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Non-Gaussianity in the curvaton scenario
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Since a positive future detection of nonlinearity in the cosmic microwave background anisotropy pattern
might allow us to descriminate among different mechanisms giving rise to cosmological adiabatic perturba-
tions, we study the evolution of the second-order cosmological curvature perturbation on superhorizon scales
in the curvaton scenario. We provide the exact expression for the non-Gaussianity in the primordial perturba-
tions including gravitational second-order corrections which are particularly relevant in the case in which the
curvaton dominates the energy density before it decays. As a by-product, we show that in the standard scenario
where cosmological curvature perturbations are induced by the inflaton field, the second-order curvature
perturbation is conserved even during the reheating stage after inflation.
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I. INTRODUCTION tuations of the inflaton field itself. When inflation ends, the
inflaton oscillates about the minimum of its potential and
One of the basic ideas of modern cosmology is that thereecays, thereby reheating the Universe. As a result of the
was an epoch early in the history of the Universe when pofluctuations each region of the Universe goes through the
tential, or vacuum, energy associated with a scalar field, theame history but at slightly different times. The final tem-
inflaton, dominated other forms of energy density such aperature anisotropies are caused by the fact that inflation
matter or radiation. During such a vacuum-dominated era th&asts different amounts of time in different regions of the
scale factor grew exponentiallypr nearly exponentiallyin Universe leading to adiabatic perturbations. Under this hy-
time. During this phase, dubbed inflatidi,2], a small, pothesis, the WMAP dataset already allows one to extract the
smooth spatial region of size less than the Hubble radiuparameters relevant for distinguishing among single-field in-
could grow so large as to easily encompass the comovingation modelq 12].
volume of the entire presently observable Universe. If the An alternative to the standard scenario is represented by
Universe underwent such a period of rapid expansion, onghe curvaton mechanisfii3—16 where the final curvature
can understand why the observed Universe is so homoggerturbations are produced from an initial isocurvature per-
neous and isotropic to a high accuracy. turbation associated to the quantum fluctuations of a light
Inflation has also become the dominant paradigm for unscalar field(other than the inflatonthe curvaton, whose en-
derstanding the initial conditions for structure formation andergy density is negligible during inflation. The curvaton
for cosmic microwave backgrounl@MB) anisotropy. In the isocurvature perturbations are transformed into adiabatic
inflationary picture, primordial density and gravity-wave ones when the curvaton decays into radiation much after the
fluctuations are created from quantum fluctuations “red-end of inflation* Contrary to the standard picture, the curva-
shifted” out of the horizon during an early period of super- ton mechanism exploits the fact that the total curvature per-
luminal expansion of the Universe, where they are “frozen”turbation (on uniform density hypersurfaceg can change
[3-7]. Perturbations at the surface of last scattering are obon arbitrarily large scales due to a nonadiabatic pressure per-
servable as temperature anisotropy in the CMB, which wasurbation which may be present in a multifluid systgh8—
first detected by the cosmic background exploi€OBE)  22]. While the entropy perturbations evolve independently of
satellite[8—10]. The last and most impressive confirmation the curvature perturbation on large scales, the evolution of
of the inflationary paradigm has been recently provided bythe large-scale curvature is sourced by entropy perturbations.
the data of the Wilkinson Microwave Anistropy Probe  Fortunately, the standard and the curvaton scenarios have
(WMAP) mission which has marked the beginning of the different observational signatures. The curvaton scenario al-
precision era of the CMB measurements in spddd. The  |ows one to generate the observed level of density perturba-

WMAP Collaboration has produced a full-sky map of the tions with a much lower scale of inflation and thus generi-
angular variations of the CMB, with unprecedented accuracy.

WMAP data confirm the inflationary mechanism as respon————

sible for the generation of curvatufadiabati¢ superhorizon  1recently, another mechanism for the generation of cosmological

fluctuations. perturbations has been propoddd]. It acts during the reheating
Despite the simplicity of the inflationary paradigm, the stage after inflation if superhorizon spatial fluctuations in the decay

mechanism by which cosmological adiabatic perturbationsate of the inflaton field are induced during inflation, causing adia-

are generated is not yet fully established. In the standardatic perturbations in the final reheating temperature in different

