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The nature of the fuel that drives today’s cosmic acceleration is an open and tantalizing mystery. We
entertain the suggestion that the acceleration is not the manifestation of yet another new ingredient in the
cosmic gas tank, but rather a signal of our first real lack of understanding of gravitational physics. By requiring
that the underlying gravity theory respect Birkhoff's law, we derive the modified gravitational force law
necessary to generate any given cosmology, without reference to the fundamental theory, revealing modifica-
tions of gravity at scales typically much smaller than today’s horizon. We discuss how, through these modifi-
cations, the growth of density perturbations, the late-time integrated Sachs-Wolfe effect, and even solar-system
measurements may be sensitive to whether today’s cosmic acceleration is generated by dark energy or modified
gravitational dynamics, and are subject to imminent observational discrimination. We argue how these conclu-
sions can be more generic, and probably not dependent on the validity of Birkhoff’s law.
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[. INTRODUCTION dimensional braneworld universe into an unseen, yet large,
fifth dimension[5-7]. DGP gravity provides an alternative
The discovery of a contemporary cosmic acceleratiorexplanation for today’s cosmic acceleratip8,9]: just as
[1,2] is one of the most profound scientific observations ofgravity is conventional four-dimensional gravity at short
the latter part of the last century. What drives that accelerascales and appears five-dimensional at large distance scales,
tion remains an open and tantalizing question. A “conven-SO too the Hubble scalti(t) evolves by the conventional
tional” explanation exists for the cause of that accelerationffiedmann equation at high Hubble scales but saturates at a
vacuum energy provides the necessary repulsive gravity ifixed value asH(t) approaches a value equivalent to the
general relativity to drive an accelerated expansion of thdnverse of the crossover distance between four- and five-
Universe. Variations on this vacuum-energy theme, e.g. quindimensional behaviorr;*. Thus, if one were to set that
tessence, promote the energy density to the potential energyossover distance scale to be on the ordét pt, whereH,
density of a dynamical field. Such additions to the roster ofis today’s Hubble scale, DGP could account for today’s cos-
cosmic sources of energy-momentum are collectively remic acceleration in terms of the existence of extra dimen-
ferred to as dark energy. Accounted for as such, dark energsions and a modification of the laws of gravity.
would constitute the majority of the energy density of the We would naively expect not to be able to probe this extra
universe today. dimension at distances much smaller than the crossover scale
However, what if one were to view the current cosmic rc=H51. However, in DGP, although gravity is four-
expansion not as yet another ingredient in our already comdimensional at distances shorter then, it is not four-
plex cosmic soup, but rather as a signal of our first real lacklimensional Einstein gravity—it is augmented by the pres-
of understanding of gravitational physic6®lthough others ence of an ultralight gravitational scalar. One only recovers
have argued that dark matter was that first signal of postEinstein gravity in a subtle fashigi0-13, and a marked
Einsteinian gravity{3,4], we will not address ourselves here departure from Einstein gravity persists down to distances
to that possibility. An instructive example along that direc- much shorter than,. For example, for,=H,* and a cen-
tion is the braneworld theor}5] of Dvali, Gabadadze, and tral mass source of Schwarzschild radiys significant and

Porrati (DGP). In this theory, gravity appears four- cosmologically sensitive deviations from Einstein gravity oc-
dimensional at short distances but is altered at large distancesr at distances greater thit2—15
through the slow evaporation of the graviton off our four-
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extra dimension is naively hidden, or for our discussion herelaw. Thus in the standard cosmology, Newton’s law of gravi-
the distance at which the Friedmann equation was modifiethtion, or now its general relativistic generalization, and the
to account for accelerated cosmic expansi@ther theories observed scale factor evolution are used to extract the stress-
have since shown how alternative modifications of gravity atenergy content as a function of time. The approach here will
large distances can lead to late-time acceleration withoube to fix the form of the stress energy to be that of dust
dark energy{16-19.) (nonrelativistic matteérand use the observed evolution of the
Recently, appeals have been made to a direct empiricalcale factor to extract a new generalization of Newton’s law.
modification of the Friedmann equation in order to explain We take the cosmological metric to be the Robertson-
cosmic acceleration without dark enerf30—22, broaden- Walker metric(flat space, for convenienge
ing the theme explicitly and completely realized by DGP

braneworlds. Unfortunately, fully self-consistent models d32=dt2—a2(t)5ijdxidxj

implementing these ideas have yet to be found that can re-

produce the desired general modifications to the Friedmann =d2—a2(t)[dA2+A2dOQ].

