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Novel approach to the study of quantum effects in the early Universe
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We develop a theoretical frame for the study of classical and quantum gravitational waves based on the
properties of a nonlinear ordinary differential equation for a functions(h) of the conformal timeh, called the
auxiliary field equation. At the classical level,s(h) can be expressed by means of two independent solutions
of the ‘‘master equation’’ to which the perturbed Einstein equations for the gravitational waves can be reduced.
At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations
and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically
excited oscillator where the varying mass is replaced by the square cosmological scale factora2(h). A
quantum approach to the generation of gravitational waves is proposed on the grounds of the previous
h-dependent Hamiltonian. An estimate in terms ofs(h) anda(h) of the destruction of quantum coherence
due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding
to any value ofh are also obtained. We conclude by discussing a few applications to quasi–de Sitter and
standard de Sitter scenarios.
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I. INTRODUCTION

In a notable paper by Grishchuk and Sidorov@1#, it was
shown that relic gravitons can be created from the vacu
quantum fluctuations of the gravitational field during cosm
logical expansion and can be interpreted as squeezed q
tum states of the gravitational field, in analogy to what ha
pens for squeezed states in quantum optics@2–4#. A
systematic treatment of the particle creation mechanism
contained in@5#. The theory of particle creation is essentia
based on the Bogolubov transformations, exploited prim
in the formulation of the process of squeezing for the el
tromagnetic field. An important aspect of the theory of p
ticle creation is the possible loss of coherence in quan
gravitational theories. In a sense, the exploration of deco
ence in gravitational theories has been more concerned
the quantum~gravity! effects which can manifest themselv
even at scales others than the Planck one. The growing
terest in this field relies, among the others, on quite a rem
able mechanism: the amplification of quantum~incidentally
vacuum! fluctuations in the metric of a gravitational bac
ground~see e.g.,@1,6–12#!. In the presence of a change
regime under the cosmological evolution, the occupat
number of the initial quantum state would get indeed am
fied. As long as the change can be considered as adiab
the amplification factor approaches one. Nevertheless
case the change is sudden the amplification mechanism
not be neglected. In such a case, even the vacuum state t
forms into a multiparticle state in the Fock space appropr
to the new regime. The scenario clearly sounds highly att

*Email address: andrea.geralico@le.infn.it
†Email address: giulio.landolfi@le.infn.it
‡Email address: giovanna.ruggeri@le.infn.it
§Email address: giulio.soliani@le.infn.it
0556-2821/2004/69~4!/043504~10!/$22.50 69 0435
m
-
an-
-

is

y
-
-
m
r-

ith

in-
k-

n
i-
tic,
in
n-
ns-

te
c-

tive under the stronger conviction that, thanks to the gr
progress we are witnessing in the experimental applicatio
new technologies, the amplification mechanism may prov
the possibility to detect quantum effects~e.g., relic gravitons!
at scales considerably above the Planck one. Because o
semiclassical approximation underlying these studies,
natural formal arena turns out to be that of coherent sta
These states are generated by the displacement ope
D(a) ~see Sec. II!. Squeezed states enter in the matter wh
ever the quadratic operatorsâ2 and â†2 are involved. A
squeezed state is generated by the action on a coherent
of the so-called squeeze operator defined in Sec. II. A
matter of fact, in a Friedmann-Robertson-Walker~FRW!
spacetime the behavior of matter scalar fields as well a
gravitational waves is governed by an equation of the tim
dependent type@or time-dependent oscillator~TDO!#. Thus
the problem of both particle creation and metric field flu
tuation amplification during the cosmological evolution
reduced to that of solving the quantum TDO problem. T
latter problem has been the subject of several studies, ma
in connection with quantum optical arguments. In this pap
the main idea is to make use of the machinery built-up
@13# and further developed in@14#. The formalism would
enable us to find at every stage information concerning
spectrum of created modes. In the case of a de Sitter gr
tational field, the prescription straightforwardly results in
full determination of quantities of physical relevance, such
Bogolubov coefficients and the phase of gravitational wa
for any value of the conformal timeh. All these quantities
are determined exactly. This has been possible by solvin
nonlinear ordinary differential equation for an auxiliary fie
s(h) which has been expressed in terms of two independ
solutions of theh-dependent part of the D’Alembert equa
tion for the gravitational perturbation tensor field. Anoth
interesting result achieved in this paper is an estimate
terms of the auxiliary fields(h) and the scale factora(h) of
©2004 The American Physical Society04-1
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the destruction of quantum coherence due to gravitatio
time-evolution. In our approach, the use of the~nonlinear!
auxiliary equation in the linear parametrically excited osc
lator equation fory(h) @see Eq.~2.12!# reveals therefore to
be quite profitable and makes more strict and compact
formal connection between quantum optics and the theor
gravitational waves. The paper is organized as follows.
Sec. II, after a description of some basic properties pertin
to the squeeze operator~2.3!, we introduce the nonlinea
equation~2.9! for the auxiliary fields(t) in terms of which
the position and momentum operatorsQ andP turn out to be
expressed. The role of the matrix element between sque
statesua,z& of the operatorD(a)S(z)H(t)S†(z)D†(a) is
investigated. This matrix element results to be evaluated
terms of the auxiliary fields(t). It is worth noticing that in
the expression for the matrix element three energy terms
pear, one of them, formula~2.25!, can be interpreted as th
energy related to squeezed states which do not preserv
minimum uncertainty. In the theory of gravitational wave
Eq. ~2.25! plays the role ofdecoherenceenergy of the waves
The Bogolubov transformation is reported whose coefficie
are explicitly written in terms ofs. In Sec. III we discuss
classical and quantum aspects of the generation of gra
tional waves. An exact formula for the phase of a gravi
tional wave is obtained. A natural approach to the theory
gravitational waves based on the Kanai-Caldirola oscilla
is outlined by means of an operator Hamiltonian expresse
terms of the auxiliary fields(h). In Sec. IV some applica
tions are displayed. Precisely, we evaluate the decoher
energy in the quasi-de Sitter inflationary model and stand
de Sitter spacetime and the role of Bogolubov coefficient
terms of the auxiliary field in the particle creation mech
nism is analyzed. Finally, in Sec. V some future perspecti
are discussed.

