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It is shown that gravity in 21 dimensions coupled to point particles provides a nontrivial example of
doubly special relativitf DSR). This result is obtained by interpretation of previous results in the field and by
exhibiting an explicit transformation between the phase space algebra for one parti¢ig grévity found by
Matschull and Welling and the corresponding DSR algebra. The identificatiot bigavity as a DSR system
answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of
observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra
high energy particle kinematics int3l dimensions is described by some DSR theory.
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I. INTRODUCTION (4) Modifications in the commutators of coordinates and
momentum and/or non-commutativity of space-time co-
Recently a proposal has been much discussed concerning ordinates.
how quantum theories of gravity may be tested experimen- Theories with these characteristics are invariant under
tally. The doubly or deformed special relativitproposal —modifications of the Poincaralgebra, called generically
(DSR! is that quantum gravity effects may lead in the limit k-Poincarealgebras, wherec is a dimensional parameter
of weak fields to modifications in the kinematics of elemen-that measures the deformations, usually taken to be propor-

tary particles characterized (-9 tional to the Planck mass.
. o o In a recent papdrl0], it was argued that quantum gravity
(1) Preservation of the relativity of inertial frames. in 2+1 dimension$11,12 with vanishing cosmological con-

on energy-momentum vectors, preserving a preferred ensymmetry. The argument there depends only on the assump-
ergy scale, which is naturally taken to be the Planckion that quantum gravity in 21 dimensions with the cos-
energyE,. In some casef, is a maximum mass and/or mological constanf\ =0 must be derivable from th& —0
momentum that a single elementary particle can attain.limit of 2+1 quantum gravity with nonzero cosmological
(3) Nonlinear modifications of the energy-momentum rela-constant. The argument is simple and algebraic, the point is
tions, because the function & andp that is preserved that the symmetry which characterizes quantum gravity in
under the exact action of the Lorentz group is no longer2+1 dimensions with\ >0 is actually quantum deformed de
quadratic. This could result in Planck scale effects suctitter toSQy(3,1), with the quantum deformation parameter
as an energy-dependent speed of light and modificationd given by[14,15,117
of thresholds for scattering, that may be observable in
present and near future experiments. z=In(0) =l pianci/A- @

The limit A—0 then affects both the scaling of the transla-
tion generators as the de Sitter group is contracted to the
"Electronic address: jurekk@ift.uni.wroc.pl Poincaregroup, f_"”d the limit Oh_Tl' Itis eaZS}rlth see that
*Electronic address: Ismolin@perimeterinstitute.ca be(,:ause the ra.t|@=ﬁ\/.K/z= (_32+1' .WhereG' IS Nevy- .
*Aspects of DSR theories have been proposed or studied morrlQns constant in 21 dimensions, is h_EId flxgd, thg limit
than once in the past, only to be forgotten and then rediscoverefiVes thex-deformed symmetry group inf2l dimensions.
again. Early formulations were by Snydai and Fock2]. During 1 h€ conclusion is that the symmetry algebra (@ft1)-

the 1990s the mathematical side of the subject was developed und@imensional quantum gravity with = 0 is not Poincareit is
the name ofc-Poincaresymmetry[3,4]. The recent interest is due @ x-deformed Poincaralgebra. This means that the theory

to the proposal that the effects of such theories may be both testablBust be a DSR theory.
and derivable from some versions of quantum gravity, see for ex- Quantum gravity in 21 dimensions has been the subject
ample[5-9]. of much study in both the classical and quantum domain,

*Electronic address: Ifreidel@perimeterinstitute.ca
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beginning with the work of Deser, Jackiw and 't Hopf2—  mass (with only c=1 and no# involved).? Thus, if the

23]. If that theory is a DSR theory than the features justasymptotic symmetry group knows about gravity, it will have

listed above must be present, and this could not have beep preserve the scald 1. Of course, in theories with suffi-

easily missed by investigators. ciently short range interactions the asymptotic symmetry
Indeed, all of the listed features have been seen in thegroup does not depend on the coupling constants. Butih 2

literature on 2+1 gravity. In the next section we review gravity the presence of matter causes the geometry of space-

some of the long standing results ir-2 gravity and show time to become conical and this deforms the asymptotic con-

how they may be understood using the language of DSHRlitions in a way that depends d@b. Further, sincéi is not

theories. To clinch the relation, in section Ill we exhibit an involved in the definition of the mass scaf®, !, the defor-

explicit mapping between the phase space of quantum grawation affects also the algebra of the classical phase space.

