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Reconstruction of field theory from excitation spectra of defects

Tanmay Vachaspati
CERCA, Physics Department, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-7079, US

~Received 9 September 2003; published 26 February 2004!

We show how to reconstruct a field theory from the spectrum of bound states on a topological defect. We
apply our recipe to the case of kinks in 111 dimensions with one or two bound states. Our recipe successfully
yields the sine-Gordon andlf4 field theories when suitable bound state spectra are assumed. The recipe can
also be used to globally reconstruct the inflaton potential of inflationary cosmology if the inflaton produces a
topological defect. We discuss how defects can provide ‘‘smoking gun’’ evidence for inflationary models with
flat potentials.
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I. INTRODUCTION

Often one is interested in diagonalizing a known opera
This is an eigenvalue problem. The reverse problem, wh
the eigenvalues are known but the operator is not, is als
interest. This is the ‘‘inverse scattering problem’’@1,2# ~also
see, e.g., Ref.@3#!. Indeed it is the basis of the famous que
tion: ‘‘Can one hear the shape of a drum?’’@4,5#. In other
words, can the frequencies~eigenvalues! of the sound emit-
ted from the drum be used to determine the shape~operator!
of the drum? In the quantum mechanics context, the equ
lent problem is of reconstructing the Schro¨dinger potential
U(x) from the energy spectrum. Such inverse scatter
problems are of interest in a wide variety of applications

We will be interested in a class of problems whereU itself
originates from some field interactions. Our aim is not just
reconstruct the Schro¨dinger potentialU but the underlying
field theory interactions that led to that particular Schr¨-
dinger potential. The eigenvalue data that we will use
reconstruct the field theory are the excitation spectra of
topological defects that might be present in the system.
method is widely applicable since topological defects
present in a large class of systems. They are routinely
served in condensed matter systems, and are inevitab
high energy particle physics models. Topological defects
evant for high energy particle physics are also relevant
the very early Universe. Hence the excitation spectra of th
topological defects can be a window to the early Univer
and in particular, to inflationary cosmology.1

A way to understand the usefulness of topological defe
in a reconstruction effort is that the core of a topologic
defect contains a different phase of the theory and so the
holds nonperturbative information about the field theo
Therefore the excitation spectrum of the defect leads t
global reconstruction of the field theory. This is in contrast

1Even if the abundance of topological defects is suppressed in
cosmos, the inevitability of defects in particle physics implies t
they can~in principle! be produced in accelerators.
0556-2821/2004/69~4!/043510~9!/$22.50 69 0435
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a local reconstruction that is possible by perturbative me
ods such as particle scattering.2

In what follows, we assume that we are given a topolo
cal defect. In fact, for actual calculations, we will exclusive
work with kinks in 111 dimensions since this example illus
trates the central ideas and also because there are exte
techniques in 111 dimensions that are not available
higher dimensions.~Although spherically symmetric system
in higher dimensions can be reduced to the 111 dimensional
case.!

In the next section we will outline the recipe for the r
construction and then in Sec. III explicitly work through tw
specific examples with kinks in 111 dimensions. Our
scheme yields the sine-Gordon field theory when there
only one bound state~the translation mode! on the kink.
When the kink has two bound states, we give implicit e
pressions for the field theory. For a specific choice of
eigenvalues of the two bound states, we obtain thelf4 field
theory. In Sec. IV we discuss the reconstruction problem
the inflationary context. Then we qualitatively discuss t
bound state spectrum on kinks made from the inflaton fie
In particular, we look for signatures of the flatness of t
inflaton potential in the spectrum. Readers only intereste
inflation can proceed directly to Sec. IV since the discuss
there is largely independent of Secs. II and III.

II. GENERAL RECONSTRUCTION SCHEME

We assume that we know the spectrum of energy eig
values$k i

2% for the bound states on a topological defect. F
the time being, we will only focus on the bound states. T
price we pay is that there is then a huge degeneracy in
reconstruction. By using scattering information and furth
physical input it may be possible to eliminate the degener
but we shall not be discussing this issue here.