II. PRELIMINARIES ON THE SQUEEZED STATES
IN GENERALIZED OSCILLATORS

Let us recall that a squeezed state of a quantum syste
defined by@2#

ua,z&5D~a!S~z! u0&, ~2.1!

where

D~a!5eaâ0
†
2a* â0 ~2.2!

is the ~unitary! displacement~Weyl! operator,

S~z!5e~1/2! zâ0
† 2

2 ~1/2! z* â0
2

~2.3!

is the ~unitary! squeezeoperator@2,15#, â0 and â0
† stand for

â(t)u t5t0
and â†(t)u t5t0

, respectively, whereâ(t) and â†(t)
denote the annihilation and creation operators of the sys
The complex functionsa(t) andz(t) are arbitrary, namely

a5uau eiw, z5reif, ~2.4!

with w, f arbitrary ~real! c numbers. Notice that forz50,
Eq. ~2.1! reproduces the coherent stateua,0&5D(a) u0&.
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The following relations

b7S†â0S5â0coshr 1â0
†eifsinhr , ~2.5!

b†7S†â0
†S5â0

†coshr 1â0e2 ifsinhr ~2.6!

hold. This can be readily seen by applying the Bak
Campbell-Hausdorff formula. In other words, the squee
operator S(z) induces a canonical transformation
the annihilation and creation operators, in the sense

@b,b†#51̂.

A. Transformation of the position and momentum variables
under the squeeze operatorS„z…

From the quantum theory of generalized oscillators, it f
lows that position and momentum operatorsQ andP can be
expressed by@13,14#

Q5A\

m
s~ â1â†!, P5A\m~jâ1j* â†!, ~2.7!

with â5â(t), â†5â†(t), and

j5
2 i

2s
1S ṡ2

M

2
s D , ~2.8!

whereM5M (t)[ ṁ/m , the dot means time derivative, an
~the mass! m5m(t) is a given function of time. The function
(c number! s(t) satisfies the nonlinear ordinary differenti
equation@18,19#

s̈1V2s5
1

4s3
~2.9!

@V is specified below, see Eq.~2.13!#, called the auxiliary
equation associated with the classical equation of motion

q̈1Mq̇1v2~ t !q50, ~2.10!

andv(t) is the time dependent frequency. Via the transf
mation

q→e2~1/2! * t0

t M ~ t8!dt8y, ~2.11!

Eq. ~2.10! can be cast into the equation

ÿ1V2~ t !y50, ~2.12!

where

V2~ t !5
1

4
~4v222Ṁ2M2!. ~2.13!

The quantum theory of the generalized oscillator~2.10! can
be described by the Hamiltonian operator@16,13#

H~ t !5
P2

2m
1

1

2
mv2Q2 ~2.14!
4-2
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where the canonical variablesQ,P are given by Eq.~2.7!.
Taking account of Eqs.~2.5! and ~2.6!, and choosingf

50 we obtain1

S†QS5erQ, ~2.15!

S†PS52msS ṡ2
M

2
s D sinhrQ1e2r P. ~2.16!

The physical meaning of the expressionṡ2 (M /2) s will be
clarified later. At the present we observe only that whene
the condition

ṡ2
M

2
s50 ~2.17!

is fulfilled, then the uncertainty product (DQ)(DP) of the
variances

~DQ!5A^Q2&2^Q&2, ~DP!5A^P2&2^P&2,
~2.18!

attains its minimum, where the expectation value^•••& is
referred to coherent states@14#.

We observe that the operatorsS†QS and S†PS obey the
same commutation relation asQ andP, that is

@S†QS,S†PS#5@Q,P#5 i\. ~2.19!

However, in contrast to what happens for the operatorb
andb† @see Eqs.~2.5!, ~2.6!#, the operatorsS†QS andS†PS
are not Hermitian conjugate. We point out that the prope
of Hermitian conjugation is enjoyed by the operatorsS†QS
andS†PS in the case in which the condition~2.17! is valid.

