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Reconstruction of field theory from excitation spectra of defects
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We show how to reconstruct a field theory from the spectrum of bound states on a topological defect. We
apply our recipe to the case of kinks if-1 dimensions with one or two bound states. Our recipe successfully
yields the sine-Gordon and¢g* field theories when suitable bound state spectra are assumed. The recipe can
also be used to globally reconstruct the inflaton potential of inflationary cosmology if the inflaton produces a
topological defect. We discuss how defects can provide “smoking gun” evidence for inflationary models with
flat potentials.
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[. INTRODUCTION a local reconstruction that is possible by perturbative meth-
ods such as particle scatterihg.
. - . In what follows, we assume that we are given a topologi-
Often one is interested in diagonalizing a known operatory | qefect. In fact, for actual calculations, we will exclusively
This is an eigenvalue problem. The reverse problem, wherg,, \yith kinks in 1+1 dimensions since this example illus-
the eigenvalues are known but the operator is not, is also Qfates the central ideas and also because there are extensive
interest. This is the “inverse scattering probleft’,2] (also techniques in +1 dimensions that are not available in
see, e.g., Ref3]). Indeed it is the basis of the famous ques-pigher dimensiongAlthough spherically symmetric systems
tion: “Can one hear the shape of a drumf#,5]. In other i higher dimensions can be reduced to thelldimensional
words, can the frequencigsigenvaluegof the sound emit- case)
ted from the drum be used to determine the sh@peratoy In the next section we will outline the recipe for the re-
of the drum? In the quantum mechanics context, the equiveeonstruction and then in Sec. Ill explicitly work through two
lent problem is of reconstructing the Sclinger potential specific examples with kinks in 11 dimensions. Our
U(x) from the energy spectrum. Such inverse scatteringgcheme yields the sine-Gordon field theory when there is
problems are of interest in a wide variety of applications. only one bound statéthe translation modeon the kink.
We will be interested in a class of problems wheréself ~ When the kink has two bound states, we give implicit ex-
originates from some field interactions. Our aim is not just toPressions for the field theory. For a specific choice of the
reconstruct the Schdinger potentialU but the underlying ~€igenvalues of the two bound states, we obtain\té field
field theoryinteractions that led to that particular Schro theory. In Sec. IV we discuss the reconstruction problem in
dinger potential. The eigenvalue data that we will use tofh€ inflationary context. Then we qualitatively discuss the
reconstruct the field theory are the excitation spectra of ang_‘Ound state spectrum on kinks made from the inflaton field.
topological defects that might be present in the system. Thi! Particular, we look for signatures of the flatness of the

method is widely applicable since topological defects arénflatpn potential in the_spectrum. Reader_s only int(_arestec_i in
Y app polog inflation can proceed directly to Sec. IV since the discussion

present.m a large class of systems. They are rquthely ° there is largely independent of Secs. Il and IlI.
served in condensed matter systems, and are inevitable in
high energy particle physics models. Topological defects rel-
evant for high energy particle physics are also relevant for
the very early Universe. Hence the excitation spectra of these
topological defects can be a window to the early Universe, We assume that we know the spectrum of energy eigen-
and in particular, to inflationary cosmology. values{KiZ} for the bound states on a topological defect. For

A way to understand the usefulness of topological defectshe time being, we will only focus on the bound states. The
in a reconstruction effort is that the core of a topologicalprice we pay is that there is then a huge degeneracy in the
defect contains a different phase of the theory and so the coréconstruction. By using scattering information and further
holds nonperturbative information about the field theory.physical input it may be possible to eliminate the degeneracy
Therefore the excitation spectrum of the defect leads to &ut we shall not be discussing this issue here.

global reconstruction of the field theory. This is in contrastto ' he general reconstruction scheme is as follows.

