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The nature of the fuel that drives today’s cosmic acceleration is an open and tantalizing mystery. We
entertain the suggestion that the acceleration is not the manifestation of yet another new ingredient in the
cosmic gas tank, but rather a signal of our first real lack of understanding of gravitational physics. By requiring
that the underlying gravity theory respect Birkhoff’s law, we derive the modified gravitational force law
necessary to generate any given cosmology, without reference to the fundamental theory, revealing modifica-
tions of gravity at scales typically much smaller than today’s horizon. We discuss how, through these modifi-
cations, the growth of density perturbations, the late-time integrated Sachs-Wolfe effect, and even solar-system
measurements may be sensitive to whether today’s cosmic acceleration is generated by dark energy or modified
gravitational dynamics, and are subject to imminent observational discrimination. We argue how these conclu-
sions can be more generic, and probably not dependent on the validity of Birkhoff’s law.
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I. INTRODUCTION

The discovery of a contemporary cosmic accelerat
@1,2# is one of the most profound scientific observations
the latter part of the last century. What drives that accele
tion remains an open and tantalizing question. A ‘‘conve
tional’’ explanation exists for the cause of that accelerati
vacuum energy provides the necessary repulsive gravit
general relativity to drive an accelerated expansion of
Universe. Variations on this vacuum-energy theme, e.g. q
tessence, promote the energy density to the potential en
density of a dynamical field. Such additions to the roster
cosmic sources of energy-momentum are collectively
ferred to as dark energy. Accounted for as such, dark en
would constitute the majority of the energy density of t
universe today.

However, what if one were to view the current cosm
expansion not as yet another ingredient in our already c
plex cosmic soup, but rather as a signal of our first real l
of understanding of gravitational physics?~Although others
have argued that dark matter was that first signal of p
Einsteinian gravity@3,4#, we will not address ourselves he
to that possibility.! An instructive example along that direc
tion is the braneworld theory@5# of Dvali, Gabadadze, and
Porrati ~DGP!. In this theory, gravity appears four
dimensional at short distances but is altered at large dista
through the slow evaporation of the graviton off our fou
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dimensional braneworld universe into an unseen, yet la
fifth dimension@5–7#. DGP gravity provides an alternativ
explanation for today’s cosmic acceleration@8,9#: just as
gravity is conventional four-dimensional gravity at sho
scales and appears five-dimensional at large distance sc
so too the Hubble scaleH(t) evolves by the conventiona
Friedmann equation at high Hubble scales but saturates
fixed value asH(t) approaches a value equivalent to t
inverse of the crossover distance between four- and fi
dimensional behavior,r c

21 . Thus, if one were to set tha
crossover distance scale to be on the order ofH0

21, whereH0

is today’s Hubble scale, DGP could account for today’s c
mic acceleration in terms of the existence of extra dim
sions and a modification of the laws of gravity.

We would naively expect not to be able to probe this ex
dimension at distances much smaller than the crossover s
r c5H0

21. However, in DGP, although gravity is four
dimensional at distances shorter thanr c , it is not four-
dimensional Einstein gravity—it is augmented by the pr
ence of an ultralight gravitational scalar. One only recov
Einstein gravity in a subtle fashion@10–13#, and a marked
departure from Einstein gravity persists down to distan
much shorter thanr c . For example, forr c5H0

21 and a cen-
tral mass source of Schwarzschild radiusr g , significant and
cosmologically sensitive deviations from Einstein gravity o
cur at distances greater than@12–15#

r * 5~r gr c
2!1/35S r g

H0
2D 1/3

. ~1.1!

Thus a marked departure from conventional physics pers
down to scales much smaller than the distance at which
©2004 The American Physical Society05-1
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extra dimension is naively hidden, or for our discussion he
the distance at which the Friedmann equation was modi
to account for accelerated cosmic expansion.~Other theories
have since shown how alternative modifications of gravity
large distances can lead to late-time acceleration with
dark energy@16–19#.!

Recently, appeals have been made to a direct empi
modification of the Friedmann equation in order to expla
cosmic acceleration without dark energy@20–22#, broaden-
ing the theme explicitly and completely realized by DG
braneworlds. Unfortunately, fully self-consistent mode
implementing these ideas have yet to be found that can
produce the desired general modifications to the Friedm
equation, making it difficult to establish the full consequen
of the proposed new physics. An important question to
asked is whether gravity theories that produce such mod
Friedmann equations can be devoid of observable co
quences other than late-time acceleration. There may
something to be learned from the example of DGP grav
Will these new theories generically lead to similar deviatio
from Einstein gravity at scales much smaller than toda
Hubble radius?