A possible physical interpretation of the properties~2.15!
and~2.16! is the following. For a quantum system govern
by a Hamiltonian preserving the minimum wave packet@i.e.,
the condition~2.17! holds# Eqs. ~2.15! and ~2.16! become
S†QS5erQ and S†PS5e2r P, respectively. If uc& is the
state of the system under consideration, thenuc8&
5S(r ) uc& represents the same system squeezed in the s
of the positionQ by a factore2r and expanded in the spac
of the momentumP by the factorer . In fact, we deduce

e2r^c8uQuc8&5^cuQuc&, er^c8uPuc8&5^cuPuc&.
~2.20!

Now, we shall evaluate a matrix element involving t
operatorH(t) @see Eq.~2.14!# in the context of squeezing o
a quantum system. In doing so, let us consider the follow
expectation value between squeezed states:

1Stoler @2# saw that, generally, states of the typeua,z& do not
describe wave packets relative to the minimum value of the prod
(DQ)(DP), whereD means the variance operation@see Eq.~2.18!#.
The stateua,z& can describe a wave packet of minimum uncertai
only if z is real ~f50!. In the framework of quantum generalize
oscillators, this corresponds to the condition~2.17!.
04350
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^a,zuD~a!S~z!H~ t !S†~z!D†~a!ua,z&

5^0uS†~z!D†~a!D~a!S~z!H~ t !S†~z!D†~a!D~a!S~z!u0&

5^0uH~ t !u0&

5
1

2m
^0uP2u0&1

1

2
mv2~ t !^0uQ2u0&, ~2.21!

where Eqs.~2.1! and ~2.14! have been employed.
The expectation values an the right-hand side of E

~2.21! can be evaluated from Eq.~2.7!. They read

^0uP2u0&5\muju25\mF 1

4s2
1S M

2
s2ṡ D 2G ,

~2.22!

^0uQ2u0&5
\

m
s2, ~2.23!

wherej ands are described by Eqs.~2.8! and~2.9!. With the
help of Eqs.~2.22! and ~2.23!, Eq. ~2.21! takes the form

^a,zu D~a!S~z!H~ t !S†~z!D†~a! ua,z&

5^0uH~ t !u0&

5F \

8s2
1

\

2 S M

2
s2ṡ D 2G1

\

2
v2~ t ! s2. ~2.24!

The term in the square bracket corresponds to the vac
expectation value of the kinetic energy of the system, wh
the last term is related to the vacuum expectation value of
potential energy.

The quantity

ENM7
\

2 S M

2
s2ṡ D 2

~2.25!

~NM5nonminimum! can be interpreted as the energy as
ciated with the squeezed states which do not satisfy the
terium of minimum uncertainty (ENMÞ0). When the crite-
rium is verified, thenENM50. In such a case Eq.~2.24! can
be written as

^a,zuD~a!S~z!H~ t !S†~z!D†~a! ua,z&

5^0u H~ t ! u0&5
\

8s2
1

\

2
v2~ t ! s2. ~2.26!

Hence in the minimum uncertainty situation the vacuum
pectation values of the kinetic energy and the potential
ergy turn out to be proportional tos2 and 1/s2, respectively.
It is noteworthy that, in general, all the energies appearing
Eq. ~2.21! can be expressed in terms of the auxiliary fie
s(t) obeying the auxiliary Eq.~2.9!. This enhances the con
venience of our approach to the study of cosmological qu
tum effects based on the theory of equation~2.9!, which we
are going to develop in Sec. III.

ct
4-3



o

t
x-

ry
on

pu
v

-

q.

GERALICO et al. PHYSICAL REVIEW D 69, 043504 ~2004!
We remark that the quantity (M s/22ṡ) is connected
with the expectation value of the operator$Q,P%5QP
1PQ between vacuum states, i.e.,

^0uQP1PQu0&52\sS M

2
s2ṡ D . ~2.27!

Thus the minimum uncertainty requirementM s/25ṡ im-
plies that the expectation value^0uQP1PQu0& is vanishing.

B. A link between Eq. „2.12… and the auxiliary equation

For later convenience~see Sec. III!, we shall report a
result establishing a relationship involving the solutions
the ~linear! equation of motion and the~nonlinear! auxiliary
equation

s̈1V2~ t !s5
k

s3
, ~2.28!

where k is a constant. Ify1 and y2 are two independen
solutions of Eq.~2.12!, then the general solution of the au
iliary equation~2.28! can be written as@17#

s5~Ay1
21By2

212Cy1y2!1/2, ~2.29!

with A,B,C arbitrary constants such that

AB2C25
k

W0
2
, ~2.30!

whereW05W0(y1 ,y2)5y1ẏ22 ẏ1y25const is the Wronsk-
ian.

It is worth remarking that from the theory of the auxilia
equation~2.28! a phase can be given by the real functi
u(t),

u~ t !5E
t0

t dt8

s2~ t8!
. ~2.31!

