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Inflation from supersymmetric quantum cosmology

W. Guzmán, J. Socorro, V. I. Tkach, and J. Torres
Instituto de Fı´sica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leo´n, Guanajuato, Mexico
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We propose a realization of inverted hybrid inflation scenario in the context ofn52 supersymmetric
quantum cosmology. The spectrum of density fluctuations is calculated in the de Sitter regimen as a function
of the gravitino and the Planck mass, and explicit forms for the wave function of the Universe are found in the
WKB regimen for FRW closed and flat universes.
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I. INTRODUCTION

Inflation is a theoretically attractive idea for solving ma
classical problems of standard big bang cosmology.
cently, observations have confirmed its predictions of a
universe with a nearly scale invariant perturbation spectr
@1,2#.

On the other hand, despite its many successes, there
still not completely natural inflation models known in pa
ticle physics. Inflation generally requires small parameter
particle theory to provide a flat potential, needed for su
cient inflation and for the correct density fluctuations@1,3#.
Probably the most attractive models of inflation are the
brid inflation @4–7#, extranatural inflation@8,9# and inverted
hybrid inflation @10,11# models. In the hybrid inflation sce
nario proposed by Linde@4,5#, the slowly rolling inflaton
field f is not responsible for most of the energy density. T
role is played by another fieldc, which is held in place by its
interaction with the inflaton field until the latter falls below
critical value; thus,c is destabilized, rolling to its true
vacuum, and inflation ends. The hybrid inflation models
based on particle physics motivations such as supersym
try, supergravity, and superstrings. In the context of the
two of these, we do not expect inflation to be possible
field values exceeding a Planck mass, regardless of whe
the potential energy there is larger than the Planck ene
because supergravity corrections tend to generate a stee
tential that is unable to sustain inflation. Given the succes
hybrid inflation, it was subsequently suggested that the
brid mechanism could be adapted to create an inverted m
in which the inflaton fieldf has a negative mass squared a
rolls away from the origin, predicting a spectral index whi
can be significantly below 1 in contrast to virtually all oth
hybrid inflation models.

Supersymmetry may play an important role for inflatio
Many models have been proposed describing the inflation
phase transition in globally supersymmetric theor
@3,6,12–15# and locally supersymmetric theories@6,16–19#.
These models have been analyzed without and with su
gravity corrections. Supergravity corrections spoil the fl
ness of the inflaton potential because supersymmetry is
ken during inflation.

The study of supersymmetric minisuperspace models
lead to important and interesting results@20#. In works @21–
23# a new approach has been proposed to the study of su
symmetric quantum cosmology. The main idea is to exte
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the group of local time reparametrization of the cosmologi
models to the local conformal time supersymmetry, which
a subgroup of the four dimensional spacetime supersym
try. This scheme allowed us to formulate, in the superfi
representation, the supersymmetric action to study homo
neous models. The Grassmann superpartners of the scale
tor and the homogeneous scalar fields at the quantum l
are elements of the Clifford algebra. In this level, these m
els are specific supersymmetric quantum mechanics mo
with spontaneous breaking of supersymmetry when
vacuum energy is zero. In this paper we consider the inve
hybrid inflation models in the context of local conformaln
52 supersymmetry and we find some simple solutio
~WKB solutions! to the Wheeler–De Witt equation.

The plan of this paper is as follows. In Sec. II we intr
duce then52 local conformal supersymmetry formulatio
of the FRW model interacting with a set of spatially hom
geneous real scalar matter superfields. In Sec. III we in
duce the WKB procedure to obtain classical and quant
solutions, and also we shall analyze the potential propose
our model, in the case of the inflationary potential where t
is modified by the presence of the local supersymme
breaking sector~via the scalarw). Also, if we consider the
semiclassical solutions to the WDW equation for the infl
tionary phase~not zero potential and zero superpotentia!,
and the potential is zero but the superpotential is not ze
both cases are related with the two minimums that have
potential, local and global minimums, respectively. Besid
the density fluctuation produced by the inflaton fieldf is
shown. Section IV is devoted to conclusions.