Il. GENERAL RECONSTRUCTION SCHEME

2In the inflationary case, astrophysical data can be used with cer-

Even if the abundance of topological defects is suppressed in thiin assumptions to reconstruct the inflaton potential. This recon-

cosmos, the inevitability of defects in particle physics implies thatstruction too is local since astrophysical observations only probe a
they can(in principle) be produced in accelerators. very limited range of relevant scales.
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(i) Prior to an analysis, a theoretical framework is needed (vii) Finally, an integration yields the desired symmetry
and the appropriate field content should be known. In thidreaking potential
discussion we will only consider a single scalar fietdin
one dimension, with standard form of the Lagrangian

V(o) = f depoV' (o). ®

1
L=§(§M¢)2—V(¢). (1) In the 1+ 1 dimensional case described above, there is
actually a slight shortcut that is available to us. In this case,
(i) The Schrdinger equation that determines the excita-the Bogomol'nyi equation holds
tion spectrum is

do
& = V2V(do) ©
— o2 tu Yn=Knibn, 2)
X and so
where 1
V(o)== el - 10
U(X)=V"[ ()] € (90)= 3 91w (
and ¢o(x) is the (unknown profile function of the defect— There are two parts to this recipe. The first is the deriva-

the classical defect solution. We would like to determine thetion of U(x) from the eigenvalue spectrum and the second is
potentialU(x). Inverse scattering methods have been develthe derivation ofV(¢) from U(x). The part of the recipe
oped precisely to solve this problem. The answer, howevestarting withU(x) and constructing/(¢) as in Eq.(10) has

is not unique, especially if only bound state spectra are take@lso been used in earlier wofg].

into account. However, additional theoretical input can pos- The hardest step in this scheme is dfiep the reconstruc-
sibly reduce degeneracies. For example, if some interactior®on of U(x) from {«7}. In 1+ 1 dimensiongor for S-wave
are known by perturbative methods, the information mightstates in 3-1 dimensiong a simple general scheme to re-

be useful to break some of the degenericy. produce the bound state spectrum is given in R_El‘s.g].
(iii) Once we havéJ(x), we find the “translation mode” The scheme employs the idea of supersymmetric quantum
by solving the zero eigenvalue Schinger problem mechanics where the Hamiltonian operator can be factored,

and yields areflectionlesspotential with the desired bound

state spectrum. We now summarize the scheme; a sketch of
=0. (4)  how the scheme is derived is given in Appendix A. While it
may seem that the reconstruction in terms of supersymmetric
potentials is overly restrictive, we show in Appendix B that
kinks in one spatial dimension always lead to a supersym-
metric form of the potential(x). We also show that this

débo can be true even when we have multi-component fields in
(X)) = T (5y  more than one dimension. Thus the reconstruction scheme of
X Ref.[7] is perfectly suited to our context.

Suppose the bound state eigenvalues are labeled in de-
ending ordex?>«? , andi=1,... N—1 and the zero
energy level is chosen so that the ground state eigenwgue
is zero. Then a potential containingof the highest bound
states is

d2
— ——+U(x
e (x)

(iv) The translation mode is simply related to the defect
profile functions by differentiation

Hence, we can integrate the translation mode to obtairgC
$o(X).

(V) Next we invertgo(x) to obtainx(¢o).

(vi) The equation of motion for the defect is

- d:$°+v'(¢o)=o, ®) Un(x)=f2+ 14«2, 1D

where the functiorf,(x) satisfies
where the prime refers to differentiation with respect to the

argument. Combining with E5) we see that fl—f24+U,_1=«32 (12)
V' _ diy 7 in terms ofU,,_4, the potential containing—1 of the high-
[¢o(x)]= a|x(¢o)' @) est bound states. If we writg,(x)=—w,/w,, the equation
for w, is
3U(x) may also be reconstructed using scattering data, i.e., not —Wp+ Un—lwn:KﬁWn- (13

just the eigenvalues but the scattering amplitudes. For example, in ) ) ) _ _
the Born approximation, the scattering amplitude is directly relatedl his equation will have two linearly independent solutions.
to the Fourier transform ofl (x). If we further require thaty, be even under parity ,(—X)
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=+U,(X), then we need,(—x)=—f,(+x) and w,(—x) f1=— kotanh( kpx) (20
=w,(+x). This condition eliminates one of the linearly in-
dependent solutiors. and
The solution to thenth Schralinger equation Lo o
Ui(x)=f1+fi=k5[1—2 secR(kx)]. (21)
2
{ — d_+ Un(X) |= Kﬁl/,n (14) Now we can determineg by the requirement that at spa-
dx? tial infinity, the excitations are the particles in the trivial

o vacuum. If we denote the masses of these particlas,lifiis
is simply means that

_%n U(®)=m?. (22)
= (15 ()