The general reconstruction scheme is as follows.

he
t

2In the inflationary case, astrophysical data can be used with
tain assumptions to reconstruct the inflaton potential. This rec
struction too is local since astrophysical observations only prob
very limited range of relevant scales.
©2004 The American Physical Society10-1
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TANMAY VACHASPATI PHYSICAL REVIEW D 69, 043510 ~2004!
~i! Prior to an analysis, a theoretical framework is need
and the appropriate field content should be known. In t
discussion we will only consider a single scalar fieldf in
one dimension, with standard form of the Lagrangian

L5
1

2
~]mf!22V~f!. ~1!

~ii ! The Schro¨dinger equation that determines the exci
tion spectrum is

F2
d2

dx2
1U~x!Gcn5kn

2cn , ~2!

where

U~x!5V9@f0~x!# ~3!

andf0(x) is the ~unknown! profile function of the defect—
the classical defect solution. We would like to determine
potentialU(x). Inverse scattering methods have been dev
oped precisely to solve this problem. The answer, howe
is not unique, especially if only bound state spectra are ta
into account. However, additional theoretical input can p
sibly reduce degeneracies. For example, if some interact
are known by perturbative methods, the information mig
be useful to break some of the degeneracy.3

~iii ! Once we haveU(x), we find the ‘‘translation mode’’
by solving the zero eigenvalue Schro¨dinger problem

F2
d2

dx2
1U~x!Gc t50. ~4!

~iv! The translation mode is simply related to the def
profile functions by differentiation

c t~x!5
df0

dx
. ~5!

Hence, we can integrate the translation mode to ob
f0(x).

~v! Next we invertf0(x) to obtainx(f0).
~vi! The equation of motion for the defect is

2
d2f0

dx2
1V8~f0!50, ~6!

where the prime refers to differentiation with respect to
argument. Combining with Eq.~5! we see that

V8@f0~x!#5
dc t

dx
ux(f0) . ~7!

3U(x) may also be reconstructed using scattering data, i.e.,
just the eigenvalues but the scattering amplitudes. For exampl
the Born approximation, the scattering amplitude is directly rela
to the Fourier transform ofU(x).
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~vii ! Finally, an integration yields the desired symmet
breaking potential

V~f0!5E df0V8~f0!. ~8!

In the 111 dimensional case described above, there
actually a slight shortcut that is available to us. In this ca
the Bogomol’nyi equation holds

df0

dx
56A2V~f0! ~9!

and so

V~f0!5
1

2
c t

2ux(f0) . ~10!

There are two parts to this recipe. The first is the deri
tion of U(x) from the eigenvalue spectrum and the second
the derivation ofV(f) from U(x). The part of the recipe
starting withU(x) and constructingV(f) as in Eq.~10! has
also been used in earlier work@6#.

The hardest step in this scheme is step~ii !, the reconstruc-
tion of U(x) from $kn

2%. In 111 dimensions~or for S-wave
states in 311 dimensions!, a simple general scheme to re
produce the bound state spectrum is given in Refs.@7–9#.
The scheme employs the idea of supersymmetric quan
mechanics where the Hamiltonian operator can be facto
and yields areflectionlesspotential with the desired boun
state spectrum. We now summarize the scheme; a sketc
how the scheme is derived is given in Appendix A. While
may seem that the reconstruction in terms of supersymme
potentials is overly restrictive, we show in Appendix B th
kinks in one spatial dimension always lead to a supersy
metric form of the potentialU(x). We also show that this
can be true even when we have multi-component fields
more than one dimension. Thus the reconstruction schem
Ref. @7# is perfectly suited to our context.

Suppose the bound state eigenvalues are labeled in
scending orderk i

2.k i 11
2 and i 51, . . . ,N21 and the zero

energy level is chosen so that the ground state eigenvalukN
is zero. Then a potential containingn of the highest bound
states is

Un~x!5 f n
21 f n81kn

2 , ~11!

where the functionf n(x) satisfies

f n82 f n
21Un215kn

2 ~12!

in terms ofUn21, the potential containingn21 of the high-
est bound states. If we writef n(x)[2wn8/wn , the equation
for wn is

2wn91Un21wn5kn
2wn . ~13!