ity in 2+1 dimensions coupled to a single point particle, This is the main reason why+2l gravity is a DSR theory.

studied in[21], and the algebra of symmetry generators of a In 2+1 gravity coupled to point particles, the Hamil-

DSR theory. tonian,H, whose value is equal to the ADM mass, and hence
The observation that21 gravity provides examples of is measured by a surface term, is bounded from both above

DSR theories can help the study of both sides of the relatiorand below{21,23,

The language of DSR theories and their foundations in terms

of general principles can unify and explain some results in 1

the literature of(2+1)-dimensional gravity that, when first OsH=s—. (2

discovered, seemed strange and unintuitive. We can now see

that some of the features oftA gravity are neither strange

nor necessarily unigue tot2l dimensions, because they fol- This can be understood in the following way. Ir-2 dimen-

low only from the general requirement that the transforma=sions the spacetime is flat, except where matter is present. A

tions between different inertial frames preserve an energyatrticle, or in fact any compactly supported distribution of

scale. matter, is surrounded by an asymptotic region, which is lo-
Furthermore, what one has in the-2 gravity models, cally flat, and whose geometry is thus characterized by a

such as those with gravity coupled kbpoint particles, is a  deficit anglea. A standard result is thdfl2,16—-18,21,2B

class of nontrivial DSR theories that are completely explicit

and solvable, both classically and quantum mechanically. a=87GH. 3)

The existence of these examples answers a number of ques-

tions and challenges that have been raised concerning DSR

theories. Some authors have argyi2gd] that DSR theories Butag]eficit anglex must be less than or equal ter2Hence
are just ordinary special relativistic theories rewritten inthere is an upper limit on the mass of any system, as mea-

terms of some nonlinear combinations of energy and mosured by the Hamiltonian. The upper limit holds for all sys-

mentum, while, conversely, others have argued that the{?ms* regardless of how many particles there are and what

must be trivial because interactions cannot be consistent/{!€ir relative positions or motions are.

included. Both criticisms are shown wrong by the existence This upper mass limit - must bﬁ preserved_ by the
of an explicit and solvable class of DSR theories, with inter-2SYMPtotic symmetry group. Hence the asymptotic symme-

actions, given by quantum gravity in+2 dimensions gy group cann%t be tggp(g)rdr:nary PQ'QC@’@UP- if it mclgde
coupled to point particles and fields. OOSLS it ][“Uit eba A t eorr)]/ W'th a ma_><||mum energy. f
Furthermore, we see that in+2 dimensions the apparent 't has further been shown that the spatial components o

problem of the freedom to choose the basis of the symmetr{}omentum of a particle in21 gravity are unboundei®1]. -
algebra of a DSR theory is resolved by the fact that thel NS together, with a bounded energy, implies a modified
choice of the coupling of matter to the gravitational field energy-momentum relation.

; ; ; The phase space of a single point particle #l2gravity
picks out the physical energy and momentum. We see in Sec. : .
IIl below that for the case of minimal coupling of gravity to &S constructed by Matschull and Welling[@d] and it was

a single point particle the basis picked out is the classicalound that a classical solution is labeled by a three dimen-

basis. sional positiony,,, ©=0,1,2 and momentum,, . They find

Finally, one can ask whether the fact that 2gravity is a explicitly that the energy momentum relations and the action
DSR theory has any implications for real physics i 133 of the Poincaresymmetry are deformed, in a way that pre-

dimensions. In the final section of the paper we present a

heuristic argument that it may.
g y %G is identified with inverse of thex deformation parameter of

k-Poincarealgebra.
Il. SIGNS OF DSR IN 241 GRAVITY 3Note that in the approach of Matschull and LoU2,23 which