Hence,xo=m and
where «,, is a normalization constant to be determined by
other considerations. In particular, singgq is the smallest U(x)=m?[1-2 sech(mx)]. (23
eigenvalue, the corresponding eigenfunction must be the

translation mode of the defect that does not affect the energy. The translation mode, satisfies

Ihereforgx,\,zo and the translation mode is known once we — W+ U(X) =0 (24)
now wy; :
and, in fact, the solution is
o
wt:W_N, (16) a
wtzw—zasecmmx), (25)
where we have dropped the subscript @g. The profile !
function is wherea is a constant. Note that, in the present context, there
d is no requirement thay; be normalized as a wave function.
¢0(X):af W_X (17) Therefore the profile function is
N
20, mx
and Eq.(10) gives bo(X)=a | dxsectimx)=——tan | tanf —-
) (26)
o
V(go)=— (18 In other words,
NTx(¢0)
mx May
The construction ob, is iterative and one must start with tanf —-|=tan —-~/. (27

the highest bound state with eigenvaluia To find w; we
setUy= KS to be a constant which will be determined by  Since here the Bogomol'nyi equations can be used, Eg.
other considerations. Now we illustrate this scheme in a few10) with some algebra gives

cases. 2

V(¢>0)=% cos<2r2¢0)+1 .

(28)

IIl. EXAMPLES

A. One bound state This is the sine-Gordon potential.

If the defect has only one bound state, it must be the Th'e potential still contains the unknown parameterTo
translation mode. Since translations do not cost energy, théx this parameter we could use some other property of the

eigenvaluex, vanishes. So we need to solve B3 with  defect, for example, its total energy. _
. This completes the global reconstruction of the potential

k1=0:
! in the single bound state case.
B. Two bound states

with U= k2. After some manipulations: . .
0 "0 P Now there are two eigenvalugg and«3. The translation

mode is always the lowest eigenvalue and he/ﬂi‘eo. So
“Note that the functiom, (x) is not required to satisfy vanishing We first need to find a potential;(x) that contains thecy
boundary conditions at infinity. In fact, by examining the differen- mode. _ _ _ _ _ _
tial equation(13) in the asymptotic limit, it can be argued that ~ Following the recipe given in the previous section, we
wp(* %) will be divergent. have
SWe are closely following Ref[7]. Note that the eigenvalues in
2 2 Up=fi+fi+x? (29
Ref.[7] are — x, whereas we have taken them to be; . 1= hiTkKy
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and we need to solve

— W]+ koW1 = K3y, (30

where, as beforéJ0=K§. This is exactly the single bound
state problem that we solved in the previous subsection if we

replacex] with v2= k2— «3. Therefore,
f,=—vtanhvx) (3D

and
U,=v71-2 secR(vx)]+ «2. (32

Now we use the second eigenvalue. The potertdiglis
given by

U,=f3+fo+k3=13+1), (33

PHYSICAL REVIEW D 69, 043510 (2004

Wy (X) = cost(vx). (40)
With this
dx
¢o(X)=avf V72=atanr(vx), (42)

wherea is a constant of normalizatioFor convenience we
have explicitly included a factor of in the normalizatiorn).
Therefore,

o? o? (2) 2
V(o) = 7secl‘i(z) = 7( 1- ;) . (42)

Hence we have recovered the* model in this special case.
It appears remarkable that the simplest examples of one

where we have use#5=0 since this mode must be the and two bound states have led to two well-known field theo-

translation mode. So we need to solve
—wj+{v[1-2 sech(vx)]+ k3w, =0. (34)
We can rescaleg= vx and bring the equation to the form
2W2

dz?

+{\+2 sech(z)}w,=0, (35
where

(36)

2
K1
1+ —zl

Equation (35 has been solved in Refl10] (see Sec. 6.3,

page 768and the solution is given in terms of hypergeomet-

ric functions

Wo={&(1— & LR (K+2K—1;K+1;¢)

+,F(K+2K-1;K+1;1-§)], (37
where
£= 1+ta2nr(z) 39
and
K2=—\. (39

ries, namely, the sine-Gordon andp* theories. A partial
explanation is to be found in Appendix B, where we show
that whenevel) (x) arises from a field theoretic kink, it must
necessarily be of the supersymmetric fdr&g. (11)]. So the
recipe to reconstruct(x) is ideally suited to the present
problem.

