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Novel approach to the study of quantum effects in the early Universe
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We develop a theoretical frame for the study of classical and quantum gravitational waves based on the
properties of a nonlinear ordinary differential equation for a functi¢ry) of the conformal timey, called the
auxiliary field equation. At the classical levet( %) can be expressed by means of two independent solutions
of the “master equation” to which the perturbed Einstein equations for the gravitational waves can be reduced.
At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations
and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically
excited oscillator where the varying mass is replaced by the square cosmological scaleafégior A
guantum approach to the generation of gravitational waves is proposed on the grounds of the previous
n-dependent Hamiltonian. An estimate in termsodfy) anda(#) of the destruction of quantum coherence
due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding
to any value ofy are also obtained. We conclude by discussing a few applications to quasi—de Sitter and
standard de Sitter scenarios.
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[. INTRODUCTION tive under the stronger conviction that, thanks to the great
progress we are witnessing in the experimental application of
In a notable paper by Grishchuk and Sidofdy, it was  new technologies, the amplification mechanism may provide
shown that relic gravitons can be created from the vacuunthe possibility to detect quantum effe¢esg., relic gravitons
quantum fluctuations of the gravitational field during cosmo-at scales considerably above the Planck one. Because of the
logical expansion and can be interpreted as squeezed quasfmiclassical approximation underlying these studies, the
tum states of the gravitational field, in analogy to what hap-hatural formal arena turns out to be that of coherent states.
pens for squeezed states in quantum opfigs-4. A  These states are generated by the displacement operator
systematic treatment of the particle creation mechanism i®(«) (see Sec. )l Squeezed states enter in the matter when-
contained ir[5]. The theory of particle creation is essentially ever the quadratic operatoes® and a'? are involved. A
based on the Bogolubov transformations, exploited primangqueezed state is generated by the action on a coherent state
in the formulation of the process of squeezing for the elecof the so-called squeeze operator defined in Sec. Il. As a
tromagnetic field. An important aspect of the theory of par-matter of fact, in a Friedmann-Robertson-Walk&RW)
ticle creation is the possible loss of coherence in quantunspacetime the behavior of matter scalar fields as well as of
gravitational theories. In a sense, the exploration of decohegravitational waves is governed by an equation of the time-
ence in gravitational theories has been more concerned wittiependent typ¢or time-dependent oscillatdifDO)]. Thus
the quantunigravity) effects which can manifest themselves the problem of both particle creation and metric field fluc-
even at scales others than the Planck one. The growing iruation amplification during the cosmological evolution is
terest in this field relies, among the others, on quite a remarkreduced to that of solving the quantum TDO problem. The
able mechanism: the amplification of quantdimcidentally latter problem has been the subject of several studies, mainly
vacuum fluctuations in the metric of a gravitational back- in connection with quantum optical arguments. In this paper,
ground(see e.g.[1,6—19). In the presence of a change of the main idea is to make use of the machinery built-up in
regime under the cosmological evolution, the occupatior13] and further developed if14]. The formalism would
number of the initial quantum state would get indeed ampli-enable us to find at every stage information concerning the
fied. As long as the change can be considered as adiabat&pectrum of created modes. In the case of a de Sitter gravi-
the amplification factor approaches one. Nevertheless, itational field, the prescription straightforwardly results into
case the change is sudden the amplification mechanism cafull determination of quantities of physical relevance, such as
not be neglected. In such a case, even the vacuum state traiagolubov coefficients and the phase of gravitational waves
forms into a multiparticle state in the Fock space appropriatéor any value of the conformal time. All these quantities
to the new regime. The scenario clearly sounds highly attracare determined exactly. This has been possible by solving a
nonlinear ordinary differential equation for an auxiliary field
o(7) which has been expressed in terms of two independent
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the destruction of quantum coherence due to gravitational The following relations
time-evolution. In our approach, the use of tr®nlineajy

auxiliary equation in the linear parametrically excited oscil- b=S'a,S=aqcosl +aje *sintr, (2.5
lator equation fory(7) [see Eq(2.12)] reveals therefore to
be quite profitable and makes more strict and compact the b= gTé(‘gS: égcosthéOe“‘f’sinh (2.6)

formal connection between quantum optics and the theory of

gravitational waves. The paper is organized as follows. Irhold. This can be readily seen by applying the Baker-

Sec. ll, after a description of some basic properties pertinenCampbell-Hausdorff formula. In other words, the squeeze

to the squeeze operat¢2.3), we introduce the nonlinear operator S(z) induces a canonical transformation of

equation(2.9) for the auxiliary fieldo(t) in terms of which  the annihilation and creation operators, in the sense that

the position and momentum operat@sindP turn outto be  [p pf1=1.

