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Non-Gaussianity in the curvaton scenario
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Since a positive future detection of nonlinearity in the cosmic microwave background anisotropy pattern
might allow us to descriminate among different mechanisms giving rise to cosmological adiabatic perturba-
tions, we study the evolution of the second-order cosmological curvature perturbation on superhorizon scales
in the curvaton scenario. We provide the exact expression for the non-Gaussianity in the primordial perturba-
tions including gravitational second-order corrections which are particularly relevant in the case in which the
curvaton dominates the energy density before it decays. As a by-product, we show that in the standard scenario
where cosmological curvature perturbations are induced by the inflaton field, the second-order curvature
perturbation is conserved even during the reheating stage after inflation.
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I. INTRODUCTION

One of the basic ideas of modern cosmology is that th
was an epoch early in the history of the Universe when
tential, or vacuum, energy associated with a scalar field,
inflaton, dominated other forms of energy density such
matter or radiation. During such a vacuum-dominated era
scale factor grew exponentially~or nearly exponentially! in
time. During this phase, dubbed inflation@1,2#, a small,
smooth spatial region of size less than the Hubble rad
could grow so large as to easily encompass the como
volume of the entire presently observable Universe. If
Universe underwent such a period of rapid expansion,
can understand why the observed Universe is so hom
neous and isotropic to a high accuracy.

Inflation has also become the dominant paradigm for
derstanding the initial conditions for structure formation a
for cosmic microwave background~CMB! anisotropy. In the
inflationary picture, primordial density and gravity-wav
fluctuations are created from quantum fluctuations ‘‘re
shifted’’ out of the horizon during an early period of supe
luminal expansion of the Universe, where they are ‘‘froze
@3–7#. Perturbations at the surface of last scattering are
servable as temperature anisotropy in the CMB, which w
first detected by the cosmic background explorer~COBE!
satellite@8–10#. The last and most impressive confirmatio
of the inflationary paradigm has been recently provided
the data of the Wilkinson Microwave Anistropy Prob
~WMAP! mission which has marked the beginning of t
precision era of the CMB measurements in space@11#. The
WMAP Collaboration has produced a full-sky map of t
angular variations of the CMB, with unprecedented accura
WMAP data confirm the inflationary mechanism as resp
sible for the generation of curvature~adiabatic! superhorizon
fluctuations.

Despite the simplicity of the inflationary paradigm, th
mechanism by which cosmological adiabatic perturbati
are generated is not yet fully established. In the stand
picture, the observed density perturbations are due to fl
0556-2821/2004/69~4!/043503~7!/$22.50 69 0435
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tuations of the inflaton field itself. When inflation ends, t
inflaton oscillates about the minimum of its potential a
decays, thereby reheating the Universe. As a result of
fluctuations each region of the Universe goes through
same history but at slightly different times. The final tem
perature anisotropies are caused by the fact that infla
lasts different amounts of time in different regions of t
Universe leading to adiabatic perturbations. Under this
pothesis, the WMAP dataset already allows one to extract
parameters relevant for distinguishing among single-field
flation models@12#.

An alternative to the standard scenario is represented
the curvaton mechanism@13–16# where the final curvature
perturbations are produced from an initial isocurvature p
turbation associated to the quantum fluctuations of a li
scalar field~other than the inflaton!, the curvaton, whose en
ergy density is negligible during inflation. The curvato
isocurvature perturbations are transformed into adiab
ones when the curvaton decays into radiation much after
end of inflation.1 Contrary to the standard picture, the curv
ton mechanism exploits the fact that the total curvature p
turbation ~on uniform density hypersurfaces! z can change
on arbitrarily large scales due to a nonadiabatic pressure
turbation which may be present in a multifluid system@18–
22#. While the entropy perturbations evolve independently
the curvature perturbation on large scales, the evolution
the large-scale curvature is sourced by entropy perturbati

Fortunately, the standard and the curvaton scenarios h
different observational signatures. The curvaton scenario
lows one to generate the observed level of density pertu
tions with a much lower scale of inflation and thus gene