equation, making it difficult to establish the full consequence 2.0

of the proposed new physics. An important question to be

as_ked is whether gravity theories that produce such modifieghe imagine then that we are given a complete cosmological
Friedmann equations can be devoid of observable consgyolution, i.e., a specified cosmological scale factor evolu-
quences other than late-time acceleration. There may bon, a(t) [the understanding being thatt) is determined
something to be learned from the example of DGP gravityg the past light cone by observations, and that the assump-
Will the.se new theqnes generically lead to similar deviationsjgp of spatial homogeneity carries this to the whole space
from Einstein gravity at scales much smaller than today’sf\ye were to solve the Einstein equations for this metric, we
Hubble radius? _ _ would be forced to specify a matter content and an equation
Pursuing this line of thought without an underlying model o state as a function of time. Such an equation of state
is difficult, but not altogethe.r impossible. In this paper, weyould not normally be matter dominated, and we would be
allow ourselves an assumption about the structure of a pogpced to consider the nondust component to be a sort of dark
S|_ble modified theory of gravity, taking the constraint of energy. However, we will insteagresumethat the scale fac-
Birkhoff's law as the example, and show how with that as-yo 4(1) is the result of a pure dust configuration, and ask
sumption alone, one may kinematically ascertain gravitayhat modifications of gravity would be necessary to yield
tional force interactionsavoiding reference to fundamental o givena(t).
dynamics. We then describe how modification of cogmplogy Such a prescription for modifying the Einstein equations
at today's Hubble scale can naturally affect gravitationalig not unique. However, we can require that this hypothetical
physics at much smallee.g. astrophysical, and even under e,y gravity theory obeys a generalization of Birkhoff's law:
certain circumstances solar systenfistance scales. It iS for any test particle outside a spherically symmetric matter
worth noting that DGP gravity does not respect Birkhoff's 54 rce, the metric observed by that test particle is equivalent
law, and we conclude with a discussion on how shorty, that of a point source of the same mass located at the
distance modifications of gravitational interactions may be &gnter of the sphere. With that one restriction on the theory,

general consequence of gravity modified at cosmologicalye can deduce completely the Schwarzschild-like metric of

scales. the new hypothetical gravity theory that gives us the pre-
scribed cosmological evolution with a dust-filled universe.
The procedure for determining the metric from the cos-
mological evolution is as follows. Because Birkhoff's law
The premise of our approach is that the static,holds, the evolution of a hypothetical sphere of dust evolving
Schwarzschild-like metric, or more specifically its geodesicswithin a homogeneous dust cosmologyidentical to the
may completely determine cosmological evolution, i.e., thatvolution of that same sphere if all the matter outside it were
the cosmological evolution is driven not by some dark en+emoved. The latter matter configuratidne., a uniform
ergy background(where by “dark energy” we mean a sphere of dust set within an otherwise empty spatews
smooth energy-momentum component minimally coupled t@ne to use the known cosmological evolution of the interior
gravity), but by the matter content itself. This should be aspace to determine the metric of the empty outer space by
familiar premise—it underlies the usual undergraduate-levetequiring matching of geodesics and the metric smoothly
derivation of the Friedmann equation from Newton's laws ofacross the boundary of the dust sphere. Thus from the cos-
motion and his law of gravitation. One posits that in a ho-mology one can ascertain the Schwarzschild-like metric of
mogeneous isotropic dust-filled universe, the acceleration afmpty space around a specified source mass.
a comoving(geodesit observer a distancefrom some ar- Consider a uniform sphere of dust. Imagine that the evo-
bitrary origin is determined by the gravitational pull of the lution inside the sphere is exactly cosmological, while out-
matter interior to the sphere of radiusOne then derives an side the sphere is empty space, whose metgiven
equation for the evolution af with time. That one arrives at Birkhoff’s law) is Schwarzschild-lik¢as defined by the met-
the precisely correct general-relativistic Friedmann equationiic equation(2.2) below]. The mass of the matter sour(s
may seem surprisingly coincidental but is really a consedetermined by the form of the metric at short distandss
guence of homogeneity, energy conservation and Birkhoff’sinchanged throughout its time evolution. The surface of the