~See @18,19,20#; for some applications:@13,16#.! Here we
shall suggest the procedure which can be used to com
the above integral in general cases. To this aim it is con
nient to introduce the function

c~ t !5AA eiay1~ t !2AB eib y2~ t !, ~2.32!

wherea,b are real numbers andy1 ,y2 are the two indepen
dent solutions apppearing in Eq.~2.29!. We have

uc~ t !u25Ay1
21By2

222AABcosu0 y1y2 , ~2.33!

whereu05a2b. Comparing Eq.~2.33! with Eq. ~2.29! we
get C52AAB cosu0, so that the condition~2.30! becomes

ABsin2u05
k

W0
2

, ~2.34!
04350
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from which kÞ0 whenever sinu0Þ0. Hence the auxiliary
field s can be expressed by

s2~ t !5uc~ t !u2. ~2.35!

To calculate the phaseu(t) corresponding to the solution
~2.29! of Eq. ~2.28!, we look for a functionF(t) defined by

F~ t !5
1

2iAk
ln

c~ t !

c* ~ t !
, ~2.36!

so that

Ḟ5
1

2iAk

ċc* 2cċ*

cc*
. ~2.37!

The numerator in Eq.~2.37! can be elaborated to give

ċc* 2cċ* 52iAABsinu0W052iAk, ~2.38!

where Eq.~2.34! has been exploited. Substitution from E
~2.38! in Eq. ~2.37! thus yields

Ḟ5
1

s2
. ~2.39!

Then the phaseu(t) is determined by integrating Eq.~2.31!,
namely

u~ t !5E
t0

t dt8

s2~ t8!
5F~ t !2F~ t0!, ~2.40!

whereF(t) is provided by Eq.~2.36!. We shall recall this
general result later.

C. The Bogolubov coefficients in terms ofs

By resorting to the operators

Q5A \

2v0m0
~ â01â0

†!, P52 iA\v0m0

2
~ â02â0

†!,

~2.41!

where â05â(t0) is the ~mode! annihilation operator in the
Schrödinger representation, combining Eq.~2.41! and ~2.7!
we can derive the Bogolubov transformation

â~ t !5m~ t !â01n~ t !â0
† ~2.42!

whose coefficients are expressed by

m~ t !5A m

2v0m0
S 2 i j* 1

v0m0

m
s D ,

n~ t !5A m

2v0m0
S 2 i j* 2

v0m0

m
s D ,

~2.43!
4-4
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with m05m(t0), v05v(t0), andj given by Eq.~2.8!. We
note that the Bogolubov transformation can be naturally e
bedded into the relations~2.5! and~2.6!, where the operators
b, b† can be identified withâ(t) andâ†(t). Equation~2.43!
entails

umu22unu251. ~2.44!

On the other hand, the uncertainty product can be formula
as follows@14#:

~DQ!~DP!5
\

2
A114s2S M

2
s2ṡ D 2

5
\

2
um~ t !2n~ t !uum~ t !1n~ t !u>

\

2
.

~2.45!

The uncertainty formula~2.45! is closely related to the con
cept of coherent states for the generalized oscillators. S
coherent states were constructed by Hartley and Ray in 1
@21# taking account of the Lewis-Riesenfield theory@16#.
These states share all the features of the coherent stat
the conventional~time-independent! oscillator except that of
the uncertainty formula, in the sense that the prod
(DQ) (DP) turns out to be not minimum. A few years late
Pedrosa showed that the coherent states devised by Ha
and Ray are equivalent to squeezed states@22#.

III. CLASSICAL VIEW AND QUANTUM THEORY
GENERATION OF GRAVITATIONAL WAVES
VIA THE KANAI-CALDIROLA OSCILLATOR

In this section we shall develop a model of propagation
gravitational waves based on the application of the auxili
equation~2.9! for the functions(h), in terms of which the
Bogolubov coefficients can be built-up. The Bogolub
transformation is a basic concept in the theory of parti
creation in external fields. The created particles do exis
squeezed quantum states@1#. According to@1#, relic gravi-
tons created form zero-point quantum fluctuations dur
cosmological evolution should now be in strongly squee
states. In this context the generation of gravitational wave
of fundamental importance.

The theory of generation of gravitational waves in t
inflationary universe scenario is based on the action@11#

S5
1

16pGE f ~R! A2g d4x, ~3.1!

wheref (R) is an arbitrary function of the scalar curvatureR.
The theory defined by the above action is conforma
equivalent to a pure Einstein theory with scalar-field mat
In linear theory, the gravitational waves decouple from
matter field, so that the main problem is to fix the bac
ground model and to desume the relation between the
formal metric.
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Starting from Eq.~3.1!, by varying the action with respec
to the gravitational perturbation fieldhj

i , the equation of mo-
tion

h912
ã8

ã
h81~2K2D!h50 ~3.2!

is obtained, where prime denotesd/dh , ã(h)
5A] f /]Ra(h), h5h(h,xW ) is each component ofhj

i , D
stands for the Laplace-Beltrami operator, andK means the
space curvature. By separating inh(h,xW ) the dependence on
h from the dependence onxW , we can write h

;h0(h)h1(xW ), so that

@D1~n22K !#h1~xW !50, ~3.3!

and

h0912
ã8

ã
h081~n21K !h050. ~3.4!