1Recently, another mechanism for the generation of cosmolog
perturbations has been proposed@17#. It acts during the reheating
stage after inflation if superhorizon spatial fluctuations in the de
rate of the inflaton field are induced during inflation, causing ad
batic perturbations in the final reheating temperature in differ
regions of the Universe.
©2004 The American Physical Society03-1
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cally predicts a smaller level of gravitational waves. Mo
interestingly, density perturbations generated through
curvaton scenario could be highly non-Gaussian and
level of non-Gaussianity in the primordial perturbation
which is usually parametrized by a dimensionless nonlin
parameterf NL , depends upon an unknown parameterr indi-
cating the fraction of energy density contributed by the c
vaton field at the epoch of its decay. For tiny values ofr, it
has been estimated that the non-Gaussianity can be
enough to be detectable by present CMB experime
@14,16#; the current WMAP@23# bound on non-Gaussianity
u f NLu&102, already requiresr to be larger than about 1022.

This curvaton prediction has to be contrasted to that p
dicted within the traditional one-single field model of infl
tion where the initially tiny nonlinearity in the cosmologic
perturbations generated during the inflationary epoch@24,25#
gets enhanced in the postinflationary stages giving rise
well-defined prediction for the nonlinearity in the gravit
tional potentials@26#.

Since a positive future detection of nonlinearity in t
CMB anisotropy pattern might allow one to descrimina
among the mechanisms by which cosmological adiab
perturbations are generated, it is clear that the precise d
mination of the non-Gaussianity predicted by the curva
mechanism is of primary interest.

The goal of this paper is to provide an exact express
for the nonlinear parameterf NL within the curvaton scenario
including second-order corrections from gravity which a
particularly relevant in the case in which the curvaton dom
nates the energy density before it decays. We perform a f
relativistic analysis of the dynamics of second-order per
bations taking advantage of the second-order gauge-inva
curvature perturbation introduced in Refs.@27,28# ~see also
@24,29,30#! and showing how it evolves on arbitrarily larg
scales in the presence of two fluids, matter~the curvaton! and
radiation. Our results generalize the estimates given in R
@14,16# and confirm their findings in the limitr !1.

The paper is organized as follows. In Sec. II we brie
summarize the properties of the curvaton scenario and
the primordial curvature perturbations are created at fi
order. In Sec. III we compute the second-order curvat
perturbation from the curvaton fluctuations and determ
the exact expression for the nonlinear parameterf NL as a
function of the unknown parameterr. In Sec. IV we show
that our findings can be easily generalized to the stand
scenario where adiabatic perturbations are provided by
same field driving inflation and prove that the second-or
curvature perturbation is conserved even during the rehea
stage after inflation when the inflaton field decays to g
birth to the standard radiation phase. Finally, Sec. V conta
our conclusions.

II. GENERATING THE CURVATURE PERTURBATION
AT LINEAR ORDER

During inflation the curvaton fields is supposed to give a
negligible contribution to the energy density and to be
almost free scalar field, with a small effective massms

2

5u]2V/]s2u!HI
2 @14,16#, whereHI5ȧ/a is the Hubble rate
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during inflation,a is the scale factor, and a dot denotes d
rivative with respect to cosmic time.

The unperturbed curvaton field satisfies the equation
motion

s912Hs81a2
]V

]s
50, ~1!

where a prime denotes differentation with respect to the c
formal timedt5dt/a andH5a8/a is the Hubble paramete
in conformal time. It is also usually assumed that the cur
ton field is very weakly coupled to the scalar fields drivin
inflation and that the curvature perturbation from the inflat
fluctuations is negligible@14,16#. Thus if we expand the cur
vaton field up to first-order in the perturbations around
homogeneous background ass(t,x)5s(t)1d (1)s, the lin-
ear perturbations satisfy on large scales

d (1)s912Hd (1)s81a2
]2V

]s2
d (1)s50. ~2!

As a result on superhorizon scales its fluctuationsds will be
Gaussian distributed and with a nearly scale-invariant sp
trum given by

Pds
1/2 ~k!'