) ) . .. anchor the reference frame to the conical infinity, the asymptotic
In this section we point out where effects characteristic ofsymmetry group is the two dimensional group of isometry of a

DSR have been discovered already in the literature(@n conical space time and it does not contain boosts. However the
+1)-dimensional gravity. We consider only the case=0. results concerning the phase space structure of the relative motion
It is important first to note that Newton'’s constant it 2 of particles, like noncommutativity of positions and curved and

dimensions, denoted here Iy has dimensions of inverse unbounded space of momenta still hold in this approach.
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serves a fixed energy scale. They indeed make explicit refeterms of the zeroth component of the energy-momentum vec-
ence to the work of Snydéf], which was an early proposal tor by the same equation, they coincide on the subset of
for DSR. solutions on which they are both defined, which are the ro-
Furthermore, Matschull and Welling find that the space-tationally invariant solutions. This appears to be a direct
time coordinateg/, of a particle are noncommutative under demonstration of the equality of inertial and gravitational

the classical Poisson brackets, mass, within this context.
Indeed, this observation suggests that the Ashtekar-
(Vo V]=—2Ge,,,Y, . (4)  varadarajan form of the ADM mass is more general than

their calculation shows. Indeed it is not hard to see that this
is the case. Let us study the free scalar field(2d-1)-
dimensional Minkowski spacetime, with no condition of ro-
. ) . tational symmetry. This system ot a dimensional reduc-
the energy-momentum vector for a point particle iIf 2 qh of general relativity, only a subspace of solutions, those
gravity live on a curved manifold, which i92+1)-  \ih rotational symmetry, are related to general relativity.
dimensional anti-de Sitter spacetime. This was shown ifg, ¢ it till may serve as a useful example of a DSR theory.
[29,31] to be a feature of DSR theoriés. . . Of course the theory has full Poincaresariance, with mo-
Ashtekar and Varadarajari6] found a relationship be- mentum generator®, and boost generatot§ satisfying the

tween two definitions of energy relevant for-2 gravity, q,a Poincaralgebra. But Eq(6) implies that they form
which is reminiscent of nonlinear redefinitions of the energy,vith H a DSR algebra

used in changing bases between different realizations of DSR

theories. The case they studied has to do withl 3yravity, {K; ,H}=(1—4GH)P,

with two Killing fields, one rotational and one axial. One

first dimensionally reduces to+2L dimensions, in which 1

case the dynamics of GR intdl is expressed as a scalar field {Ki,Pjj=—75%In[1-4GH] 8

coupled to(2+1)-dimensional GR. The ADM HamiltoniaH

still exists and still is bounded from above as in E2). But  ith the other commutators undeformed. The physical en-

in the presence of the additional, rotational Killing field, the ergy momentum relations are deformed to

theory can be represented by a scalar field evolving in a flat

reference Minkowski spacetime, with the ordinary Hamil- 1

tonian P2+ m?=——[In(1-4GH)]>. 9)
16G2

This property was found ifi23] to extend to systems df
particles.
Matschull and Welling also find that the components of

1(= )
Hflatzzf drr[ ¢?+(d,¢p)%]. ) Recent calculationg26] indicate that quantum deforma-
0 tions of symmetries play a role in gravitational scattering of

rticles in 21 dimensions.
All of these pieces of evidence show that 2 gravity
coupled to matter can be understood as a DSR system.

1 Of course, the(2+1)-dimensional model system is not
H= E(l—e*“GHﬂat). (6)  completely analogous to real physics ifB dimensions.

But this result answers cleanly several queries and criticisms

at have been levied against the DSR proposal.

First, some authors have suggested that DSR theories are
physically indistinguishable from ordinary special relativity

4]. They argue that in some cases, one can arrive at a DSR
é%stem from a nonlinear mapping of energy-momentum
space to itself. These results show that argument fails, for
there is no doubt that the model system of point particles in

1 1 dE 2+1 gravity is physically distinguishable from the model
—=lim— o . (7)  system of free particles in fl#2+1)-dimensional spacetime.
Mo p.oP AP E This is here a clean result, with no quantization ambiguities,
because the deformation parameter 1/4G is entirely clas-
It is intriguing that this is the inertial mass, while, for the sical and the modification is of the structure of the classical
solutions with rotational symmetry, the ADM energy is the phase space. The two phase spaces are not isomorphic, when
active gravitational mass. Since they are both expressed @ravity is turned on, the phase space is curved and the mass
as a maximum, but whe®=0 the phase space is flat and
the mass has no bound.

