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2¿1 gravity and doubly special relativity
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It is shown that gravity in 211 dimensions coupled to point particles provides a nontrivial example of
doubly special relativity~DSR!. This result is obtained by interpretation of previous results in the field and by
exhibiting an explicit transformation between the phase space algebra for one particle in 211 gravity found by
Matschull and Welling and the corresponding DSR algebra. The identification of 211 gravity as a DSR system
answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of
observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra
high energy particle kinematics in 311 dimensions is described by some DSR theory.
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I. INTRODUCTION

Recently a proposal has been much discussed conce
how quantum theories of gravity may be tested experim
tally. The doubly or deformed special relativityproposal
~DSR!1 is that quantum gravity effects may lead in the lim
of weak fields to modifications in the kinematics of eleme
tary particles characterized by@5–9#

~1! Preservation of the relativity of inertial frames.
~2! Nonlinear modifications of the action of Lorentz boos

on energy-momentum vectors, preserving a preferred
ergy scale, which is naturally taken to be the Plan
energy,Ep . In some casesEp is a maximum mass and/o
momentum that a single elementary particle can atta

~3! Nonlinear modifications of the energy-momentum re
tions, because the function ofE and pW that is preserved
under the exact action of the Lorentz group is no lon
quadratic. This could result in Planck scale effects su
as an energy-dependent speed of light and modificat
of thresholds for scattering, that may be observable
present and near future experiments.

*Electronic address: lfreidel@perimeterinstitute.ca
†Electronic address: jurekk@ift.uni.wroc.pl
‡Electronic address: lsmolin@perimeterinstitute.ca
1Aspects of DSR theories have been proposed or studied m

than once in the past, only to be forgotten and then rediscov
again. Early formulations were by Snyder@1# and Fock@2#. During
the 1990s the mathematical side of the subject was developed u
the name ofk-Poincare´ symmetry@3,4#. The recent interest is du
to the proposal that the effects of such theories may be both tes
and derivable from some versions of quantum gravity, see for
ample@5–9#.
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~4! Modifications in the commutators of coordinates a
momentum and/or non-commutativity of space-time c
ordinates.

Theories with these characteristics are invariant un
modifications of the Poincare´ algebra, called generically
k-Poincare´ algebras, wherek is a dimensional paramete
that measures the deformations, usually taken to be pro
tional to the Planck mass.

In a recent paper@10#, it was argued that quantum gravit
in 211 dimensions@11,12# with vanishing cosmological con
stant must be invariant under some version of ak-Poincare´
symmetry. The argument there depends only on the assu
tion that quantum gravity in 211 dimensions with the cos
mological constantL50 must be derivable from theL→0
limit of 211 quantum gravity with nonzero cosmologic
constant. The argument is simple and algebraic, the poin
that the symmetry which characterizes quantum gravity
211 dimensions withL.0 is actually quantum deformed d
Sitter toSOq(3,1), with the quantum deformation paramet
q given by @14,15,17#

z5 ln~q!' l PlanckAL. ~1!

The limit L→0 then affects both the scaling of the trans
tion generators as the de Sitter group is contracted to
Poincare´ group, and the limit ofq→1. It is easy to see tha
because the ratiok5\AL/z5G211

21 , whereG211 is New-
ton’s constant in 211 dimensions, is held fixed, the limi
gives thek-deformed symmetry group in 211 dimensions.
The conclusion is that the symmetry algebra of~211!-
dimensional quantum gravity withL50 is not Poincare´, it is
a k-deformed Poincare´ algebra. This means that the theo
must be a DSR theory.

Quantum gravity in 211 dimensions has been the subje
of much study in both the classical and quantum doma
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beginning with the work of Deser, Jackiw and ’t Hooft@12–
23#. If that theory is a DSR theory than the features ju
listed above must be present, and this could not have b
easily missed by investigators.

Indeed,all of the listed features have been seen in
literature on 211 gravity. In the next section we review
some of the long standing results in 211 gravity and show
how they may be understood using the language of D
theories. To clinch the relation, in section III we exhibit a
explicit mapping between the phase space of quantum g
ity in 211 dimensions coupled to a single point partic
studied in@21#, and the algebra of symmetry generators o
DSR theory.