H*
2p

, ~3!

where the subscript asterisk denotes the epoch of hor
exit k5aH. Once inflation is over the inflaton energy de
sity will be converted to radiation (g) and the curvaton field
will remain approximately constant untilH2;ms

2 . At this
epoch the curvaton field begins to oscillate around the m
mum of its potential which can be safely approximated to
quadraticV' 1

2 ms
2s2. During this stage the energy densi

of the curvaton field just scales as nonrelativistic matterrs

}a23. The energy density in the oscillating field is

rs~t,x!'ms
2s2~t,x!, ~4!

and it can be expanded into a homogeneous backgro
rs(t) and a first-order perturbationd (1)rs as

rs~t,x!5rs~t!1d (1)rs~t,x!5ms
2s12ms

2sd (1)s. ~5!

As it follows from Eqs.~1! and ~2! for a quadratic potentia
the ratiod (1)s/s remains constant and the resulting relati
energy density perturbation is

d (1)rs

rs
52S d (1)s

s D
*

, ~6!

where the asterisk stands for the value at horizon crossi
Such perturbations in the energy density of the curva

field produce in fact a primordial density perturbation w
after the end of inflation. The primordial adiabatic dens
perturbation is associated with a perturbation in the spa
curvature c and it is usually characterized in a gaug
invariant manner by the curvature perturbationz on hyper-
3-2
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NON-GAUSSIANITY IN THE CURVATON SCENARIO PHYSICAL REVIEW D69, 043503 ~2004!
surfaces of uniform total densityr. At linear order the quan-
tity z is given by the gauge-invariant formula@31#

z (1)52c (1)2Hd (1)r

r8
, ~7!

and on large scales it obeys the equation of motion@31,21#

z (1)852
H

r1P
d (1)Pnad, ~8!

whered (1)Pnad5d (1)P2cs
2d (1)r is the nonadiabatic pressur

perturbation,d (1)P being the pressure perturbation andcs
2

5P8/r8 the adiabatic sound speed. In the curvaton scen
the curvature perturbation is generated well after the en
inflation during the oscillations of the curvaton field becau
the pressure of the mixture of matter~curvaton! and radiation
produced by the inflaton decay is not adiabatic. A conven
way to study this mechanism is to consider the curvat
perturbationsz i associated with each individual energy de
sity components, which to linear order are defined as@21#

z i
(1)[2c (1)2HS d (1)r i

r i8
D . ~9!

Therefore during the oscillations of the curvaton field, t
total curvature perturbation in Eq.~7! can be written as a
weighted sum of the single curvature perturbations@21,16#

z (1)5~12 f !zg
(1)1 f zs

(1) , ~10!

where the quantity

f 5
3rs

4rg13rs
~11!

defines the relative contribution of the curvaton field to t
total curvature perturbation. From now on we shall wo
under the approximation of sudden decay of the curva
field. Under this approximation the curvaton and the rad
tion componentsrs andrg satisfy separately the energy co
servation equations

rg8524Hrg ,
~12!

rs8523Hrs ,

and the curvature perturbationz i remains constant on supe
horizon scales until the decay of the curvaton. Theref
from Eq. ~10! it follows that the first-order curvature pertu
bation evolves on large scales as

z (1)85 f 8~zs
(1)2zg

(1)!5Hf ~12 f !~zs
(1)2zg

(1)!, ~13!

and by comparison with Eq.~8! one obtains the expressio
for the nonadiabatic pressure perturbation at first or
@14,16#

d (1)Pnad5rs~12 f !~zg
(1)2zs

(1)!. ~14!
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Since in the curvaton scenario it is supposed that the cu
ture perturbation in the radiation produced at the end of
flation is negligible,

zg
(1)52c (1)1

1

4

d (1)rg

rg
50. ~15!

Similarly the value ofzs
(1) is fixed by the fluctuations of the

curvaton during inflation,

zs
(1)52c (1)1

1

3

d (1)rs

rs
5zsI

(1) , ~16!

whereI stands for the value of the fluctuations during infl
tion. From Eq.~10! the total curvature perturbation durin
the curvaton oscillations is given by

z (1)5 f zs
(1) . ~17!