expressed. The role of the matrix element between squeezed

states|a,z) of the operatorD(«)S(z)H(t)S'(z2)D(«a) is

investigated. This matrix element results to be evaluated in

terms of the auxiliary fieldr(t). It is worth noticing that in

the expression for the matrix element three energy terms ap- From the quantum theory of generalized oscillators, it fol-

pear, one of them, formulé2.25), can be interpreted as the lows that position and momentum operat@sndP can be

energy related to squeezed states which do not preserve tR¥pressed by13,14

minimum uncertainty. In the theory of gravitational waves,

Eq. (2.25 plays the role oflecoherencenergy of the waves. Q= \/E o(a+ah P=Am(¢a+ gah), 2.7

The Bogolubov transformation is reported whose coefficients m ’ T

are explicitly written in terms obr. In Sec. Ill we discuss o o

classical and quantum aspects of the generation of gravitavith a=a(t), a'=a'(t), and

tional waves. An exact formula for the phase of a gravita- )

tional wave is obtained. A natural approach to the theory of _
o . . : E=—+

gravitational waves based on the Kanai-Caldirola oscillator 20

is outlined by means of an operator Hamiltonian expressed in _

terms of the auxiliary fieldr( 7). In Sec. IV some applica- whereM =M (t)= m/m, the dot means time derivative, and

tions are displayed. Precisely, we evaluate the decoheren¢the massm=m(t) is a given function of time. The function

energy in the quasi-de Sitter inflationary model and standardic numbej o(t) satisfies the nonlinear ordinary differential

de Sitter spacetime and the role of Bogolubov coefficients irequation[18,19

terms of the auxiliary field in the particle creation mecha-

nism is analyzed. Finally, in Sec. V some future perspectives

A. Transformation of the position and momentum variables
under the squeeze operatoiS(z)

.M )
ool (2.8

are discussed. o+ Qo= — (2.9
4o
IIl. PRELIMINARIES ON THE SQUEEZED STATES [Q is specified below, see E2.13)], called the auxiliary
IN GENERALIZED OSCILLATORS equation associated with the classical equation of motion
Let us recall that a squeezed state of a quantum system is . . 5
defined by[2] q+Mg+w(t)g=0, (2.10
|a,z)=D(a)S(z) |0), (2.2 and w(t) is the time dependent frequency. Via the transfor-
mation
where t
s qe W2 S Manary, (2.1
D(a)=e%0 "2 (2.2)

. . . Eqg. (2.10 can be cast into the equation
is the (unitary) displacementWeyl) operator,

W
S(Z)=e(1/2)z% 2. (112) 32 23 y+Q(t)y=0, (2.12
R R where

is the (unitary) squeez®perator{2,15|, a5 and a(T) stand for
1

a(t)|i=¢, anda’(t)|;—,, respectively, whera(t) anda'(t) Q2(1)= = (4w’ 2M—M?). 2.13
denote the annihilation and creation operators of the system. 4

The complex functiong(t) andz(t) are arbitrary, namely The quantum theory of the generalized oscilla@10 can

a=|a| €, z=re'? (2.4)  be described by the Hamiltonian operaft6,13
2
with ¢, ¢ arbitrary (rea) ¢ numbers. Notice that foz=0, P,
Eg. (2.1) reproduces the coherent statg0)=D(a) |0). H(®) om MR 219
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where the canonical variabl€3,P are given by Eq(2.7).
Taking account of Egs(2.5 and (2.6), and choosingp
=0 we obtait}

S'Qs=€'Q, (2.19

M
o— —a>5|nhQ+e"P.

S'PS=2me 5

(2.19

The physical meaning of the expressior (M/2) o will be

PHYSICAL REVIEW 39, 043504 (2004

(a,2]D(a)S(2)H(1)ST(2)DT(a)|a,2)
=(0/S"(z2)DT(@)D(@)S(2)H(t)S'(z2)DT(2)D(2)S(2)|0)

— (OJH()[0)
= 2 (0P20y+ = mw2(1)(0/Q%0) (2.21
2m 2@ ’ :

where Egs(2.1) and(2.14 have been employed.
The expectation values an the right-hand side of Eg.

clarified later. At the present we observe only that whenevef2.21) can be evaluated from E.7). They read

the condition
o— - 0=0 (2.17

is fulfilled, then the uncertainty producAQ)(AP) of the
variances

(AQ)=(Q%)—(Q)2% (AP)=\(P?)—(P)?, 013

attains its minimum, where the expectation value-) is
referred to coherent statg$4].