The observation that 211 gravity provides examples o
DSR theories can help the study of both sides of the relat
The language of DSR theories and their foundations in te
of general principles can unify and explain some results
the literature of~211!-dimensional gravity that, when firs
discovered, seemed strange and unintuitive. We can now
that some of the features of 211 gravity are neither strang
nor necessarily unique to 211 dimensions, because they fo
low only from the general requirement that the transform
tions between different inertial frames preserve an ene
scale.

Furthermore, what one has in the 211 gravity models,
such as those with gravity coupled toN point particles, is a
class of nontrivial DSR theories that are completely expl
and solvable, both classically and quantum mechanica
The existence of these examples answers a number of q
tions and challenges that have been raised concerning
theories. Some authors have argued@24# that DSR theories
are just ordinary special relativistic theories rewritten
terms of some nonlinear combinations of energy and m
mentum, while, conversely, others have argued that t
must be trivial because interactions cannot be consiste
included. Both criticisms are shown wrong by the existen
of an explicit and solvable class of DSR theories, with int
actions, given by quantum gravity in 211 dimensions
coupled to point particles and fields.

Furthermore, we see that in 211 dimensions the apparen
problem of the freedom to choose the basis of the symm
algebra of a DSR theory is resolved by the fact that
choice of the coupling of matter to the gravitational fie
picks out the physical energy and momentum. We see in
III below that for the case of minimal coupling of gravity t
a single point particle the basis picked out is the class
basis.

Finally, one can ask whether the fact that 211 gravity is a
DSR theory has any implications for real physics in 311
dimensions. In the final section of the paper we presen
heuristic argument that it may.

II. SIGNS OF DSR IN 2¿1 GRAVITY

In this section we point out where effects characteristic
DSR have been discovered already in the literature on~2
11!-dimensional gravity. We consider only the caseL50.

It is important first to note that Newton’s constant in 211
dimensions, denoted here byG, has dimensions of invers
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mass ~with only c51 and no\ involved!.2 Thus, if the
asymptotic symmetry group knows about gravity, it will ha
to preserve the scaleG21. Of course, in theories with suffi
ciently short range interactions the asymptotic symme
group does not depend on the coupling constants. But in 211
gravity the presence of matter causes the geometry of sp
time to become conical and this deforms the asymptotic c
ditions in a way that depends onG. Further, since\ is not
involved in the definition of the mass scale,G21, the defor-
mation affects also the algebra of the classical phase sp
This is the main reason why 211 gravity is a DSR theory.

In 211 gravity coupled to point particles, the Hami
tonian,H, whose value is equal to the ADM mass, and hen
is measured by a surface term, is bounded from both ab
and below@21,23#,

0<H<
1

4G
. ~2!

This can be understood in the following way. In 211 dimen-
sions the spacetime is flat, except where matter is presen
particle, or in fact any compactly supported distribution
matter, is surrounded by an asymptotic region, which is
cally flat, and whose geometry is thus characterized b
deficit anglea. A standard result is that@12,16–18,21,23#,

a58pGH. ~3!

But a deficit anglea must be less than or equal to 2p. Hence
there is an upper limit on the mass of any system, as m
sured by the Hamiltonian. The upper limit holds for all sy
tems, regardless of how many particles there are and w
their relative positions or motions are.

This upper mass limit must be preserved by t
asymptotic symmetry group. Hence the asymptotic symm
try group cannot be the ordinary Poincare´ group, if it include
boosts it must be a DSR theory with a maximum energy.3

It has further been shown that the spatial components
momentum of a particle in 211 gravity are unbounded@21#.
This, together, with a bounded energy, implies a modifi
energy-momentum relation.

The phase space of a single point particle in 211 gravity
was constructed by Matschull and Welling in@21# and it was
found that a classical solution is labeled by a three dim
sional positionYm , m50,1,2 and momentumpm . They find
explicitly that the energy momentum relations and the act
of the Poincare´ symmetry are deformed, in a way that pr

2G is identified with inverse of thek deformation parameter o
k-Poincare´ algebra.