This equation will have two linearly independent solution
If we further require thatUn be even under parityUn(2x)

ot
in
d
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RECONSTRUCTION OF FIELD THEORY FROM . . . PHYSICAL REVIEW D69, 043510 ~2004!
51Un(x), then we needf n(2x)52 f n(1x) and wn(2x)
5wn(1x). This condition eliminates one of the linearly in
dependent solutions.4

The solution to thenth Schrödinger equation

F2
d2

dx2
1Un~x!Gcn5kn

2cn ~14!

is simply

cn5
an

wn
, ~15!

where an is a normalization constant to be determined
other considerations. In particular, sincekN is the smallest
eigenvalue, the corresponding eigenfunction must be
translation mode of the defect that does not affect the ene
ThereforekN50 and the translation mode is known once w
know wN :

c t5
a

wN
, ~16!

where we have dropped the subscript onaN . The profile
function is

f0~x!5aE dx

wN
~17!

and Eq.~10! gives

V~f0!5
a2

2wN
2 U

x(f0)

. ~18!

The construction ofUn is iterative and one must start wit
the highest bound state with eigenvaluek1

2. To find w1 we
set U05k0

2 to be a constant which will be determined b
other considerations. Now we illustrate this scheme in a
cases.

III. EXAMPLES

A. One bound state

If the defect has only one bound state, it must be
translation mode. Since translations do not cost energy,
eigenvaluek1 vanishes. So we need to solve Eq.~13! with
k150:

2w191U0w150 ~19!

with U05k0
2. After some manipulations:5

4Note that the functionwn(x) is not required to satisfy vanishin
boundary conditions at infinity. In fact, by examining the differe
tial equation~13! in the asymptotic limit, it can be argued tha
wn(6`) will be divergent.

5We are closely following Ref.@7#. Note that the eigenvalues i
Ref. @7# are2kn

2 whereas we have taken them to be1kn
2 .
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f 152k0tanh~k0x! ~20!

and

U1~x!5 f 181 f 1
25k0

2@122 sech2~k0x!#. ~21!

Now we can determinek0 by the requirement that at spa
tial infinity, the excitations are the particles in the trivi
vacuum. If we denote the masses of these particles bym, this
means that

U~`!5m2. ~22!

Hence,k05m and

U~x!5m2@122 sech2~mx!#. ~23!

The translation modec t satisfies

2c t91U~x!c t50 ~24!

and, in fact, the solution is

c t5
a

w1
5a sech~mx!, ~25!

wherea is a constant. Note that, in the present context, th
is no requirement thatc t be normalized as a wave function

Therefore the profile function is

f0~x!5aE dx sech~mx!5
2a

m
tan21F tanhS mx

2 D G .
~26!

In other words,

tanhS mx

2 D5tanS mf0

2a D . ~27!

Since here the Bogomol’nyi equations can be used,
~10! with some algebra gives

V~f0!5
a2

4 FcosS 2mf0

a D11G . ~28!

This is the sine-Gordon potential.
The potential still contains the unknown parametera. To

fix this parameter we could use some other property of
defect, for example, its total energy.

This completes the global reconstruction of the poten
in the single bound state case.

B. Two bound states

Now there are two eigenvaluesk1
2 andk2

2. The translation
mode is always the lowest eigenvalue and hencek2

250. So
we first need to find a potentialU1(x) that contains thek1

2

mode.
Following the recipe given in the previous section, w

have

U15 f 1
21 f 181k1

2 ~29!
0-3
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TANMAY VACHASPATI PHYSICAL REVIEW D 69, 043510 ~2004!
and we need to solve

2w191k0
2w15k1

2w1 , ~30!

where, as before,U05k0
2. This is exactly the single boun

state problem that we solved in the previous subsection if
replacek0

2 with n2[k0
22k1

2. Therefore,

f 152n tanh~nx! ~31!

and

U15n2@122 sech2~nx!#1k1
2 . ~32!

Now we use the second eigenvalue. The potentialU2 is
given by

U25 f 2
21 f 281k2

25 f 2
21 f 28 , ~33!

where we have usedk2
250 since this mode must be th

translation mode. So we need to solve

2w291$n2@122 sech2~nx!#1k1
2%w250. ~34!

We can rescalez5nx and bring the equation to the form

d2w2

dz2
1$l12 sech2~z!%w250, ~35!

where

l[2F11
k1

2

n2G . ~36!

Equation ~35! has been solved in Ref.@10# ~see Sec. 6.3
page 768! and the solution is given in terms of hypergeom
ric functions

w25$j~12j!%K/2@ 2F1~K12,K21;K11;j!

1 2F1~K12,K21;K11;12j!#, ~37!

where

j[
11tanh~z!