As it is clear from Eq.~17! initially, when the curvaton en-
ergy density is subdominant, the density perturbation in
curvaton fieldzs

(1) gives a negligible contribution to the tota
curvature perturbation, thus corresponding to an isocurva
~or entropy! perturbation. On the other hand during the o
cillations rs}a23 increases with respect to the energy de
sity of radiationrg}a24, and the perturbations in the curva
ton field are then converted into the curvature perturbati
Well after the decay of the curvaton, during the conventio
radiation and matter dominated eras, the total curvature
turbation will remain constant on superhorizon scales a
value which, in the sudden decay approximation, is fixed
Eq. ~17! at the epoch of curvaton decay

z (1)5 f Dzs
(1) , ~18!

whereD stands for the epoch of the curvaton decay.
Going beyond the sudden decay approximation it is p

sible to introduce a transfer parameterr defined as@16,22#

z (1)5r zs
(1) , ~19!

wherez (1) is evaluated well after the epoch of the curvat
decay andzs

(1) is evaluated well before this epoch. The n
merical study of the coupled perturbation equations has b
performed in Ref.@22# showing that the sudden decay a
proximation is exact when the curvaton dominates the ene
density before it decays (r 51), while in the opposite case

r'S rs

r D
D

. ~20!

III. SECOND-ORDER CURVATURE PERTURBATION
FROM THE CURVATON FLUCTUATIONS

Here we generalize to second-order in the density per
bations the results of the previous section.

As it has been shown in Ref.@28# it is possible to define
the second-order curvature perturbation on uniform to
3-3
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density hypersurfaces by the quantity~up to a gradient term!

z (2)52c (2)2Hd (2)r

r8
12Hd (1)r8

r8

d (1)r

r8
12

d (1)r

r8

3~c (1)812Hc (1)!2S d (1)r

r8
D 2S Hr9

r8
2H 822H 2D ,

~21!

where the curvature perturbationc has been expanded up
second order asc5c (1)1 1

2 c (2) andd (2)r corresponds to the
second-order perturbation in the total energy density aro
the homogeneous backgroundr(t),

r~t,x!5r~t!1dr~t,x!5r~t!1d (1)r~t,x!1
1

2
d (2)r~t,x!.

~22!

The quantityz (2) is gauge-invariant and, as its first-ord
counterpart defined in Eq.~7!, it is sourced on superhorizo
scales by a second-order nonadiabatic pressure perturb
@28#.

In Ref. @26# the conserved quantityz (2) has been used in
the standard scenario where the generation of cosmolog
perturbations is induced by fluctuations of the inflaton fie
~and there is no curvaton! in order to follow the evolution on
large scales of the primordial nonlinearity in the cosmolo
cal perturbations from a period inflation to the matter dom
nate era. In the present scenario the conversion of the cu
ton isocurvature perturbations into a final curvatu
perturbation at the epoch of the curvaton decay can be
lowed through the sum~10! of the individual curvature per
turbations weighted by the ratiof of Eq. ~11!.

Let us now extend such a result at second order in
perturbations. As we shall see in Sec. III A this result w
enable us to compute in an exact way the level of n
Gaussianity produced by the nonlinearity of the perturbati
in the curvaton energy density.

Since the quantitiesz i
(1) andz i

(2) are gauge-invariant, we
choose to work in the spatially flat gaugec50 if not other-
wise specified. Note that from Eqs.~6! and~16! the value of
zs

(1) is thus given by

zs
(1)5

1

3

d (1)rs

rs
5

2

3

d (1)s

s
5

2

3 S d (1)s

s D
*

, ~23!

where we have used the fact thatzs
(1) ~or equivalently

d (1)s/s) remains constant, while from Eq.~16! in the spa-
tially flat gauge

zg
(1)5

1

4

d (1)rg

rg
. ~24!

During the oscillations of the curvaton field the first-ord
energy conservation equations in the spatially flat ga
04350
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c50 yield on large scales2

d (1)r85d (1)rs81d (1)rg8523Hd (1)rs24Hd (1)rg ,

~25!

and hence using Eqs.~12!, ~23!, ~24!, and~25!

d (1)r8

r8
53 f zs

(1)14~12 f !zg
(1) ,

~26!

Hd (1)r

r8
52 f zs

(1)2~12 f !zg
(1) .

We can thus rewrite the total second-order curvature per
bationz (2) as

z (2)52Hd (2)r

r8
2@ f zs

(1)1~12 f !zg
(1)#

3@ f 2zs
(1)1~12 f !~21 f !zg

(1)#. ~27!