3Note that in the approach of Matschull and Louko@22,23# which
anchor the reference frame to the conical infinity, the asympt
symmetry group is the two dimensional group of isometry of
conical space time and it does not contain boosts. However
results concerning the phase space structure of the relative m
of particles, like noncommutativity of positions and curved a
unbounded space of momenta still hold in this approach.
1-2
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serves a fixed energy scale. They indeed make explicit re
ence to the work of Snyder@1#, which was an early proposa
for DSR.

Furthermore, Matschull and Welling find that the spac
time coordinatesYm of a particle are noncommutative und
the classical Poisson brackets,

@Ym ,Yn#522GemnrYr . ~4!

This property was found in@23# to extend to systems ofN
particles.

Matschull and Welling also find that the components
the energy-momentum vector for a point particle in 211
gravity live on a curved manifold, which is~211!-
dimensional anti–de Sitter spacetime. This was shown
@29,31# to be a feature of DSR theories.4

Ashtekar and Varadarajan@16# found a relationship be
tween two definitions of energy relevant for 211 gravity,
which is reminiscent of nonlinear redefinitions of the ener
used in changing bases between different realizations of D
theories. The case they studied has to do with 311 gravity,
with two Killing fields, one rotational and one axial. On
first dimensionally reduces to 211 dimensions, in which
case the dynamics of GR in 311 is expressed as a scalar fie
coupled to~211!-dimensional GR. The ADM HamiltonianH
still exists and still is bounded from above as in Eq.~2!. But
in the presence of the additional, rotational Killing field, t
theory can be represented by a scalar field evolving in a
reference Minkowski spacetime, with the ordinary Ham
tonian

H f lat5
1

2E0

`

drr @ḟ21~] rf!2#. ~5!

H f lat is of course unbounded above. They find the re
tionship between them is

H5
1

4G
~12e24GHf lat!. ~6!

This exact relation is in fact present in the literature on D
@29#. It holds in the a presentation of thek-Poincare´ algebra
known as the ‘‘bicrossproduct’’ basis. In that caseH f lat5E
is, as in the present case, the zeroth component of an en
momentum vector andH is the ‘‘physical rest mass,m0 de-
fined by

1

m0
5 lim

p→0

1

p

dE

dpU
E5p0

. ~7!

It is intriguing that this is the inertial mass, while, for th
solutions with rotational symmetry, the ADM energy is th
active gravitational mass. Since they are both expresse

4Although in Refs.@29,31# the momentum space for a class
DSR theories was shown to be de Sitter spacetime. We dis
below the difference between positively and negatively curved m
mentum spaces.
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terms of the zeroth component of the energy-momentum v
tor by the same equation, they coincide on the subse
solutions on which they are both defined, which are the
tationally invariant solutions. This appears to be a dir
demonstration of the equality of inertial and gravitation
mass, within this context.

Indeed, this observation suggests that the Ashte
Varadarajan form of the ADM mass is more general th
their calculation shows. Indeed it is not hard to see that
is the case. Let us study the free scalar field in~211!-
dimensional Minkowski spacetime, with no condition of r
tational symmetry. This system isnot a dimensional reduc-
tion of general relativity, only a subspace of solutions, tho
with rotational symmetry, are related to general relativi
But it still may serve as a useful example of a DSR theo
Of course the theory has full Poincare´ invariance, with mo-
mentum generatorsPi and boost generatorsKi satisfying the
usual Poincare´ algebra. But Eq.~6! implies that they form
with H a DSR algebra

$Ki ,H%5~124GH!Pi

$Ki ,Pj%52
1

4G
d i j ln@124GH# ~8!

with the other commutators undeformed. The physical
ergy momentum relations are deformed to

Pi
21m25

1

16G2
@ ln~124GH!#2. ~9!

Recent calculations@26# indicate that quantum deforma
tions of symmetries play a role in gravitational scattering
particles in 211 dimensions.

All of these pieces of evidence show that 211 gravity
coupled to matter can be understood as a DSR system.

Of course, the~211!-dimensional model system is no
completely analogous to real physics in 311 dimensions.
But this result answers cleanly several queries and criticis
that have been levied against the DSR proposal.