Equation~3.4! can be applied to describe the evolution
gravitational waves in any state of the evolution of the u
verse, even when resorting to higher derivative theories
gravity @11#. The elimination of the first derivative in Eq
~3.4! leads to the equation~called master equation in@1#!

y91@~n21K !2V~h!#y50, ~3.5!

with

V~h!5
a9

a
, y~h!5

a~h!

a~h0!
h0~h!.

We remark that Eq.~3.4! can be regarded as the equation
motion of an oscillator with time-dependent massm and con-
stant frequencyv̄,

q91
m8

m
q81v̄2q50 ~3.6!

which is described by the Hamiltonian

H5
p2

2m
1

mv̄2

2
q2. ~3.7!

The quantum theory of gravitational waves is therefo
equivalent to the quantum theory of the Kanai-Caldirola
cillator @23,24#. The formal analogy is realized upon th
identification:

m5a2, v̄25n21K, q;h0 . ~3.8!

A. Exact solution of the parametrically excited oscillator
and its associated auxiliary equation

We are mainly interested in the period under which t
universe accelerates, namely in itsinflationary stage. Infla-
4-5
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tion is defined to be a period of accelerating expansion. D
ing such a stage, the universe expands adiabatically and
Friedmann equations can be exploited@11#. The prototype of
the models of inflationary cosmology is based on the de
ter spacetime, which is a very interesting case concer
with the constant Hubble rate and the scale factor given

a~h!52
1

H0h
, ~3.9!

whereh,0 andH0 denotes the Hubble constant. In the
Sitter case, Eq.~3.5! takes the form of Eq.~2.12!, with
V2(h)5n22 2/h2 . It admits the general solution

y5A2nh@k1J3/2~2nh!1k2J2 3/2~2nh!#, ~3.10!

whereJ3/2, J23/2 are Bessel functions of the first kind an
the arbitrary constantsk1 and k2 are determined once th
initial conditions are imposed. Then from Eq.~2.29! we infer
that Eq.~2.28!, which now reads

s91S n22
2

h2D s5
k

s3
, ~3.11!

is exactly solved by

s5A2nh@AJ3/2
2 ~2nh!1BJ23/2

2 ~2nh!

12CJ3/2~2nh! J23/2~2nh!#1/2, ~3.12!

where constantsA,B,C satisfy the condition~2.30!.

The phase of the auxiliary fields„t…

As we have shown in Sec. II B, to calculate the phasu
corresponding to the solution~3.12! of Eq. ~3.11! it is con-
venient to introduce the function

c~2nh!5A2nh@AA eia J3/2~2nh!

2ABeibJ23/2~2nh!#, ~3.13!

wherea,b are real numbers. Hence the auxiliary field can
expressed vias25ucu2 provided that

ABsin2u05
k

W0
, ~3.14!

where u05a2b and W05W0@A2nhJ3/2(2nh),
A2nhJ3/2(2nh)#. Therefore it is an easy matter to see th
in the case under consideration the phaseu determined by
integrating Eq.~2.40! is given by (z52nh)

u~h!52nE
z0

z dz8

s2~z8!
52n@F~z!2F~z0!#, ~3.15!

where the functionF(z) is defined by

F~z!5
1

2iAk
ln

c~z!

c* ~z!
~3.16!
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B. On the phase of gravitational waves

A deep discussion on the phase of gravitational wave
contained in@25#, where this topic is dwelt on both at th
classical and quantum level.

Here we confine ourselves to tackle the problem cla
cally. The study of the phase of gravitational waves by
quantum point of view will be done elsewhere. For our p
pose, first we observe that the Bessel functionsJ3/2 andJ23/2
can be explicitly written as follows@26#:

J3/2~z!5A 2

pz S sinz

z
2coszD ,

J23/2~z!52A 2

pz S sinz1
cosz

z D .

Then, the auxiliary field~2.29! can be written as

s~z!5A2

pFAS sinz

z
2coszD 2

1BS sinz1
cosz

z D 2

22CS sinz

z
2coszD S sinz1

cosz

z D G1/2

, ~3.17!

wherey15AzJ3/2, y25AzJ23/2, and the condition~2.30! is
understood.

Now we shall see that the phaseuGW of the primordial
gravitational waves can be obtained by Eq.~3.17! under the
choice

A5BÞ0, C50, ~3.18!

and assuming asymptotically negative values of the con
mal time. In doing so, Eqs.~3.15!, ~3.17! provide

s in
2 ;

2A

p
, uGW[u in5

p

2A
~z2z0!, ~3.19!

with

A5
pAk

2n
. ~3.20!