Pursuing this line of thought without an underlying mod
is difficult, but not altogether impossible. In this paper, w
allow ourselves an assumption about the structure of a
sible modified theory of gravity, taking the constraint
Birkhoff’s law as the example, and show how with that a
sumption alone, one may kinematically ascertain grav
tional force interactions,avoiding reference to fundamenta
dynamics. We then describe how modification of cosmolo
at today’s Hubble scale can naturally affect gravitatio
physics at much smaller~e.g. astrophysical, and even und
certain circumstances solar system! distance scales. It is
worth noting that DGP gravity does not respect Birkhof
law, and we conclude with a discussion on how sho
distance modifications of gravitational interactions may b
general consequence of gravity modified at cosmolog
scales.

II. THE FRIEDMANN EQUATION AND THE FORCE LAW

The premise of our approach is that the sta
Schwarzschild-like metric, or more specifically its geodes
may completely determine cosmological evolution, i.e., t
the cosmological evolution is driven not by some dark e
ergy background~where by ‘‘dark energy’’ we mean a
smooth energy-momentum component minimally coupled
gravity!, but by the matter content itself. This should be
familiar premise—it underlies the usual undergraduate-le
derivation of the Friedmann equation from Newton’s laws
motion and his law of gravitation. One posits that in a h
mogeneous isotropic dust-filled universe, the acceleratio
a comoving~geodesic! observer a distancer from some ar-
bitrary origin is determined by the gravitational pull of th
matter interior to the sphere of radiusr. One then derives an
equation for the evolution ofr with time. That one arrives a
the precisely correct general-relativistic Friedmann equat
may seem surprisingly coincidental but is really a con
quence of homogeneity, energy conservation and Birkho
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law. Thus in the standard cosmology, Newton’s law of gra
tation, or now its general relativistic generalization, and
observed scale factor evolution are used to extract the str
energy content as a function of time. The approach here
be to fix the form of the stress energy to be that of d
~nonrelativistic matter! and use the observed evolution of th
scale factor to extract a new generalization of Newton’s la

We take the cosmological metric to be the Roberts
Walker metric~flat space, for convenience!

ds25dt22a2~ t !d i j dxidxj

5dt22a2~ t !@dl21l2dV#.
~2.1!

We imagine then that we are given a complete cosmolog
evolution, i.e., a specified cosmological scale factor evo
tion, a(t) @the understanding being thata(t) is determined
on the past light cone by observations, and that the assu
tion of spatial homogeneity carries this to the whole spac#.
If we were to solve the Einstein equations for this metric,
would be forced to specify a matter content and an equa
of state as a function of time. Such an equation of st
would not normally be matter dominated, and we would
forced to consider the nondust component to be a sort of d
energy. However, we will insteadpresumethat the scale fac-
tor a(t) is the result of a pure dust configuration, and a
what modifications of gravity would be necessary to yie
the givena(t).

Such a prescription for modifying the Einstein equatio
is not unique. However, we can require that this hypothet
new gravity theory obeys a generalization of Birkhoff’s law
for any test particle outside a spherically symmetric ma
source, the metric observed by that test particle is equiva
to that of a point source of the same mass located at
center of the sphere. With that one restriction on the the
we can deduce completely the Schwarzschild-like metric
the new hypothetical gravity theory that gives us the p
scribed cosmological evolution with a dust-filled universe

The procedure for determining the metric from the co
mological evolution is as follows. Because Birkhoff’s la
holds, the evolution of a hypothetical sphere of dust evolv
within a homogeneous dust cosmology isidentical to the
evolution of that same sphere if all the matter outside it w
removed. The latter matter configuration~i.e., a uniform
sphere of dust set within an otherwise empty space! allows
one to use the known cosmological evolution of the inter
space to determine the metric of the empty outer space
requiring matching of geodesics and the metric smoot
across the boundary of the dust sphere. Thus from the
mology one can ascertain the Schwarzschild-like metric
empty space around a specified source mass.

Consider a uniform sphere of dust. Imagine that the e
lution inside the sphere is exactly cosmological, while o
side the sphere is empty space, whose metric~given
Birkhoff’s law! is Schwarzschild-like@as defined by the met
ric equation~2.2! below#. The mass of the matter source~as
determined by the form of the metric at short distances! is
unchanged throughout its time evolution. The surface of
5-2



ll

th
ju
a
f

ew

a

l
a

to
-

b
-

is
rio

e

-

llow

e-
-

ol-
the

e
tor
st

h
we

s.

-

n-

en-

of
e
oes
sition
ec-
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spherical mass therefore charts out the metric through a
space as the sphere expands with time, so long as we dem
that the cosmological metric just inside the surface of
sphere smoothly matches the Schwarzschild solution
outside. In order to see how the metric depends on the m
of the central source, we just take a sphere of dust o
different initial size, and watch its surface chart out a n
metric.