picture, the observed density perturbations are due to fluaegions of the Universe.
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cally predicts a smaller level of gravitational waves. Moreduring inflation,a is the scale factor, and a dot denotes de-
interestingly, density perturbations generated through theévative with respect to cosmic time.
curvaton scenario could be highly non-Gaussian and the The unperturbed curvaton field satisfies the equation of
level of non-Gaussianity in the primordial perturbations, motion
which is usually parametrized by a dimensionless nonlinear
parameteify, , depends upon an unknown parametérdi-
cating the fraction of energy density contributed by the cur-
vaton field at the epoch of its decay. For tiny values ot
has been estimated that the non-Gaussianity can be larg¢here a prime denotes differentation with respect to the con-
enough to be detectable by present CMB experiment§ormal timedr=dt/a andH=a’/a is the Hubble parameter
[14,16]; the current WMAPF 23] bound on non-Gaussianity, in conformal time. It is also usually assumed that the curva-
|fu|=10?, already requires to be larger than about 18.  ton field is very weakly coupled to the scalar fields driving
This curvaton prediction has to be contrasted to that preiflation and that the curvature perturbation from the inflaton
dicted within the traditional one-single field model of infla- fluctuations is negligibl¢14,16. Thus if we expand the cur-
tion where the initially tiny nonlinearity in the cosmological vaton field up to first-order in the perturbations around the
perturbations generated during the inflationary ed@eh25 homogeneous background a@ér,x) = o(7) + 8V, the lin-
gets enhanced in the postinflationary stages giving rise to @ar perturbations satisfy on large scales
well-defined prediction for the nonlinearity in the gravita-
tional potentiald26].
Since a positive future detection of nonlinearity in the
CMB anisotropy pattern might allow one to descriminate

among the mechanisms by which cosmological adiabatigs 5 result on superhorizon scales its fluctuatiéaswill be

perturbations are generated, it is clear that the precise detegssian distributed and with a nearly scale-invariant spec-
mination of the non-Gaussianity predicted by the curvaton,,m given by

mechanism is of primary interest.

The goal of this paper is to provide an exact expression H,
for the nonlinear parametdg, within the curvaton scenario PE&(K)~ > )
including second-order corrections from gravity which are

particularly relevant in the case in which the curvaton domiyhere the subscript asterisk denotes the epoch of horizon
nates the energy density before it decays. We perform a fullgyit k=aH. Once inflation is over the inflaton energy den-
relativistic analysis of the dynamics of second-order pertursity will be converted to radiatiom) and the curvaton field
bations taking advantage of the second-order gauge-invariagfii remain approximately constant until?~m?. At this
curvature perturbation introduced in Ref87,28 (see also  gn4ch the curvaton field begins to oscillate around the mini-

[24,29,3Q) and showing how it evolves on arbitrarily 1arge ,m of jts potential which can be safely approximated to be

scales in the presence of two fluids, maftae curvatoma_nd quadratich%mioz. During this stage the energy density

Bf the curvaton field just scales as nonrelativistic maptgr
a 3. The energy density in the oscillating field is

Y
0'"+2H0”+a2%:0, (1

2

Y
sWo"+ 215V’ + aZF sWa=0. )
g

[14,16 and confirm their findings in the limit<1. o
The paper is organized as follows. In Sec. Il we briefly
summarize the properties of the curvaton scenario and how
the primordial curvature perturbations are created at first-
Order. In SeC. 1l we Compute the Second'order CUrVatUr%nd |t can be expanded into a homogeneous background

perturbation from the curvaton fluctuations and determing, (7) and a first-order perturbatioff®p, as

the exact expression for the nonlinear paraméigr as a

function of the unknown parameter In Sec. IV we show po(7.X)=p( T)+5<1)p0(7,x):m§g+ 2m§05(1)g_ (5
that our findings can be easily generalized to the standard

scenario where adiabatic perturbations are provided by thas it follows from Eqgs.(1) and(2) for a quadratic potential
same field driving inflation and prove that the second-ordethe ratio ) o/ o remains constant and the resulting relative
curvature perturbation is conserved even during the reheatingnergy density perturbation is

stage after inflation when the inflaton field decays to give

po(T,X)~M2a?(7,X), (4)

birth to the standard radiation phase. Finally, Sec. V contains 5(1)/3(, _o sBNo 5
our conclusions. Py P ' (6)
o *
Il. GENERATING THE CURVATURE PERTURBATION where the asterisk stands for the value at horizon crossing.
AT LINEAR ORDER Such perturbations in the energy density of the curvaton

o ) o ] field produce in fact a primordial density perturbation well
During inflation the curvaton field is supposed to give a after the end of inflation. The primordial adiabatic density
negligible contribution to the energy density and to be amperturbation is associated with a perturbation in the spatial
almost free scalar field, with a small effective mas§  curvature ¢ and it is usually characterized in a gauge-
=|&2V/¢90'2|<H|2 [14,14], whereH,=a/a is the Hubble rate invariant manner by the curvature perturbati®wn hyper-
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surfaces of uniform total densify. At linear order the quan- Since in the curvaton scenario it is supposed that the curva-
tity ¢ is given by the gauge-invariant formula1] ture perturbation in the radiation produced at the end of in-
flation is negligible,
(1) 15 00P
(W= =g —H—, (7) W . 1%,
P (P=—yW+7