First, some authors have suggested that DSR theories
physically indistinguishable from ordinary special relativi
@24#. They argue that in some cases, one can arrive at a D
system from a nonlinear mapping of energy-moment
space to itself. These results show that argument fails,
there is no doubt that the model system of point particles
211 gravity is physically distinguishable from the mod
system of free particles in flat~211!-dimensional spacetime
This is here a clean result, with no quantization ambiguiti
because the deformation parameterk51/4G is entirely clas-
sical and the modification is of the structure of the classi
phase space. The two phase spaces are not isomorphic,
gravity is turned on, the phase space is curved and the m
as a maximum, but whenG50 the phase space is flat an
the mass has no bound.

This is clear also for the multiparticle system, where the
are nontrivial interactions, depending onG, which make the
system measurably distinct from the free particle case w
G50.

ss
-
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The multiparticle system in 211 gravity also serves as a
example of a counterintuitive property of some DSR mod
in 311 gravity. This is that the upper mass limitMupper
51/4G is independent of the number of particles in the s
tem. This of course cannot be the case in the real world, s
is good to know that there are implementations of DSR
311 dimensions that do not have an upper mass limit
systems of many particles, or where the upper mass l
grows with the number of particles or the mass of the to
system, in such a way as to not violate experience@25#.

However, it is also good to know that there is a mod
system, which is sensible physically, in which this nonint
tive feature is completely realized. Moreover it suggests
start of a physical answer to one of the puzzling questi
about DSR models. This is that the addition of energy a
momentum in DSR theories is nonlinear. This can be und
stood as a consequence of the nonlinear action of the Lor
group, for example it follows from the fact that the energ
momentum space has nonzero curvature. It appears to re
even in realizations of DSR that remove the mass limit
composite systems.

Some physicists have criticized the DSR proposal
pointing out that the nonlinear corrections to addition
energy-momentum vectors for a system of two particles
be interpreted by saying that there is a binding energy
tween pairs of particles that does not depend on the dista
between them, but depends only on the individual energ
and momenta.

This may be counter-intuitive, but it is precisely the wh
happens in 211 dimensions. Because spacetime is loca
flat, each particle contributes a deficit angle to the ove
geometry that affects all the other particles’ motions, no m
ter how far away. The result is that there is a binding ene
that is independent of distance.

This suggests a speculative remark: might there be e
in 311 dimensions a small component of the binding ene
of pairs of particles, of orderl pM1M2, which is independen
of distance? Might this be interpreted as a kind of quant
gravity effect?

In the last section we make some speculative rema
concerning the question of whether these results have
bearing on real physics in 311 dimensions.

III. PHASE SPACE OF DSR IN 2¿1 DIMENSIONS

In this section we will compare the phase space of~211!-
dimensional DSR with that of~211!-dimensional gravity
with one particle. Let us start with the former.

A. Phase spaces of DSR

As in 311 dimensions, the starting point to find the pha
space of DSR theory in the~211!-dimensional case is th
~211!-dimensionalk-Poincare´ algebra@4#, the quantum al-
gebra whose generators are momenta5 pm5(p0 ,pi) and Lor-

5The Greek indices run from 1 to 3, the Latin ones from 1 to
while the capital ones from 0 to 3.
04400
s

-
it

n
r
it
l

l
-
e
s
d
r-
tz

-
ain
r

y
f
n

e-
ce
s

t
y
ll
t-
y

en
y

s
ny

e

entz algebra generatorsJm5(M ,Ni) boosts. Taking the co-
algebra of thek-Poincare´ quantum algebra and using th
so-called ‘‘Heisenberg-double construction’’@27–29# it is
possible to derive the position variables, conjugate to m
menta,xm , as well as the brackets between them and
k-Poincare´ algebra generators.