C. Three or more bound states; higher dimensions

The reconstruction can be continued to the case of three
of more bound states. However, the general reconstruction
becomes difficult to do analytically and numerical methods
are desirable. Such methods have not yet been developed.

The inverse scattering technique that we have used only
works in one spatial dimension. Problems in more than one
spatial dimension require other inverse scattering techniques.
However, if the problem is spherically symmetric, the prob-
lem effectively reduces to one spatial dimension and the re-
construction outlined above can be applidd. Ref. [7] the
authors applied the inverse scattering technique to S-wave
bound states of quarks.

IV. APPLICATION TO COSMOLOGICAL INFLATION
A. Inflation and defects

If there was an extended but limited period of superlumi-
nal expansion in the early universe, light scalar fields would
get excited by the spacetime expansion and create adiabatic
perturbations on superhorizon scales. The prediction of adia-
batic perturbations matches observations of anisotropies in

Note that we have fixed the ratio of the two linearly inde-the cosmic microwave background radiati@MBR) and is
pendent solutions in Eq37) by imposing the requirement the reason for the current confidence in the cosmic “infla-
thatw, have even parity under— —z, which is the same as  tionary” scenario. The mechanism driving cosmic inflation is
requiring w,(£) =w,(1—§). (The overall normalization of g scalar field called the “inflaton.” The dynamics of both the
W, is unimportand. Now Eqg. (18) immediately gives the spacetime and the scalar field is dominated by the inflaton
field theoretic potential though the expression is still implicit potential energy for the entire duration of cosmic inflation.
since the inverse functiox(¢,) needs to be determined after Under certain assumptions, this requires the scalar field to lie
doing the integral in Eq(17). on top of a very flat potential. With time the scalar field
Let us now look at the special case Whefv’v2=3 (K slowly rolls along the flat potential, eventually reaching the
=2). Then the solution fow, is given by elementary func- steeper parts of the potential where its kinetic energy be-
tions comes significant. Then inflation stops and the subsequent
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evolution of the scalar field leads to “reheating,” i.e., con- V(@
version of scalar field kinetic energy into ordinary matter in a
thermal staté.

One hopes that the scalar fields necessary for cosmic in
flation will automatically arise in high energy particle phys-
ics models, such as grand unified theor@JTs) or string
theory. On very general grounds, it is known that such theo-
ries contain magnetic monopoles and sometimes other topa
logical defects. If inflation and the defect are due to separate
fields, the study of the defect core cannot yield information
about inflation. For the global reconstruction scheme under
discussion to work, the inflaton itself should play a role in  FIG. 1. Sketch of an inflaton potential. A crucial feature is the
the structure of the topological defect. broad flat region from- 7, to + 5,. The width of the curved region

One of the cosmological problems that inflation was de{rom = 5, to = 5 is assumed to be much smaller thap
signed to solve was the magnetic monopole overabundance o ]
problem that arose out of the marriage of GUTs and cosmoltion can occur within topological defects, so-called “topo-
ogy. If there is a period of inflation during or after the GUT logical inflation”[18,19. We will, however, not consider this
phase transition, the magnetic monopole density would ge_QOSSIblllty since, |f a defect_lnflates,_ it is n(_)t_p053|ble_ to fl_nd
diluted to insignificant amounts, leaving perhaps only a fewit Or create it W|th|n_ our horizon while retaining predictabil-
in the entire visible Universe. However, subsequent work orty [20]. The condition for the topological defect to start
inflation has shown that topological defects can still be proinflating is that its widths be larger than the horizon size
duced in significant numbers toward the late stdgas-15.  1/H corresponding to the energy density within the defect.
If bound states on one of these defects can be studied, fAs we will show below[Eg. (49)], in the case of domain
would help in the global reconstruction of the inflaton Walls with very flat potential$~ »/y2V(0), where is the
potential’ The other possibility of using the reconstruction change in¢ across the wall. The cosmological equations
scheme is if future particle physics experiments are able tgive H*=87GV(0)/3. Hence the condition for topological
produce magnetic monopole and antimonopole p&ns inflation is »>mp where 7 is the vacuum expectation value
closed walls or stringsin the laboratory. The excitations of ~ of the field andm is the Planck mass. Hence we will be
these monopoles could then be studied. There is also thestricted top<mp and we will ignore gravitational effects.
possibility that duality holds in particle physics and the
known particles(e.g., the electronmay be dualized mag- B. Properties of the excitation spectrum
netic monopoleg16]. The internal excitations of the elec- h . f the infl ial b ied
tron, would then be excitations of a magnetic monopole. Per- The reqonstruchoq oft e in _aton potentla can be carrie
haps these excitations can tell us something about inflation(.)Ut following th_e recipe given in Sec_. I if the Kink bo_und