II. SUPERSYMMETRIC LAGRANGIAN AND SUSY
BREAKING

The most general superfield action for a homogene
scalar supermultiplet interacting with the scale factor in
supersymmetricn52 FRW model has the form

S5E F6S 2
1

2k2

R
N D h̄RDhR1

Ak

2k2
R 2D

1
1

2

R 3

N D h̄F iDhF i22R 3g~F i !Gdhdh̄dt, ~1!

wherek50,1 denotes flat and closed space andk258pGN

51/M p
2 ; GN is the Newton’s gravitational constant (\5c
©2004 The American Physical Society06-1
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51). The units for the constants and fields are the followi
@k2#5 l 2,@N#5 l 0,@R#5 l 1,@F i #5 l 21,@g(F i)#5 l 23; here l

correspond to units of length.Dh5]/]h1 i h̄(]/]t) and
D h̄52]/]h̄2 ih(]/]t), i 51,2,3, are the supercovarian
derivatives of the superconformal supersymmetryn52,
which have dimensions of@Dh#5@D h̄#5 l 21/2.

Its series expansion for the one-dimensional gravity
perfieldN(t,h,h̄) is

N5N~ t !1 ihc̄8~ t !1 i h̄c8~ t !1hh̄V8~ t !, ~2!

in which N(t) is the lapse function, and we have also intr
duced the reparametrizationc8(t)5N1/2(t)c(t) and V8(t)
5N(t)V(t)1c̄(t)c(t).
o
w

he

04350
:

-

-

The Taylor series expansion for the superfieldR(t,h,h̄)
has a similar form

R5R~ t !1 ihl̄8~ t !1 i h̄l8~ t !1hh̄B8~ t !, ~3!

where l8(t)5kN1/2(t)l(t) and B8(t)5kN(t)B(t)
1 1

2 k(c̄l2cl̄).
The real scalar matter superfieldsF i may be written as

F i5f i~ t !1 ihx̄8 i~ t !1 i h̄x8 i~ t !1hh̄F8 i~ t !, ~4!

andx8 i(t)5N1/2(t)x i(t), F8 i(t)5NFi1 1
2 (c̄x i2cx̄ i).

Integrating over the Grassmann variables and making
following redefinition of the odd fieldsl→ 1

3 R21/2l andx i

→R23/2x i , we find the Lagrangian
L52
3R~DR!2

k2N
1

2

3
i l̄Dl1

Ak

k
R1/2~ c̄l2cl̄!1

1

3
NR21Akl̄l1

3k

k2
NR1

R3~Df!2

2N
2 i x̄ iDx i

2
3

2
AkNR21x̄ ix i2k2Ng~f i !l̄l26AkNg~f i !R22NR3V~f i !1

3

2
k2Ng~f i !x̄ ix i1

ik

2
Df i~ l̄x i1lx̄ i !

22N
]2g~f i !

]f if j
x̄ ix j2kN

]g~f i !

]f i
~ l̄x i2lx̄ i !1

k

4
R23/2~cl̄2c̄l!x̄ ix i2kR3/2~ c̄l2cl̄!g~f i !

1R3/2
]g~f i !

f i
~ c̄x i2cx̄ i !1

3k2N

8R3
x i x̄ ix j x̄ j , ~5!
he
ntri-
the

ith
the
l al-

y is

su-
~eliminating the auxiliary fields!, where DR5Ṙ

2( ik/6)R21/2(cl̄1c̄l) and Df i5f i̇2( i /2)R23/2(c̄x i

1cx̄ i) are the supercovariant derivatives, andDl5l̇

1( i /2)Vl, Dx i5x i̇1( i /2)Vx i are theU(1) covariant de-
rivatives.