Il. THE FRIEDMANN EQUATION AND THE FORCE LAW
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spherical mass therefore charts out the metric through all ojeodesic worldline and, moreover, these expressions allow
space as the sphere expands with time, so long as we demausl to determine the metric components of Ej2) uniquely

that the cosmological metric just inside the surface of thefrom a givena(t):

sphere smoothly matches the Schwarzschild solution just

outside. In order to see how the metric depends on the mass Joo=E?(1—-\2a?) (2.13
of the central source, we just take a sphere of dust of a
) R . . .
(rjr;fg(tarrignt initial size, and watch its surface chart out a new g =1-A5a? (2.14
We start with a Schwarzschild-like metric in the usualwith r(t,\, )=\, a(t).
form Thus, by requiring our new gravitational physics to re-

spect Birkhoff’s law, the metric around a spherically sym-

ds’=goo(1)dT*~ g (r)dr®~r*dQ, 22 metric matter source is completely specified by the cosmol-
and rewrite it in the new form ogy a(t). To determine the dependence of the metric on the
source mass, one need only select a diffebent The re-
ds?=N2?(t,\)dt?—a?(t)da?—r2dQ, (2.3  maining parameteE may be specified by an arbitrary choice

' _ ' of time normalization. Notice that for a general scale factor
where nowr=r(t,\) anda(t) is the given cosmological evolutiona(t), superposition and linearity of the metric must
evolution. In order to determine the coordinate transformane sacrificed, even in the weak-field limit.et us see what
tion T=f(t,\) andr(t,\), we equate the forms, E2.2)  consequences this has for phenomenology.
and Eq.(2.3):

IIl. GOVERNING SCALES

szgoofz_grrfz 2.9
The exterior(Schwarzschild-likg metric is given by Egs.
0=goof f' — g I’ (25  (2.13 and(2.14. For the gravitational force law to approach
Einstein’s at distances small than today’s horizon size, we
—a%=goof 2= gnr'?, (2.6)  require

where the dot denotes partial differentiation with respedt to 1 g
(holding \ fixed) while the prime denotes partial differentia- Yool ) =9y (N =1=-7, (3.3)
tion with respect tox (holdingt fixed).

The object of transforming to the form E@.3) is thatthe  whenr is much smaller than today’s horizon scatg, *, and
bounding surface of the spherical mass distribution can be =2GM is the usual definition of the Schwarzschild radius.
taken to be at fixed =\, . We wish now to make an iden- On the other hand, cosmology at early tinfbat still during
tification between the interior metric E(R.1) and the exte- matter dominated regimenust obey the conventional Fried-
rior metric Eq. (2.3) which is smooth, and such that this mann equation
matching surface is also a geodesic of the exterior

(Schwarzschild-likemetric. This is realized if the following a? 8nG
conditions hold at the boundary: H?= 2 3 (3.2
r(t, A )=r,at), (2.7) . .
where we use(t) to denote the matter density. The relation-
r'(ta,)=a(t), (2.8 ship between mass anq, is therefore
N(tA,)=1, (2.9 _fg _4m 3 4T s g
* M(N\,) 5G - 3 p(t)r 3 A\, pa’, (3.3
N’(t,\,)=0. (2.10

wherep(t) is the matter density, anda® is a constant with
Using Egs.(2.7) and (2.8) as the boundary condition, one respect ta for a dust-filled universe.
can integrate Eqg2.5 and (2.6) to arrive at the complete How small should be, or how large shoulH be, for this
coordinate transformatioif =f(t,\) andr(t,\), for arbi- conventional behaviofEgs. (3.1 and (3.2)] to be appli-
trary functionsgg(r) andg,,(r). For Egs.(2.9) and (2.10 cable? Clearly, the cosmological evolution must be conven-
to be satisfied, conditions need to be placedggs{r) and

e (1):
. INote that DGP gravity does not satisfy the condition tgg,,
r2(t,)\*)=1—g,_,1(r(t,)\*)) (2.11) =constant and, therefore, cannot satisfy a dynamical version of
Birkhoff's law. But, while DGP gravity does not fall under the
Joodrr = E?= constant, (2.12 category of modified-gravity theories under consideration, it does

share many of the same properties, such as the lack of superposition
for Egs.(2.9) and(2.10 respectively. One can quickly con- and linearity, as well as properties to be noted in the coming sec-
firm that these expressions combined impky A, follows a  tions.
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tional whenH>H,, whereHy is today’s Hubble scaléap-  wherep(t) is the background matter densitgiust compo-

proximately the scale at which acceleration sefsdnin  nent only, i.e., not including the energy density of the dark

other words, rearranging E(.14), when energy. The conventional evolution af(t) is governed by
the following equatiorj23]:

1-g," 4 1
>H3. (3.4) B T
r2 6+2H6 3 1+55 47Gp(1l+6)4. (4.2
But this implies that, just as in the DGP examble, The quantityﬁ(t) corresponds to the background evolution.
We wish to compare this relationship with that for the same
g s scale factor evolutiofand correspondingly, the sam#t)
== (3.5  evolution], but with modified gravity.
Ho By exploiting Birkhoff’s law constraint, one may compute

the evolution of overdensities by merely following the geo-
and notrc=H51, is the distance smaller than which one desics of spherical masses, without regard to physics outside
expects deviations from Einstein gravity to be small, butthe spherical mass itself. Note that this is not possible unless
larger than whichsignificantdeviations from Einstein must spherically symmetric configurations respect the metric Egs.
occur in the force law in order to reproduce the desired cosf2.13 and (2.14). (DGP gravity in particular does not fall
mic history as a modification of the Friedmann equation.under this category of Schwarzschild-like metridssing the
Indeed, we may write our modified Friedmann equation ingeodesic equation as expressed by differentiating(£44)

the very general form: with respect td, we get
2 2 p 1d -1 2 3 ’
H =Hgg(x), (3.6 r=—=5gr9r =rHg| g(x)— >%9 (x) . 4.3
with the dimensionless quantitydefined as Note that this resembles Newton’s second law, but is fully
relativistic. Using some algebra and rewriting E¢.1) as
87Gp follows,
X=—F7777- (37)
3Hj 3H3
1+6=x =, (4.9
g(x) is such thag(x) —x whenx>1, butg(x) substantially 87Gp

deviates fronx otherwise, e.g. for the cosmological constant,ere againx= r3/r3 one may use Eq4.3) to derive a new
caseg(x)=x+Q, , with x=Q(1+2)® from Eq.(3.7) and governing equaﬁon foB(t):

Q,, andQ, the energy densities of matter and cosmological
constant in terms of critical density at redshif=0. The
modified Schwarzschild metric may then be read from Egs.
(2.13 and(2.149:

5+ 2Ho— & s
TeHOT 3T

3 _ _
=3(1+ 8)H3| 5x(1+ 8)g’ (X(1+ ) —g(x(1+
£ 2o g 1= 1 12H2g00. a8 (1+ §)HF| 5x(1+8)g’ (X(1+8)—g(x(1+ )
— 3,3 i it 23—, — )
where nowx=r;/r®, using the definition ofr, and Eg. =3(1+ 8)H§ Exg’(x)—g(x) , (4.5

(3.3.

where we definex_ESWG;BHg:ng‘S. The quantityg(t)
IV. GROWTH OF PERTURBATIONS is the background scale factor. Note that E45) is depen-

. . o . dent only on the background evolution and makes no refer-
We next wish to study the influence of the modified gravi- o 16 1o i/he massl or tge radiug, . Evolution begins with

tational force law on the evolution of perturbations in the— — i TR
universe. Define the top-hat overdensit) of a spherical x>1 andx decreasing with time. Deviations from the usual

mass of dust with mas¥l and radius by Einstein evolution occur wher~1.
Equation (4.5 is equivalent to Eq.(50) in Ref. [24],
where it is derived assuming the continuity equation and the
=, 4.2 Friedman equatiorfor fluctuations It turns out that this is
(4mI3)pr3 equivalent to assuming the validity of Birkhoff’'s theorem. As
we mentioned above, however, this approach is not justified
when dealing with DGP gravity; basically, one cannot infer
2In DGP gravity,r, is the distance at which scalar would-be ra- the evolution of a spherical perturbation from the evolution
dion modes become free to propagate, adding a Brans-Dicke typef the scale factor.
scalar to the existing gravitational interactions, where the strength In linear perturbation theory, we may simplify E@t.5):
of the Brans-Dicke couplingy, depends sensitively on the back- . . o -
ground cosmology. S+2H6=47Gpd[ g’ (x)+3xg"(X)]. (4.6)
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If g(x)=x+A;+A,x?? whereA; and A, are constants,
modified gravity yields an answer indistinguishable from the 1
dark energy scenario with the same cosmic history. However

in all other cases, the_evolution oft) is distinct. Choosing DM/ DDE
the time variable to b&, we see that 0.99
— _d?% — 3 _Jd¢ 1 _— _ _
3xg(X) = +| g(x)+ 5xg’ (x) |—== 5[ g’ (x) +3xg"(x)]4. 0.98 ;
dx? 2 dx 2 /

(4.7

. . . . 0.97
Compare this expression with the corresponding one for evo /
lution in a dark energy background from Ed.2):

9 0.96

i (_)d 5+ dé
XO(X) —
g dx?