We observe that the operato8$QS and STPS obey the
same commutation relation §sandP, that is

[S'TQSS'PS|=[Q,P]=i#. (2.19

However, in contrast to what happens for the operators

andb' [see Eqs(2.5), (2.6)], the operator§'QSandS'PS

are not Hermitian conjugate. We point out that the propert

of Hermitian conjugation is enjoyed by the operat6fS
andS'PSin the case in which the conditiaf2.17) is valid.
A possible physical interpretation of the properti@sl5

and(2.16 is the following. For a quantum system governed

by a Hamiltonian preserving the minimum wave padket.,

the condition(2.17) holds] Egs. (2.15 and (2.16) become

S'QS=e'Q and S'TPS=e"'P, respectively. If|y) is the
state of the system under consideration, thep')

=9(r) |¢) represents the same system squeezed in the sp
of the positionQ by a factore™" and expanded in the space

of the momentunP by the factore’. In fact, we deduce

e "(¢'|Qly")=(yIQly), e (¥'[Ply")=(yIPli).
(2.20

Now, we shall evaluate a matrix element involving the
operatorH (t) [see Eq(2.14)] in the context of squeezing of

2
(0|P2]0)=Am|&2=Am

2

E"‘(—O’_O’

(2.22

)
(0Q%0)= —o?, (2.23

where¢ ando are described by Eq&2.8) and(2.9). With the
help of Egs.(2.22 and(2.23), Eq. (2.21) takes the form

(a,z] D(a)S(2)H(1)S'(2)D'(a) |a,z)

=(0[H(1)[0)
I Y S R PP
= @‘FE ?0'_0' +§w (t) g, ( . 4)

The term in the square bracket corresponds to the vacuum
expectation value of the kinetic energy of the system, while

Y%he last term is related to the vacuum expectation value of the

potential energy.
The quantity

ﬁ(M .)2
Ew=5|50—0 (2.29

2\2

(NM=nonminimum can be interpreted as the energy asso-
ciated with the squeezed states which do not satisfy the cri-
&tium of minimum uncertaintyEyy#0). When the crite-
rium is verified, therEy,=0. In such a case E@2.24 can

be written as

(@,z]D(a)S(2)H(1)ST(2)DT(a) |a,z)

(0 H) (0= T+ L) 02, (22
=(O[HW) [0)= 25+ %) 0% (2.2

a quantum system. In doing so, let us consider the following

expectation value between squeezed states:

IStoler [2] saw that, generally, states of the type,z) do not

Hence in the minimum uncertainty situation the vacuum ex-
pectation values of the kinetic energy and the potential en-
ergy turn out to be proportional i@® and 162, respectively.

It is noteworthy that, in general, all the energies appearing in

describe wave packets relative to the minimum value of the produded- (2.21) can be expressed in terms of the auxiliary field

(AQ)(AP), whereA means the variance operatisee Eq(2.18)].

o(t) obeying the auxiliary Eq(2.9). This enhances the con-

The statda,z) can describe a wave packet of minimum uncertaintyvenience of our approach to the study of cosmological quan-
only if zis real (¢=0). In the framework of quantum generalized tum effects based on the theory of equati@rd), which we

oscillators, this corresponds to the conditi@17).

are going to develop in Sec. Ill.
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We remark that the quantityM 0/2—&) is connected
with the expectation value of the operat¢®,P}=QP
+ PQ between vacuum states, i.e.,

(0|QP+ PQ|0>=2fw(%a—c}). (2.27

Thus the minimum uncertainty requiremeMta/2=ir im-
plies that the expectation valié|QP-+ PQ|0) is vanishing.

B. A link between Eg. (2.12 and the auxiliary equation
For later conveniencésee Sec. I), we shall report a

result establishing a relationship involving the solutions of

the (linean equation of motion and th@onlineay auxiliary
equation

F+O(t)o= % (2.29

where k is a constant. Ify; andy, are two independent
solutions of Eq(2.12), then the general solution of the aux-

iliary equation(2.28 can be written a$17]

o=(Ay;+By;+2Cy1y,) ", (229
with A,B,C arbitrary constants such that
AB-C?=— (2.30
WO
whereWy=Wjy(Y1,Y,) =Y1Y>— Y1Y,=const is the Wronsk-
ian.

PHYSICAL REVIEW D 69, 043504 (2004

from which k#0 whenever sif,#0. Hence the auxiliary
field o can be expressed by

a2t =]y(t)|% (2.39

To calculate the phasé(t) corresponding to the solution
(2.29 of Eq. (2.28), we look for a functionF(t) defined by

(t)
F(t)= | , 2.3
RS (239
so that
L1 gy gyt
F= . 2.3
2Nk gy (239

The numerator in Eq(2.37) can be elaborated to give

g — gp* = 2i JABsinggWo=2i Vx,  (2.39
where Eq.(2.34) has been exploited. Substitution from Eq.
(2.38 in Eq. (2.37) thus yields

F= —. (2.39

Then the phasé(t) is determined by integrating E¢R.31),
namely

0(t)=jt at =F(t)—F(tp), (2.40
to Uz(t,)

It is worth remarking that from the theory of the auxiliary Where F(t) is provided by Eq.(2.36. We shall recall this
equation(2.28 a phase can be given by the real functiongeneral result later.

o(t),

0(t)—J't dv
- to 0'2('[,).

