the results. There is
no contradiction here since these statements refer to different quan-
tities. It follows from Eq.(24) that the mass is a linear functional of ~ Here the termM g, does not depend o# and should be
the quantityF =F — x4 and, correspondingly, can be spited in two identified with the mass of a black hole itself. The quantity
parts—mg, connected witF (the gravitational-dilatonic oneand ~ My, represents the contribution of thermal gas at the tem-
m,,, connected withys (the Polyakov contribution It is just mg peratureT,. Remarkably, the coefficientsandc, that char-
#0 which was implied in[5], while the total summz+m,=0  acterize the model, are absorbed by these general definitions.
(massless shell One can say that not only for the RST mofl&l] and even

Mih=2Tox(d 1~ ¢),Mo=kTo. (60)
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not only for a more general exactly solvable model, but in=2Tym, and using the expression for the total mass of black
the general case for the fami({t5), quantum corrections to hole plus thermal radiatioM,; (64), we obtain
the universal form(59) vanish.

In a similar way, the total entrop$,,= Sg+ Sin» Where M{5:>M o1+ M el (66)
the entropy of the black hole itself
_ _ Here Mgo=Mghert 3Mo, and M{,=2T[exp(—2¢g)
Sen=2F(¢s)=2[exp—24.) bk, ] —k(c/2) ¢g] represents the mass of a black hole which

Mgy would form, if thermal radiation completely collapsed, pro-
= T—0+2K(q—1)¢+ : (61)  ducing a new black hole with the horizon &t = ¢ . This
horizon would coincide with the radius of the corresponding
while the entropy of the thermal g4$1,12,16,17 1+1 “relativistic star,” the quantum field outside being in
the Boulware state.
Sin(To. ¢+ — ¢p)=4x(d1 — bp). (62)

The expression59) is valid in an infinite space. Now let V. CANONICAL ENSEMBLE AND HEAT CAPACITY

a wall be placed ap = ¢g . Taked= ¢, to the right from the In general, for self-gravitating systems the conditions of
boundary and consider the region between the boundary andapijity can be different for different types of thermal en-
infinity. Taking into account Eqs(45—(47) and (37) and  gemples. As far as our gravitation-dilaton system is con-
expanding the expression for the energy for large negativermed, the stability of the microcanonical ensenthlighout
¢o, Where spacetime approaches its Minkowski limit, weaccount for boundary correctionfollows immediately from

obtain after simple calculations: Eq. (12) of Ref.[18] (casea=0 in their notations The case
_ e _ of the canonical ensemble is much more subtle since it de-
Eq=4x(T=To) ~4Toexp( ~24)+2Tok mands a simultaneous careful account for the finiteness of
+Tox[g+2D+(c—2+2D) o], (63 the system and quantum back reaction. Let us discuss this
issue in more detail.
Miot=Mpgyt+Mn(To, ¢+ — dg) + Min(T, g — ¢g) + Mg, The canonical ensemble is defined by the value of tem-
64 perature and, possibly, some other parameters, which for
(64) self-gravitating systems are fixed on the boundatly Ac-
- T2 cording to the Tolman relation,
Mn(T, 1~ d2)= _T2(¢1_ $h2)=2k—(Pp1— ¢>).
N To T,
(65) Teg=—, (67)
Ve

The formula(64) generalizes Eq(59) in a natural way: it

includes the contribution of the thermal gas with two differ-\yhere T is the local temperature on the boundary. For the
ent temperatures¥y between the horizon and the wall and system under discussion the value of the dilatanis also

T between the wall and the point of observation. More surfixed. The region, external with respect to the boundary, is
prisingly, vacuum polarization in the Boulware state with  now discarded and replaced by a heat bath, so there is no
=0 (when quantum stresses do not vajisloes not give sense in speaking about boundary corrections to the Hawk-
corrections at all, thus the Only contribution of the state OUt-ing temperature. Nevertheless, the finiteness of the system
side comes due to thermal excitations, if the Boulware stateeyeals itself, as we will see below, in the dependence of the

is heated to some temperatuFeThis fact can be attributed horizon radiusg. and thermodynamic characteristics on the
to the change of the effective coupling between the curvaturgoundary data.

and dilaton: the quantit changes td-+ « (y/\)y in such First, we discuss briefly the exactly solvable case. Then
a way that the first term in Eq63) cancels the vacuum T,=Ty=const[12]. Then it follows from Eq.(28) that, for
contribution. given Ty and ¢, there is also one rodt., . If the function

In Sec. Il we obtained that if we want the shell to main-
tain thermal equilibrium inside and the Boulware state out

side, it cannot be placed too closely to the horizon. Now, th ral, this function can have minima and maxima. For ex-

ggneral formula; for the energy .obtamed qbove enable us té)mple, in the RST model there are two branches of solutions:
give a rather simple physical interpretation to the corre-

sponding restriction on the position of the shell. Let thet<he;uD&i;?;Z”CC%?;;ﬁpz:d:?g ttfrl]:sl,(i)rgirla?irgtnﬁhm<¢
S S .