In a similar manner to the linear order, let us introduce n
the curvature perturbationsz i

(2) at second order for eac
individual component. Such quantities will be given by t
same formula as Eq.~21! relatively to each energy densit
r i ,

z i
(2)52c (2)2Hd (2)r i

r i8
12H

d (1)r i8

r i8

d (1)r i

r i8
12

d (1)r i

r i8

3~c (1)812Hc (1)!2S d (1)r i

r i8
D 2S H

r i9

r i8
2H 822H 2D .

~28!

Using the same procedure described above it follows
in the spatially flat gauge

zs
(2)5

1

3

d (2)rs

rs
2~zs

(1)!2, ~29!

zg
(2)5

1

4

d (2)rg

rg
22~zg

(1)!2. ~30!

Such quantities are gauge-invariant and, in the sud
decay approximation they are separately conserved until
curvaton decay. Using Eqs.~29! and ~30! to express the
second-order perturbation in the total energy densityd (2)r
5d (2)rs1d (2)rg , and after some algebra, one finally o
tains the following expression for the total curvature pert
bationz (2):

z (2)5 f zs
(2)1~12 f !zg

(2)1 f ~12 f !~11 f !~zs
(1)2zg

(1)!2.

~31!

2Here and in the following we neglect gradient terms which, up
integration over time, may give rise to nonlocal operators which
not necessarily suppressed on large scales being of the
¹22@¹(•)¹(•)# or ¹22@(•)¹2(•)#. However, note that these gra
dient terms will not affect the gravitational potential bispectrum
large scales.
3-4
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Equation~31! is one of our main results. It generalizes
second-order in the perturbations the weighted sum of
~10!. In particular notice that in the limit where one of th
two fluids is completely subdominant (f→0 or f→1) the
corresponding curvature perturbationz i

(2) turns out to coin-
cide with the total onez (2).

Under the sudden decay approximation of the curva
field the individual curvature perturbations are separa
conserved on large scales, and thus from Eq.~31! it follows
that z (2) evolves according to the equation

z (2)85 f 8~zs
(2)2zg

(2)!1 f 8~123 f 2!~zs
(1)2zg

(1)!2. ~32!

Note that Eq.~32! can be rewritten as@28#

z (2)852
H

r1P
d (2)̂P2

2

r1P
@d (1)Pnad22~r1P!z (1)#z (1)8,

~33!

with d (1)Pnad given by Eq.~14! and

d (2)̂P5rs~12 f !@~zg
(2)2zs

(2)!1~ f 216 f 21!3~zs
(1)2zg

(1)!2

14zg
(1)~zs

(1)2zg
(1)!# ~34!

is the gauge-invariant nonadiabatic pressure perturbatio
uniform density hypersurfaces on large scales which can
checked to coincide with the generic expression provided
Ref. @28#:

d (2)̂P5d (2)P2
P8

r8
d (2)r1P8F2S d (1)8r

r8
2

d (1)8P

P8
D d (1)r

r8

1S P9

P
2

r9

r D S d (1)r

r8
D 2G . ~35!

The second-order curvature perturbation in the standard
diation or matter eras will remain constant on superhoriz
scales and, in the sudden decay approximation, it is t
given by the quantity in Eq.~31! evaluated at the epoch o
the curvaton decay,

z (2)5 f Dzs
(2)1 f D~12 f D

2 !~zs
(1)!2, ~36!

where we have used the curvaton hypothesis that the cu
ture perturbation in the radiation produced at the end of
flation is negligible so thatzg

(1)'0 andzg
(2)'0. The curva-

ture perturbationzs
(1) is given by Eq.~23!, while zs

(2) in Eq.
~29! is obtained by expanding the energy density of the c
vaton field, Eq.~4!, up to second order in the curvaton flu
tuations

rs~x,t !5rs~t!1d (1)rs~t,xi !1
1

2
d (2)rs~t,xi !

5ms
2s12ms

2 s d (1)s1ms
2~d (1)s!2. ~37!