2
~38!

and

K2[2l. ~39!

Note that we have fixed the ratio of the two linearly ind
pendent solutions in Eq.~37! by imposing the requiremen
thatw2 have even parity underz→2z, which is the same as
requiring w2(j)5w2(12j). ~The overall normalization of
w2 is unimportant.! Now Eq. ~18! immediately gives the
field theoretic potential though the expression is still impli
since the inverse functionx(f0) needs to be determined afte
doing the integral in Eq.~17!.

Let us now look at the special case whenk1
2/n253 (K

52). Then the solution forw2 is given by elementary func
tions
04351
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w2~x!5cosh2~nx!. ~40!

With this

f0~x!5anE dx

w2
5a tanh~nx!, ~41!

wherea is a constant of normalization.~For convenience we
have explicitly included a factor ofn in the normalization.!
Therefore,

V~f0!5
a2

2
sech4~z!5

a2

2 S 12
f0

2

a2D 2

. ~42!

Hence we have recovered thelf4 model in this special case
It appears remarkable that the simplest examples of

and two bound states have led to two well-known field the
ries, namely, the sine-Gordon andlf4 theories. A partial
explanation is to be found in Appendix B, where we sho
that wheneverU(x) arises from a field theoretic kink, it mus
necessarily be of the supersymmetric form@Eq. ~11!#. So the
recipe to reconstructU(x) is ideally suited to the presen
problem.

C. Three or more bound states; higher dimensions

The reconstruction can be continued to the case of th
of more bound states. However, the general reconstruc
becomes difficult to do analytically and numerical metho
are desirable. Such methods have not yet been develop

The inverse scattering technique that we have used o
works in one spatial dimension. Problems in more than o
spatial dimension require other inverse scattering techniq
However, if the problem is spherically symmetric, the pro
lem effectively reduces to one spatial dimension and the
construction outlined above can be applied.~In Ref. @7# the
authors applied the inverse scattering technique to S-w
bound states of quarks.!

IV. APPLICATION TO COSMOLOGICAL INFLATION

A. Inflation and defects

If there was an extended but limited period of superlum
nal expansion in the early universe, light scalar fields wo
get excited by the spacetime expansion and create adia
perturbations on superhorizon scales. The prediction of a
batic perturbations matches observations of anisotropie
the cosmic microwave background radiation~CMBR! and is
the reason for the current confidence in the cosmic ‘‘infl
tionary’’ scenario. The mechanism driving cosmic inflation
a scalar field called the ‘‘inflaton.’’ The dynamics of both th
spacetime and the scalar field is dominated by the infla
potential energy for the entire duration of cosmic inflatio
Under certain assumptions, this requires the scalar field to
on top of a very flat potential. With time the scalar fie
slowly rolls along the flat potential, eventually reaching t
steeper parts of the potential where its kinetic energy
comes significant. Then inflation stops and the subsequ
0-4
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RECONSTRUCTION OF FIELD THEORY FROM . . . PHYSICAL REVIEW D69, 043510 ~2004!
evolution of the scalar field leads to ‘‘reheating,’’ i.e., co
version of scalar field kinetic energy into ordinary matter in
thermal state.6

One hopes that the scalar fields necessary for cosmic
flation will automatically arise in high energy particle phy
ics models, such as grand unified theories~GUTs! or string
theory. On very general grounds, it is known that such th
ries contain magnetic monopoles and sometimes other t
logical defects. If inflation and the defect are due to sepa
fields, the study of the defect core cannot yield informat
about inflation. For the global reconstruction scheme un
discussion to work, the inflaton itself should play a role
the structure of the topological defect.

One of the cosmological problems that inflation was d
signed to solve was the magnetic monopole overabunda
problem that arose out of the marriage of GUTs and cosm
ogy. If there is a period of inflation during or after the GU
phase transition, the magnetic monopole density would
diluted to insignificant amounts, leaving perhaps only a f
in the entire visible Universe. However, subsequent work
inflation has shown that topological defects can still be p
duced in significant numbers toward the late stages@11–15#.
If bound states on one of these defects can be studie
would help in the global reconstruction of the inflato
potential.7 The other possibility of using the reconstructio
scheme is if future particle physics experiments are able
produce magnetic monopole and antimonopole pairs~or
closed walls or strings! in the laboratory.8 The excitations of
these monopoles could then be studied. There is also
possibility that duality holds in particle physics and t
known particles~e.g., the electron! may be dualized mag
netic monopoles@16#. The internal excitations of the elec
tron, would then be excitations of a magnetic monopole. P
haps these excitations can tell us something about inflat