Earlier work on reconstructing the inflaton potentisée, State spectrum is k_nown. Here we W|II_c0n3|der_ what is es-

i sentially the scattering problem for the inflaton kink, namely
e.g., Ref[17]) worked under the assumption that the CMBR L . . )

4 : : the question: what signatures might we see in the bound state
anisotropies are generated by quantum fluctuations of thgpectrum if the kink on hand is due to the inflaton?
inflaton. This results in docal reconstruction of the poten- Consid lar fiel ith potential v h t" -
tial, the limited range of scales observed being explained ~onsider a scaiar lelep wi potentia (¢.) arisn
entirely by a very small portion of the entire inflaton poten- variant under theZ, transformationg——d, i.e., V(- ¢)

= i =+
tial. Here we will consider signatures gfobal features of th(\a/r((:v(fil)ll blzaetaﬂéir:;ii \\I/\E/igl?iotﬁtiglr:/eancrt;yss ;vr:]iéinvr\;ﬁln
the inflaton potential, such as flatness.

Before we proceed to discuss signatures of inflaton poten(Ehange from-# to + 5. We are interested in the case when

tials in the excitation spectrum, it is worth noting that infla- ¢ is also an |nfl<'_;1ton with very flav(¢) for ¢ (__ 7
+ 7). Here we will show that the flatness of the inflaton

potential V(¢) has definite predictions for the spectrum of

5There are models of inflation that do not require a flat potentiaI.excjal\t;:’}“?nstOf :.h?.d%mam Waﬂll 1. In the di ion bel
Instead they depend on a large initial value of the scalar field. Here at potential1s drawn in Fig. 1. In the diScussion below

we are limited to inflationary models that rely on the potential beingWe will assume that g— 71)< 71, SO thgt the trf’;lnsmon
very flat. from flat to CL_Jrveq potential occurs rglatlvely quickRR/A
"Often the defects arise from topology present due to fields othefoUgh approximation to the potential in the intervat 4,
than the inflaton. This significantly complicates the reconstructiont 7) iS given by a top hat with some modification near the
though, in principle, if there is variation of the inflaton within the
defect, a reconstruction would still be possible.
8f inflation occurred at a relatively low energy scale—say some- °In non-Abelian field theories, domain wall solutions are much
what larger than the electroweak scale—this possibility is easier tonore complex. For example, domain walls $1J(N)xXZ, have
envision and might even be realized at energies available at thkeen discussed in Ref21,22. We will only discuss the simplest
Large Hadron CollidefLHC). However, the production of solitons case of aZ, kink with a single scalar field in this paper.
by scattering particles is expected to be difficult because a large *%f this assumption is not valid, the discussion below of the
number of particles are simultaneously involved. bound state spectrum will need to be modified.

I !
-n Ny 0 ny n ¢
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V(@) region wherelJ(x)~0, then a dip, then a rise that occurs in
a width that is much smaller tha, and finally an
asymptotic plateau afn®.

We know that the lowest bound state is the translation
mode and has vanishing energy. In fact, E) can be used
to find the translation mode; for the top hat case

dée [279/8 —sl2<x=<0I2,

—n\f 0 w noe =550 otherwise.