This ~quantum! algebraic construction has a geometric
counterpart, described in@30,31#. Here the manifold on
which momenta live is de Sitter space~in the case at hand
the 3 dimensional one!. The positions and the Lorentz tran
formations are symmetries acting on the space of mome
Thus they form the three dimensional de Sitter alge
SO(3,1). It is convenient to define the de Sitter space
momenta as a three dimensional surface

2h0
21h1

21h2
21h3

25k2 ~10!

in the four dimensional Minkowski space with coordinat
(h0 , . . .h3). The physical momentapm are then the coordi-
nates on the surface~10!. This means that we can think o
hA5hA(pm) as of the given functions of momenta, fo
which Eq.~10! is identically satisfied. In the DSR termino
ogy, the choice of a particular coordinate system on de S
space corresponds to a choice of the so called DSR basis~see
@29,31#!. It turns out that in order to relate DSR to the 211
gravity one has to choose the so called classical basis, c
acterized byhm5pm . This choice will be implicit below,
however we find it more convenient to write down the fo
mulas below in terms of the variableshA .

The algebra of symmetries of the de Sitter space of m
menta~10! can be most easily read off by writing down th
action of these symmetries on the four-dimensio
Minkowski space with coordinateshA and then pulling them
down to the surface~10!. Let us note however that while it is
easy to identify the Lorentz generatorsJm5(M ,Ni) as the
elements of theSO(2,1) subalgebra of theSO(3,1), it is a
matter of convenience which linearly independent combi
tion of generators is to be identified with positions~i.e. the
generators of translation in momentum space!. Technically
speaking we are free to choose the decomposition
SO(3,1) into the sum ofSO(2,1) and its remainder.

In the case of the DSR phase space, the action of
symmetries is given by

@M ,h i #5e i j h j , @Ni ,h j #5d i j h0 , @Ni ,h0#5h i ,
~11!

@Jm ,h3#50, ~12!

with Jm satisfying the algebra

@M ,Ni #5e i j Nj , @Ni ,Nj #52e i j M ~13!

@x0 ,h3#5
1

k
h0 , @x0 ,h0#5

1

k
h3 , @x0 ,h i #50,

~14!

@xi ,h3#5@xi ,h0#5
1

k
h i , @xi ,h j #5

1

k
d i j ~h02h3!.

~15!
,

1-4
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Note that it follows from these equations that

@x0 ,xi #52
1

k
xi , @xi ,xj #50. ~16!

It is worth mentioning also that such a decomposition
possible in any dimension. In particular in the 311 case the
bracket ~16! describes the so-calledk-Minkowski type of
non-commutativity.

One can repeat this geometric construction in the c
when the momenta manifold is the anti–de Sitter space

2h0
21h1

21h2
22h3

25k2. ~17!

Now the symmetry algebra isSO(2,2), having again the
three dimensional Lorentz algebraSO(2,1) described by
Eqs. ~11!, ~12! as its subalgebra. The algebra of positio
which we denoteym ~i.e. translations of momenta! changes
only slightly and now reads

@y0 ,h3#52
1

k
h0 , @y0 ,h0#5

1

k
h3 , @y0 ,h i #50,

~18!

@yi ,h3#52
1

k
h i , @yi ,h0#5

1

k
h i ,

@yi ,h j #5
1

k
d i j ~h02h3!, ~19!

From Eqs.~18!, ~19! it follows that

@y0 ,yi #52
1

k
yi1

1

k2
Ni , @yi ,yj #52

2

k2
e i j M . ~20!

We see that the bracket~20! does not describe th
k-Minkowski type of noncommutativity. Since the noncom
mutativity type is related to the co-algebra structure of
quantum Poincare´ algebra, this result indicates that alon
with the k-Poincare´ algebra there exists another quantu
Poincare´ algebra with the same algebra, but different c
algebra, which we expect to be related to the former b
twist.6

B. Phase space of 2¿1 gravity

The phase space algebra of one particle in~211!-
dimensional gravity is the algebra of asymptotic charg
This algebra has been carefully analyzed by Matschull
Welling in @21#. They find that the physical momentum
manifold is anti–de Sitter space and thathm5pm , as stated
above. This means that 211 gravity seems to pick the clas
sical basis of DSR as the one having physical relevan
Further, Matschull and Welling employ a particular deco

6This expectation is based on the classification of Poisson st
tures on Poincare´ group presented in@32#.
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position of theSO(3,1) algebra, in which the positionsYm

act on momenta as right multiplication and have the follo
ing brackets withhA :

@Y0 ,h3#52
1

k
h0 , @Y0 ,h0#5

1

k
h3 ,

@Y0 ,h i #52
1

k
e i j h j , ~21!