quantum state be in the Boulware sta®=(0, |B|=«, D The heat capacity can be found from E€®4), (67) (now
=1) outside. To elucidate the role of different terms containe termE, does not contribute and can be omifted

ing the parametek, we consider the case when the restric-

F(¢) is monotonic(for example, this happens to the BPP
‘mode), there is only one branch and one vaklgig . In gen-

tion under discussion is obtained exact§s). Taking into dE T2
account the explicit expression for the action coefficients  c— —— —4 exg— 2¢g)f5=4 exf —2¢g)—>0.
(15), the conditions of solvability22), restoring explicitly dTg T2

the factor\/m=2T, so that the mass of the she¥ly, (68
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Of main interest is the region between the horizon and Thus in casesl), (3), and(4) we have the locally stable
Minkowski spacetime at infinity, with-o<¢$<<¢, . Thenit  black hole solution. Pure classical consideratiaE=0)
follows from explicit expression§l5), (28) that in this re- would give only one stable rootr,=2r, and C
gion always B<f<1. Therefore, ifTg>T,, there is one =4 exp(-2¢g)>0,C— o for ¢pg— —. In case(1) the root
stable root. IfTg<T,, there are no roots at all. Thus if the r, <r, whereas in cas@) r . >r,. According to Eq(17),
equilibrium is possible, the system is always locally stable. the spatial coordinategrows, wheng diminishes. Therefore
Consider now the case with generic coefficiebisc  in case(1l) quantum corrections decrease the horizon radius,
within the perturbative approach with respecttoNow, in  whereas in casé€) it slightly increases, as compared to the
contrast to the exactly solvable case, quantum corrections tdassical case. Ca$é) is pure quantum and does not exist in
the Hawking temperature do not vanish and an interestinghe classical domain. Indeed, farso thats<r3, the root
overlap between quantum and boundary effects appears. Re-
membering Eq(20) and differentiating the relevant quanti-

ties, we obtain r _ s _«a
+ 2|r0| 2 o
JE T, of
ib. _ZW i+ exp(—2¢p)| 1~ k5 exp(2¢g) |- is proportional to the quantum parameter
(69) The Euclidean actioh=BE—S;,;, in the main approxi-

mation (k—0, ¢pg— —») | =—2k(¢d, — dg)<0. Thus, ifa

black hole solution exists, it is a favorable phase and is stable
_ (70) not only locally, but also globally. Fog=s=0, r, =2r

and we return to an exactly solvable model.

It is instructive to discuss cagé) in more detail to reveal

the role of the finiteness of a system in the issue of stability.

Let us suppose, for a moment, that we proceed in an infinite
, (7D space from the very beginning and, substitutirgl at in-
'—2fkgexp2¢.) finity in Eq. (67), identify T=T,. The formula(20) can be

rewritten, in the main approximation with respectdpas

wheref’ = df/d¢ . Let pg— —, k—0, then in the main
approximationdf/d¢., =2 exp(2p—2¢.).

aT

o | of
(7¢+_ Zf\/?[a¢+ 2fkgexp2é.)

f!
C=4 exq—2¢>B)f

1—ngxp(2¢5)

Writing T/To =1+ o with small, but nonzerar, we ob- Ty=To| 1+« TO(S) ,0=0. (74)
tain from Eq.(67) the equation Mgy
r?=2rro+s=0, r=exp(—2¢.)>0, Then, direct differentiation gives us

ro=exp—2¢g)a, s=xqexp —2d¢g), (72

C(dTy |\t M3y dexp—4dp)
where parameters, ands, constructed as the products of “ldMg,) Kng__ Kq - (19
small and big quantities, are in general finite. Writing the
solution of the quadratic equation as=ry*\rg—s, we ) . ,
find It would seem that the sign of the coefficiefis crucial
in that it determines the sign of the heat capacity and stability
;2 , or instability of the canonical ensemble. In particular, direct
C=4 exg—2¢g) —+2exp—2¢ )_i’ apphcayon of Eq(75) or Eq.(18) of [5] to the CGHS_ mod(_a!
#re_g . Jrs—s (for which g>0) leads to the conclusion about instability