(See[18,19,2(; for some applicationsf13,16.) Here we

(2.3)

shall suggest the procedure which can be used to compute

C. The Bogolubov coefficients in terms ofor
By resorting to the operators
ﬁwomo -
(ap—ap),

(2.4)

Q=

(a0+ al), P=

the above integral in general cases. To this aim it is conve-

nient to introduce the function

Y1) = JA €y, (t)— VB €F y,(t), (2.32

wherea, B are real numbers ang, ,y, are the two indepen-
dent solutions apppearing in E@.29. We have

|[g(t)|>=Ay{+By;—2JABcoshpy1y,, (233
where §,=a— . Comparing Eq(2.33 with Eq. (2.29 we
getC=—AB cos,, so that the conditioif2.30 becomes

ABSI?gp=—, (2.3
W

0

whereay=a(ty) is the (mode annihilation operator in the
Schralinger representation, combining E®.41) and (2.7)
we can derive the Bogolubov transformation

a(t)=pu(t)ag+ v(t)a) (2.42
whose coefficients are expressed by
m ) a)omo
_ ek
mH= V2womo( 16"+ m U)’
m ) womo
= —_j£* —
v(t) V ZwOmO( 1§ m 0)'
(2.43
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with mg=m(ty), wo=w(ty), and¢ given by Eq.(2.8). We Starting from Eq(3.1), by varying the action with respect
note that the Bogolubov transformation can be naturally emto the gravitational perturbation fiehq , the equation of mo-
bedded into the relation®.5 and(2.6), where the operators tion
b, b" can be identified witka(t) anda(t). Equation(2.43

entails

a!
h"+2—h'+(2K—-A)h=0 (3.2
a
|ul?=[v*=1. (2.44 B
is obtained, where prime denotesd/dn, a(n)
On the other hand, the uncertainty product can be formulated: \/5f/9Ra(7), h=h(7,x) is each component oh!, A

as follows[14]: stands for the Laplace-Beltrami operator, @fdneans the
. space curvature. By separatingh'ﬁn,i) the dependence on
(AQ)(AP)= g\/1+402(%0—&> 7 from the dependence ox, we can write h
~hg(7)h¢(X), so that
f fu ) -
= 5 lu®O = vl u®) +r(]=5. [A+(n“=K)]hy(x)=0, 3.3
(245 and
. . 'a/
The uncertainty formul#2.45) is closely related to the con- hj+2= hj+(n2+K)hy=0. (3.4
cept of coherent states for the generalized oscillators. Such a

coherent states were constructed by Hartley and Ray in 1982

[21] taking account of the Lewis-Riesenfield thed6].  Equation(3.4) can be applied to describe the evolution of
These states share all the features of the coherent statesgsfivitational waves in any state of the evolution of the uni-
the conventionaltime-independentoscillator except that of verse, even when resorting to higher derivative theories of
the uncertainty formula, in the sense that the producgravity [11]. The elimination of the first derivative in Eq.
(AQ) (AP) turns out to be not minimum. A few years later, (3.4) leads to the equatiofcalled master equation jri])
Pedrosa showed that the coherent states devised by Hartley 5

and Ray are equivalent to squeezed stp2&% y"+[(n“+K)—=V(7n)]y=0, (3.9

with
IIl. CLASSICAL VIEW AND QUANTUM THEORY
GENERATION OF GRAVITATIONAL WAVES a(n)
VIA THE KANAI-CALDIROLA OSCILLATOR V(n)= 3 y(n)= alo) ho(7).

”n

Q

In this section we shall develop a model of propagation Of\Ne remark that Eq(3.4) can be regarded as the equation of
gravitational waves based on the application of the auxiliary |

equation(2.9) for the functiona(7), in terms of which the motion of an oscillator with time-dependent massand con-

Bogolubov coefficients can be built-up. The Bogolubov Stant frequency,

transformation is a basic concept in the theory of particle ,

creation in external fields. The created particles do exist in q’+ m—q’+52q:0 (3.6)

squeezed quantum statgld. According to[1], relic gravi- m

tons created form zero-point quantum fluctuations during . . ) o

cosmological evolution should now be in strongly squeezed'Nich is described by the Hamiltonian

states. In this context the generation of gravitational waves is ) —

of fundamental importance. ne P m_“’qz 3.7
The theory of generation of gravitational waves in the 2m 2 ' '

inflationary universe scenario is based on the adftidn o _
The quantum theory of gravitational waves is therefore