=0. (15)

and on large scales it obeys the equation of mof&h21]
Similarly the value ofgf,l) is fixed by the fluctuations of the

' H curvaton during inflation,
(' = = 56 Prag ® ?
1 5(1)p
. . . D— _ () =2 Fo_ «(1)
where VP, = VP —c251)p is the nonadiabatic pressure {H=—yM+ 3 . =o' (16)

perturbation,5")P being the pressure perturbation aoii
=P’'/p’ the adiabatic sound speed. In the curvaton scenarigsherel stands for the value of the fluctuations during infla-
the curvature perturbation is generated well after the end ofon. From Eq.(10) the total curvature perturbation during
inflation during the oscillations of the curvaton field becausethe curvaton oscillations is given by

the pressure of the mixture of mat{eurvaton and radiation

produced by the inflaton decay is not adiabatic. A convenient (W=f0 (17)
way to study this mechanism is to consider the curvature

perturbations; associated with each individual energy den-As it is clear from Eq.(17) initially, when the curvaton en-

sity components, which to linear order are defined2g ergy density is subdominant, the density perturbation in the
) curvaton fieldg“f,l) gives a negligible contribution to the total
(D= MY Pi ©) curvature perturbation, thus corresponding to an _isocurvature
! p! ' (or entropy perturbation. On the other hand during the os-

cillations p, a2 increases with respect to the energy den-
Therefore during the oscillations of the curvaton field, thesity of radiationpyoca"", and the perturbations in the curva-
total curvature perturbation in Eq47) can be written as a ton field are then converted into the curvature perturbation.

weighted sum of the single curvature perturbatifizi, 16| Well after the decay of the curvaton, during the conventional
radiation and matter dominated eras, the total curvature per-
5(1)2(1—f)§(71)+f§571), (100 turbation will remain constant on superhorizon scales at a
_ value which, in the sudden decay approximation, is fixed by
where the quantity Eq. (17) at the epoch of curvaton decay
. 3p, W=f D 18
f= G 3, (11) { nle (18)

] ) o ] whereD stands for the epoch of the curvaton decay.
defines the relative contribution of the curvaton field to the  Going beyond the sudden decay approximation it is pos-

total curvature pgrturpation. From now on we shall workgjpe to introduce a transfer parametedefined ag16,27]
under the approximation of sudden decay of the curvaton

field. Under this approximation the curvaton and the radia- (D=rD) (19)
tion componentg,, andp , satisfy separately the energy con- 7

servation equations where ™) is evaluated well after the epoch of the curvaton

decay andtV is evaluated well before this epoch. The nu-
merical study of the coupled perturbation equations has been
performed in Ref[22] showing that the sudden decay ap-
proximation is exact when the curvaton dominates the energy
density before it decays € 1), while in the opposite case

p;= —4Hp,,
(12
po=—3Hp,,

and the curvature perturbatidn remains constant on super-

horizon scales until the decay of the curvaton. Therefore
from Eq. (10) it follows that the first-order curvature pertu- r%(&) _ (20)
bation evolves on large scales as Pl

W) 7 A1) AL — ey AL AD)
(V=75 =RIA-D(G-67), (19 lll. SECOND-ORDER CURVATURE PERTURBATION

and by comparison with Eq8) one obtains the expression FROM THE CURVATON FLUCTUATIONS

for the nonadiabatic pressure perturbation at first order Here we generalize to second-order in the density pertur-
(14,14 bations the results of the previous section.