In the usual models of hybrid inflationf is rolling to-
wards zero. The potential is typically of the form

V~f!5V01
1

2
m2f21•••,

and is dominated by the termV0. Whenf fall below some
critical valuefc , the other field rolls to its vacuum value s
thatV0 disappears and inflation ends, but in our scenario
have the opposite case of inverted hybrid inflation, wheref
roll away from the origin and the scalar potential for t
homogeneous scalar fields in our scenario become

V~f i !52S ]g~f i !

]f i D 2

23k2g2~f i !

5
1

2
Fi

22
3

k2R2
B2. ~6!
e

The first of them is the potential for the scalar fields in t
case of global supersymmetry; the second term is the co
bution of the local character of supersymmetry, where
bosonic auxiliary fieldsFi andB are

Fi52
]g~f i !

]f i
, B5k2Rg~w i !. ~7!

The potential is not positive semidefinite in contrast w
standard supersymmetric quantum mechanics. Unlike
standard supersymmetric quantum mechanics, this mode
lows supersymmetry breaking when the vacuum energ
equal to zero.

The selection rules for the ocurrence of spontaneous
persymmetry breaking are

]V~f i !

]f i
54F ]g~f i !

]f j S 1

2

]2g~f i !

]f i]f j D 2S ]g~f i !

]f i D S 3k2

2
g~f i ! D G

50, at f i5f0
i ,

V~f0
i !50⇒F S ]g~f i !

]f i D 2

2
3k2

2
g2~f i !G50,
6-2
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Fi52
]g~f i !

]f i
Þ0, at f i5f0

i . ~8!

The first condition implies the existence of a minimum
the scalar potential; the second condition is the absenc
the cosmological constant, and the third condition is for
breaking of supersymmetry. From the Lagrangian~5! we can
identify m3/25k2g(f0

i ) as the gravitino mass in the effectiv
supergravity theory. The factorR in the kinetic term of the
fo

n

e

in

04350
of
e

scalar factor2(3/k2)RṘ2 plays the role of a metric tensor i
the Lagrangian~it is the metric tensor in the minisuperspa
generated by this model!. Now, we need to contruct the cor
responding supersymmetric quantum mechanics, from wh
the quantum Hamiltonian operator emerges, and become
central piece in our study. The quantization procedure m
take into account the nature of the Grassmann variables
tisymmetrize them and write the bilinear combinations in t
form of the commutators, this leads to the following qua
tum Hamiltonian:
H52
k2

12R
pR

22
3k

k2
R2

1

6
Ak@ l̄,l#1

pf i
2

2R3
2

ikpf i

4R3
~@ l̄,x i #1@l,x̄ i # !2

k2

16R3
@ l̄,l#@x̄ i ,x i #

1
3Ak

4R
@ x̄ i ,x i #1

k2

2
g~f i !@ l̄,l#16Akg~f i !R21R3V~f i !2

3k2

4
g~f i !@ x̄ i ,x i #

1
1

2

]2g~f i !

]f i]f j
@ x̄ i ,x j #1

k

2

]g~f i !

]f i
~@ l̄,x i #2@l,x̄ i # !2

3k2

32R3
@ x̄ i ,x i #@ x̄ j ,x j #. ~9!
-

bal
ed
We are going to use the following matrix representation
the operatorsl,l̄,x i ,x̄ i :

l5A3

2
s2 ^ 1^ 1^ 1, x15s3^ s2 ^ 1^ 1,

x25s3^ s3^ s2 ^ 1, x35s3^ s3^ s3^ s2 ,

l̄52A3

2
s1 ^ 1^ 1^ 1, x̄15s3^ s1 ^ 1^ 1,

x̄25s3^ s3^ s1 ^ 1, x̄35s3^ s3^ s3^ s1 , ~10!

where s65 1
2 (s16 is2) and the commutators involved i

the quantum Hamiltonian can be written as

@ l̄,l#52
3

2
s3^ 1^ 1^ 1, @ x̄1,x1#51^ s3^ 1^ 1,

@ x̄2,x2#51^ 1^ s3^ 1, @ x̄3,x3#51^ 1^ 1^ s3 .