1 equivalent to the quantum theory of the Kanai-Caldirola os-
S=——| f(R) V—g d*, (3.1) cillator [23,24. The formal analogy is realized upon the
16wG identification:
wheref(R) is an arbitrary function of the scalar curvatire m=a?, w?=n%+K, q~ho. (3.9

The theory defined by the above action is conformally
equivalent to a pure Einstein theory with scalar-field matter.
In linear theory, the gravitational waves decouple from the
matter field, so that the main problem is to fix the back-
ground model and to desume the relation between the con- We are mainly interested in the period under which the
formal metric. universe accelerates, namely in itdglationary stage. Infla-

A. Exact solution of the parametrically excited oscillator
and its associated auxiliary equation
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tion is defined to be a period of accelerating expansion. Durand ¢ is given by Eq.(3.13.
ing such a stage, the universe expands adiabatically and the
Friedmann equations can be exploiféd]. The prototype of B. On the phase of gravitational waves

the models of inflationary cosmology is based on the de Sit- ) ] o )
ter spacetime, which is a very interesting case concerned A deep discussion on the phase of gravitational waves is

with the constant Hubble rate and the scale factor given bycontained in[25], where this topic is dwelt on both at the
classical and quantum level.

1 Here we confine ourselves to tackle the problem classi-
a(n)=-— Hon' (3.9 cally. The study of the phase of gravitational waves by a
quantum point of view will be done elsewhere. For our pur-
where <0 andH, denotes the Hubble constant. In the depose, first we observe that the Bessel functibgsandJ _ 5,
Sitter case, Eq(3.5 takes the form of Eq(2.12, with  can be explicitly written as follow§26]:
Q?(n)=n?- 2/5%. It admits the general solution

[2 [sinz
J = I - 1
y=vV—nn[ kg —Nn)+KkJ_3,(—nn)], (3.10 322) Tz ( z COSZ)
whereJs,, J_3» are Bessel functions of the first kind and
the arbitrary constants, and «, are determined once the IoalD)=— = | sire+ COSZ)_
initial conditions are imposed. Then from E@.29 we infer -3 z

that Eqg.(2.28, which now reads
Then, the auxiliary field2.29 can be written as

n2—%> o'zis, (3.1) >
Y o a(2)= \/:
T

0'”+ 2

+B

, cosz\?
sinz+ —
z

sinz
A -~ cosz

is exactly solved by

. sinz . cosz) |12 a1

o= AZA~n7)+BE 4 —n7) ~2C| - —eosz{sinzt — =] (31D
+2CIy(—n7) I_z(—np) Y2 3.1

32 =) J-—g ~N7)] (312 wherey, =/zJ3, Y>=1zJ_35,, and the conditior{2.30) is

where constants,B,C satisfy the conditior(2.30. understood. o
Now we shall see that the phagg,, of the primordial
The phase of the auxiliary fieldo(t) gravitational waves can be obtained by E8.17) under the

choice

As we have shown in Sec. Il B, to calculate the phése
corresponding to the solutiof8.12 of Eq. (3.1]) it is con-

venient to introduce the function A=B#0, C=0, (3.18
(—np)=vV—ny[JVA €% Jy(—n7) and assuming asymptotically negative values of the confor-
v 7 7].[ . 7 mal time. In doing so, Eq<3.15), (3.17) provide
—\BEPI go(—n7)], (3.13
2A T
wherea, 8 are real numbers. Hence the auxiliary field can be cri2n~ e Ocw= 0in=ﬂ(z— Zy), (3.19
expressed viar?=|y|? provided that
K with
ABsirt0y=—-, (3.149
Wo
_mik
where fp=a—B and Wy=Wy[V—nndz(—n7), A= 2n (3.20

V—nnds(—nn)]. Therefore it is an easy matter to see that
in the case under consideration the phasdetermined by |n the casen?>|V(7)|, the high frequency waves, e.g., the