In the casen2@uV(h)u, the high frequency waves, e.g., th
solutions of the equation

y91n2y50, ~3.21!

correspond to the following behavior of the gravitational p
turbation fieldh:

h~h!5
1

a
sin~nh1r! ~3.22!
4-6
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(r is an arbitrary phase!. In an expanding universe, the am
plitude h of the waves decreases adiabatically for allh. The
result represented by the calculation of the phase~3.19! of
relic gravitational waves suggests one to interpret form
~3.15! as the phase of gravitational waves not only in t
case of the primordial cosmological scenario formally cor
sponding toh→2`. Anyway, this subject, which goes be
yond the scope of the present paper, deserves further in
tigation. Here we recall only that the general solution of E
~2.12!, which holds in the case of the de Sitter cosmologi
model, can also be written as

y5
c

Ak
s~h! cos@Aku~h!1d#, ~3.23!

whereu is given by Eq.~3.15!, c is a Noether invariant of
Eq. ~2.12!, and d is an arbitrary constant. Hence for an
conformal timeh in the interval (2`,0), the amplitudeh of
the gravitational perturbation field can be expressed by

h;
1

a
s~h! sin@Aku~h!1const#.

C. Quantum gravitational waves:
Theory in terms of the auxiliary field s„h…

The approach to the study of gravitational waves
present in this paper is developed starting from the class
Kanai-Caldirola Hamiltonian@23,24#, Eq. ~3.7!. As we have
already pointed out, Eq.~3.4! can be regarded, in fact, as th
equation of motion of an oscillator with time-depende
massm5a2 and constant frequencyv̄5An21K @see Eq.
~3.6!# described by the Hamiltonian~3.7!. So, we make the
fundamental identification of the whole temporal parth0 of
the metric fluctuation amplitude as the basic ‘‘coordina
variable to quantize as such.~Recall that our procedure fo
the quantization of gravitational waves is based on the id
tification of y5ah0 as the variable to quantize.! As a conse-
quence, the quantum theory of gravitational waves turns
to be completely equivalent to the quantum theory of
Kanai-Caldirola oscillator which can be described by t
quantum version of the Hamiltonian~3.7!. On the grounds of
what we learned in Sec. II, the above identification sugge
a route which can be successfully pursued whenever we
interested in the characterization of physical effects~quan-
tum decoherence, squeezing, particle production, e!
emerging from the study of inflationary models in the ea
universe. Section IV will be devoted to a preliminary expl
ration of the effectiveness of the idea in the context of
panding universe cosmological models.

IV. APPLICATIONS

By taking full advantage of the formalism introduced
Sec. II, we are in the position to study the dynamical syst
of the cosmological interest which is described by tim
dependent oscillators. In doing so, a key point is the cha
terization of constantsA,B,C in Eq. ~2.29!. It is concerned
with the initial ~and boundary! conditions. All dynamical as-
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pects under time evolution are enclosed into the functions,
which obeys the second order nonlinear differential equa
~2.9!. A general condition onA,B,C is provided by Eq.
~2.30!. It is not enough, however. Specification of the val
and the first time derivative ofs at fixed time is thereby
needed. Another condition is associated with the requirem
that at the initial timeh i the time-dependent annihilation an
creation operators, derived from Eq.~2.7!, go into the stan-
dard Dirac-like form, Eq.~2.41!. As for the final condition, it
is to be helpful to reveal that in most cases we want the s
at initial time to correspond to a vacuum state. This can
achieved easily under the minimization requirement
ENM5(\/2) ((M /2) s2ṡ)2. Indeed, since it provides a
measure of the decoherence at the timeh, it has to be van-
ishing when referring to a vacuum state at the initial tim
h5h i . Under these circumstances, the whole set of ini
conditions fors is given by

AB2C25
k

W0
2

,

s~ t0!2~4v2!21/450, ~4.1!

ṡ~ t0!2
M ~ t0!

2
s~ t0!50.

In a cosmological framework of the FRW type, the abo
system is translated into

AB2C25
k

W0
2

,

s~h i !5@4~n21K !#21/4, ~4.2!

s8~h i !2
a8~h i !

A2na~h i !
50.

In order to proceed with concrete analysis, it is very cu
tomary to resort to the spatially flat inflationary model bas
on the de Sitter metric. However, a more general and real
description of the inflation may be provided by a quasi-
Sitter spacetime~see, e.g.,@28#!. In this case, the Hubble rat
is not exactly constant but, rather, it weakly conform
changes with time according toH̃852ea2H̃2 @that is,aa9

5(22e)a4H̃25(22e)a82 ] where e is a constant param
eter. Whene vanishes one gets just the ordinary de Sit
spacetime. For small values ofe, a quasi-de Sitter spacetim
is associated with the scale factor

a~h!5
21

H̃~12e!h
~4.3!

(h,0). In the quasi-de Sitter spatially flat scenario, E
~2.12! reads

y91Fn22
~213e!

~12e!2h2Gy50 ~4.4!
4-7
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and can be solved in terms of Bessel functions. Precisely,
has the two independent solutions

y15A2nhJn~2nh!, y25A2nh Yn~2nh!,
~4.5!

wheren5A1/41(213e)/(e21)2. The procedure outlined
in the previous sections can be applied and we are led to
introduction of the basic function

s5~Ay1
21By2

212Cy1y2!1/2

5A2nh$AJn
2~2nh!1BYn

2~2nh!