We start with a Schwarzschild-like metric in the usu
form

ds25g00~r !dT22grr ~r !dr22r 2dV, ~2.2!

and rewrite it in the new form

ds25N2~ t,l!dt22a2~ t !dl22r 2dV, ~2.3!

where nowr 5r (t,l) and a(t) is the given cosmologica
evolution. In order to determine the coordinate transform
tion T5 f (t,l) and r (t,l), we equate the forms, Eq.~2.2!
and Eq.~2.3!:

N25g00ḟ
22grr ṙ

2 ~2.4!

05g00ḟ f 82grr ṙ r 8 ~2.5!

2a25g00f 8
22grr r 82, ~2.6!

where the dot denotes partial differentiation with respectt
~holdingl fixed! while the prime denotes partial differentia
tion with respect tol ~holding t fixed!.

The object of transforming to the form Eq.~2.3! is that the
bounding surface of the spherical mass distribution can
taken to be at fixedl5l* . We wish now to make an iden
tification between the interior metric Eq.~2.1! and the exte-
rior metric Eq. ~2.3! which is smooth, and such that th
matching surface is also a geodesic of the exte
~Schwarzschild-like! metric. This is realized if the following
conditions hold at the boundary:

r ~ t,l* !5l* a~ t !, ~2.7!

r 8~ t,l* !5a~ t !, ~2.8!

N~ t,l* !51, ~2.9!

N8~ t,l* !50. ~2.10!

Using Eqs.~2.7! and ~2.8! as the boundary condition, on
can integrate Eqs.~2.5! and ~2.6! to arrive at the complete
coordinate transformationT5 f (t,l) and r (t,l), for arbi-
trary functionsg00(r ) andgrr (r ). For Eqs.~2.9! and ~2.10!
to be satisfied, conditions need to be placed ong00(r ) and
grr (r ):

ṙ 2~ t,l* !512grr
21

„r ~ t,l* !… ~2.11!

g00grr 5E25constant, ~2.12!

for Eqs.~2.9! and ~2.10! respectively. One can quickly con
firm that these expressions combined implyl5l* follows a
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geodesic worldline and, moreover, these expressions a
us to determine the metric components of Eq.~2.2! uniquely
from a givena(t):

g005E2~12l
*
2 ȧ2! ~2.13!

grr
21512l

*
2 ȧ2, ~2.14!

with r (t,l* )5l* a(t).
Thus, by requiring our new gravitational physics to r

spect Birkhoff’s law, the metric around a spherically sym
metric matter source is completely specified by the cosm
ogy a(t). To determine the dependence of the metric on
source mass, one need only select a differentl* . The re-
maining parameterE may be specified by an arbitrary choic
of time normalization. Notice that for a general scale fac
evolutiona(t), superposition and linearity of the metric mu
be sacrificed, even in the weak-field limit.1 Let us see what
consequences this has for phenomenology.

III. GOVERNING SCALES

The exterior~Schwarzschild-like! metric is given by Eqs.
~2.13! and~2.14!. For the gravitational force law to approac
Einstein’s at distances small than today’s horizon size,
require

g00~r !5grr
21~r !512

r g

r
, ~3.1!

whenr is much smaller than today’s horizon scale,H0
21, and

r g52GM is the usual definition of the Schwarzschild radiu
On the other hand, cosmology at early times~but still during
matter dominated regime! must obey the conventional Fried
mann equation

H2[
ȧ2

a2
5

8pG

3
r, ~3.2!

where we user(t) to denote the matter density. The relatio
ship between mass andl* is therefore

M ~l* ![
r g

2G
5

4p

3
r~ t !r 35

4p

3
l

*
3 ra3, ~3.3!

wherer(t) is the matter density, andra3 is a constant with
respect tot for a dust-filled universe.

How small shouldr be, or how large shouldH be, for this
conventional behavior@Eqs. ~3.1! and ~3.2!# to be appli-
cable? Clearly, the cosmological evolution must be conv

1Note that DGP gravity does not satisfy the condition thatg00grr

5constant and, therefore, cannot satisfy a dynamical version
Birkhoff’s law. But, while DGP gravity does not fall under th
category of modified-gravity theories under consideration, it d
share many of the same properties, such as the lack of superpo
and linearity, as well as properties to be noted in the coming s
tions.
5-3
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tional whenH@H0, whereH0 is today’s Hubble scale~ap-
proximately the scale at which acceleration sets in! or in
other words, rearranging Eq.~2.14!, when

12grr
21

r 2
@H0

2 . ~3.4!