III. WKB TYPE SOLUTIONS

The usual hybrid inflation models are based on a sup
potential of the type

gin f5l~M22c2!f. ~11!

To this superpotential we add a supersymmetry break
part @22#

gSB5m3/2M p
2S 11A3

2

w

M p
1

3

4

w2

M p
2D . ~12!
r

r-

g

The ‘‘total superpotential’’g is the sum of these two contri
butions

g~f i !5l~M22c2!f1m3/2M p
2S 11A3

2

w

M p
1

3

4

w2

M p
2D
~13!

and then the scalar potentialV(f i) (f15f,f25c,f35w)
can be calculated with the help of the relation~6!

V~f,c,w!52l2~M22c2!218l2c2f2

12m3/2
2 M p

4SA3

2

1

M p
1

3

2

w

M p
2D 2

2
3

M p
2

l2~M22c2!2f2

23m3/2
2 M p

2S 11A3

2

w

M p
1

3

4

w2

M p
2D 2

26m3/2lf~M22c2!S 11A3

2

w

M p
1

3

4

w2

M p
2D .

~14!

This scalar potential possesses two minimums: a glo
minimum and a local one. The global minimum is localiz
6-3
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in f050,c0
25M2,w050, implying that V(f0 ,c0 ,w0)50

andg(f0 ,c0 ,w0)5m3/2M p
2 . The local minimum is found in

f* 52m3/2M p
2/2lM2,c* 50,w* 52A 2

3 M p; with these val-
ues we haveV(f*, c*, w*) 52l2M4 and the superpotentia
in the local minimumg(f*, c*, w*) 50.

Using the usual representation for the momentum op
tors

PR52
6

k2
RṘ, P̂R52 i

]

]R
, ~15!

Pf i
5R3ḟ i , P̂f i

52 i
]

]f i
. ~16!

The corresponding Wheeler–De Witt equation has the fo

H̃C5RHC5F2
k2

12
pR

22
3k

k2
R22

1

6
Ak@ l̄,l#R

1
pf i

2

2R2
2

ikpf i

4R2
~@ l̄,x i #1@l,x̄ i # !

2
k2

16R2
@ l̄,l#@x̄ i ,x i #1

3Ak

4
@ x̄ i ,x i #

1
k2R

2
g~f i !@ l̄,l#16Akg~f i !R31R4V~f i !

2
3k2

4
Rg~f i !@ x̄ i ,x i #1

1

2

]2g~f i !

]f i]f j
@ x̄ i ,x j #R

1
k

2
R

]g~f i !

]f i
~@ l̄,x i #2@l,x̄ i # !GC50. ~17!

In the matrix realization to the operatorsl,x i on the wave
function C(R,f i) ~that have 16 components!, the particular
Wheeler–De Witt equation that we are going to consi
now is for the caseR@ l pl , andk50,1. Under this situation
the term of the scalar potential in the Wheeler–De Witt eq
tion is dominant, and we take the scalar potential to be ev
ated in the local minimum. For this case the superpotentia
zero and the Wheeler–De Witt equation that governs
quantum behavior is1

F2
k2

12
P̂R

21R4V~f*, c*, w* !GC16

5F2
1

12M p
2

]2

]R2
1

1

2
R4Ff

2 ~f*, c*, w* !GC1650. ~18!

1Due to the matrix realization for the operators, there are two
null components for the wave function, i.e.,C1 andC16, but both
components have the same WDW equation; we only write one
them.
04350
a-

r

-
u-
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e

Using the ansatz for the wave functionC5e2 i f and taking
the WKB approximation]2f /]R2!(] f /]R)2, Eq. ~18! leads
to the following form for the wave function:

C5e2 i ~A6/3)M pFfR3
. ~19!

In the semiclassical regimen it is well known that

PR5C* P̂RC⇒26M p
2RṘ52A6M pFfR2. ~20!