12CJn~2nh!Yn~2nh!%1/2, ~4.6!

whereA,B,C are determined by means of the system~4.2!,
h i denoting the conformal time of the beginning of the i
flation. Once we are interested in a situation in which
system started very far in the past in a vacuum state,
Bessel function expansions

Jn~2nh!;A2
2

pnhFcosS 2nh2
n

2
p2

p

4 D1OS 1

nh D G ,
Yn~2nh!;A2

2

pnhFsinS 2nh2
n

2
p2

p

4 D1OS 1

nh D G ,
for n fixed andnh→2` assists us in finding suitable con
stantsA,B,C. By taking arbitrary asymptotically negativ
initial times, the leading terms of Bessel functionsJn , Yn

give rise to the following behavior for the function:

s~h!5A2

pH A1~B2A!sin2S 2nh2
n

2
p2

p

4 D
1CsinS 22nh2np2

p

2 D1OS 1

nh D J 1/2

.

Once the limith i,,0 is concerned a natural choice is give
by A5B5 p/4n , C50 ~recall that we already found thi
result for the casen53/2 associated with the standard
Sitter metric background!. So we obtain

s~h!5A2
p

4
h $Jn

2~2nh!1Yn
2~2nh!%1/2

5A2
p

4
h uHn

1~2nh!u. ~4.7!

In the light of our previous results, the decoherence ene
ENM at the timeh of gravitational waves in a quasi-de Sitt
model of inflation can be evaluated by inserting~4.7! into
formula ~2.25!. It then results
04350
ne
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ENM5
\

2 Fs82
a8~h!

a~h!
sG2

5
\

2 Fs81
s

~12e!hG2

,

where

s81
s

~12e!h
5Ap

4 H n

2

A2h

uHn
1~2nh!u

~Hn
1* Hn11

1 1c.c.!

2S n1
32e

2~12e! D uHn
1~2nh!u

A2h
J . ~4.8!

Moreover, since

m~h!5A a2~h!

2na2~h i !
H F 1

2s
1

na2~h i !

a2~h!
s~h!G

2 i Fs82
a8

a
sG J , ~4.9!

n~h!5A a2~h!

2na2~h i !
H F 1

2s
2

na2~h i !

a2~h!
s~h!G

2 i Fs82
a8

a
s G J ~4.10!

at an arbitrary timeh the Bogolubov coefficients are give
by

m~h!5A 1

2n
S h i

h
D 2/~12e!H F 1

2s
1S h

h i
D 2/~12e!

nsG
2 i Fs81

s

~12e!h
G J , ~4.11!

n~h!5A 1

2n
S h i

h
D 2/~12e!H F 1

2s
2S h

h i
D 2/~12e!

nsG
2 i Fs81

s

~12e!h
G J ~4.12!

with s ands81 s/(12e)h furnished by Eq.~4.7! and~4.8!,
respectively. Finally, the phaseu can be evaluated. Due t
Eq. ~2.40!, we get

u~h!5 2 i ln
c~h!

c* ~h!
U

h i

h

, ~4.13!

where

c~ t !5A p

4n
eia@y11 iy2#5A p

4n
eiaA2nh Hn

1 .

That is,
4-8
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u~h!52 un
1uh i

h ,

whereun
1 denotes the phase of the Hankel functionHn

1 .
It is now instructive to focus on a standard de Sitter

flation. In this casee50, n5 3
2 and

s5
1

A2n
A11

1

n2h2
. ~4.14!

So, the integration of 1/s2 is straight, i.e.,

E
h i

h dh8

s2~h8!
54n2E n2h2

11n2h2
dh54n2Fh2

tanh21~nh!

n G ,
~4.15!

up to a constant of integration. The above two formulas p
vide the standard exact~and normalized! solution for the
quantum fluctuations of a generic massless scalar field
ing a de Sitter inflation. Yet, it is interesting to consider
very long inflation by letting the system evolve towardsh
→0. In this caseENM simply reads

ENM~h!5
\

2 S ṡ2
M

2
s D 2

5
\

4

n

11n2h2
. ~4.16!

Interestingly, the decoherence energy ath50 is finite. More-
over, in the standard de Sitter phase, from Eq.~4.14! we
obtain the Bogolubov coefficients

m~h!5
1

2

An2h i
2

A11n2h2 H F11
h2

h i
2 G2

i

nh J , ~4.17!

n~h!5
1

2

An2h i
2

A11n2h2 H F12
h2

h i
2 G2

i

nh J , ~4.18!

(n2h i
2@1) which in turn implies that

un~h!u25
1

4 S h i

h
2

h

h i
D 2

~4.19!

particles are created out of the vacuum at the timeh.
In more refined studies of cosmological effects in the

panding Universe, it turns out to be useful to introduce
cosmological model which allows one to take into acco
different evolutionary phases of the Universe. Once
model has been specified and Eq.~2.12! solved, one can ge
an insight into physical effects associated with different c
mological stages. For instance, one can consider a sim
cosmological model which includes the inflationary(i),
radiation-dominated(e), and matter-dominated(m) epochs
@29#. The scale factor has the following dependence on
conformal time:

ai~h!52
1

H0h
, h i<h<he,0,
04350
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ae~h!5
~h22he!

H0 he
2

, he<h<hm ,

am~h!5
~h1hm24he!