Earlier work on reconstructing the inflaton potential~see,
e.g., Ref.@17#! worked under the assumption that the CMB
anisotropies are generated by quantum fluctuations of
inflaton. This results in alocal reconstruction of the poten
tial, the limited range of scales observed being explain
entirely by a very small portion of the entire inflaton pote
tial. Here we will consider signatures ofglobal features of
the inflaton potential, such as flatness.

Before we proceed to discuss signatures of inflaton po
tials in the excitation spectrum, it is worth noting that infl

6There are models of inflation that do not require a flat potent
Instead they depend on a large initial value of the scalar field. H
we are limited to inflationary models that rely on the potential be
very flat.

7Often the defects arise from topology present due to fields o
than the inflaton. This significantly complicates the reconstruct
though, in principle, if there is variation of the inflaton within th
defect, a reconstruction would still be possible.

8If inflation occurred at a relatively low energy scale—say som
what larger than the electroweak scale—this possibility is easie
envision and might even be realized at energies available at
Large Hadron Collider~LHC!. However, the production of soliton
by scattering particles is expected to be difficult because a la
number of particles are simultaneously involved.
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tion can occur within topological defects, so-called ‘‘top
logical inflation’’ @18,19#. We will, however, not consider this
possibility since, if a defect inflates, it is not possible to fi
it or create it within our horizon while retaining predictabi
ity @20#. The condition for the topological defect to sta
inflating is that its widthd be larger than the horizon siz
1/H corresponding to the energy density within the defe
As we will show below@Eq. ~45!#, in the case of domain
walls with very flat potentialsd;h/A2V(0), whereh is the
change inf across the wall. The cosmological equatio
give H258pGV(0)/3. Hence the condition for topologica
inflation ish.mP whereh is the vacuum expectation valu
of the field andmP is the Planck mass. Hence we will b
restricted toh!mP and we will ignore gravitational effects

B. Properties of the excitation spectrum

The reconstruction of the inflaton potential can be carr
out following the recipe given in Sec. II if the kink boun
state spectrum is known. Here we will consider what is
sentially the scattering problem for the inflaton kink, name
the question: what signatures might we see in the bound s
spectrum if the kink on hand is due to the inflaton?

Consider a scalar fieldf with potentialV(f) that is in-
variant under theZ2 transformationf→2f, i.e., V(2f)
5V(1f). Let the true vacua be given byf56h. Then
there will be a domain wall solution across whichf will
change from2h to 1h. We are interested in the case whe
f is also an inflaton with very flatV(f) for fP(2h,
1h). Here we will show that the flatness of the inflato
potentialV(f) has definite predictions for the spectrum
excitations of the domain wall.9

A flat potential is drawn in Fig. 1. In the discussion belo
we will assume that (h2h1)!h1, so that the transition
from flat to curved potential occurs relatively quickly.10 A
rough approximation to the potential in the interval (2h,
1h) is given by a top hat with some modification near t

l.
re
g

er
n

-
to
he

e

9In non-Abelian field theories, domain wall solutions are mu
more complex. For example, domain walls inSU(N)3Z2 have
been discussed in Refs.@21,22#. We will only discuss the simples
case of aZ2 kink with a single scalar field in this paper.

10If this assumption is not valid, the discussion below of t
bound state spectrum will need to be modified.

FIG. 1. Sketch of an inflaton potential. A crucial feature is t
broad flat region from2h1 to 1h1. The width of the curved region
from 6h1 to 6h is assumed to be much smaller thanh1.
0-5
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TANMAY VACHASPATI PHYSICAL REVIEW D 69, 043510 ~2004!
curved regions in the vicinity off56h1. The shape of the
potential forf.h will not be crucial for us but we will use
the fact that the curvature at the global minimum is1m2

wherem is the mass of small excitations infinitely far awa
from the domain wall. The second derivative of the poten
V9(f) is sketched in Fig. 2. Note that the horizontal axis
f in this plot. The potentialU(x) that determines the boun
states is given by

U~x!5V9@f0~x!#, ~43!

wheref0(x) is the domain wall solution.~The problem is
effectively 111 dimensional and hence we suppress dep
dencies on they andz coordinates.! For the top hat potentia

f0~x!5H 2h x,2d/2,

h~2x/d! 2d/2<x<d/2,

1h x.1d/2,

~44!

whered is the thickness of the defect and is determined
the Bogomol’nyi equation~9! as

d5hA 2

V~0!
. ~45!