1) B W) 1) As it has been shown in Ref28] it is_possible tq define

P pa=p(1=1)(L = E57)- (14 the second-order curvature perturbation on uniform total
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density hypersurfaces by the quantityp to a gradient terin =0 yield on large scalés

sWp'=5Wp! + 5Wp! = —3H5Wp, —aHsVp,
5(2)[) 5(l)pr 5(1)p 5(1)p Ps Y Po Py

(@=_ w(Z)_H 1OH +2 (25)
p’' p' p p' and hence using Eqél2), (23), (24), and(25)
, FIEN 2 " PN
X (gD +2H¢//(1))—( ,p) H— 1 —2m? |, P 3 a(1-f)e®,
p p p
(21) sDp (26)
H——=— =10
where the curvature perturbatignhas been expanded up to p

second order ag= ¢V + 3 42 and5®p corresponds to the We can thus rewrite the total second-order curvature pertur-
second-order perturbation in the total energy density arounBation ¢(? as

the homogeneous backgroup(r),

5
! (D=~ H—E -1+ (1= DY)
p(7X) = p(1)+ 8p(.X) = p(7)+ Vp(7X) + 5 0Pp(7.). b

(22) x[F2eP+ 1) 2+1) ). (27)

In a similar manner to the linear order, let us introduce now
The quantity®) is gauge-invariant and, as its first-order the curvature perturbation&® at second order for each
counterpart defined in Eq7), it is sourced on superhorizon individual component. Such quantities will be given by the
scales by a second-order nonadiabatic pressure perturbatigame formula as Eq21) relatively to each energy density

[28]. i
In Ref.[26] the conserved quantit§®) has been used in :
the standard scenario where the generation of cosmologicag(z)_ B (2)_H5(2)Pi +2H5(1)Pi' sWp, +25(1)Pi
perturbations is induced by fluctuations of the inflaton field =i~ 4 ol o/ ol ol
(and there is no curvatgin order to follow the evolution on ! : ' '
large scales of the primordial nonlinearity in the cosmologi- ) sWp, 2 p|
cal perturbations from a period inflation to the matter domi- X (D + 2Hy D) — — | | H5—H' —2H?|.
nate era. In the present scenario the conversion of the curva- Pi pi
ton isocurvature perturbations into a final curvature (28)
perturbation at the epoch of the curvaton decay can be fol- i . ]
lowed through the sunil0) of the individual curvature per- Using th_e same procedure described above it follows that
turbations weighted by the ratfoof Eq. (11). in the spatially flat gauge
Let us now extend such a result at second order in the 1 5@ p
perturbations. As we shall see in Sec. Il A this result will g(z)— T — (M2, (29)
enable us to compute in an exact way the level of non- Po
Gaussianity produced by the nonlinearity of the perturbations 1 6@)p
in the curvaton energy density. (9= 7 —L -2/~ (30)
Since the quantities!™) and {®) are gauge-invariant, we Py
choose to work in the spatially flat gauge=0 if not other- Such quantities are gauge-invariant and, in the sudden
wise specified. Note that from Eg®) and(16) the value of decay approximation they are separately conserved until the
gf}) is thus given by curvaton decay. Using Eq$29) and (30) to express the

second-order perturbation in the total energy densi®)p

w_1 8Wp, 26We 2(sWg =6@p,+5@p,, and after some algebra, one finally ob-
73 p, 3 o 3\ o ' 23 tains the following expression for the total curvature pertur-
bation ¢(2):
where we have used the fact th&f? (or equivalently (=104 1-H)P+1(1-Ha+H -2
5Vl o) remains constant, while from E@L6) in the spa- (31)
tially flat gauge
@_ 160 Py Here and in the following we neglect gradient terms which, upon
Y 4 P (29 integration over time, may give rise to nonlocal operators which are
Y

not necessarily suppressed on large scales being of the form

V2V(-)V(-)] or V7 (-)V?(-)]. However, note that these gra-
During the oscillations of the curvaton field the first-order dient terms will not affect the gravitational potential bispectrum on
energy conservation equations in the spatially flat gaug¢arge scales.
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second-order in the perturbations the weighted sum of Eq. o 5

Equation(31) is one of our main results. It generalizes to 5(2)p 1 5(1)p 2 9
s ( ) =5 (L)%, (38)

(10). In particular notice that in the limit where one of the Po
two fluids is completely subdominanf--0 or f—1) the
corresponding curvature perturbati@ﬁ) turns out to coin-  where we have used E3), and hence from Eq29) we
cide with the total ong(?, obtain

Under the sudden decay approximation of the curvaton
field the individual curvature perturbations are separately
conserved on large scales, and thus from Bd) it follows (2)_1(5(1))2_E(§(1))2 (39)
that () evolves according to the equation oo e/ piea