Since the translation mode is the lowest energy bound
FIG. 2. Sketch of the second derivative of the inflaton potential.gtate__an eigenstate with lower eigenvalue would signal an

instability of the defect—all bound states have positive en-
curved regions in the vicinity o= * 5;. The shape of the ergy and lie above the top of the double well structure in the
potential for¢> 7 will not be crucial for us but we will use  transition regions. So we expect the higher bound states to be
the fact that the curvature at the global minimum+isn®  relatively insensitive to the details of the transition region
wherem is the mass of small excitations infinitely far away and mimickingU (x) by a finite square well potential may be
from the domain wall. The second derivative of the potentialy reasonable way to start a first analysis.
V"(¢) is sketched in Fig. 2. Note that the horizontal axis is  The finite square well potential is analyzed in virtually
¢ in this plot. The potential (x) that determines the bound every quantum mechanics textbotg., Ref.[23]). If U.,

states is given by denotes the depth of the square well ahdts width, the
" number of bound states of a particle of masss given b

U0 =V do(X)], (43 P Asss given by

Ny~ vzU.. 6% (46)

where ¢o(x) is the domain wall solution(The problem is

effectively 1+ 1 dimensional and hence we suppress depenl- Ea(2)]. 2u=1 ) Sis qi
dencies on thg andz coordinates.For the top hat potential qu?isgaﬁ'er{\?r:for%( ) 2p=1,U.=m’, anddis given by

-7 X< —612,
Ny~ @7
do(X)=14 M(2XI6) —6I2<X<4l2, (44) b \/TO)
+7 x>+ 612,

The three parametens, » and V(0) occurring in this
where § is the thickness of the defect and is determined byformula are independenm? is the curvature in the true

the Bogomol'nyi equatiori9) as vacuumV”( ), 7 is the position of the true vacuud(0) is
the height of the flat part of the potential. If all these param-
2 eters were constrained by inflationary cosmology, we would
5= \/W. (45) have some bounds dy,. However, there are no useful con-

straints on the parametan and no model-independent
) o bounds orN,, can be derived. So, to get an idea of the range
Therefore the potentidl (x) has the shape shown in Fig. 3. of N, , we work out its value in the case wh¥fi¢) is of the

and the asymptotic behavior are generic to the inflationary, — g [25:

models we are considering. The details of the transition re-

gions neaix|~ /2 may be model dependent since they de- B 2\ 1
pend on the transition from fla¥(4) where the field rolls V(¢)==c*+Bgp* In(—) —— (48)
slowly to the curved part 0¥ ( ¢) where reheating starts. The 2 o2 2
general features dfl(x) are that it has a very broad central
We then find
Ux)

m?2

Hence we expect that an inflaton domain wall will have at
least a few bound states.
As is well known[23], a special property of the infinite

s 0 3 x square well potential is that its eigenvalue spectrum is pro-
portional ton? wheren=1,2, ..., is aninteger that labels
the eigenstates starting with the ground state. The same prop-
FIG. 3. Sketch olU(x). erty holds for the low lying eigenstates of the finite square
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well.!! If the potential is shaped as |x|°, then it can be expect the analysis to be close to the 1 dimensional case
shown thatE,xn?”(*2) (see Appendix © This depen- when the problem is spherically symmetric.
dence shows that observations of the spectrum of bound The results of this paper are relevant to any system in
states on a domain wall can be used to find the pdweend ~ which topological defects occur. Hence we can expect appli-
hence the shape of the potential. In the inflationary case, theations to condensed matter systems, particle physics, and
width of the well is much larger than the distance over whichcosmology. It would be interesting to try out the reconstruc-
the sides of the well get to their asymptotic levels. Thereforetion in condensed matter systems where topological defects
the sides of the well are very steelpst1) in relation to the are readily availablgOr in nuclear physics to the extent that
width of the wall and so the bound state spectrdfrshould  nuclei can be modeled by skyrmiofig6—28.) The recon-
be proportional to~ n2. struction would yield a Landau-Ginzburg type of effective
Qualitatively similar arguments may be used in the thrednteraction potential but would not yield, at least directly,
dimensional case, in the case when the bound state spectrifformation about the microphysical interactions between the
on a monopole is known. If the potentidi(x) is spherically ~ fermions. The application to particle physics and cosmology
symmetric, the density of energy eigenstates with fixed totals futuristic since topological defects are theoretically ex-
angular momentum can once again lead to information abouected in these settings but have not yet been experimentally
the flatness of the inflaton potential. For example, considegliscovered or observed. Just as in the condensed matter case,
the s-wave states in a spherically symmetric potettig). the scalar field need not be fundamental even in the particle
The Schrdinger equation for thath eigenstate radial wave Physics context.

function R,(r)=u,(r)/r reduces to A novel application of the reconstruction recipe is in the
context of inflationary cosmology. If the inflaton vacuum