Therefore the potentialU(x) has the shape shown in Fig.
The broad flat bottom of the potential in the central reg
and the asymptotic behavior are generic to the inflation
models we are considering. The details of the transition
gions nearuxu;d/2 may be model dependent since they d
pend on the transition from flatV(f) where the field rolls
slowly to the curved part ofV(f) where reheating starts. Th
general features ofU(x) are that it has a very broad centr

FIG. 2. Sketch of the second derivative of the inflaton potent

FIG. 3. Sketch ofU(x).
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l

n-

y

y
-

-

region whereU(x);0, then a dip, then a rise that occurs
a width that is much smaller thand, and finally an
asymptotic plateau ofm2.

We know that the lowest bound state is the translat
mode and has vanishing energy. In fact, Eq.~44! can be used
to find the translation modec t for the top hat case

c t~x!5
df0

dx
5H 2h/d 2d/2<x<d/2,

0 otherwise.

Since the translation mode is the lowest energy bou
state—an eigenstate with lower eigenvalue would signal
instability of the defect—all bound states have positive e
ergy and lie above the top of the double well structure in
transition regions. So we expect the higher bound states t
relatively insensitive to the details of the transition regi
and mimickingU(x) by a finite square well potential may b
a reasonable way to start a first analysis.

The finite square well potential is analyzed in virtual
every quantum mechanics textbook~e.g., Ref.@23#!. If U`

denotes the depth of the square well andd its width, the
number of bound states of a particle of massm is given by

Nb;AmU`d2. ~46!

In our case@see Eq.~2!#, 2m51, U`5m2, andd is given by
Eq. ~45!. Therefore,

Nb;
mh

AV~0!
. ~47!

The three parametersm, h and V(0) occurring in this
formula are independent:m2 is the curvature in the true
vacuumV9(h), h is the position of the true vacuum,V(0) is
the height of the flat part of the potential. If all these para
eters were constrained by inflationary cosmology, we wo
have some bounds onNb . However, there are no useful con
straints on the parameterm and no model-independen
bounds onNb can be derived. So, to get an idea of the ran
of Nb , we work out its value in the case whenV(f) is of the
Coleman-Weinberg form@24# with vanishing curvature a
f50 @25#:

V~f!5
B

2
s41Bf4F lnS f2

s2D 2
1

2G . ~48!

We then find

Nb;5. ~49!

Hence we expect that an inflaton domain wall will have
least a few bound states.

As is well known@23#, a special property of the infinite
square well potential is that its eigenvalue spectrum is p
portional ton2 wheren51,2, . . . , is aninteger that labels
the eigenstates starting with the ground state. The same p
erty holds for the low lying eigenstates of the finite squa

l.
0-6
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well.11 If the potential is shaped as;uxub, then it can be
shown thatEn}n2b/(b12) ~see Appendix C!. This depen-
dence shows that observations of the spectrum of bo
states on a domain wall can be used to find the powerb and
hence the shape of the potential. In the inflationary case,
width of the well is much larger than the distance over wh
the sides of the well get to their asymptotic levels. Therefo
the sides of the well are very steep (b@1) in relation to the
width of the wall and so the bound state spectrumkn

2 should
be proportional to;n2.

Qualitatively similar arguments may be used in the th
dimensional case, in the case when the bound state spec
on a monopole is known. If the potentialU(x) is spherically
symmetric, the density of energy eigenstates with fixed to
angular momentum can once again lead to information ab
the flatness of the inflaton potential. For example, cons
the s-wave states in a spherically symmetric potentialU(r ).
The Schro¨dinger equation for thenth eigenstate radial wav
function Rn(r )5un(r )/r reduces to

2
1

2m

d2un

dr2
1U~r !un5En0un , ~50!

where the energy eigenvalueEn0 carries thel 50 label. As in
the one dimensional case, here too we expectEn0}n2 when
U(r ) is due to an inflaton.