But this implies that, just as in the DGP example,2

r * 5S r g

H0
2D 1/3

, ~3.5!

and not r c5H0
21, is the distance smaller than which on

expects deviations from Einstein gravity to be small, b
larger than whichsignificantdeviations from Einstein mus
occur in the force law in order to reproduce the desired c
mic history as a modification of the Friedmann equatio
Indeed, we may write our modified Friedmann equation
the very general form:

H25H0
2g~x!, ~3.6!

with the dimensionless quantityx defined as

x[
8pGr

3H0
2 . ~3.7!

g(x) is such thatg(x)→x whenx@1, butg(x) substantially
deviates fromx otherwise, e.g. for the cosmological consta
caseg(x)5x1VL , with x5Vm(11z)3 from Eq. ~3.7! and
Vm andVL the energy densities of matter and cosmologi
constant in terms of critical density at redshiftz50. The
modified Schwarzschild metric may then be read from E
~2.13! and ~2.14!:

E22g005grr
21512r 2H0

2g~x!. ~3.8!

where nowx5r
*
3 /r 3, using the definition ofr * and Eq.

~3.3!.

IV. GROWTH OF PERTURBATIONS

We next wish to study the influence of the modified gra
tational force law on the evolution of perturbations in t
universe. Define the top-hat overdensityd(t) of a spherical
mass of dust with massM and radiusr by

11d5
M

~4p/3!r̄r 3
, ~4.1!

2In DGP gravity,r * is the distance at which scalar would-be r
dion modes become free to propagate, adding a Brans-Dicke
scalar to the existing gravitational interactions, where the stren
of the Brans-Dicke coupling,v, depends sensitively on the bac
ground cosmology.
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where r̄(t) is the background matter density~dust compo-
nent only, i.e., not including the energy density of the da
energy!. The conventional evolution ofd(t) is governed by
the following equation@23#:

d̈12H̄ ḋ2
4

3

1

11d
ḋ254pGr̄~11d!d. ~4.2!

The quantityH̄(t) corresponds to the background evolutio
We wish to compare this relationship with that for the sa
scale factor evolution@and correspondingly, the samer̄(t)
evolution#, but with modified gravity.

By exploiting Birkhoff’s law constraint, one may comput
the evolution of overdensities by merely following the ge
desics of spherical masses, without regard to physics out
the spherical mass itself. Note that this is not possible un
spherically symmetric configurations respect the metric E
~2.13! and ~2.14!. ~DGP gravity in particular does not fal
under this category of Schwarzschild-like metrics.! Using the
geodesic equation as expressed by differentiating Eq.~2.14!
with respect tot, we get

r̈ 52
1

2

d

dr
grr

215rH 0
2Fg~x!2

3

2
xg8~x!G . ~4.3!

Note that this resembles Newton’s second law, but is fu
relativistic. Using some algebra and rewriting Eq.~4.1! as
follows,

11d5x
3H0

2

8pGr̄
, ~4.4!

where againx5r
*
3 /r 3, one may use Eq.~4.3! to derive a new

governing equation ford(t):

d̈12H̄ ḋ2
4

3

1

11d
ḋ2

53~11d!H0
2F3

2
x̄~11d!g8„x̄~11d!…2g„x̄~11d!…G

23~11d!H0
2F3

2
x̄g8~ x̄!2g~ x̄!G , ~4.5!

where we definex̄[8pGr̄/3H0
25Vmā23. The quantityā(t)

is the background scale factor. Note that Eq.~4.5! is depen-
dent only on the background evolution and makes no re
ence to the massM or the radiusr * . Evolution begins with
x̄@1 andx̄ decreasing with time. Deviations from the usu
Einstein evolution occur whenx̄;1.

Equation ~4.5! is equivalent to Eq.~50! in Ref. @24#,
where it is derived assuming the continuity equation and
Friedman equationfor fluctuations. It turns out that this is
equivalent to assuming the validity of Birkhoff’s theorem. A
we mentioned above, however, this approach is not justi
when dealing with DGP gravity; basically, one cannot inf
the evolution of a spherical perturbation from the evoluti
of the scale factor.

In linear perturbation theory, we may simplify Eq.~4.5!:

d̈12H̄ ḋ54pGr̄d@g8~ x̄!13x̄g9~ x̄!#. ~4.6!

pe
th
5-4
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If g(x)5x1A11A2x2/3, where A1 and A2 are constants
modified gravity yields an answer indistinguishable from t
dark energy scenario with the same cosmic history. Howe
in all other cases, the evolution ofd(t) is distinct. Choosing
the time variable to bex̄, we see that

3x̄g~ x̄!
d2d

dx̄2
1Fg~ x̄!1

3

2
x̄g8~ x̄!Gdd

dx̄
5

1

2
@g8~ x̄!13x̄g9~ x̄!#d.