1 d?u, manifold has suitable topology, topological defects in the
_EF"_U(r)un:EnOunv (50 inflaton field will exist. The spectrum of bound states in

these defects will reflect the properties of the inflationary
potential. Reversing the argument, since we know that the
inflationary potential must have certain properties, the bound
state spectrum must also have some characteristics. We have
discussed these characteristics as a way to probe the infla-
tionary scenario, which is hard to do otherwig8)]. If future
investigations discover a scalar field with an extremely flat
We have described a “recipe” for recovering the potential Potential, that scalar field will be a prime suspect to be the
in a field theoryV( ) starting with the bound state spectrum inflaton, and the defect with its characteristic bound state
on a topological defect. An important aspect of the reconSPectrum will be a “smoking gun” from the shot that was
struction discussed here is that it is “global’—the whole fired 1X10' years ago. - o
potential is reconstructed and not just a small part of it. As If the topology of the inflaton vacuum manifold is trivial,
specific examples, we have applied the recipe to the case 8P defects will exist and the reconstruction scheme discussed
one and two bound states on kinks. In the one bound staféere will not be useful for inflationary cosmology. If, how-
case, the recipe yields the sine-Gordon potential and in th&ver, inflaton topological defects do exist, experiments may
two bound state case with a specific set of eigenvalues wecome feasible in the future that can directly probe cosmol-

where the energy eigenvallig, carries thd =0 label. As in
the one dimensional case, here too we exjiggtn? when
U(r) is due to an inflaton.

V. CONCLUSIONS

obtained the\ ¢* potential. ogy in the laboratory.
While implementing the recipe we have relied on the in-
verse scattering method based on supersymmetric quantum ACKNOWLEDGMENTS
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and, in general, they will lead to differerhj(x) with the to Carl Bender, Dorje Brody and Jon Rosner for pointing out
same bound state spectra. The non-uniqueness of the rec

. . ) >C8terences to work on the inverse scattering problem, to Gr-
struction may be reduced by further inclusion of scatteringqp 4 \olovik for comments on the situation in condensed

data and p_erhaps by using other _system-specific ,in,format'or?'natter systems, to Martin Bucher, Jaume Garriga and Alex
: Our recipe for the.recons.trucnon M(q&) IS sgfﬂqently Vilenkin for discussions about cosmological applications,
involved that, except in the simplest situations, it will have t0and to Craig Copi and Harsh Mathur for useful suggestions.
be implemented numerically. For example, even in the tWq 50 nowiedge hospitality at Imperial College, University of

bound state case, the solutions of the differential equations igarcelona and DAMTRUniversity of Cambridge while

the "’“’efse scat.tering proplem. are given in terms of .hyperfhis work was being done. This work was supported by DOE
_geometnc functlon_s, making it very h_ard _to anglyﬂcally grant number DEFG0295ER40898 at Case.
implement the recipe. The reconstruction i3 dimen-

sions is technically even more challenging. However, we can

These ideas were inspired during the “Cosmology in the
boratory” (COSLAB 2003 meeting, Bilbao. | am grateful

APPENDIX A: CHECK OF THE INVERSE SCATTERING
EQUATIONS

1The exact eigenvalues depend on solutions of transcendental Here we give a check of the iterative scheme for the in-
equations and must be found numerically. verse scattering method described in R&f. Suppose we
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are given a potentidl ,_;(x) that containsn— 1 of the high-
est bound states. Then we construct the functigs) from
the equation

fl—f2+U,_1=«2. (A1)

This nonlinear equation is simplified by setting
f,=- W—r’] (A2)
Wr‘l

using which we get the linear equation

—W/ U Wo= k2. (A3)
Finally we construct

Un(x)="f)+ 24 k2. (A4)

The claim is thal,, has an eigenstate with eigenval;a#in
addition to all the other higher eigenstates.

ThatU,, admits a state with eigenvalu«-ﬁ, can be shown
explicitly. The state is given by

- A5
’ﬂn_wn- ( )

Then it easy to check that
_lﬂg"_unwn:’(ﬁwn- (AB)

So, indeed, the potentid),, has an(explicitly constructe
eigenstate with eigenvalue’ .