integrating Eq.(2.40 is given by ¢=—nn») solutions of the equation

z dZ, ” 2y —

9<n>=—nj ——=-n[F(2)-F(z)], (319 y"+n?y=0, (3.20
20 0°(2")
correspond to the following behavior of the gravitational per-
where the functiori(z) is defined by turbation fieldh:
1 42 1
F(z)=——=In 3.1 = Tgj
(2) 2K ) (3.16 h(z)= _sin(n7+p) (3.22
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(p is an arbitrary phageln an expanding universe, the am- pects under time evolution are enclosed into the function
plitude h of the waves decreases adiabatically forzallThe ~ Which obeys the second order nonlinear differential equation
result represented by the calculation of the phia9 of  (2.9. A general condition orA,B,C is provided by Eq.
relic gravitational waves suggests one to interpret formuld2.30. It is not enough, however. Specification of the value
(3.15 as the phase of gravitational waves not only in theand the first time derivative of at fixed time is thereby
case of the primordial cosmological scenario formally corre-needed. Another condition is associated with the requirement
sponding top— —o. Anyway, this subject, which goes be- that at the initial timen; the time-dependent annihilation and
yond the scope of the present paper, deserves further invegreation operators, derived from E@.7), go into the stan-
tigation. Here we recall only that the general solution of Eq.dard Dirac-like form, Eq(2.41). As for the final condition, it
(2.12), which holds in the case of the de Sitter cosmologicalis to be helpful to reveal that in most cases we want the state
model, can also be written as at initial time to correspond to a vacuum state. This can be
achieved easily under the minimization requirement for
Env=(%/2) (M/2) 0—0)?. Indeed, since it provides a
y= ﬁo( 7) cog Vieo( n)+4l, (3.23 measure of the decoherence at the timet has to be van-
ishing when referring to a vacuum state at the initial time
where 6 is given by Eq.(3.19, ¢ is a Noether invariant of 7= 7;. Under these circumstances, the whole set of initial
Eq. (2.12, and § is an arbitrary constant. Hence for any conditions foro is given by
conformal timez in the interval (—«,0), the amplitudén of

the gravitational perturbation field can be expressed by AB—C2— K
1 - Wo
h~ —o(n) sin V«6(n)+consi.
a o(ty) — (4w?)~Y4=0, (4.0
C. Quantum gravitational waves: () — M (to) t=0
Theory in terms of the auxiliary field o () o(to) = —5—0(to) =0.

The "?‘ppr‘.’aCh to 'the study of grayltatlonal waves V.Velp a cosmological framework of the FRW type, the above
present in this paper is developed starting from the classica

Kanai-Caldirola Hamiltoniah23,24], Eq. (3.7). As we have System is translated into

already pointed out, Eq3.4) can be regarded, in fact, as the , K

equation of motion of an oscillator with time-dependent AB-C :W'

massm=a? and constant frequency=n’+K [see Eq. °

(3.6)] described by the Hamiltonia¢8.7). So, we make the o(7)=[4(n2+K)]~ Y4 (4.2
fundamental identification of the whole temporal plagtof

the metric fluctuation amplitude as the basic “coordinate” a'(7)

variable to quantize as suctRecall that our procedure for o' (g)— ———=

the quantization of gravitational waves is based on the iden- 2na(n;)

tification of y=ah, as the variable to quantizéAs a conse- In ord 4 with sis. it i
quence, the quantum theory of gravitational waves turns out '" Or4€r to proceed with concrete analysis, It Is very cus-

to be completely equivalent to the quantum theory of thelomary to resort to the spatially flat inflationary model based

Kanai-Caldirola oscillator which can be described by theOn the_z d_e Sitter me_tric. I_—|owever, amore general and rea_listic
guantum version of the HamiltonidB.7). On the grounds of dgscrlpnon O_f the inflation may bg provided by a quasi-de
what we learned in Sec. Il, the above identification suggest§'tter spacetimesee, €.928)). In this case, the Hubble rate

a route which can be successfully pursued whenever we afg "0t exactly constant but, rather, it weakly conformal
interested in the characterization of physical effgsan- ~ changes with time according f8' = — ea®H? [that is,aa”

tum decoherence, squeezing, particle production,) etc=(2—e)a*H?=(2—¢€)a’?] where € is a constant param-
emerging from the study of inflationary models in the earlyeter. Whene vanishes one gets just the ordinary de Sitter
universe. Section IV will be devoted to a preliminary explo- spacetime. For small values ef a quasi-de Sitter spacetime
ration of the effectiveness of the idea in the context of exds associated with the scale factor

panding universe cosmological models.

a(n)==—"— 4.3
IV. APPLICATIONS (1) A(l—c) 7 (4.3

By taking full advantage of the formalism introduced in . . . .
Sec. Il, we are in the position to study the dynamical syste 7<0). In the quasi-de Sitter spatially flat scenario, Eq.
of the cosmological interest which is described by time- 2.12 reads
dependent oscillators. In doing so, a key point is the charac-
terization of constant#,B,C in Eq. (2.29. It is concerned Y+
with the initial (and boundaryconditions. All dynamical as-

(2439

2
n
(1-e)%n?

y=0 (4.4
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and can be solved in terms of Bessel functions. Precisely, one h 2

. . E _ ! a,(ﬂ) 2_h /+ g
has the two independent solutions NMT S| O mff 2|7 —(1_6)77 :
yi=v-nnl,(=nn), Y,=Vv-nzy Y,(-n7y), where