2

4H0h i
2 ~h222h1!

, h>hm , ~4.20!

where H0 denotes the Hubble constant at the inflationa
stage, andh i represents the beginning of the expansion.
order to determine theh-dependent amplitudehn for each
epoch we have to solve Eq.~2.12! with the corresponding
varying frequencies, namely

V i5S n22
2

h2D 1/2

, Ve5n,

Vm5Fn22
2

~h1hm24he!
2G 1/2

. ~4.21!

Notice that the frequencyVe is constant, whileV i andVm
are varying with the same temporal dependence. The
quencyV i characterizes the de Sitter era. The related eq
tion of motion ~2.12! has already been solved. Taking ca
about matching data athe andhm is needed for the knowl-
edge of the complete form ofs. The associateds ’s and their
derivatives have to join continuosly athe and hm , in fact.
This step is needed to obtain all the physical informat
implied in formulas for the Bogolubov coefficients, the d
coherence energy, the gravitational phase, and squee
Having in mind our previous discussion, employing t
model by considering a quasi-de Sitter phase is straight.

In general, the vacuum expectation value of the num
operator and the other quantities of the physical interest v
slowly with time if the expansion rate becomes arbitrar
slow. In case the espansion is stopped one should be ab
recover time-independent Dirac operators. However, the
cumstance does not mean that Bogolubov coefficients tr
alize. This is because loss of coherence previously occu
due to the expansion dynamics. A typical situation may
that ṡ goes to zero buts does not.ENM goes to zero, indi-
cating that when expansion is stopped the time-depen
gravitational pumping stops as well and there is no furt
decoherence. If expansion stops from timeha to time hb ,
then;hP@ha ,hb# one gets

m~h!5A a2~ha!

2na2~h i !
F 1

2s~ha!
1n

a2~h i !

a2~ha!
s~ha!G ,

~4.22!

n~h!5A a2~ha!

2na2~h i !
S 1

2s~ha!
2n

a2~h i !

a2~ha!
s~ha!D ,

~4.23!

which implies

um~h!u25
1

2 F a2~ha!

4na2~h i ! s2~ha!
1n

a2~h i !

a2~ha!
s2~ha!11G .

~4.24!
4-9
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To get a more clear insight into the results achieved in
section, a few comments are in order. Specifically, our f
mula for the decoherence energy associated with the dyn
cal evolution of the gravitational fluctuation modes on
background of the FRW type is expressed in a very comp
form in terms of the auxiliary fields(h) and the scale facto
a(h). On the other hand, the decoherence energy play
essential role in the relationships for the Bogolubov coe
cients. This aspect makes explicit how the energy lost ow
to the decoherence effect may be exploited to excite
vacuum state of the model under consideration. Moreove
our framework this mechanism would be quantified in
compact way by means of the formula

un~h!u25
a2~h!

2na2~h i !
F S 1

2s
2

na2~h i !

a2~h!
s D 2

1
2

\
ENMG ,

~4.25!

whereENM is the decoherence energy (m5a2). With respect
to other works, in our paper the role of the decohere
energy is made manifest. Furthermore, we observe that
markably, the auxiliary fields is nothing but the time-
dependent amplitude of the mode solutions to Eq.~2.12! for
the redshifted gravitational field fluctuations.

V. CONCLUDING REMARKS

The main results achieved in this paper have been
sented and widely discussed in the Introduction. Theref
we shall conclude by making some final comments conce
ing challenging perspectives which should be dwelt upon
future developments. The evolution equation of a mode w
d

ys

d
in
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comoving wave numbern reduces to the harmonic oscillato
equation with time-dependent mass and constant freque
The approximation behind computations leading to the re
actually are applicable only to the infrared region. On ge
eral grounds, one therefore expects that predictions for
servables may depend sensitively on the physics on
length scales smaller than the Planck one. In order to t
into account trans-Planckian physics, it has been rece
suggested to make use of effective dispersion relations~see,
e.g.,@27#!. The linear dispersion relation is thus replaced
a nonlinear one,neff

2 5a2(h)F2(n/a), whereF(n/a) is an
arbitrary function required to behave linearly whenevern/a
(5k) is below a certain threshold. A time dependent disp
sion relation thus enters in the matter. As a consequence
underlying dynamical model turns out to be that of the h
monic oscillator with both the massm ~5a2) and the fre-
quencyv(5neff) depending on time. In principle, its quan
tization can still be pursued by resorting to the formalism
Sec. II and it will be studied in details elsewhere. Neverth
less, a comment is in order. In the light of the discussion
@14#, one might wonder, in fact, on whether or not in th
cosmological framework the minimum uncertainty criteriu
can be satisfied under time evolution for some physica
reasonable functionF. It is straightforwardly seen that this i
not the case, generally speaking. Indeed, in the cosmolog
framework the criterium reads asa2neff5const and implies a
purely cubic functionF, sayF5a0n3/a3. As a consequence
the uncertainty relation can be minimized only appro
mately. It is worth noting that this happens in the large wa
numbers limit of a special case of the generalized Corl
Jacobson dispersion relation introduced in@27# see Eq.~22!
in @27#.
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