@) =7 rD_ f @y 41 (1=3F2) (D= D2 (32
‘ (b =60 ( W= 4% (32 where we have emphasized that al§§ﬁ) is a conserved
Note that Eq(32) can be rewritten ag28] guantity whose value is determined by the curvaton fluctua-

tions during inflation. Plugging Eq.39) into Eq. (36) the

2y H e 2 W O ALY curvature perturbation during the standard radiation or matter
0o =— p+_P5 P— p+_P[5 Prad—2(p+P){™M]¢™", dominated eras turns out to be
(33
. . 3
with P, .4 given by Eq.(14) and (A= fo(z—f%) (L2, (40)

3PP =, (1= NP~ D)+ (12461 1) x (¢~ )2
+4§(y1)(§21)_ g(yl))] (34) Non-Gaussianity of the curvaton perturbations

Let us now focus on the calculation of the nonlinear pa-
is the gauge-invariant nonadiabatic pressure perturbation ammeter fy, which is usually adopted to characterize the
uniform density hypersurfaces on large scales which can bievel of non-Gaussianity of the Bardeen potentid®]. In
checked to coincide with the generic expression provided irorder to computefy, in the curvaton scenario, we switch
Ref.[28]: from the spatially flat gauge/=0 to the longitudinal or

Poisson gaug€33]. Such a procedure is possible since the
2( s'p  sD'p| sty curvature perturbationg? are gauge-invariant quantities. In
pl P/

Dp— s2p_ " 5@, pr
p’

( p” pn) ( 5(1)p) 2
+|=—— .
P »p p'

The second-order curvature perturbation in the standard ra-

diation or matter eras will remain constant on superhorizon

scales and, in the sudden decay approximation, it is thus 1 6@p

given by the quantity in Eq(31) evaluated at the epoch of =—yP+ 3
the curvaton decay,

; particular this is evident from the expression found in Eq.
(40). During the matter dominated era from Eg1) it turns
out that[26]

p

(39

2) (1), 2
§(2)2_¢(2)+Eu+§ op
3 p 9\ p

+ %’(W)Z. (42)

(@=15P+p(1-13) ({12, (36)  where in the last step we have used that on large scales
8Wplp=—2¢D) in the Poisson gaugk26]. Equation(41)
where we have used the curvaton hypothesis that the curv@ombined with Eq(40), which gives the constant value on
ture perturbation in the radiation produced at the end of in{arge scales of the curvature perturbatiéf during the mat-
flation is negligible so that{’~0 and{{?’~0. The curva-  ter dominated era, yields
ture perturbation’™) is given by Eq.(23), while £{?) in Eq.
(29) is obtained by expanding the energy density of the cur-

i i @p 1 75
vaton field, Eq.4), up to second order in the curvaton fluc- @)_ } 0 p — Zlon_ (12
tuations Vo3, 9|20 25, T2 |(W)T (49
(1) i 1 5@ i 1
Po(X)=po(7)+ 85 po(7.X) + 5 8%py(1,X) where we have usef}, (V= — %4 from Eq.(18) and the

usual linear relation between the curvature perturbation and
=mio+2m? o sMo+mi(6WMe)2. (37  the Bardeen potential))= — 3 ¢! during the matter domi-
nated era. Since on large sca[é®m the second-order (0
It follows that —0] and (—j) components of Einstein equations, see Egs.
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(A.39) and (A.42-43 in [24]] the following relations hold the limit r=1, we obtainf¢, =2 for r=1.% These values

during the matter-dominated phase: have to be compared to the valff§ = — 1 [26] obtained for
1 55@ perturbations whose wavelengths reenter the horizon during
P =— > P +4(y)2, the matter-dominated phase for the standard scenario in

which curvature perturbations are induced by fluctuations of
(43 the inflaton field. We conclude that if<1 the non-
Gaussianity in the curvaton scenario is larger than the one
predicted in the standard scenario. Finally, we point out that
additional non-Gaussianity will be generated after horizon-

P2 — pP) = — g( ,?/,(1))2+l§0vf2(¢,(1)v217/,(1))

—2r o 1) 5 4i (1 ; . O
—10V=2[d' o, (¢ Mo ay )], crossing, due to known Newtonian and relativistic second-
lude th order contributions which are relevant on subhorizon scales,
we conclude that such as the Rees-Sciama effi®4], whose detailed analysis
10 5 5 has been given in Ref35]. It is important to consider also
@—| = — (N2 2y —2( (D20 these effects when making a comparison with observations.
& +3fo sz(«/f ) =2V A (VYY)
+ 6V‘2[ J aj(lp(l)ai El lp(l))]_ (44) IV. ACOMMENT ON THE EVOLUTION
OF THE CURVATURE PERTURBATION
The total curvature perturbation will then have a non- DURING THE REHEATING PHASE
Gaussian %?) component. The lapse functiog= ™ IN THE STANDARD SCENARIO