(4.9

<T'+L=\/E S (HY¥*HL, +c.c)
where v=\/1/4+ (2+ 3€)/(e—1)?. The procedure outlined (1—€)7y 42 |HY —ny) " TE T
in the previous sections can be applied and we are led to the

introduction of the basic function 3—€ |H1(— ny)|
—| v+ . (4.8
2(1-e€) V=7
o=(Ayi+By;+2Cy;y,) "
Moreover, since
==nn{AZ(—nn)+BY3(—ny)
F2C3,(-nn)Y,(~np}2 45 = |2 | L )
2na’(m) (20 a%(ny)
whereA,B,C are determined by means of the systeh®), ,
7; denoting the conformal time of the beginning of the in- i a_a (4.9
flation. Once we are interested in a situation in which the a '
system started very far in the past in a vacuum state, the
1 na’(zm)

Bessel function expansions a2(7)
NN
2na®(7;)

J - SR IS
J(—nn) mco nn 2T 7 ﬁ ) . a’
—ilo'——0o (4.10
v 2 . v T 4o 1 . ) o _
A—np)~\/ - WT? sinf —np=s7—4 ﬁ ; g;an arbitrary timen the Bogolubov coefficients are given
for v fixed andn»— — assists us in finding suitable con- 1 [\ 2091 p) 2@
stantsA,B,C. By taking arbitrary asymptotically negative w(n)=\/— _'> [ S _) no
initial times, the leading terms of Bessel functiohs, Y, 2n \ 7y 20 \ m

give rise to the following behavior for the function:

o
—i|lo'+ , 4.1
R (4.1
2 . v T n
a(n)=\/—{ A+(B—A)sir’| —nyp— sm— —
m 2 4 1 7 2[(1—¢) 1 7 2[(1—¢)
I
o1y Y e B e
+CSin<—2n7]—V7T—— +0 —)] . 2n\ n 20 \ n
2 ny
(o
. . L —i| o'+ (4.12
Once the limitn;< <0 is concerned a natural choice is given (1—€)ny

by A=B= w/4n, C=0 (recall that we already found this
result for the caser=23/2 associated with the standard de with o ando’ + o/(1— €)  furnished by Eq(4.7) and(4.8),

Sitter metric background So we obtain respectively. Finally, the phas¢ can be evaluated. Due to
Eq. (2.40, we get
a
=\/— 7 {(—np)+Y3(—np)}? 7
a(m=1\— g7 AL(=nm+Y,(—nn); o(n)= —iln li(n) | @13
(),
V-2 [Hi=ng) @7 |
=\/— =7 |[H)—n7p)|. :
4" Hu(=ny where

In the light of our previous results, the decoherence energy T e P L PO
Enu at the timey of gravitational waves in a quasi-de Sitter PO=N7zn € yatiyal=\z; € Ny H,.

model of inflation can be evaluated by inserti@7) into
formula (2.25. It then results That is,

043504-8
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— lin
0( 7]) - 2 01} 7!

where 6% denotes the phase of the Hankel functidh.
It is now instructive to focus on a standard de Sitter in-
flation. In this case=0, v=3 and

1 /1+ 1
o= — —.
V2n %z’

(4.19
So, the integration of 12 is straight, i.e.,
7 dy’ n? 2 tanh 1(n
[" 2 _ﬂdn:mz[,,__(’?) |
7 o?(n') 1+n?y? n
(4.15

up to a constant of integration. The above two formulas pro-

vide the standard exa¢bnd normalizef solution for the
quantum fluctuations of a generic massless scalar field du
ing a de Sitter inflation. Yet, it is interesting to consider a
very long inflation by letting the system evolve towargs
—0. In this caseEyy simply reads

-

Interestingly, the decoherence energwatO0 is finite. More-
over, in the standard de Sitter phase, from Ef14 we
obtain the Bogolubov coefficients

2

h
ENM(77)=§

M
-0

5 (4.19

h
4

1+ n2772'

R i | P (.17
= ——_— +_ -, i
s 2 1+n22 || 7| "
1 V2?2 ([ 7]
() =n— i | 1- S [ —t, (41
e | R T E
(n?7?>1) which in turn implies that
1 ) 2
(=522 (4.19
4\n 7
I

particles are created out of the vacuum at the tigne

PHYSICAL REVIEW 39, 043504 (2004

(7—2n¢)
ae(m)= > NeS NS,
Ho ¢
(7+ 7m—47¢)°
am(n)= i i 7= Nm, (4.20

4Hon? (m,—2m1)

where Hy denotes the Hubble constant at the inflationary
stage, andy; represents the beginning of the expansion. In
order to determine they-dependent amplitudh,, for each
epoch we have to solve EqR.12 with the corresponding
varying frequencies, namely

1/2

Qn=|n?- (4.2

(7+ 7m—47e)°
?\Iotice that the frequenc§), is constant, while); and Q,

are varying with the same temporal dependence. The fre-
quency(); characterizes the de Sitter era. The related equa-
tion of motion (2.12 has already been solved. Taking care
about matching data aj, and 7,, is needed for the knowl-
edge of the complete form @f. The associated’s and their
derivatives have to join continuosly at, and 7,,, in fact.