1
d—_= > 6 (dark energy.
X
(4.8) 0.95

_ 3 _
g(x)+§xg’(><)

T T =L

v e e e ey b by

It is interesting to note that, unlike E@4.8), the case of L
modified gravity Eq.(4.7) has a decaying mode solution 0.940 E—
DMCaHocgl? for arbitrary expansion histories. As a result z
of this, one finds that the growing mod&"® obeys

[aV]
B
(o]
[oe]
—
o

FIG. 1. Growth of perturbations as a function of redshift in dark
- dx! energy(DE) models and modified gravityMG) models withiden-
f_ _ 4.9 tical expansion historiesgiven by Eq.(4.10. The dashed line
x [g(x")]¥ 13 shows the ratio of density perturbation growth factor$¢/D%E,
and the solid line shows the ratio of the velocity perturbation
whereD"® is normalized so that it scales like the scale fac-growth factorsfMC/fPE.

tor at early timesx>1. When the expansion history can be I — . )
described byg(x) =x-+ A, +A,x?3, dark energy and modi- redshiftg(x)~x, but at low redshift the constraint that the

fied gravity give rise to the same linear growth of densityUniverse acceleratesf-0) implies dIy/d Inx<2/3. If we
perturbations and Eq4.9) becomes the standard quadraturepodelg(x) as a local power lavg(x) ~x", wheren changes
representatiof25]. For a general expansion history, one can-yery slowly fromn=1 at high redshift ton<2/3 whenz
not use Eq(4.9) to find the growing mode in a dark energy —1 we see thag’(7)+37 ”(;)~n(3n—2) (;)/? S0 asn
backgroundD?F and must solve Eq4.8) instead. ’ ) g~ Y — g ’

Let us now consider how the linear growth of perturba-PecOMes closer to 2/§'(x) +3xg"(x) becomes small. Al-

tions can distinguish between dark energy and modified0ugh in practice one must take into account the time de-
gravity models with thesameexpansion history. This is rel- pendence of, this illustrates why the growth of structure is

evant because in the near future, planned experiments wiiloWer in the case of modified gravity. As long as we are
measure the expansion history fram 0 to z=2 with very only concerned with linear perturbations around a cosmo-

good accuracy(see e.g. Refs[26,27). For other tests of logical background, this effective Newton’s constant is
gravity using large-scale structur,e see e.g. Re,29. To wavelength independent. However, when perturbations be-

illustrate our results, we assume a modified Friedman equzf-(.)me strong, and self-grawtauon domllnate-s cosmology, we
tion given by will see that the effectivesG does acquire distance depen-

dence(see Sec. VI

g(x)=[c+ \/m]z, (4.10 Figure 1 _also shows the rati , Wwhere f
=dInD, /dIna governs the growth of velocity fluctuations
wherec is a constanta=(1—)/2. This corresponds to in linear perturbation theory, that is, the velocity divergence
“extra-dimensions-inspired” modified gravity in Ref22] o\ 0lves ass= — Haf 8 from the linearized continuity equa-
when theira=1 (which corresponds to an effective equation jon, (see e.g., Ref23]). We see that slower growth leads to
of state withweg=—0.7 for z between 0 and)2In all cal-  smaller time derivative; thu$®/°F also decreases as
culations we sef),=1/3 for simplicity. o) DE —0. These deviations are detectable with precision mea-
_ Figure 1 shows the results for the raBd'®/D%* (dashed  gyres of large-scale structure; for examjle, andf can be
line) as a function of redshiit. The modified gravity pertur-  derived from joint measurements of the redshift-space power
bations grow slower, and the decline of this ratio as the redspectrum anisotropy and bispectrum. The Sloan Digital Sky
shift approaches zero is a general feature, not restricted tgyrvey(SDSS should be able to probe these quantities with
Eg. (4.10, that can be understood in general terms. Froniatistical errors of order a few percdB0].
Egs.(4.6—(4.8) we see that for the same expansion history, 5o far we have discussed the linear growth of perturba-
the difference in growth can be thought of as coming from anjons. Equation4.5) can be recast in a more useful way to
effective gravitational consta@[g’(x) +3xg”(x)]. Athigh  study the nonlinear evolution in perturbation theory,