(73 [6].
However, such consideration does not exhaust all possible

where we took into account thaipgexp(2pg)<1. Thus only  solutions for casg1). Formally, the quantity(75) can be
the rootr, can correspond to the stable equilibrium.rf)f obtained from the first equality in Eq73), if the term
<s, there are no black hole solutions in thermal equilibriumr2=exp(—44¢.,) is finite, whereass= kq exp(—2¢g) grows

at all, so the ground state lies in the same topological sectdor ¢g— —. Thenr? can be neglected in the denominator.
as the flat spacetime. Lef>s and discuss now particular Meanwhile, the point is that in cagé) there existtwo dif-
cases. ferent roots. When a size of a system is largef(zg>1), in
this  limit r(2)>s. Correspondingly,r . =2rg, r_=s/2r,
(1) rg>0, s>0. Thenr, >0, r_>0. There are two =«g/2«. Thus the rootr _ does not depend othg in the

roots:r, is stabler _ is unstable. limit of large | ¢g|, when the boundary is placed in the nearly
(2) rg<0, s>0. r, <0, r_<0. There are no positive flat region, whereas the root, itself grows, as it follows

roots at all. from Eq. (72). Therefore the inequality?<s is valid only
(3) ry>0, s<0.r,>0, r_<0. One stable roat, . for r_, but not forr, . As a result, the prediction of the
(4) ry<0, s<0.r,>0, r_<0. One stable root, . negative heat capacity on the basis of Ezp) refers to the
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rootr _ only which is indeed unstable. However, for the root VI. SUMMARY
r . the horizon radiusp , = ¢g+const approaches infinity in

the same manner as, does. Therefore, Eq75), the deri- We considered a generic string-inspired gravitation-

. . . T . dilaton model that is characterized by numeric parameters,
vation of which tacitly assumes tha. | is finite, while ¢, particular values of which a model becomes exactly solv-
|¢s|>1, does not \2/vork now. One is forced to use EXB),  aple. Quantum corrections to the Hawking temperature of a
not discarding the“ term in the denominator, whence it is pjack hole in an infinite space are found. We analyzed also
seen that the root is indeetiable In the limit under discus- how the presence of a finite size Cavity affects thermal prop-
sion the heat capaci@=4 exp(—2¢g) looks very much like  erties of a black hole. Two types of different boundary con-
in the case of exactly solvable modé&s) in spite of the fact  ditions are considered—microcanonical and canonical ones.
that nowq#0. In the limit pg— —o° the heat capacity di- In the first case there is a perfectly reflecting shell that fixes
verges, but for any large but finitgg it is finite and positive.  the energy inside. We found how vacuum polarization out-
To a great extent, the situation resembles the one foside the shell affects thermodynamics of a black hole inside
Schwarzschild black holes in the canonical ensembléhe shell and calculated the corrections to the Hawking tem-
[4]. Naive application of the formula for the Hawking tem- perature due to the shell. As a by-product, it turned out that
perature T=(87M)~1 would give the heat capacity the shell cannot be placed as near to the horizon as one likes.
C=dM/dT = —87M2<0 with the conclusion about insta- !N the second case the outer space is removed and is replaced
bility. However, thorough treatment showed that, for a givenPY the heat bath. It is shown that the canonical ensemble is
physical temperaturd on the boundary, there exists two weII-deﬂ.ned and St"’.‘b.le in the wide region .of'parameters.
different positions of the horizon as roats andr _ of Eq. Accounting for Fhe finiteness Of_ the system is Important to
(67). The light rootr_<r, has the horizon radius \2 f[he extent the_lt in some cases it a_Iters t_he_ qonclusmn about
—(47T)"!, when the radius of the boundarg—, and instability (typical of consideration in an infinite spacand

for it the calculation of the heat capacity in an infinite spaceg:\/es. stabl;a S?“:t'ons't!n ?0 df[)r']ngt’ quan;um Ib?Ck r_eafctlond|s
is justified with the conclusion about instability of the solu- a;,_o r:mpprtan .I ndpartlcu ar,h eb yp;(e 0 ‘:’.o ution is foun
tion. But the heavy root , itself tends torg, whenrg—o which exists only due 1o such a back reaction. :
and one cannot apply to it formulas in an infinite space, The indirect d_epe_ndence .Of black hole thermodynamics
ignoring the boundary. Careful treatment shows that for thidh vacuum polarization outside a shell should also be rel-

root the ensemble is stalflé]. In our 2D system also it is the evan_t for 4D bla_ck hole$19]. In _th|s respect 2D d|Iatpn .
“heavy” root which is stable, whereas the “light’ one is gravity revealed itself one more time as a clear and simpli-

unstable. In both casé®r our system and for Schwarzschild fied tool for _understanding qverlap between quantum theory
black hole$ one loses the heavy solution, which is mostand gravitation that occurs in our real world.

important physically, if the presence of the boundary is ig-
nored. On the other hand, the difference between these two
situations lies in that this effect manifests itselff#i on the | wish to thank Daniel Grumiller, Dmitri Vassilevich, and
pure classical level, while for our case it is relevant only if Wolfgang Kummer for intensive correspondence which
guantum back reaction is taken into account. stimulated the appearance of this paper.
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