For the iterative procedure to work, we also need to show

thatU,, admits eigenstates with the higher eigenval{xq§
fori=1,... n—1. Thisis seen as follow&l, andU,,_; are
“partner” potentials. In other words, we can write timh
Hamiltonian as

H=(—02+U,)=ATA+«2, (A7)
where
A=—0o,+f,, AT=+9,+1,. (A8)
Then, the partner Hamiltonian is
H_=(—d2+U,_)=AA"+«2. (A9)
It is now easy to show that if satisfies
Hy=Ey (A10)

thenAy is an eigenstate dfl _ with the same eigenvalue

H_(Ap)=E(Ap). (A1)

Thus,H andH_ have a common eigenspectrum, except for

the lowest state o that satisfiesA¢=0. HenceU,, has

states with eigenvalues?, i=1,...n—1 since these are
also the eigenvalues of stateslih,_;, and then it has one

extra eigenstate and this has eigenva&ﬁe
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APPENDIX B: FORM OF DOMAIN WALL FLUCTUATION
POTENTIALS

Here we show all that all kink potentialdJ) have the
supersymmetric form. We know that every kink has a trans-
lation mode which does not change the energy. Therefore,
the Schrdinger equationEq. (2)] gives

%
U(x)=—,
(x) I

where ¢, (x) is the translation mode. This form &f(x) can
be rewritten as

(B1)

Ux)=f"+f2, (B2)
where f=[In()]’, and hencel is of the supersymmetric
form [Eq. (11)] [30].

This argument can also be extended to higher dimensions
with derivatives replaced by higher dimensional derivatives.
The only requirement is that there exist a zero mode. Then,
we find

U=V.f+f2 (B3)
wheref(x) =V (In ) is a vector valued function an@(x) is
the translation mode. The Hamiltonian is

H=A*A, (B4)

where

A=—-V+f. (B5)

If ¢ is a multi-component scalar field, or a collection of
several scalar and gauge field fluctuations, in several dimen-
sions, there are circumstances in whidhs still of a gener-
alized form of Eq{(B3). Label the many components gfby

the indexi. So ¢ may be thought of as a column vector with
componentsy; . Now in higher dimensions, there will be
several zero modes. For example, translations along any di-
mension will be a zero mode. Label the zero modes by the
indexa and denote them b§?. Then consider the matriM
whose components agd. We can show thalt) is supersym-
metric if we assume tha¥l is a square matrix that is invert-
ible. This follows because now

[—V2+U(x)]M=0 (B6)

(U itself is a matrix potential Then it is easy to show that
U(x)=V-F+F?, (B7)
where

F=(VM)M L. (B8)

APPENDIX C: SPECTRAL PROPERTIES OF BOUND
STATES IN 1+1 DIMENSIONS

We now find the connection between the shape of the
potential and the dependence of tith eigenvalueE,, on n

043510-8
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U E,cn20/(b+2), (C3
-w m? - +w
/ Next we consider the WKB method in the context of the
En potentialU(x) redrawn here in Fig. 4.
Now,
| |
—82 0 82 X
+w(Ep)
n=J dxXvE,—U(x)

-w(E,

FIG. 4. Sketch ofU(x) together with energy leveE,. The
shaded region is the interior of the square well potefdig] that is
used to find the approximate dependenc&gfon n.

+w(Ep)
:f dX\/(En_Usq)_(U_Usq)-
. . 7W(En)

for the specific class of potentials (C4)

U(x)=alx|", (CY
Usq denotes the infinite square well potential of width
wherea andb are parameters. 2w(E,) (see Fig. 4. Our assumption is that the dominant
We use the WKB approximatiof23]. The quantization contribution to the integral comes from tlig,—Ug, term
condition for a particle of masg=1/2 in the potential (x) and that thel (x) —Ugq term can be ignored. Then the inte-

is gral is trivial to do, resulting inn=E,2w(E,). Now
) 2w(E,)~ 6. ThereforeE,~n2.
W) If E, is very small, our assumption thak(x) — U, can
— = ! q
fW(En) dxVE, = U(x)=n, (€2 be ignored will not hold. For reasonably largg, we can

expect it to hold, thougk,, should still be much smaller than
whereE,, stands forKﬁ in the notation of Sec. II. Inserting m?—the asymptotic value of)—so that the finite depth of
the class of potentials in E¢C1), we find the well does not play a role.
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