“Although in Refs.[29,31] the momentum space for a class of ~ This is clear also for the multiparticle system, where there
DSR theories was shown to be de Sitter spacetime. We discug¥'e€ nontrivial interactions, depending @) which make the
below the difference between positively and negatively curved mosystem measurably distinct from the free particle case with
mentum spaces. G=0.

H¢ 4t is of course unbounded above. They find the relaP?@
tionship between them is

This exact relation is in fact present in the literature on DSRth
[29]. It holds in the a presentation of thePoincarealgebra
known as the “bicrossproduct” basis. In that casgq,;=E

is, as in the present case, the zeroth component of an ener
momentum vector an#l is the “physical rest massn, de-
fined by

=pg
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The multiparticle system in21 gravity also serves as an entz algebra generatods, = (M,N;) boosts. Taking the co-
example of a counterintuitive property of some DSR modelsalgebra of thex-Poincarequantum algebra and using the
in 3+1 gravity. This is that the upper mass lin¥,,,.,  so-called “Heisenberg-double constructiof27-29 it is
=1/4G is independent of the number of particles in the sys{possible to derive the position variables, conjugate to mo-
tem. This of course cannot be the case in the real world, so ihenta,x,,, as well as the brackets between them and the
is good to know that there are implementations of DSR ink-Poincarealgebra generators.
3+1 dimensions that do not have an upper mass limit for This (quantum algebraic construction has a geometrical
systems of many particles, or where the upper mass limitounterpart, described ifi30,31. Here the manifold on
grows with the number of particles or the mass of the totawhich momenta live is de Sitter spaée the case at hand
system, in such a way as to not violate experie&s. the 3 dimensional oneThe positions and the Lorentz trans-

However, it is also good to know that there is a modelformations are symmetries acting on the space of momenta.
system, which is sensible physically, in which this nonintui- Thus they form the three dimensional de Sitter algebra
tive feature is completely realized. Moreover it suggests thesQ(3,1). It is convenient to define the de Sitter space of
start of a physical answer to one of the puzzling questiongnomenta as a three dimensional surface
about DSR models. This is that the addition of energy and T S,
momentum in DSR theories is nonlinear. This can be under- —mot it ppt pz=k (10
stood as a consequence of the nonlinear action of the Lorentz ) ) i i i )
group, for example it follows from the fact that the energy-" the four dimensional Minkowski space with coordinates

momentum space has nonzero curvature. It appears to remdiffo: - - - 73)- The physical momentp, are then the coordi-
even in realizations of DSR that remove the mass limit for"ates on the surfac€0). This means that we can think of
composite systems. na=1a(P,) as of the given functions of momenta, for

Some physicists have criticized the DSR proposal byNhich Eq.(lQ) is identicz_illy satisfied_. In the DSR termino!-
pointing out that the nonlinear corrections to addition of9Y; the choice of a particular coordinate system on de Sitter
energy-momentum vectors for a system of two particles ca§PaCe corresponds to a choice of the so called DSR s
be interpreted by saying that there is a binding energy be29:31)- It turns out that in order to relate DSR to the- 2
tween pairs of particles that does not depend on the distan@@Vity one has to choose the so called classical basis, char-
between them, but depends only on the individual energiedcterized byzn,=p, . This choice will be implicit below,
and momenta. however we find it more convenient to write down the for-

This may be counter-intuitive, but it is precisely the whatMulas below in terms of the variableg,.
happens in 21 dimensions. Because spacetime is locally e algebra of symmetries of the de Sitter space of mo-
flat, each particle contributes a deficit angle to the overalMenta(10) can be most easily read off by writing down the
geometry that affects all the other particles’ motions, no mat@ction of these symmetries on the four-dimensional
ter how far away. The result is that there is a binding energgMinkowski space with coordinateg, and then pulling them
that is independent of distance. down to Fhe sgrfac(alO). Let us note however that while it is