From this, we can obtain the functional form of the sca
factor

R5C0e(A6M2/3M p)lt, ~21!

and the Hubble parameter then takes the form

H5
A6M2l

3M p
. ~22!

Now we are in a position to calculate the density fluctu
tions. The density fluctuations are produced by the infla
field, the other fields not have a role here because they
fixed to the origin. Then we have a polynomial scalar pote
tial in the inflaton field, assuming thatV0 dominates,

V52l2M426m3/2lM2f2
3l2M4

M p
2

f2. ~23!

The wave function in the semiclassical region is given
Eq. ~19!, with V5 1

2 Ff
2 . With the help of the relation

Pf5R3ḟ5C* P̂fC, ~24!

it is possible to obtainḟ

ḟ52
A6

3
M p

]Ff

]f
52

1

A3
M pV21/2

]V

]f
, ~25!

explicitly

ḟ5A3

2
m3/2M p . ~26!

In this way, we can obtain the following expression for t
density fluctuations:

dr

r
.

H2

ḟ
5

2A6l2M4

9m3/2M p
3

, ~27!

which depends on the gravitino and Planck masses valu
On the other hand, using the global minimum in the p

tential V(f0 ,w0 ,c0)50, the eigenstates of the Hamiltonia
~17! have sixteen components in the matrix representa
that we have chosen at the end of the previous section. U
the matrix representation forl,l̄,x and x̄, one finds that
C16 can have the right behavior whenR→`, being the fol-
lowing partial differential equation in both cases tok50,1:

t

of
6-4
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S 2
1

12M p
2
P̂R

21
9

4
m3/2RD C1650, for k50 ~28!

and

S 2
1

12M p
2
P̂R

216m3/2M p
2R3D C1650, for k51. ~29!

The semiclassical solutions of these equations become

C165e2 i2A2Am3/2M pR3/2
, k50, ~30!

C165e(212i /5)A2m3/2M p
2R5/2

, k51. ~31!

The behavior of the scale factor corresponding to the si
tions of a flat and a closed universe are, respectively,

R;t2/3, k50, ~32!

R;t2, k51. ~33!

Then we obtain, for a flat universe, a scale factor as a d
dominated universe. The last case corresponds to a sce
like power law inflation @24–26#, where the scale facto
evolves as a power of time. This type of solution is perha
the most prominent example of an exact solution to the
equations of motion~not slow roll approximation!; it has the
extra advantage that the equations for the generation of
sity perturbations also can be solved exactly. The infla
field acts as a perfect fluid withv5 1

3 , considering the state
equationp5(v21)r.

IV. CONCLUSIONS

The inverted hybrid inflation process appears in a natu
way in the supersymmetric theory given in@21–23#. Under
this scheme, it was possible to find the behavior for the sc
factor R. When the scalar potential is evaluated in the lo
minimum, the behavior was inflationary and the density flu
tuations depend on the inverse of the gravitino mass; see
~27!. Also, we find that for the global minimum in the scal
potential, we obtain, for a flat universe, a scale factor a
dust dominated universe; and for a closed universe, the
y

-
n-

D.
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havior corresponds to a scenario like power law inflatio
where the scale factor evolves as a power of time and
inflaton field acts as a perfect fluid.

Our solutions for the scale factor are very robust, in t
sense that, even keeping the next contribution to the WD
equation~quadratic terms inR, for instance ink51 case!,
the functional form of the scale factor is retained.

On the other hand, an interesting situation is obtained a
consequence of the contribution of the fermionic sector
tunneling wave function for a flat universe is possible. T
wave equation describing the process is

F P̂R
22

27

32

1

R2
1

9m3/2

4k2
R2

12V0

k2
R4GC1650,

for which we can identify the potential

V~R!52
27

32

1

R2
1

9m3/2

4k2
R2

12V0

k2
R4.

A schematic form of this potential is shown in Fig. 1.
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FIG. 1. The structure of the potentialV(R)520.08R4

20.2R2213R, with the coefficient ofR4 smaller than the other
terms.
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