@Yi ,h3#52
1

k
h i , @Yi ,h0#5

1

k
e i j h j ,

@Yi ,h j #5
1

k
~e i j h02d i j h3!. ~22!

Comparing the expressions~18!, ~19! with Eqs.~21!, ~22!
we easily find that these decompositions are related by

Y05y02
1

k
M , Yi5yi2

1

k
~Ni2e i j Nj !. ~23!

It can be also easily checked that

@Ym ,Yn#52
2

k
emnrY r. ~24!

Thus the DSR anti–de Sitter phase space is~up to a trivial
reshuffling of the generators! equivalent to the phase spac
of a single particle in 211 gravity.

It is an open problem whether one can get de Sitter sp
as a manifold of momenta from 211 quantum gravity. It
would be interesting to see if this is the case. If so, there e
two kinds of phase spaces of a particle in a~211!-
gravitational field corresponding to two DSR phase sp
algebras presented above.

IV. IMPLICATIONS FOR PHYSICS IN 3 ¿1 DIMENSIONS

We present here an argument that suggests that the re
of this paper, and of those we reference, concerning~211!-
dimensional quantum gravity coupled to point particles m
have implications for real physics in 311 dimensions.

The main idea is to construct an experimental situat
that forces a dimensional reduction to the~211!-dimensional
theory. It is interesting that this can be done in quant
theory, using the uncertainty principle as an essential elem
of the argument.

Let us consider a system of two relativistic interacti
elementary particles in 311 dimensions, whose masses a
less thanG21. In the center of mass frame the motion w
be planar. Let us consider the system as described by
inertial observer who travels perpendicular to the plane
the system’s motion, which we will call thez direction. From
the point of view of that observer, the system is in an eig
state of total longitudinal momentum,P̂z

total , with some ei-

genvaluePz . Since the system is in an eigenstate ofP̂z
total

the wavefunction of the center of mass will be uniform inz.
c-
1-5
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Further, since there was initially zero relative momentu
between the particles in thez direction it is also true in the
observers frame that

Pz
rel5Pz

12Pz
250. ~25!

This implies of coursePz
15Pz

25Pz
total/2. Then the above

applies as well to each particle, i.e. their wave functions
uniform in theẑ direction as their wave functions have wav
length 2L where

L5
\

Pz
total

. ~26!

At the same time, we assume that the uncertainties in
transverse positions are bounded a scaler, such that r
!2L.

Then the wave functions for the two particles have s
port on narrow cylinders of radiusr which extend uniformly
in the z direction.

Finally, we assume that the state of the gravitational fi
is semiclassical, so that to a good approximation, withinC
the semiclassical Einstein equations hold

Gab58pG^T̂ab&. ~27!

Note that we do not have to assume that the semiclas
approximation holds for all states. We assume someth
much weaker, which is that there are subspaces of state
which it holds.

Since the wave functions are uniform inz, and since we
are interested in the particle kinematics in flat space we
sume that the dynamical degrees of freedom of the grav
tional field are switched off, this implies that the gravit
tional field seen by our observer will have a spacelike Killi
field ka5(]/]z)a.

Thus, if there are no forces other than the gravitatio
field, the scattering of the two particles described semic
sically by Eq.~27! must be the same as that of two paral
cosmic strings. This is known to be described by an equ
lent ~211!-dimensional problem in which the gravitation
field is dimensionally reduced along thez direction so that
the two ‘‘cosmic strings’’ which are the sources of the gra
tational field, are replaced by two punctures.

The dimensional reduction is governed by a lengthd,
which is the extent inz that the system extends. We cann
take d,L without violating the uncertainty principle. It is
then convenient to taked5L. Further, since the system con
sists of elementary particles, they have no intrinsic extent
there is no other scale associated with their extent in thz
direction. We can then identifyz50 andz5L to make an
equivalent toroidal system, and then dimensionally red
alongz. The relationship between the four dimensional Ne
ton’s constantG311 and the three-dimensional Newton
constantG2115G, which played a role so far in this paper
given by

G2115
G311

2L
5

G311Pz
tot

2\
. ~28!
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Thus, in the analogous~211!-dimensional system, which
is equivalent to the original system as seen from the poin
view of the boosted observer, the Newton’s constant depe
on the longitudinal momenta.