This suggests a speculative remark: might there be evef@sy to identify the Lorentz generatais=(M.,N;) as the
in 3+1 dimensions a small component of the binding energyelements of thes((2,1) subalgebra of th&(3,1), it is a
of pairs of particles, of orddr,M; M, which is independent Matter of convenience which linearly independent combina-
of distance? Might this be interpreted as a kind of quantunfion of generators is to be identified with positiofi. the
gravity effect? generators of translation in momentum spadéechmca_lly

In the last section we make some speculative remark§P€aking we are free to choose the decomposition of

concerning the question of whether these results have an§(3.1) into the sum o5Q(2,1) and its remainder..
bearing on real physics in+3l dimensions. In the case of the DSR phase space, the action of the

symmetries is given by

lll. PHASE SPACE OF DSR IN 2+1 DIMENSIONS [M,ni]l=¢€jn;, [Ni,n]1=6m0, [Ni,nol=m,
(11

In this section we will compare the phase spacé&afl)-
dimensional DSR with that of2+1)-dimensional gravity [J,,73]=0, (12
with one particle. Let us start with the former.

with J, satisfying the algebra
A. Phase spaces of DSR [M,N;1=€;N;, [N;,N;]=—¢;M (13

As in 3+1 dimensions, the starting point to find the phase
space of DSR theory in th€+1)-dimensional case is the [Xo, 73] = 1 [X ]:E [X0,7]=0
(2+1)-dimensionalk-Poincarealgebra[4], the quantum al- 0: 13172 70 070177 713 0 il 4
gebra whose generators are mom?—:pggz (Po,p;) and Lor- (14)

1 1
Xi,»m3]=1Xi mol=—ni, [X,mi]=—=36i(1m0— 13).
>The Greek indices run from 1 to 3, the Latin ones from 1 to 2, [Xi, 75]=[xi, 70] PR [xi 7] K ij (70 773)
while the capital ones from 0 to 3. (15
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Note that it follows from these equations that position of theSO(3,1) algebra, in which the positiors,
1 act on momenta as right multiplication and have the follow-
[Xo,%]=— ;Xi . [x.%]=0. (16) ing brackets withn, :
It is worth mentioning also that such a decomposition is [Yo.m31= =m0, [Yo.m0l= 73,

possible in any dimension. In particular in the- B case the
bracket(16) describes the so-called-Minkowski type of 1
non-commutativity. [ Yo, mi]=——eijm;, (21)
One can repeat this geometric construction in the case
when the momenta manifold is the anti—de Sitter space 1 1
' mal=—— 7, - mol=— € 7
—7]S+ 7]%4‘ 773_ 7]§=K2. 17 [V, 73] K77| (Vi 7m0] i Sl 7;

Now the symmetry algebra i$O(2,2), having again the
three dimensional Lorentz algebi®&O(2,1) described by
Egs. (11), (12) as its subalgebra. The algebra of positions, _ _ _
which we denotey,, (i.e. translations of momentahanges Comparing the expressioli$8), (19) with Egs.(21), (22)

1
[yi177j]:;(fij770_5ij 73). (22

only slightly and now reads we easily find that these decompositions are related by
1 1 _ 1 3 1
[YO,ﬂg]:_;ﬂo, [yoﬂ?o]:;ﬂa, [Yo.7i]=0, yo_yo_;M‘ yi_yi_;(Ni_fiiNJ)' (23
(18) .
It can be also easily checked that
_ 1 B 1 2
LYi 1773]__;77i v LY 1770]_; i [y#,yv]:_zeﬂypyp_ (24)
1 Thus the DSR anti—de Sitter phase spacé&isto a trivial
Ly mi1= 22 8ii(m0= 73), (19 reshuffling of the generatorequivalent to the phase space

of a single particle in 21 gravity.
From Eqgs.(18), (19) it follows that It is an open problem whether one can get de Sitter space
as a manifold of momenta from+2L quantum gravity. It
1 1 2 would be interesting to see if this is the case. If so, there exist
[Yo.yil=——yit —Ni, [yi.yj]=——€M. (20 two kinds of phase spaces of a particle in (2+1)-
K K gravitational field corresponding to two DSR phase space