V. CONCLUSIONS

We have described a ‘‘recipe’’ for recovering the potent
in a field theoryV(f) starting with the bound state spectru
on a topological defect. An important aspect of the rec
struction discussed here is that it is ‘‘global’’—the who
potential is reconstructed and not just a small part of it.
specific examples, we have applied the recipe to the cas
one and two bound states on kinks. In the one bound s
case, the recipe yields the sine-Gordon potential and in
two bound state case with a specific set of eigenvalues
obtained thelf4 potential.

While implementing the recipe we have relied on the
verse scattering method based on supersymmetric qua
mechanics@7#. The method yields reflectionless potentia
U(x). Other inverse scattering methods may also be u
and, in general, they will lead to differentU(x) with the
same bound state spectra. The non-uniqueness of the re
struction may be reduced by further inclusion of scatter
data and perhaps by using other system-specific informa

Our recipe for the reconstruction ofV(f) is sufficiently
involved that, except in the simplest situations, it will have
be implemented numerically. For example, even in the t
bound state case, the solutions of the differential equation
the inverse scattering problem are given in terms of hyp
geometric functions, making it very hard to analytica
implement the recipe. The reconstruction in 311 dimen-
sions is technically even more challenging. However, we

11The exact eigenvalues depend on solutions of transcend
equations and must be found numerically.
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expect the analysis to be close to the 111 dimensional case
when the problem is spherically symmetric.

The results of this paper are relevant to any system
which topological defects occur. Hence we can expect ap
cations to condensed matter systems, particle physics,
cosmology. It would be interesting to try out the reconstru
tion in condensed matter systems where topological def
are readily available.~Or in nuclear physics to the extent th
nuclei can be modeled by skyrmions@26–28#.! The recon-
struction would yield a Landau-Ginzburg type of effectiv
interaction potential but would not yield, at least direct
information about the microphysical interactions between
fermions. The application to particle physics and cosmolo
is futuristic since topological defects are theoretically e
pected in these settings but have not yet been experimen
discovered or observed. Just as in the condensed matter
the scalar field need not be fundamental even in the par
physics context.

A novel application of the reconstruction recipe is in t
context of inflationary cosmology. If the inflaton vacuu
manifold has suitable topology, topological defects in t
inflaton field will exist. The spectrum of bound states
these defects will reflect the properties of the inflationa
potential. Reversing the argument, since we know that
inflationary potential must have certain properties, the bou
state spectrum must also have some characteristics. We
discussed these characteristics as a way to probe the i
tionary scenario, which is hard to do otherwise@29#. If future
investigations discover a scalar field with an extremely
potential, that scalar field will be a prime suspect to be
inflaton, and the defect with its characteristic bound st
spectrum will be a ‘‘smoking gun’’ from the shot that wa
fired 131010 years ago.

If the topology of the inflaton vacuum manifold is trivia
no defects will exist and the reconstruction scheme discus
here will not be useful for inflationary cosmology. If, how
ever, inflaton topological defects do exist, experiments m
become feasible in the future that can directly probe cosm
ogy in the laboratory.
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APPENDIX A: CHECK OF THE INVERSE SCATTERING
EQUATIONS

Here we give a check of the iterative scheme for the
verse scattering method described in Ref.@7#. Suppose we

tal
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are given a potentialUn21(x) that containsn21 of the high-
est bound states. Then we construct the functionsf n(x) from
the equation

f n82 f n
21Un215kn

2 . ~A1!

This nonlinear equation is simplified by setting

f n52
wn8

wn
~A2!

using which we get the linear equation

2wn91Un21wn5kn
2 . ~A3!

Finally we construct

Un~x!5 f n81 f n
21kn

2 . ~A4!

The claim is thatUn has an eigenstate with eigenvaluekn
2 in

addition to all the other higher eigenstates.
ThatUn admits a state with eigenvaluekn

2 , can be shown
explicitly. The state is given by

cn5
a

wn
. ~A5!

Then it easy to check that

2cn91Uncn5kn
2cn . ~A6!