+14@ i . -
2¢"" can be expressed in momentum space as Note that Eq.(31) is indeed valid in the general frame-

work of an oscillating scalar field and a radiation fluid, the
f A3k, A3k, 6)(kq + ko—K) curvaton scenario being only a particular case. Thus in this
section we shall indicate the generic scalar fieldginstead
o 1 (1) of o. From Eq.(31) it is possible to derive the following
XLk k) 67 (ky) ¢ (ko), (45) equation of motion on large scales for the second-order cur-

. . vature perturbatiorf(?):
where we have defined an effective “momentum-dependent”

nonlinearity parametefy, . Here the linear lapse function ) g1 #(2)_ 2N 1 g1 2 (1) #(1N2

. . . ) N = — + — _

¢»M =y is a Gaussian random field. The gravitational po- ¢ P =G-8 6% (49
tential bispectrum reads

1
=51
Bk = (k0 +

where we have used the fact that, in the approximation of

sudden decay of the scalar fiedd the individual curvature
(k1) d(Kz) p(Ka)) perturbations at first and second-order are separately con-
=(2m)35®)(ky +ka+Kz) served. Using Eq$10) and(31) it is possible to rewritg ()’

i 2 2 1 1
><[ZfﬁL(kl,kz)P¢(kl)P¢(k2)+cyclic], (46) in terms only of¢! ),gfp) and ¢ ),Cfp) as
(@ = —Hf((B= @)+ Hi(1+26)((D- ()2
whereP,(k) is the power spectrum of the gravitational po- (50)
tential. From Eq(44) we read the nonlinearity parameter
Here we want to make a simple but important observation.
Besides the curvaton scenario, the most interesting case
ar +0(kq,ky), (47) where there is an oscillating scalar field and a radiation fluid
is just the phase of reheating following a period of inflation
in the standard scenario for the generation of cosmological
perturbations on large scales. In such a situation the oscillat-
) ing scalar field is just the inflaton field whose fluctuations

7.5
66

=

where

(49) induce curvature perturbations. Therefore it is possible to see
in a straightforward way that during the reheating phase,
when the inflaton field finally decays into radiation, a solu-

with k=k;+k, and we have replacef}, with r to go be- tion of Eq.(50) is the one corresponding to a total curvature

yond the sudden approximation. Notice that in the finalperturbation which is indeed fixed by the inflaton curvature

bispectrum expressmn the diverging terms arising from theerturbation during inflation g(l)—g(l)—g(l), (D= g(z)

infrared behavior off{, (k;,k,) are automatically regular- —5(2)

ized once the monopole term is subtracted from the defini-

tion of ¢ (by requiring that ¢)=0).

As far as the momentum-independent part is concerned,3Notice that the formuld36) in [16] for the estimate of the non-
we note that in the limir<1 we obtalanL—— (5/4r) linear parameter contains a sign misprint and should refad
which reproduces the estimate provided 14,16, while, in = — (5/4r), giving f¢,=—3 forr=1.

ki-ko ki-ko
9(ky k)= 2 (1+3 2
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V. CONCLUSIONS way to descriminate among the mechanisms by which cos-
. _ . mological adiabatic perturbations are generated. It would be
In this paper we have determined the evolution on larg§neresting to extend our results to those models which can
scales of the se_cond—order curvature perturbation within thg.ommodate for a primordial value &, larger than unity.
curvaton scenario where two fluids are present, the curvatofiyjs is the case, for instance, of a large class of multifield
and radiation. We have computed the nonlinear parametgafiation models which leads to either non-Gaussian isocur-
fnL measuring the level of non-Gaussianity in the primordialyature perturbation$36] or cross-correlated non-Gaussian
cosmological perturbations and provide its exact expressiofdiabatic and isocurvature mod&y] and the so-called “in-
as a function of the parameterOur findings are particularly homogeneous reheating” mechanism where the curvature
interesting if one wishes to extract from a positive futureperturbations are generated by spatial variations of the infla-
detection of nonlinearity in the CMB anisotropy pattern aton decay rat¢17].
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