algebras presented above.
We see that the bracket20) does not describe the 9 P

x-Minkowski type of noncommutativity. Since the noncom-
mutativity type is related to the co-algebra structure of the
quantum Poincaralgebra, this result indicates that along  we present here an argument that suggests that the results
with thg k-Poincarealgebra there exists another quantumgyf this paper, and of those we reference, concerfigl)-
Poincarealgebra with the same algebra, but different co-dimensional quantum gravity coupled to point particles may
algegra, which we expect to be related to the former by &ave implications for real physics in+3 dimensions.
twist. The main idea is to construct an experimental situation
that forces a dimensional reduction to {2e-1)-dimensional
B. Phase space of #1 gravity theory. It is interesting that this can be done in quantum

The phase space algebra of one particle (& 1)- theory, using the uncertainty principle as an essential element
of the argument.

dimensional gravity is the algebra of asymptotic charges. Let us consider a system of two relativistic interactin
This algebra has been carefully analyzed by Matschull and y 9

Welling in [21]. They find that the physical momentum g:?;nat%yigamctlﬁ: 'lett) rdlorpelf::ézn; ér\‘lnvgot?]z m?)?isoer:lsvzlrle
manifold is anti—de Sitter space and thgt=p, , as stated :

above. This means thattZ gravity seems to pick the clas- _be planar. Let us consider the system as described by an
sical t;asis of DSR as the one having physical relevanc inertial observer who travels perpendicular to the plane of

Further, Matschull and Welling employ a particular decom-e[he system's motion, which we will call trmdwec_tlo_n. From
the point of view of that observer, the system is in an eigen-

state of total longitudinal momentur®'°'® | with some ei-

5This expectation is based on the classification of Poisson struggenvalueP,. Since the system is in an eigenStat(-Z‘lEﬁTtal
tures on Poincargroup presented if32]. the wavefunction of the center of mass will be unifornmzin

IV. IMPLICATIONS FOR PHYSICS IN 3 +1 DIMENSIONS
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Further, since there was initially zero relative momentum Thus, in the analogou®+1)-dimensional system, which
between the particles in thedirection it is also true in the is equivalent to the original system as seen from the point of

observers frame that view of the boosted observer, the Newton’s constant depends
on the longitudinal momenta.
prel=pl-p2=0. (25) Of course, in general there will be an additional scalar

field, corresponding to the dynamical degrees of freedom of
This implies of Coursep%:p%: ptzota'/zl Then the above the gravitational field. We will for the moment assume that

applies as well to each particle, i.e. their wave functions aréhese are unexcited, but exciting them will not affect the

uniform in thez direction as their wave functions have wave- analysis so Iong'a.s th? gravitational excitations are invariant
length 2 where also under the killing field and are of compact support.

Now we note that, if there are no other particles or excited

h degrees of freedom, the energy of the system can to a good
L= ol (26)  approximation be described by the Hamiltontamf the two
z dimensional dimensionally reduced system. This is described

. ... by aboundary integral, which may be taken over any circle
At the same time, we assume that the uncertainties in th§\s; encloses the two particles. But this is bounded from
transverse positions are bounded a saalesuch thatr above, by Eq(2). This may seem strange, but it is easy to

<2L. . ) see that it has a natural four-dimensional interpretation.
Then the wave functions for the two particles have sup-  The pound is given by

port on narrow cylinders of radiuswhich extend uniformly
in the z direction. 1 2L

Finally, we assume that the state of the gravitational field M <@ = et (29)
is semiclassical, so that to a good approximation, within

the semiclassical Einstein equations hold ) o )
whereM is the value of the ADM Hamiltoniarkl. But this

Gap=87G(T 4. (27)  just implies that

3+1p —

Note that we do not have to assume that the semiclassical L>2G""M=Rscn (30
approximation holds for all states. We assume something

much weaker, which is that there are subspaces of states if¢: this has to be true, otherwise the dynamics of the gravi-
which it holds. tational field in 3+1 dimensions would have collapsed the