~4.7!

Compare this expression with the corresponding one for e
lution in a dark energy background from Eq.~4.2!:

3x̄g~ x̄!
d2d

dx̄2
1Fg~ x̄!1

3

2
x̄g8~ x̄!Gdd

dx̄
5

1

2
d ~dark energy!.

~4.8!

It is interesting to note that, unlike Eq.~4.8!, the case of
modified gravity Eq.~4.7! has a decaying mode solutio
D2

MG}H̄}g1/2 for arbitrary expansion histories. As a resu
of this, one finds that the growing modeD1

MG obeys

D1
MG~ x̄!5

5

6
Vm

1/3g1/2E
x̄

` dx8

@g~x8!#3/2x81/3
, ~4.9!

whereD1
MG is normalized so that it scales like the scale fa

tor at early times,x̄@1. When the expansion history can b
described byg(x)5x1A11A2x2/3, dark energy and modi
fied gravity give rise to the same linear growth of dens
perturbations and Eq.~4.9! becomes the standard quadratu
representation@25#. For a general expansion history, one ca
not use Eq.~4.9! to find the growing mode in a dark energ
backgroundD1

DE and must solve Eq.~4.8! instead.
Let us now consider how the linear growth of perturb

tions can distinguish between dark energy and modi
gravity models with thesameexpansion history. This is rel
evant because in the near future, planned experiments
measure the expansion history fromz50 to z.2 with very
good accuracy~see e.g. Refs.@26,27#!. For other tests of
gravity using large-scale structure see e.g. Refs.@28,29#. To
illustrate our results, we assume a modified Friedman eq
tion given by

g~x!5@c1Ac21x#2, ~4.10!

wherec is a constant,a5(12Vm)/2. This corresponds to
‘‘extra-dimensions-inspired’’ modified gravity in Ref.@22#
when theira51 ~which corresponds to an effective equati
of state withweff.20.7 for z between 0 and 2!. In all cal-
culations we setVm51/3 for simplicity.

Figure 1 shows the results for the ratioD1
MG/D1

DE ~dashed
line! as a function of redshiftz. The modified gravity pertur-
bations grow slower, and the decline of this ratio as the r
shift approaches zero is a general feature, not restricte
Eq. ~4.10!, that can be understood in general terms. Fr
Eqs.~4.6!–~4.8! we see that for the same expansion histo
the difference in growth can be thought of as coming from
effective gravitational constantG@g8( x̄)13x̄g9( x̄)#. At high
04400
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redshift g( x̄)' x̄, but at low redshift the constraint that th

Universe accelerates (ǟ.0) implies d lng/d ln x̄,2/3. If we
modelg(x) as a local power law,g( x̄); x̄n, wheren changes
very slowly from n51 at high redshift ton,2/3 whenz

;1, we see thatg8( x̄)13x̄g9( x̄);n(3n22)g( x̄)/ x̄, so asn
becomes closer to 2/3,g8( x̄)13x̄g9( x̄) becomes small. Al-
though in practice one must take into account the time
pendence ofn, this illustrates why the growth of structure
slower in the case of modified gravity. As long as we a
only concerned with linear perturbations around a cosm
logical background, this effective Newton’s constant
wavelength independent. However, when perturbations
come strong, and self-gravitation dominates cosmology,
will see that the effectiveG does acquire distance depe
dence~see Sec. VI!.

Figure 1 also shows the ratiof MG/ f DE, where f

[d lnD1 /d ln ā governs the growth of velocity fluctuation
in linear perturbation theory, that is, the velocity divergen
evolves asu52H̄āf d from the linearized continuity equa
tion ~see e.g., Ref.@23#!. We see that slower growth leads
smaller time derivative; thusf MG/ f DE also decreases asz
→0. These deviations are detectable with precision m
sures of large-scale structure; for example,D1 and f can be
derived from joint measurements of the redshift-space po
spectrum anisotropy and bispectrum. The Sloan Digital S
Survey~SDSS! should be able to probe these quantities w
statistical errors of order a few percent@30#.

So far we have discussed the linear growth of pertur
tions. Equation~4.5! can be recast in a more useful way
study the nonlinear evolution in perturbation theory,

FIG. 1. Growth of perturbations as a function of redshift in da
energy~DE! models and modified gravity~MG! models withiden-
tical expansion histories, given by Eq. ~4.10!. The dashed line
shows the ratio of density perturbation growth factorsD1

MG/D1
DE ,

and the solid line shows the ratio of the velocity perturbati
growth factorsf MG/ f DE.
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3x̄g~ x̄!
d2d

dx̄2
1Fg~ x̄!1

3

2
x̄g8~ x̄!Gdd

dx̄
24

x̄g~ x̄!