— 5
D’\_CG(X) — 69%391/2

d:MG/.I:DE
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500052 4400+ 3|92 _ X900 (42 2 d=dt?—a%(t) N %0 (5.2
Xg(X)ﬁJr 9(x)+ 5%’ (x) i Y1re e = 1 o\2 , :
1+68) « (X" — wherea3=(1+ 8)a3, and« is the curvature parameter asso-
= — _ (n) (n+1) )
2X nZ‘l n! [(3n=2)g™"+3xg I ciated with the magnitude of the overdensity. Using

=a\, and integrating Eq(4.3), we arrive at
411 * g g Eq4.3
. _ o r?=(1=x\5) =g (5.3
A couple of points are worth stressing here. First, this equa-
tion becomes identical to that in the standard dark energyhere the constant of integration is determined by smoothly
scenario, Eq(4.2), only if g(x)=A;+x, i.e. standard Ein- connecting a background cosmological expansion outsjde

stein gravity plus an effective cosmological constdat ith an overdense space insitlg . Then, one may deduce
curvature-type term is no longer degenerate as in the lineapat

case. Expanded to second order, this equation can be used to

compute the skewness of the density fiéibe also Ref. T 2 .

[24]); we have checked that for the same expansion history k=a’Hoxg'(x) 6+ zaad. (5.9
given by Eq.(4.10 the skewness changes by less than one

percent in modified gravity compared to dark energy modelsgne can confirm using Ed4.9) that « is indeed a constant.
Only a rather large third derivative gfcan induce an appre- e needs only identify a coordinate transformation tak-
ciable change in skewness from that in the dark energy Casthg the metric Eq(5.2) into the form Eq.(5.1) and read off

Such extreme models have been studied in R¥ [€.9. p anqd. After some algebra we find
using Eq.(6.5) below withn=0 andq=5]; we have verified

that in this case the skewness can change by up to 10% T2, 2 X

compared to dark energy models, and dEf°/D2F can be V()= — —2| 1— — |[47Gps(g’ +3xg")]
larger than unity(up to 1.2 az=0) due to a fast variation of 6 N

g with x. (5.9

Ultimately, unless the source of acceleration is a vacuum
energy component, determination of the expansion history of
the universe plus the growth of structure should allow us to
identify, through the divergence between E4.2) and Eq.
(4.5, whether today’s cosmic acceleration may be attributedvhen A <\, and the potentials vanish outside . By su-
to modified gravity or dark energy. perposing top-hat linear overdensities, we surmise that for

generalr-dependent

a2 2 2 o
d(t,\)= 6* (1—)\—2)[47TGp5g'], (5.6)

V. EVOLUTION OF GRAVITATIONAL POTENTIALS:

2\ — 2T () o~ ()

The microwave background provides another window to V2P = —47er_azg’(;) S, (5.9
differentiate between dark energy and modified gravity
through the late-time integrated Sachs-Wolf8W) effect  where the Laplacian is with respect to comoving coordinates.
due to the decay in gravitational potentials at late tif®®  These expressions for the linear gravitational potentials are
e.g. Ref.[31]). In order to assess how a modified gravita-the generalization of the usual result for Einstein gravity,
tional force law affects the ISW effect, we must find the around a specific cosmological background. One arrives at
evolution of the cosmological gravitational potentials, time-dependent effective Newton’s constafisgeneral, dif-
W(t,\) and ®(t,\), which are defined using the line ele- ferent for¥ versus®d). At early times,G.4— G but deviates

ment from the true Newton’s constant significantly &s—H,.
Note that this large discrepancy only applies to self-

d=[1+2W(t,\)]dt2—a2(t)[1+ 2D (t,\)] gravitation of linear density perturbations. For example, solar
system manifestations of Newton’s constant, in this context,
X[dN2+\%dQ], (5.)  arenotlinear and will only have small deviations from the

true Newton’s constant, as will be seen in the next section.