It follows that
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d (2)rs

rs
5

1

2 S d (1)rs

rs
D 2

5
9

2
~zs

(1)!2, ~38!

where we have used Eq.~23!, and hence from Eq.~29! we
obtain

zs
(2)5

1

2
~zs

(1)!25
1

2
~zs

(1)! I
2 , ~39!

where we have emphasized that alsozs
(2) is a conserved

quantity whose value is determined by the curvaton fluct
tions during inflation. Plugging Eq.~39! into Eq. ~36! the
curvature perturbation during the standard radiation or ma
dominated eras turns out to be

z (2)5 f DS 3

2
2 f D

2 D ~zs
(1)!2. ~40!

Non-Gaussianity of the curvaton perturbations

Let us now focus on the calculation of the nonlinear p
rameter f NL which is usually adopted to characterize t
level of non-Gaussianity of the Bardeen potential@32#. In
order to computef NL in the curvaton scenario, we switc
from the spatially flat gaugec50 to the longitudinal or
Poisson gauge@33#. Such a procedure is possible since t
curvature perturbationsz i

(2) are gauge-invariant quantities. I
particular this is evident from the expression found in E
~40!. During the matter dominated era from Eq.~21! it turns
out that@26#

z (2)52c (2)1
1

3

d (2)r

r
1

5

9 S d (1)r

r D 2

52c (2)1
1

3

d (2)r

r
1

20

9
~c (1)!2, ~41!

where in the last step we have used that on large sc
d (1)r/r522c (1) in the Poisson gauge@26#. Equation~41!
combined with Eq.~40!, which gives the constant value o
large scales of the curvature perturbationz (2) during the mat-
ter dominated era, yields

c (2)2
1

3

d (2)r

r
5

1

9 F202
75

2 f D
125f DG~c (1)!2, ~42!

where we have usedf Dzs
(1)52 5

3 c (1) from Eq. ~18! and the
usual linear relation between the curvature perturbation
the Bardeen potentialz (1)52 5

3 c (1) during the matter domi-
nated era. Since on large scales@from the second-order (0
20# and (i 2 j ) components of Einstein equations, see E
3-5



n

n
n
o

o-

a
th
-
fin

e

ring
in

of

one
hat
n-

nd-
les,
s

ns.

-
e

this

cur-

of

con-

on.
ase

uid
on
ical
llat-

see
se,
lu-
re
re

-

BARTOLO, MATARRESE, AND RIOTTO PHYSICAL REVIEW D69, 043503 ~2004!
~A.39! and ~A.42-43! in @24## the following relations hold
during the matter-dominated phase:

f (2)52
1

2

dr (2)

r
14~c (1)!2,

~43!

c (2)2f (2)52
2

3
~c (1)!21

10

3
¹22~c (1)¹2c (1)!

210¹22@] i] j~c (1)] i]
jc (1)!#,

we conclude that

f (2)5F10

3
1

5

3
f D2

5

2 f D
G~c (1)!222¹22~c (1)¹2c (1)!

16¹22@] i] j~c (1)] i]
jc (1)!#. ~44!

The total curvature perturbation will then have a no
Gaussian (x2) component. The lapse functionf5f (1)

1 1
2 f (2) can be expressed in momentum space as

f~k!5f (1)~k!1
1

~2p!3E d3k1d3k2d (3)~k11k22k!

3 f NL
f ~k1 ,k2!f (1)~k1!f (1)~k2!, ~45!

where we have defined an effective ‘‘momentum-depende
nonlinearity parameterf NL

f . Here the linear lapse functio
f (1)5c (1) is a Gaussian random field. The gravitational p
tential bispectrum reads

^f~k1!f~k2!f~k3!&

5~2p!3d (3)~k11k21k3!

3@2 f NL
f ~k1 ,k2!Pf~k1!Pf~k2!1cyclic#, ~46!

wherePf(k) is the power spectrum of the gravitational p
tential. From Eq.~44! we read the nonlinearity parameter

f NL
f 5F7

6
1

5

6
r 2

5

4r G1g~k1 ,k2!, ~47!

where

g~k1 ,k2!5
k1•k2

k2 S 113
k1•k2

k2 D , ~48!

with k5k11k2 and we have replacedf D with r to go be-
yond the sudden approximation. Notice that in the fin
bispectrum expression, the diverging terms arising from
infrared behavior off NL

f (k1 ,k2) are automatically regular
ized once the monopole term is subtracted from the de
tion of f ~by requiring that̂ f&50!.