11d S dd

dx̄
D 2

5S 11d

2x D (
n51

`
~d x̄!n

n!
@~3n22!g(n)13x̄g(n11)#.

~4.11!

A couple of points are worth stressing here. First, this eq
tion becomes identical to that in the standard dark ene
scenario, Eq.~4.2!, only if g(x)5A11x, i.e. standard Ein-
stein gravity plus an effective cosmological constant~a
curvature-type term is no longer degenerate as in the lin
case!. Expanded to second order, this equation can be use
compute the skewness of the density field~see also Ref.
@24#!; we have checked that for the same expansion his
given by Eq.~4.10! the skewness changes by less than o
percent in modified gravity compared to dark energy mod
Only a rather large third derivative ofg can induce an appre
ciable change in skewness from that in the dark energy c
Such extreme models have been studied in Ref.@24# @e.g.
using Eq.~6.5! below withn50 andq55]; we have verified
that in this case the skewness can change by up to
compared to dark energy models, and alsoD1

MG/D1
DE can be

larger than unity~up to 1.2 atz50) due to a fast variation o
g with x̄.

Ultimately, unless the source of acceleration is a vacu
energy component, determination of the expansion histor
the universe plus the growth of structure should allow us
identify, through the divergence between Eq.~4.2! and Eq.
~4.5!, whether today’s cosmic acceleration may be attribu
to modified gravity or dark energy.

V. EVOLUTION OF GRAVITATIONAL POTENTIALS:
THE ISW EFFECT

The microwave background provides another window
differentiate between dark energy and modified grav
through the late-time integrated Sachs-Wolfe~ISW! effect
due to the decay in gravitational potentials at late times~see
e.g. Ref.@31#!. In order to assess how a modified gravit
tional force law affects the ISW effect, we must find th
evolution of the cosmological gravitational potentia
C(t,l) and F(t,l), which are defined using the line ele
ment

ds25@112C~ t,l!#dt22ā2~ t !@112F~ t,l!#

3@dl21l2dV#, ~5.1!

whereā(t) is the background scale factor evolution. We a
only interested in potentials and overdensities that are s
and, therefore, only interested in linear perturbations aro
the cosmological background.

We have the equations for the evolution of a linear top-
overdensityd(t) of radial extentl* , Eq.~4.7!, and we know
the complete metric for that matter configuration:
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ds25dt22ā2~ t !F dl2

12kl21l2dVG , ~5.2!

wherea35(11d)ā3, andk is the curvature parameter ass
ciated with the magnitude of the overdensity. Usingr
5al* and integrating Eq.~4.3!, we arrive at

ṙ 25~12kl
*
2 !2grr

21 , ~5.3!

where the constant of integration is determined by smoo
connecting a background cosmological expansion outsidel*
with an overdense space insidel* . Then, one may deduc
that

k5ā2H0
2x̄g8~ x̄!d1

2

3
āǡḋ. ~5.4!

One can confirm using Eq.~4.9! that k is indeed a constant
One needs only identify a coordinate transformation t

ing the metric Eq.~5.2! into the form Eq.~5.1! and read off
C andF. After some algebra we find

C~ t,l!52
ā2l

*
2

6 S 12
l2

l
*
2 D @4pGr̄d~g813x̄g9!#

~5.5!

F~ t,l!5
ā2l

*
2

6 S 12
l2

l
*
2 D @4pGr̄dg8#, ~5.6!

when l,l* and the potentials vanish outsidel* . By su-
perposing top-hat linear overdensities, we surmise that
generalr-dependentd

¹2C54pGr̄ā2@g8~ x̄!13x̄g9~ x̄!#d ~5.7!

¹2F524pGr̄ā2g8~ x̄!d, ~5.8!

where the Laplacian is with respect to comoving coordina
These expressions for the linear gravitational potentials
the generalization of the usual result for Einstein grav
around a specific cosmological background. One arrive
time-dependent effective Newton’s constants~in general, dif-
ferent forC versusF). At early times,Geff→G but deviates
from the true Newton’s constant significantly asH̄→H0.
Note that this large discrepancy only applies to se
gravitation of linear density perturbations. For example, so
system manifestations of Newton’s constant, in this conte
are not linear and will only have small deviations from th
true Newton’s constant, as will be seen in the next sectio

We may now take Eqs.~5.7! and~5.8! and apply them to
ascertain the ISW effect on the cosmic microwave ba
ground, which is proportional to the integral ofḞ2Ċ along
the line of sight~see e.g. Ref.@31#!. From Eqs.~5.7! and
~5.8! we find, after a Fourier transformation,

A~Ḟ2Ċ!DE5~12 f DE!D1
DE ~5.9!
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A~Ḟ2Ċ!MG

5F ~12 f MG!S g81
3

2
x̄g9D1

3

2
~5x̄g913x̄2g-!GD1

MG ,

~5.10!

whereA[2k2/(8pGH̄r̄ā2d0) with k the comoving wave
number andd0 the amplitude of density perturbations
some early time. The second term in Eq.~5.10!, representing
the time derivative of the effective gravitational consta
leads to an additional decay of the potentials that can
quite significant at low redshifts.