— . We may now take Eq€5.7) and(5.8) and apply them to
wherea(t) is the background scale factor evolution. We areﬁscertain the ISW effect on the cosmic microwave back-

only interested in potentials and overdensities that are smal

and, therefore, only interested in linear perturbations aroundound, which is proportional to the integral i— ¥ along
the cosmological background. the line of sight(see e.g. Ref{31]). From Egs.(5.7) and

We have the equations for the evolution of a linear top-haf-8 We find, after a Fourier transformation,
overdensitys(t) of radial extent, , Eq.(4.7), and we know N OB DE
the complete metric for that matter configuration: A(P—-T)"==(1-1"5)D3 (5.9
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where A= —k?/(8 "GHpa?8,) with k the comoving wave 1
number andd, the amplitude of density perturbations at
some early time. The second term in E5.10), representing
the time derivative of the effective gravitational constant,
leads to an additional decay of the potentials that can be
quite significant at low redshifts.

We compute the cross-correlation between temperature
anisotropies due to the ISW effect and galaxy fluctuations,
which has recently been detected using the Wilkinson Micro-
wave Anisotropy Probe(WMAP) and SDSS data sets
[32,33. The angular cross-correlation functiony(6) can
be written as

(6) [uK]

&
=

0.5 -

O 1 1 1 11 111 | 1 1 1 11 111 | 1
0.1 1 10
6 [degrees]

H3

wRE( 9)=3Toﬂmb(2w)2—:f dzygD% (1 f)wy(2)

c FIG. 2. The angular cross-correlation function between galaxies

dk and CMB temperature anisotropies. The solid line shows the dark

X f —P(k)Jo(kby), (5.11) energy case, and the dashed line corresponds to modified gravity
k with the same expansion history.

for the dark energy case, whereas for modified gravity Hubble parameter is near today’s value. Although the ISW
anomaly is not yet detectable, it should be so in the near
Hg future with the completion of the SDSS survey or other fu-
WS ( 0)=3TOme(27-r)2—3f dz\/gD? ture probes of structure at intermediate redshifts.
c The suppression of the late-time ISW effect that results
3 3 - from MG can help explain, at least partially, the low ampli-
g’ + —xg”) + =x(59"+3xg") |Wy(z) tude of the CMB power spectrum at low multipoles as con-
2 2 firmed by WMAP [34]. It is worth emphasizing that these
dk results depend on the specific prescription of exploiting
% f —P(k)Jo(kfy), (5.12  Birkhoff's law for understanding modified gravity from cos-
k mological physics, and it will be important to check whether

o the large ISW discrepancy carries over to more general pre-
where we have assumed the small-angle approximation, angtriptions of modified gravity.

Ty, is the cosmic microwave backgrout@MB) temperature,
b is the linear bias of SDSS luminous red galahRG) VI. ORBIT PRECESSION
galaxies,wg(2) is the galaxy selection functiof (k) is the

dark matter power spectrum 2t 0, J, is a Bessel function,

andy(z) is the comoving distance asa function of “?ds?"ff gravitational force law between two discrete bodies is unal-
We assume, following the results in RE83] (see their Fig.  (greq  even if there are slight spatial variations in that dark
3), thaf’ b=5.47, and use their selection function for the energy field. Tests of Einstein gravity on solar system scales
=0.49 sample. would then be correspondingly unaltered. On the other hand,
Figure 2 shows the results, again using the expansion hisye have seen that modification of the Friedmann equation
tory given by Eq.(4.10. We see that the MG angular corre- |eads to a modification of the gravitational force law. This
lation function is suppressed by a factor of about two com-modification of the force law may, in turn, lead to small-but-
pared to the case of DE, for the same expansion history. Thidetectable corrections at distances much smaller than today’s
anomaly is a reflection of the order-unity anomalous effecHubble scale. Indeed, under some circumstarteas, if no
tive Newton’s constant seen in Ed8.7) and(5.8) when the  physics other than that deduced from cosmological evolution
emerges at small scajethese alterations of cosmology on
the largest observable distances may cause observable devia-
3This choice is a matter of convention here since it scales botfions from known physics at even solar system scales. Let us

predictions by the same amount. In practice, by measuring the arglaborate.

X[ (1-7)

If cosmology is driven by some minimally coupled
smooth energy momentum componeguiark energy, the

gular bispectrum of LRG galaxies one can deterniiparhich due The precession ¢ of the perihelion per orbit in the back-
to the results in the previous section should be almost independeground of a metric of the form Eq2.2) may be determined
of whether DE or MG is present. in the usual way:
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J Yool Whenq(1—n)+3, there is a relevant distance dependence
Ad,:f dr— 5 009 ~ (6.1  for the anomalous precession rate, where the governing
r E—goo(1+J/r7) length scale is once agair) . Since we are primarily con-