This step is needed to obtain all the physical information
implied in formulas for the Bogolubov coefficients, the de-
coherence energy, the gravitational phase, and squeezing.
Having in mind our previous discussion, employing the
model by considering a quasi-de Sitter phase is straight.

In general, the vacuum expectation value of the number
operator and the other quantities of the physical interest vary
slowly with time if the expansion rate becomes arbitrarily
slow. In case the espansion is stopped one should be able to
recover time-independent Dirac operators. However, the cir-
cumstance does not mean that Bogolubov coefficients trivi-
alize. This is because loss of coherence previously occurred
due to the expansion dynamics. A typical situation may be

that o goes to zero butr does notEyy goes to zero, indi-
cating that when expansion is stopped the time-dependent
gravitational pumping stops as well and there is no further
decoherence. If expansion stops from timg to time #,,
thenV ne[ 74, 7,] One gets

In more refined studies of cosmological effects in the ex- a2(12) [ 1 a?( 7))
panding Universe, it turns out to be useful to introduce a ()= Ta L _
cosmological model which allows one to take into account 2na’( ni)[ZU( 7a) a?(n,)
different evolutionary phases of the Universe. Once the (4.22
model has been specified and E®.12 solved, one can get
an insight into physical effects associated with different cos- a’(7,) / 1 a’(7)
mological stages. For instance, one can consider a simple v(n)= 2na¥( _)\20(,7 )_naz( ) o(72) |
cosmological model which includes the inflationafi), K 2 a 4.23
radiation-dominatede), and matter-dominate¢m) epochs ’
[29]. The scale factor has the following dependence on thevhich implies
conformal time: ) )
a as(n
1 w(m)*=5 4na2(77()77i2(7]) az((Z')) o?(72) +1|.
ai(n)= Hon' 7i<n<7e<0, ! a a (4.24
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To get a more clear insight into the results achieved in thifomoving wave numbear reduces to the harmonic oscillator
section, a few comments are in order. Specifically, our forequation with time-dependent mass and constant frequency.
mula for the decoherence energy associated with the dynamlhe approximation behind computations leading to the result
cal evolution of the gravitational fluctuation modes on aactually are applicable only to the infrared region. On gen-
background of the FRW type is expressed in a very compac&ral grounds, one therefore expects that predictic_)ns for ob-
form in terms of the auxiliary fieldr( ;) and the scale factor Servables may depend sensitively on the physics on the
a(7). On the other hand, the decoherence energy plays dfndth scales smaller than the Planck one. In order to take
essential role in the relationships for the Bogolubov coeffi-Nt@ account trans-Planckian physics, it has been recently
cients. This aspect makes explicit how the energy lost owingt99ested to make use of effective dispersion relatises,
to the decoherence effect may be exploited to excite th&9-[27)- The Ilngar d|23per3|20n relation is thus replaced by
vacuum state of the model under consideration. Moreover, i Nonlinear onengz=a(»)F*(n/a), whereF(n/a) is an
our framework this mechanism would be quantified in a@rbitrary function required to behave linearly wheneméa
compact way by means of the formula (=k) is below a certain threshold. A time dependent disper-

sion relation thus enters in the matter. As a consequence, the
underlying dynamical model turns out to be that of the har-
; monic oscillator with both the mass (=a?) and the fre-
4.25 guencyw(=ngy) depending on time. In principle, its quan-

' tization can still be pursued by resorting to the formalism of
to other works, in our paper the role of the decoherencdeSS, @ comment is in order. In the light of the discussion in
energy is made manifest. Furthermore, we observe that, ré14l, one might wonder, in fact, on whether or not in the
markably, the auxiliary fieldo is nothing but the time- cosmological framework the minimum uncertainty criterium

dependent amplitude of the mode solutions to @12 for ~ ¢an be satisfied under time evolution for some physically

a%(n)
2na®( ;)

2 ) 2
(2= ( . ”a(”')o) ‘e

20 a¥(y) S

the redshifted gravitational field fluctuations. reasonable functiof. It is straightforwardly seen that this is
not the case, generally speaking. Indeed, in the cosmological
V. CONCLUDING REMARKS framework the criterium reads asn.4=const and implies a

purely cubic functiorF, sayF = agn®/a®. As a consequence,
The main results achieved in this paper have been preahe uncertainty relation can be minimized only approxi-
sented and widely discussed in the Introduction. Thereforenately. It is worth noting that this happens in the large wave
we shall conclude by making some final comments concernaumbers limit of a special case of the generalized Corley-
ing challenging perspectives which should be dwelt upon inJacobson dispersion relation introduced 27| see Eq.(22)
future developments. The evolution equation of a mode withn [27].
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