We compute the cross-correlation between tempera
anisotropies due to the ISW effect and galaxy fluctuatio
which has recently been detected using the Wilkinson Mic
wave Anisotropy Probe~WMAP! and SDSS data set
@32,33#. The angular cross-correlation functionwTg(u) can
be written as

wTg
DE~u!53T0Vmb~2p!2

H0
3

c3 E dzAgD1
2 ~12 f !wg~z!

3E dk

k
P~k!J0~kux!, ~5.11!

for the dark energy case, whereas for modified gravity

wTg
MG~u!53T0Vmb~2p!2

H0
3

c3 E dzAgD1
2

3F ~12 f !S g81
3

2
x̄g9D1

3

2
x̄~5g913x̄g-!Gwg~z!

3E dk

k
P~k!J0~kux!, ~5.12!

where we have assumed the small-angle approximation,
T0 is the cosmic microwave background~CMB! temperature,
b is the linear bias of SDSS luminous red galaxy~LRG!
galaxies,wg(z) is the galaxy selection function,P(k) is the
dark matter power spectrum atz50, J0 is a Bessel function,
andx(z) is the comoving distance as a function of redshifz.
We assume, following the results in Ref.@33# ~see their Fig.
3!, that3 b55.47, and use their selection function for thez
50.49 sample.

Figure 2 shows the results, again using the expansion
tory given by Eq.~4.10!. We see that the MG angular corre
lation function is suppressed by a factor of about two co
pared to the case of DE, for the same expansion history.
anomaly is a reflection of the order-unity anomalous eff
tive Newton’s constant seen in Eqs.~5.7! and~5.8! when the

3This choice is a matter of convention here since it scales b
predictions by the same amount. In practice, by measuring the
gular bispectrum of LRG galaxies one can determineb, which due
to the results in the previous section should be almost indepen
of whether DE or MG is present.
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Hubble parameter is near today’s value. Although the IS
anomaly is not yet detectable, it should be so in the n
future with the completion of the SDSS survey or other
ture probes of structure at intermediate redshifts.

The suppression of the late-time ISW effect that resu
from MG can help explain, at least partially, the low amp
tude of the CMB power spectrum at low multipoles as co
firmed by WMAP @34#. It is worth emphasizing that thes
results depend on the specific prescription of exploit
Birkhoff’s law for understanding modified gravity from cos
mological physics, and it will be important to check wheth
the large ISW discrepancy carries over to more general
scriptions of modified gravity.

VI. ORBIT PRECESSION

If cosmology is driven by some minimally couple
smooth energy momentum component~dark energy!, the
gravitational force law between two discrete bodies is un
tered, even if there are slight spatial variations in that d
energy field. Tests of Einstein gravity on solar system sca
would then be correspondingly unaltered. On the other ha
we have seen that modification of the Friedmann equa
leads to a modification of the gravitational force law. Th
modification of the force law may, in turn, lead to small-bu
detectable corrections at distances much smaller than tod
Hubble scale. Indeed, under some circumstances~e.g., if no
physics other than that deduced from cosmological evolu
emerges at small scales! these alterations of cosmology o
the largest observable distances may cause observable d
tions from known physics at even solar system scales. Le
elaborate.

The precessionDf of the perihelion per orbit in the back
ground of a metric of the form Eq.~2.2! may be determined
in the usual way:

th
n-

nt

FIG. 2. The angular cross-correlation function between galax
and CMB temperature anisotropies. The solid line shows the d
energy case, and the dashed line corresponds to modified gr
with the same expansion history.
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Df5E dr
J

r 2A g00grr

E22g00~11J/r 2!
, ~6.1!

whereE5N2Ṫ, J5r 2ḟ, and the dot refers to differentiatio
with respect to proper time. For a nearly circular orbit with
metric of the form Eq.~3.8!, one may compute the prece
sion rate:

d

dT
Df5

H0

A2
x1/2FA g2

3

2
xg8

4g2
9

2
xg81

9

2
x2g9

21G ,

~6.2!

with again,x5r
*
3 /r 3. The leading contribution to orbit pre

cession from the altered metric Eq.~3.8! comes from the
simple alteration of the Newtonian potential.