: . . ~ cerned with orbits such that<r, , the dimensionless dis-
whereE=N?T, J=r?¢, and the dot refers to differentiation tance factor in the anomalous precession rate,

with respect to proper time. For a nearly circular orbit with a3/ 3)at=m-12 i either be huge or tiny. Thus, with
metric of the form Eq(3.8), one may compute the preces- gojar system constraints in mind, the parametric range where

sion rate: q(1—n)=<3 can already be ruled out. However, fg(1
3 —n)>1, no solar system tests are likely to discover discrep-
g— =xg’ ancies based on anomalous orbit precession in the foresee-
d Ho 1, 2 able future.

d_1-A¢:\/§X 4_9 /_’_22”_1 ,
g 2Xg 2X g VII. CONCLUDING REMARKS

(6.2 In this paper we showed how modifying gravity to effect

with again,x=r2/r3. The leading contribution to orbit pre- the observed late-time cosmological acceleration at scales of
. ' | . , ; -1
cession from the altered metric E(B.8) comes from the today’s Hubble radiusH, ", can lead naturally to corre-
simple alteration of the Newtonian potential. sponding modifications of gravitational interactions at scales
We are particularly interested in orbits whose radii aroundmuch shorter thairy*. Indeed, by presuming that the new
a central body of Schwarzschild radiug are much smaller gravitational physics obeys a limited version of Birkhoff’s
thanr, =(rg/HS)1’3. Then, corrections from the modified law, we were able to derive the precise form of the modifi-

gravity are small. One may represent the funciign) as cations to Newton’s law of gravitation at shaqgubcosmo-
logical) distances. We then showed that an observer in the
g(xX)=x[1+ 5g(x)], (6.3 gravitational field of a central source whose Schwarzschild
. radius isr 4 experiences substantial deviations from the usual
with 6g9(x)<O(1). Then, Eq.(6.2) reduces to Schwarzschild metric at all distances greater than approxi-
mately
iAd): %XW( 59+ gég”> , (6.9 o3
dr V2 4 r*:<H—9§> . (7.0

to leading order in5g. Recall that herex>1.

Take as an instructive example the form of the modifiedFor many models these deviations will be measurable
Friedmann equation found in Cardassian mod2. This  through observation of orbital precession of solar system ob-
can be written as jects in the coming decade. We also discussed the evolution

3 (-l of density perturbations and showed that, unless the accel-
g(x)=x[1+cx 17, (6.5  eration of the Universe is driven by an effective vacuum
energy, simultaneous measurement of the expansion history
and growth of large-scale structure can be used to distinguish
(1+Zea)3q )1n modified gravity from dark energy. In addition, the cross-

wheren andq are parameters of the modification and where

(6.6  correlation of the galaxy distribution and the cosmic micro-
wave background temperature anisotropy can detect anoma-

lies in the late-time integrated Sachs-Wolfe effect caused by
The quantityze is the redshift at which the two terms inside modified gravity. Such measurements will be available im-
the brackets in Eq6.5 are equal, a quantity of order unity. minently.
Then, using Eq(6.4), the anomalous orbit precession rate is |t is instructive that these results are identical to those
found for the braneworld theory of Dvali, Gabadadze, and
Porrati (DGP), even though DGP gravity does not respect
any dynamical version of Birkhoff’s law. The correspon-

(6.7) dence between the scales of departure from Einstein gravity

in DGP and Birkhoff’s law theories seems not to be a coin-
Whengq(1—n)=3, this expression is independent of the ra-cidence. Indeed, one suspects that it is quite general. Imagine
dius of the orbit, or the mass of the central body, and theeosmology at extremely late times, when all matter surround-
anomalous precession rate is proportional to today’s Hubbleng a particular gravitational source is swept away. Then, if
parameterH,~ 10 npas/year. Such a precession rate is onone believes that an isolated, central source h&guas)
the threshold of detection by precision ephemeris measurestatic metric description, it should be Schwarzschild at short
ments of the inner solar system, particularly with intriguingdistances and deviate from Schwarzschild at large-enough
developments this decade coming from two Mercury-boundlistances. How large? Since this metric must still encode the
missions(BepiColombo and MESSENGERas well as im-  cosmology within it, i.e., test observers at large distances
provements in lunar ranging observatiofis4,15,35—-38  from the source should recede from the source in the manner

1+ (1+2e%9 M

d 3cH,

ﬁA¢: 2\2

(n—=D[3gq(n—1)+1]

r3 gq(l1-n)—1/2
ri)
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