So, indeed, the potentialUn has an~explicitly constructed!
eigenstate with eigenvaluekn

2 .
For the iterative procedure to work, we also need to sh

that Un admits eigenstates with the higher eigenvalues$k i
2%

for i 51, . . . ,n21. This is seen as follows.Un andUn21 are
‘‘partner’’ potentials. In other words, we can write thenth
Hamiltonian as

H5~2]x
21Un!5A1A1kn

2 , ~A7!

where

A52]x1 f n , A151]x1 f n . ~A8!

Then, the partner Hamiltonian is

H2[~2]x
21Un21!5AA11kn

2 . ~A9!

It is now easy to show that ifc satisfies

Hc5Ec ~A10!

thenAc is an eigenstate ofH2 with the same eigenvalue

H2~Ac!5E~Ac!. ~A11!

Thus,H andH2 have a common eigenspectrum, except
the lowest state ofH that satisfiesAc50. HenceUn has
states with eigenvaluesk i

2 , i 51, . . . ,n21 since these are
also the eigenvalues of states inUn21, and then it has one
extra eigenstate and this has eigenvaluekn

2 .
04351
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APPENDIX B: FORM OF DOMAIN WALL FLUCTUATION
POTENTIALS

Here we show all that all kink potentials~U! have the
supersymmetric form. We know that every kink has a tra
lation mode which does not change the energy. Theref
the Schro¨dinger equation@Eq. ~2!# gives

U~x!5
c t9

c t
, ~B1!

wherec t(x) is the translation mode. This form ofU(x) can
be rewritten as

U~x!5 f 81 f 2, ~B2!

where f 5@ ln(ct)#8, and henceU is of the supersymmetric
form @Eq. ~11!# @30#.

This argument can also be extended to higher dimens
with derivatives replaced by higher dimensional derivativ
The only requirement is that there exist a zero mode. Th
we find

U5“•f1f2, ~B3!

wheref(x)5“(ln ct) is a vector valued function andc t(x) is
the translation mode. The Hamiltonian is

H5A1
•A, ~B4!

where

A52“1f. ~B5!

If c is a multi-component scalar field, or a collection
several scalar and gauge field fluctuations, in several dim
sions, there are circumstances in whichU is still of a gener-
alized form of Eq.~B3!. Label the many components ofc by
the indexi. Soc may be thought of as a column vector wi
componentsc i . Now in higher dimensions, there will b
several zero modes. For example, translations along any
mension will be a zero mode. Label the zero modes by
indexa and denote them byja. Then consider the matrixM
whose components arej i

a . We can show thatU is supersym-
metric if we assume thatM is a square matrix that is invert
ible. This follows because now

@2“

21U~x!#M50 ~B6!

(U itself is a matrix potential!. Then it is easy to show tha

U~x!5“•F1F2, ~B7!

where

F5~“M !M21. ~B8!

APPENDIX C: SPECTRAL PROPERTIES OF BOUND
STATES IN 1¿1 DIMENSIONS

We now find the connection between the shape of
potential and the dependence of thenth eigenvalueEn on n
0-8
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for the specific class of potentials

U~x!5auxub, ~C1!

wherea andb are parameters.
We use the WKB approximation@23#. The quantization

condition for a particle of massm51/2 in the potentialU(x)
is

E
2w(En)

1w(En)

dxAEn2U~x!5n, ~C2!

whereEn stands forkn
2 in the notation of Sec. II. Inserting

the class of potentials in Eq.~C1!, we find

FIG. 4. Sketch ofU(x) together with energy levelEn . The
shaded region is the interior of the square well potentialUsq that is
used to find the approximate dependence ofEn on n.
c.
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04351
En}n2b/(b12). ~C3!

Next we consider the WKB method in the context of t
potentialU(x) redrawn here in Fig. 4.

Now,

n5E
2w(En)

1w(En)

dxAEn2U~x!

5E
2w(En)

1w(En)

dxA~En2Usq!2~U2Usq!.

~C4!

Usq denotes the infinite square well potential of wid
2w(En) ~see Fig. 4!. Our assumption is that the domina
contribution to the integral comes from theEn2Usq term
and that theU(x)2Usq term can be ignored. Then the inte
gral is trivial to do, resulting inn5AEn2w(En). Now
2w(En);d. ThereforeEn;n2.

If En is very small, our assumption thatU(x)2Usq can
be ignored will not hold. For reasonably largeEn we can
expect it to hold, thoughEn should still be much smaller tha
m2—the asymptotic value ofU—so that the finite depth o
the well does not play a role.
r-
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