We are particularly interested in orbits whose radii arou
a central body of Schwarzschild radiusr g are much smaller
than r * 5(r g /H0

2)1/3. Then, corrections from the modifie
gravity are small. One may represent the functiong(x) as

g~x!5x@11dg~x!#, ~6.3!

with dg(x)!O(1). Then, Eq.~6.2! reduces to

d

dT
Df5

6H0

A2
x3/2S dg81

3x

4
dg9D , ~6.4!

to leading order indg. Recall that herex@1.
Take as an instructive example the form of the modifi

Friedmann equation found in Cardassian models@21#. This
can be written as

g~x!5x@11cx2q(12n)#1/q, ~6.5!

wheren andq are parameters of the modification and whe

c5S ~11zeq!
3q

11~11zeq!
3q(12n)D 12n

. ~6.6!

The quantityzeq is the redshift at which the two terms insid
the brackets in Eq.~6.5! are equal, a quantity of order unity
Then, using Eq.~6.4!, the anomalous orbit precession rate

d

dT
Df5

3cH0

2A2
~n21!@3q~n21!11#S r 3

r
*
3 D q(12n)21/2

.

~6.7!

Whenq(12n)5 1
2 , this expression is independent of the r

dius of the orbit, or the mass of the central body, and
anomalous precession rate is proportional to today’s Hub
parameter,H0;10 mas/year. Such a precession rate is
the threshold of detection by precision ephemeris meas
ments of the inner solar system, particularly with intrigui
developments this decade coming from two Mercury-bou
missions~BepiColombo and MESSENGER! as well as im-
provements in lunar ranging observations@14,15,35–38#.
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When q(12n)Þ 1
2 , there is a relevant distance dependen

for the anomalous precession rate, where the govern
length scale is once againr * . Since we are primarily con-
cerned with orbits such thatr !r * , the dimensionless dis
tance factor in the anomalous precession ra
(r 3/r

*
3 )q(12n)21/2, will either be huge or tiny. Thus, with

solar system constraints in mind, the parametric range wh
q(12n)& 1

2 can already be ruled out. However, forq(1
2n)@ 1

2 , no solar system tests are likely to discover discre
ancies based on anomalous orbit precession in the fore
able future.

VII. CONCLUDING REMARKS

In this paper we showed how modifying gravity to effe
the observed late-time cosmological acceleration at scale
today’s Hubble radius,H0

21, can lead naturally to corre
sponding modifications of gravitational interactions at sca
much shorter thanH0

21. Indeed, by presuming that the ne
gravitational physics obeys a limited version of Birkhoff
law, we were able to derive the precise form of the mod
cations to Newton’s law of gravitation at short~subcosmo-
logical! distances. We then showed that an observer in
gravitational field of a central source whose Schwarzsch
radius isr g experiences substantial deviations from the us
Schwarzschild metric at all distances greater than appr
mately

r * 5S r g

H0
2D 1/3

. ~7.1!

For many models these deviations will be measura
through observation of orbital precession of solar system
jects in the coming decade. We also discussed the evolu
of density perturbations and showed that, unless the ac
eration of the Universe is driven by an effective vacuu
energy, simultaneous measurement of the expansion his
and growth of large-scale structure can be used to disting
modified gravity from dark energy. In addition, the cros
correlation of the galaxy distribution and the cosmic micr
wave background temperature anisotropy can detect ano
lies in the late-time integrated Sachs-Wolfe effect caused
modified gravity. Such measurements will be available i
minently.

It is instructive that these results are identical to tho
found for the braneworld theory of Dvali, Gabadadze, a
Porrati ~DGP!, even though DGP gravity does not respe
any dynamical version of Birkhoff’s law. The correspo
dence between the scales of departure from Einstein gra
in DGP and Birkhoff’s law theories seems not to be a co
cidence. Indeed, one suspects that it is quite general. Ima
cosmology at extremely late times, when all matter surrou
ing a particular gravitational source is swept away. Then
one believes that an isolated, central source has a~quasi!
static metric description, it should be Schwarzschild at sh
distances and deviate from Schwarzschild at large-eno
distances. How large? Since this metric must still encode
cosmology within it, i.e., test observers at large distan
from the source should recede from the source in the man
5-8
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dictated by the given late-time~accelerating! cosmology, the
empty spacemetric must include a repulsive force at di
tances where cosmological flow overcomes the local gr
tational binding of the central source. Thus, we expect s
stantial deviations from Schwarzschild~in the form of a
repulsive force! at distancesO(r * ), Thus, it is not unreason
able to expect general modifications of cosmology at toda
Hubble scale to inevitably affect local gravitational intera
tions at distances governed byr * ; it is only the precise
functional form of the deviations that will vary from mode
to model.
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