As far as the momentum-independent part is concern
we note that in the limitr !1 we obtain f NL

f 52 (5/4r )
which reproduces the estimate provided in@14,16#, while, in
04350
-

t’’

-

l
e

i-

d,

the limit r .1, we obtainf NL
f 5 3

4 for r .1.3 These values
have to be compared to the valuef NL

f 52 1
2 @26# obtained for

perturbations whose wavelengths reenter the horizon du
the matter-dominated phase for the standard scenario
which curvature perturbations are induced by fluctuations
the inflaton field. We conclude that ifr !1 the non-
Gaussianity in the curvaton scenario is larger than the
predicted in the standard scenario. Finally, we point out t
additional non-Gaussianity will be generated after horizo
crossing, due to known Newtonian and relativistic seco
order contributions which are relevant on subhorizon sca
such as the Rees-Sciama effect@34#, whose detailed analysi
has been given in Ref.@35#. It is important to consider also
these effects when making a comparison with observatio

IV. A COMMENT ON THE EVOLUTION
OF THE CURVATURE PERTURBATION

DURING THE REHEATING PHASE
IN THE STANDARD SCENARIO

Note that Eq.~31! is indeed valid in the general frame
work of an oscillating scalar field and a radiation fluid, th
curvaton scenario being only a particular case. Thus in
section we shall indicate the generic scalar field byw instead
of s. From Eq.~31! it is possible to derive the following
equation of motion on large scales for the second-order
vature perturbationz (2):

z (2)85 f 8~zw
(2)2zg

(2)!1 f 8~123 f 2!~zw
(1)2zg

(1)!2, ~49!

where we have used the fact that, in the approximation
sudden decay of the scalar fieldw, the individual curvature
perturbations at first and second-order are separately
served. Using Eqs.~10! and~31! it is possible to rewritez (2)8

in terms only ofz (2),zw
(2) andz (1),zw

(1) as

z (2)852Hf ~z (2)2zw
(2)!1Hf ~112 f !~z (1)2zw

(1)!2.
~50!

Here we want to make a simple but important observati
Besides the curvaton scenario, the most interesting c
where there is an oscillating scalar field and a radiation fl
is just the phase of reheating following a period of inflati
in the standard scenario for the generation of cosmolog
perturbations on large scales. In such a situation the osci
ing scalar field is just the inflaton fieldw whose fluctuations
induce curvature perturbations. Therefore it is possible to
in a straightforward way that during the reheating pha
when the inflaton field finally decays into radiation, a so
tion of Eq. ~50! is the one corresponding to a total curvatu
perturbation which is indeed fixed by the inflaton curvatu
perturbation during inflation z (1)5zw

(1)5zwI
(1) , z (2)5zw

(2)

5zwI
(2) .

3Notice that the formula~36! in @16# for the estimate of the non
linear parameter contains a sign misprint and should readf NL

f

.2 (5/4r ), giving f NL
f .2

5
4 for r .1.
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V. CONCLUSIONS

In this paper we have determined the evolution on la
scales of the second-order curvature perturbation within
curvaton scenario where two fluids are present, the curva
and radiation. We have computed the nonlinear param
f NL measuring the level of non-Gaussianity in the primord
cosmological perturbations and provide its exact expres
as a function of the parameterr. Our findings are particularly
interesting if one wishes to extract from a positive futu
detection of nonlinearity in the CMB anisotropy pattern
v.

ys

.
ge
,

04350
e
e

on
er
l
n

way to descriminate among the mechanisms by which c
mological adiabatic perturbations are generated. It would
interesting to extend our results to those models which
accommodate for a primordial value off NL larger than unity.
This is the case, for instance, of a large class of multifi
inflation models which leads to either non-Gaussian isoc
vature perturbations@36# or cross-correlated non-Gaussia
adiabatic and isocurvature modes@37# and the so-called ‘‘in-
homogeneous reheating’’ mechanism where the curva
perturbations are generated by spatial variations of the in
ton decay rate@17#.
er,
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