Of course, in general there will be an additional sca
field, corresponding to the dynamical degrees of freedom
the gravitational field. We will for the moment assume th
these are unexcited, but exciting them will not affect t
analysis so long as the gravitational excitations are invar
also under the killing field and are of compact support.

Now we note that, if there are no other particles or exci
degrees of freedom, the energy of the system can to a g
approximation be described by the HamiltonianH of the two
dimensional dimensionally reduced system. This is descri
by a boundary integral, which may be taken over any cir
that encloses the two particles. But this is bounded fr
above, by Eq.~2!. This may seem strange, but it is easy
see that it has a natural four-dimensional interpretation.

The bound is given by

M,
1

4G211
5

2L

4G311
~29!

whereM is the value of the ADM Hamiltonian,H. But this
just implies that

L.2G311M5RSch ~30!

i.e. this has to be true, otherwise the dynamics of the gra
tational field in 311 dimensions would have collapsed th
system to a black hole. Thus, we see that the total bo
from above of the energy in 211 dimensions is necessary s
that one cannot violate the condition in 311 dimensions that
a system be larger than its Schwarzschild radius.

Note that we also must have

M.Pz
tot5

\

L
. ~31!

Together with Eq.~30! this impliesL. l Planck, which is of
course necessary if the semiclassical argument we are gi
is to hold.

Now, we have put no restriction on any components
momentum or position in the transverse directions. So
system still has symmetries in the transverse directions.
thermore, the argument extends to any number of partic
so long as their relative momenta are coplanar. Thus,
learn the following.

Let H QG be the full Hilbert space of the quantum theo
of gravity, coupled to some appropriate matter fields, w
L50. Let us consider a subspace of statesH weak which are
relevant in the low energy limit in which all energies a
small in Planck units. We expect that this will have a sy
metry algebra which is related to the Poincare´ algebraP 311

in 311 dimensions, by some possible small deformatio
parameterized byG311 and \. Let us call this low energy
symmetry groupP G

311 .
Let us now consider the subspace ofH weak which is de-

scribed by the system we have just constructed. It conta
1-6
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two particles, and is an eigenstate ofP̂z
tot with largePz

tot and
vanishing relative longitudinal momenta. Let us call this su
space of Hilbert spaceHPz

.
The conditions that define this subspace break the gen

tors of the~possibly modified! Poincare´ algebra that involve
thez direction. But they leave unbroken the symmetry in t
~211!-dimensional transverse space. Thus, a subgroup
P G

311 acts on this space, which we will callP G
211,P G

311 .
We have argued that the physics inHPz

is to good ap-
proximation described by an analogue system in of two p
ticles in 211 gravity. However, we know from the resul
cited in the previous sections that the symmetry algebra
ing there is not by the ordinary~211!-dimensional Poincare´
algebra, but by thek-Poincare´ algebra in 211 dimensions,
with

k215
4G311Pz

tot

\
. ~32!

In particular, there is a maximum energy given by

Mmax~Pz
tot!5k5

M Planck
2

4Pz
total

. ~33!

This gives us a last condition,
s.

n,

v,

04400
-

ra-

of

r-

t-

M Pz
total,

M Planck
2

4
~34!

which is compatible with the previous conditions. Thu
when all the conditions are satisfied, the deformed symm
algebra must be identified withP G

211 .
Now we can note the following. WhateverP G

311 is, it
must have the following properties:

It depends onG311 and \, so that its action oneach
subspaceHPz

, for each choice ofPz , is thek deformed 211

Poincare´ algebra, withk as above.
It does not satisfy the rule that momenta and energy a

on all states inH, since they are not satisfied in these su
spaces.

Therefore, whateverP G
311 is, it is not the classical Poin

carégroup.
Thus the theory of particle kinematics at ultra high en

gies is not special relativity, and the arguments presen
above suggest that it might be doubly special relativity.
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