Since the wave functions are uniform inand since we SYStém to a black hole. Thus, we see that the total bound
are interested in the particle kinematics in flat space we adfom above of the energy in21 dimensions is necessary so
sume that the dynamical degrees of freedom of the gravitat-hat one cannot violate the condition ||+:§ d|men3|ons that
tional field are switched off, this implies that the gravita- & SyStem be larger than its Schwarzschild radius.
tional field seen by our observer will have a spacelike Kiling  Note that we also must have
field k3= (9/9z)?. 5

Thus, if there are no forces other than the gravitational M>PtZ°t=E. (31
field, the scattering of the two particles described semiclas-
sically by Eq.(27) must be the same as that of two parallel . o o
cosmic strings. This is known to be described by an equivalogether with Eq(30) this impliesL>Ip|anck, Which is of
lent (2+1)-dimensional problem in which the gravitational COUrse necessary if the semiclassical argument we are giving
field is dimensionally reduced along tizedirection so that 1S to hold.

the two “cosmic strings” which are the sources of the gravi- NOW, we have put no restriction on any components of
tational field, are replaced by two punctures. momentum or position in the transverse directions. So the

The dimensional reduction is governed by a length  System still has symmetries in the transverse directions._ Fur-
which is the extent irz that the system extends. We cannotthermore, the argument extends to any number of particles,
take d<L without violating the uncertainty principle. It is SO 1ong as their relative momenta are coplanar. Thus, we
then convenient to také=L. Further, since the system con- !€arn the fgllowmg. _
sists of elementary particles, they have no intrinsic extent, so L€t 7fo be the full Hilbert space of the quantum theory
there is no other scale associated with their extent inzthe Of gravity, coupled to some appropriate mattker fields, with
direction. We can then identifg=0 andz=L to make an A =0. Letus consider a subspace of stets**which are
equivalent toroidal system, and then dimensionally reducéelevant in the low energy limit in which all energies are
alongz. The relationship between the four dimensional New-Small in Planck units. We expect that this will have a sym-
ton's constantG®*! and the three-dimensional Newton's Melry algebra which is related to the Poiricatgebrap®**

constanG2*1=G, which played a role so far in this paper is I 3+1 dimensions, by some possible small deformations
given by parameterized bys3** and. Let us call this low energy

symmetry groupPa*t.
3+1ptot . . .
G2+1203+1 _G TPy 28) Let us now consider the subspace?sf‘®<which is de-
2L 2h scribed by the system we have just constructed. It contains
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two particles, and is an eigenstatefJf* with large P! and M2, anck

total
vanishing relative longitudinal momenta. Let us call this sub- MP < 4 (39

space of Hilbert spac‘e{pz. S . . ) .
The conditions that define this subspace break the gener&’-h'Ch is compatible with the previous conditions. Thus,

tors of the(possibly modifiedl Poincarealgebra that involve when all the cond_ition; are sgtiszfield, the deformed symmetry
the z direction. But they leave unbroken the symmetry in the@/9€bra must be identified witRg" . a1 .
(2+1)-dimensional transverse space. Thus, a subgroup of Now we can note the following. Whatevetg™ " is, it
P& acts on this space, which we will cahz"lcpd™t.  must have the following properties:

3 1 . B
We have argued that the physics”kqu is to good ap- It depends onG**! and #, so that its action oreach

proximation described by an analogue system in of two par-SUbSpacg-[Pz’ for each choice oP;, is the« deformed 2-1

ticles in 2+1 gravity. However, we know from the results Poincarealgebra, withx as above.
cited in the previous sections that the symmetry algebra act- It does not satisfy the rule that momenta and energy add,
ing there is not by the ordinar§2+1)-dimensional Poincare ©N all states ir{, since they are not satisfied in these sub-

algebra, but by thec-Poincarealgebra in 2-1 dimensions, SPaces. i1

with Therefore, whatevePg" - is, it is not the classical Poin-
3+ 1mstot caregroup.
_, 4GP Thus the theory of particle kinematics at ultra high ener-
K "=—. (32 N . L
h gies is not special relativity, and the arguments presented
above suggest that it might be doubly special relativity.
In particular, there is a maximum energy given by
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